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1 Introduction

Portal hypertension ˘PH¯ refers to the abnormal increase of the portal venous pres‚

sure, which is a common chronic liver disease with clinical consequences of cirrhosis,

such as hepatic encephalopathy, variceal hemorrhage and ascites [11, 7]. Fig. 1 shows

the portal vein and hepatic vein extracted from CT images, from the figure we also

see the single inlet and multiple outlets structure of the portal vein and the multiple

inlets and single outlet characteristics of the hepatic vein. The portal pressure gradi‚

ent ˘PPG¯ is defined as the difference in the pressure between the inlet of the portal

vein and the outlet of the inferior vena cava. PH refers to the situation that PPG is

greater than 5 mmHg [4]. When the value of PPG is higher than 10 mmHg, the PH is

Zeng Lin

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,

e‚mailȷ zeng.lin@siat.ac.cn

Bokai Wu

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,

e‚mailȷ bk.wu@siat.ac.cn

Shanlin Qin

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,

e‚mailȷ sl.qin@siat.ac.cn

Xinhong Wang

Department of Radiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University,

Hangzhou, China, e‚mailȷ 2611104@zju.edu.cn

Rongliang Chen

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,

e‚mailȷ rl.chen@siat.ac.cn

*Corresponding Authorȷ Xiao‚Chuan Cai

Department of Mathematics, University of Macau, Macau, China, e‚mailȷ xccai@um.edu.mo

157



158 Lin et al.

called the clinically significant portal hypertension. If PPG is higher than 12 mmHg,

variceal hemorrhage may occur [11].

Fig. 1: The segmented portal vein and hepatic vein

In clinical applications, the common approach to measure the PPG is the tran‚

sjugular route, which requires the insertion of a radiopaque catheter into the right

hepatic vein via the jugular vein under fluoro scopic guidance. The method is inva‚

sive and sometimes impractical for routine clinical practice. Recently, a technology

based on computational fluid dynamics ˘CFD¯ [5, 6, 14] is being introduced as an

alternative approach to measure the pressure difference non‚invasively. With CFD,

several desired pathological values, such as pressure, velocity and wall shear stress

˘WSS¯ can be easily computed.

In this work, we model the blood flow by the system of Navier‚Stokes equations

which is discretized by a fully implicit finite element method on a fully unstructured

mesh, and solved by an efficient and highly parallel domain decomposition method

[9]. With this method, a simulation of a full 3D patient‚specific hepatic flow can be

realized in a few hours. The numerical experiments are carried out on a cluster of

computers with near 2000 processor cores and the parallel efficiency is higher than

60%. The computed PPG values are within the normal range of published data.

2 Numerical method

The blood flows in the hepatic vessels are described by the unsteady incompressible

Navier‚Stokes equationsȷ
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𝜌
𝜕𝒖

𝜕𝑡
+ 𝜌(𝒖 · ∇)𝒖 − ∇ · 𝝈 = 𝒇 𝑖𝑛 Ω × (0, 𝑇],

∇ · 𝒖 = 0 𝑖𝑛 Ω × (0, 𝑇] .
˘1¯

Here 𝒖 denotes the velocity vector, 𝜌 the blood density, 𝒇 the external force and 𝝈

is the Cauchy stress tensor defined asȷ

𝝈 = −𝑝𝑰 + 2𝜇𝜺(𝒖), ˘2¯

where 𝑝 is the pressure, 𝑰 is the identity tensor, 𝜇 is the dynamic viscosity and 𝜺 is

the deformation tensor defined as 𝜺(𝒖) = 1/2(∇𝒖 + ∇𝒖𝑇 ).

The initial condition is imposed by a given function. The velocity boundary

conditions are imposed for the inlets of the portal vein. No slip condition is applied

on the wall. The resistance boundary conditions are used for the outlets of the portal

vein and hepatic vein [8].

The weak form of ˘1¯ readsȷ Find 𝒖 ∈ 𝑉 and 𝑝 ∈ 𝑃 such that ∀𝒗 ∈ 𝑉0 and ∀𝑞 ∈ 𝑃,

B({𝒖, 𝑝}, {𝒗, 𝑞}) = 0, ˘3¯

where

B({𝒖, 𝑝}, {𝒗, 𝑞}) = 𝜌

∫

Ω

𝜕𝒖

𝜕𝑡
· 𝒗𝑑Ω + 𝜌

∫

Ω

(𝒖 · ∇)𝒖 · 𝒗𝑑Ω

−

∫

Ω

𝑝(∇ · 𝒗)𝑑Ω + 2𝜇

∫

Ω

𝜺(𝒖) : 𝜺(𝒗)𝑑Ω

+

∫

Ω

(∇ · 𝒖)𝑞𝑑Ω +

∫

Γ𝑂

(𝝈𝒏) · 𝒗𝑑Γ − 𝜌

∫

Ω

𝒇 · 𝒗𝑑Ω.

˘4¯

Here Γ𝑂 is the outlet boundary and 𝒏 is the outward normal vector of the outlet. The

functional spaces 𝑉 , 𝑉0 and 𝑃 are defined in details in [5].

The computational domain Ω is covered with a fully unstructured tetrahedral

mesh on which we introduce 𝑃1 − 𝑃1 finite element function spaces. As the 𝑃1 − 𝑃1

pair doesn’t satisfy the Ladyzhenskaya‚Babuska‚Brezzi ˘LBB¯ [2] condition, some

stabilization terms are added in the weak form ˘4¯ when applied to finite element

functions. More details about the stabilization parameters can be found in [2]. Then

˘4¯ can be rewritten as a time‚dependent nonlinear algebraic system

𝑑X(𝑡)

𝑑𝑡
= N(X), ˘5¯

where X(𝑡) is the vector of the nodal values of the velocity 𝒖 and pressure 𝑝, N(·)

is the nonlinear function representing the spatial discretization of ˘4¯. ˘5¯ can be

further discretized by the fully implicit backward Euler method in time

X
𝑛 −X

𝑛−1

Δ𝑡
= N(X𝑛), ˘6¯
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where X𝑛 is the value of X(𝑡) at the 𝑛‚th time step and Δ𝑡 is the time step size.

For simplicity, ˘6¯ can be rearranged into a nonlinear system

F 𝑛 (X𝑛) = 0 ˘7¯

to be solved at each time step.

In this work, the nonlinear system ˘7¯ will be solved by the Newton‚Krylov‚

Schwarz algorithm [13]. The algorithm includes three components, an inexact New‚

ton [3] as the nonlinear solver, a preconditioned Krylov subspace method ˘GMRES¯

[12] as the linear solver at each Newton step, and an overlapping Schwarz method

[1] as the preconditioner. More details about the algorithm are available in [8].

3 Numerical experiments

In this section, we present some numerical experiments for blood flows in the portal

vein and hepatic vein, and also the parallel performance of the algorithm with respect

to the number of processor cores. Lastly, the PPG values will be calculated based on

the simulation of blood flows in a patient‚specific portal vein and hepatic vein.

In all the numerical experiments, 𝜌 = 1.05𝑔/𝑐𝑚3 and 𝜇 = 0.038𝑐𝑚2/𝑠 [10]

are used to characterize the properties of the hepatic blood. The algorithm is im‚

plemented with the Portable Extensible Toolkit for Scientific computation ˘PETSc¯

library. In the experiments, the relative stopping condition for Newton is set to be

1.0× 10
−6 and the relative stopping condition for GMRES is 1.0× 10

−3. Incomplete

LU ˘ILU¯ is used to solve the subdomain problems in the additive Schwarz precon‚

ditioner. “ILU˘𝑙¯” represents ILU with 𝑙 level of fill‚ins, “𝑛𝑝” means the number of

processor cores, “Newton” stands for the average number of Newton iterations per

time step, “GMRES” denotes the average number of GMRES iterations per Newton

step, “Time” is the average wall clock time in seconds spent per time step, “Memory”

indicates the memory consumption in megabyte per processor core per time step,

“Speedup” denotes the speedup ratio and “Efficiency” means the parallel efficiency.

A sample finite element mesh for the portal vein and hepatic vein is shown in Fig.

2. The portal vein has 1 inlet and 25 outlets and the hepatic vein has 47 inlets and

1 outlet. The clinically measured flow velocity [10] is used for the inflow boundary

condition and the total resistance is chosen such that the computed pressures are

within the ranges of typical adult patients.
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Fig. 2: A sample finite element mesh for the portal vein and hepatic vein

Table 1: Parallel performance using different number of processor cores

𝑛𝑝 Newton GMRES Memory ˘MB¯ Time ˘s¯ Speedup Efficiency

240 3.10 404.52 450.89 160.39 1 100%

480 3.10 452.68 250.55 93.97 1.71 86%

960 3.10 457.98 143.06 51.93 3.09 77%

1920 3.10 462.02 78.84 30.14 5.32 67%

A parallel scalability study. The parallel scalability is investigated on a cluster of

computers, and each compute node of the computer has two Intel Xeon processors

and 64GB of shared memory. The performance of the algorithm in terms of the

number of Newton iterations per time step, the number of GMRES iterations per

Newton step, the total memory per processor core per time step, the total compute

time per time step, the speedup ratio and the parallel efficiency are presented in

Table 1. A mesh with ß.ß6 × 10
6 elements is utilized for the numerical tests, where

the largest size of the elements is 0.85𝑚𝑚, the smallest is 0.0ß𝑚𝑚 and the average

is 0.26𝑚𝑚. The time step size is set as Δ𝑡 = 1.00 × 10
−3𝑠, the subdomain solver is

ILU˘1¯ and the overlapping size is 2. The scalability about the linear and nonlinear

algebraic solvers are clearly observed, wherein the number of Newton iterations and

GMRES iterations change only slightly as the number of processor cores increase,

especially for the Newton iterations. It can be seen that when the number of processor

cores increases from 240 to 1ß20, the compute time reduces to 30.14𝑠 and the parallel

efficiency reduces to 67%, which is quite good considering the fact that the geometry

of the problem is rather complicated.
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Fig. 3: The pressure, velocity and WSS distribution of the computed flow in the portal vein and

hepatic vein at 𝑡 = 0.5𝑠

The portal pressure gradient. Next, we present a numerical calculation of PPG.

Firstly, the pressure, velocity and WSS distributions of the blood flow in the portal

vein and hepatic vein at 𝑡 = 0.5𝑠 are plotted in Fig. 3. Then we pick several pairs of

points ˘A1,B1¯, ˘A2,B2¯, ˘A3,B3¯ and ˘A4,B4¯ as marked in Fig. 1 to compute the

difference in the pressure between the portal vein and the hepatic vein, i.e., the PPG,

for three cardiac cycles. The portal vein pressure at points A1, A2, A3 and A4 are

drawn in the top‚left sub‚figure of Fig. 4. Meanwhile, the hepatic vein pressure at

points B1, B2, B3 and B4 are illustrated in the top‚right sub‚figure of Fig. 4. Then

their PPG values of the pairs ˘A1,B1¯, ˘A2,B2¯, ˘A3,B3¯ and ˘A4,B4¯ are plotted

in the bottom‚left sub‚figure of Fig. 4. Finally, the time‚averaged PPG ˘TAPPG¯
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values are presented in the bottom‚right sub‚figure of Fig. 4. It is clear that all four

approximations are within the normal ranges as indicated in [8].

Fig. 4: The computed portal vein pressure, hepatic vein pressure, PPG and TAPPG values for three

cardiac cycles
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