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1 Introduction

This work is concerned with convergence and weak scalability1 analysis of one‚

level parallel Schwarz method ˘PSM¯ and optimized Schwarz method ˘OSM¯ for the

solution of the problem

− Δ𝑢 = 𝑓 in Ω, 𝑢(𝑎1, 𝑦) = 𝑢(𝑏𝑁 , 𝑦) = 0 𝑦 ∈ (0, 1),
B𝑏 (𝑢) (𝑥) = B𝑡 (𝑢) (𝑥) = 0 𝑥 ∈ (𝑎1, 𝑏𝑁 ),

˘1¯

where Ω is the domain depicted in Fig. 1, and B𝑏 and B𝑡 are either Dirichlet, or

Neumann or Robin operatorsȷ

Dirichletȷ B𝑏 (𝑢) (𝑥) = 𝑢(0, 𝑥), B𝑡 (𝑢) (𝑥) = 𝑢(1, 𝑥),
Neumannȷ B𝑏 (𝑢) (𝑥) = 𝜕𝑦𝑢(0, 𝑥), B𝑡 (𝑢) (𝑥) = 𝜕𝑦𝑢(1, 𝑥),

RobinȷB𝑏 (𝑢) (𝑥) = 𝑞𝑢(0, 𝑥) − 𝜕𝑦𝑢(0, 𝑥), B𝑡 (𝑢) (𝑥) = 𝑞𝑢(1, 𝑥) + 𝜕𝑦𝑢(1, 𝑥).

Here, 𝑞 > 0 and the subscripts ‘𝑏’ and ‘𝑡’ stand for ‘bottom’ and ‘top’. As shown

in Fig. 1, the domain Ω is the union of subdomains Ω 𝑗 , 𝑗 = 1, . . . , 𝑁 , defined as

Ω 𝑗 := (𝑎 𝑗 , 𝑏 𝑗 ) × (0, 1), where 𝑎1 = 0, 𝑎 𝑗 = 𝐿 + 𝑎 𝑗−1 for 𝑗 = 2, . . . , 𝑁 + 1 and

𝑏 𝑗 = 𝑎 𝑗+1 + 2𝛿 for 𝑗 = 0, . . . , 𝑁 . Hence, the length of each subdomain is 𝐿 + 2𝛿 and

the length of the overlap is 2𝛿 with 𝛿 ∈ (0, 𝐿/2).
It is well known that one‚level Schwarz methods are not weakly scalable, if

the number of subdomains increases and the whole domain Ω is fixed. However,
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1 Here, weak scalability is understood in the sense that the contraction factor does not deteriorate

as the number 𝑁 of subdomains increases and, hence, the number of iterations, needed to reach a

given tolerance, is uniformly bounded in 𝑁 ; see, e.g., [3].
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Fig. 1: Two‚dimensional chain of 𝑁 rectangular fixed‚sized subdomains.

the recent work [2], published in the field of implicit solvation models used in

computational chemistry, has drawn attention to the opposite case in which the

number of subdomains increases, but their size remains unchanged, and, as a result,

the size of the whole domainΩ increases. In this setting, weak scalability of PSM and

OSM for ˘1¯ with Dirichlet boundary conditions is studied in [4, 3]. Scalability results

for the PSM in case of more general geometries of the ˘sub¯domains are presented

in [5, 6, 7]. In these works, only external Dirichlet conditions are discussed and,

in such a case, weak scalability is shown; see also [11] for a scalability analysis of

the classical ˘alternating¯ Schwarz method. A short remark about the non‚scalability

in case of external Neumann conditions is given in [3]. Similar results have been

recently presented in [1] for time‚harmonic problems. Moreover, very similar results

to the ones of [3] are obtained a few years later in [9]. The goal of this work is to study

the effect of different ˘possibly mixed¯ external boundary conditions on convergence

and scalability of PSM and OSM. In particular, we will show that only in the case

of ˘both¯ external Neumann conditions at the top and the bottom of Ω, PSM and

OSM are not scalable. External Dirichlet conditions lead to the fastest convergence,

while external Robin conditions lead to a convergence that depends heavily on the

parameter 𝑞.

One‚level PSM and OSM for the solution of ˘1¯ are

− Δ𝑢𝑛𝑗 = 𝑓 𝑗 in Ω 𝑗 ,

B𝑏 (𝑢𝑛𝑗 ) (𝑥) = B𝑡 (𝑢𝑛𝑗 ) (𝑥) = 0 𝑥 ∈ (𝑎1, 𝑏𝑁 ),
Tℓ (𝑢𝑛𝑗 ) (𝑎 𝑗 ) = Tℓ (𝑢𝑛−1

𝑗−1
) (𝑎 𝑗 ), T𝑟 (𝑢𝑛𝑗 ) (𝑏 𝑗 ) = T𝑟 (𝑢𝑛−1

𝑗+1
) (𝑏 𝑗 ),

˘2¯

for 𝑗 = 1, . . . , 𝑁 , where Tℓ and T𝑟 are Dirichlet trace operators,

Tℓ (𝑢𝑛𝑗 ) (𝑎 𝑗 ) = 𝑢𝑛𝑗 (𝑎 𝑗 , 𝑦) and T𝑟 (𝑢𝑛𝑗 ) (𝑏 𝑗 ) = 𝑢𝑛𝑗 (𝑏 𝑗 , 𝑦), ˘3¯

for the PSM, and Robin trace operators,

Tℓ (𝑢𝑛𝑗 ) (𝑎 𝑗 )=𝑝𝑢𝑛𝑗 (𝑎 𝑗 ,𝑦)−𝜕𝑥 𝑢𝑛𝑗 (𝑎 𝑗 ,𝑦) and T𝑟 (𝑢𝑛𝑗 ) (𝑏 𝑗 )=𝑝𝑢𝑛𝑗 (𝑏 𝑗 ,𝑦)+𝜕𝑥 𝑢𝑛𝑗 (𝑏 𝑗 ,𝑦),
˘4¯

with 𝑝 > 0 for the OSM. The subscript ‘ℓ’ and ‘𝑟’ stand for ‘left’ and ‘right’. For 𝑗 = 1

the condition at 𝑎1 must be replaced by 𝑢𝑛
1
(𝑎1, 𝑦) = 0 and for 𝑗 = 𝑁 the condition

at 𝑏𝑁 must be replaced by 𝑢𝑛
𝑁
(𝑏𝑁 , 𝑦) = 0. In this paper, ‘external conditions’ and
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‘transmission conditions’ will always refer to the conditions obtained by the pairs

(B𝑏,B𝑢) and (Tℓ ,T𝑟 ), respectively. Note that the Robin parameter 𝑝 of the OSM

can be chosen independently of the Robin parameter 𝑞 used for the operators B𝑏 and

B𝑡 . We analyze convergence of PSM and OSM by a Fourier analysis in Section 3.

For this purpose, we use the solutions of eigenproblems of the 1D Laplace operators

with mixed boundary conditions. These are studied in Section 2. Finally, results of

numerical experiments are presented in Section 4.

2 Laplace eigenpairs for mixed external conditions

Consider the 1D eigenvalue problem

𝜑′′(𝑦) = −𝜆𝜑(𝑦), for 𝑦 ∈ (0, 1), B𝑏 (𝜑) (0) = B𝑡 (𝜑) (1) = 0, ˘5¯

and six pairs of boundary operators (B𝑏,B𝑡 )ȷ
˘DD¯ B𝑏 (𝜑) (0) = 𝜑(0), B𝑡 (𝜑) (1) = 𝜑(1),
˘DR¯ B𝑏 (𝜑) (0) = 𝜑(0), B𝑡 (𝜑) (1) = 𝑞𝜑(1) + 𝜑′(1),
˘DN¯ B𝑏 (𝜑) (0) = 𝜑(0), B𝑡 (𝜑) (1) = 𝜑′(1),
˘RR¯ B𝑏 (𝜑) (0) = 𝑞𝜑(0) − 𝜑′(0), B𝑡 (𝜑) (1) = 𝑞𝜑(1) + 𝜑′(1),
˘NR¯ B𝑏 (𝜑) (0) = 𝜑′(0), B𝑡 (𝜑) (1) = 𝑞𝜑(1) + 𝜑′(1),
˘NN¯ B𝑏 (𝜑) (0) = 𝜑′(0), B𝑡 (𝜑) (1) = 𝜑′(1),

where 𝑞 > 0 and ‘D’, ‘R’ and ‘N’ stand for ‘Dirichlet’, ‘Robin’ and ‘Neumann’. For

all these six cases the eigenvalue problem ˘5¯ is solved by orthonormal ˘in 𝐿2 (0, 1)¯
Fourier basis functions.

Theorem 1 (Eigenpairs of the Laplace operator)

Let 𝑞 > 0. The eigenproblems ˘5¯ with the above external conditions are solved

by the non-trivial eigenpairs (𝜑𝑘 , 𝜆𝑘) given by

˘DD¯ 𝜑𝑘 (𝑦) =
√

2 sin(𝜋𝑘𝑦), 𝜆𝑘 = 𝜋2𝑘2, 𝑘 = 1, 2, . . .

˘DR¯ 𝜑𝑘 (𝑦) =

√︃
4𝜇𝑘

2𝜇𝑘−sin(2𝜇𝑘 ) sin(𝜇𝑘𝑦), 𝜆𝑘 = 𝜇2

𝑘
, 𝑘 = 1, 2, . . . , where

𝜇𝑘 ∈ (𝑘𝜋 − 𝜋/2, 𝑘𝜋), 𝑘 = 1, 2, . . . , are roots of 𝑑 (𝑥) := 𝑞 sin(𝑥) + 𝑥 cos(𝑥).
Moreover, lim𝑞→0 𝜇1 (𝑞) = 𝜋/2 and lim𝑞→∞ 𝜇1 (𝑞) = 𝜋.

˘DN¯ 𝜑𝑘 (𝑦) =
√

2 sin( 2𝑘+1

2
𝜋𝑦), 𝜆𝑘 =

(2𝑘+1)2

4
𝜋2, 𝑘 = 0, 1, 2, . . .

˘RR¯ 𝜑𝑘 (𝑦) =

√︂
4𝜏𝑘

(𝜏2

𝑘
−𝑞2) sin(2𝜏𝑘 )+4𝑞𝜏𝑘 sin(𝜏𝑘 )2+2𝜏3

𝑘
+2𝑞2𝜏𝑘

(
𝑞 sin(𝜏𝑘𝑦) + 𝜏𝑘 cos(𝜏𝑘𝑦)

)
,

𝜆𝑘 = 𝜏2

𝑘
, 𝑘 = 1, 2, . . . , where 𝜏𝑘 ∈ (0, 𝜋), 𝑘 = 1, 2, . . . , are roots of

𝑑 (𝑥) := 2𝑞𝑥 cos(𝑥) + (𝑞2 − 𝑥2) sin(𝑥). Moreover, lim𝑞→0 𝜏1 (𝑞) = 0 and

lim𝑞→∞ 𝜏1 (𝑞) = 𝜋.

˘NR¯ 𝜑𝑘 (𝑦) =

√︃
4𝜈𝑘

2𝜈𝑘+sin(2𝜈𝑘 ) cos(𝜈𝑘𝑦), 𝜆𝑘 = 𝜈2

𝑘
, 𝑘 = 1, 2, . . . , where

𝜈𝑘 ∈ ((𝑘 − 1)𝜋, (𝑘 − 1

2
)𝜋), 𝑘 = 1, 2, . . . , are roots of 𝑑 (𝑥) := 𝑥 sin(𝑥) −

𝑞 cos(𝑥). Moreover, lim𝑞→0 𝜈1 (𝑞) = 0 and lim𝑞→∞ 𝜈1 (𝑞) = 𝜋/2.
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Fig. 2: Leftȷ Maps 𝑞 ↦→ 𝜇1 (𝑞) , 𝑞 ↦→ 𝜈1 (𝑞) and 𝑞 ↦→ 𝜏1 (𝑞) . Rightȷ 𝜌DR, 𝜌NR, 𝜌DD and 𝜌DN as

functions of 𝑞 and for 𝛿 = 0.1 and 𝐿 = 1.0.

˘NN¯ 𝜑𝑘 (𝑦) =
√

2 cos(𝜋𝑘𝑦), 𝜆𝑘 = 𝜋2𝑘2, 𝑘 = 0, 1, 2, . . .

Proof If we multiply ˘5¯ with 𝜑, integrate over [0, 1], and integrate by parts, we get

𝜆
∫

1

0
|𝜑(𝑦) |2𝑑𝑦 =

∫
1

0
|𝜑′(𝑦) |2𝑑𝑦 − 𝜑′(1)𝜑(1) + 𝜑′(0)𝜑(0). Using any of the above

external conditions ˘and that 𝑞 > 0, for the Robin ones¯ one gets 𝜆 ≥ 0. We refer to,

e.g., [10, Section 4.1] for similar discussions. Now, all the cases can be proved by

using the ansatz 𝜑(𝑦) = 𝐴 cos(
√
𝜆𝑦) + 𝐵 sin(

√
𝜆𝑦), which clearly satisfies ˘5¯, and

computing, e.g., 𝐴 and 𝜆 in such a way that 𝜑(𝑦) satisfies the two external conditions

and 𝐵 as a normalization factor. □

The coefficients 𝜈1, 𝜇1 and 𝜏1 as functions of 𝑞 are shown in Fig. 2 ˘left¯, where

we can observe that 𝜈1 (𝑞) < 𝜋
2

< 𝜇1 (𝑞) < 𝜋 and 0 < 𝜏1 (𝑞) < 𝜋, and that the

maps 𝑞 ↦→ 𝜈1 (𝑞), 𝑞 ↦→ 𝜇1 (𝑞) and 𝑞 ↦→ 𝜏1 (𝑞) increase monotonically and approach,

respectively, 𝜋
2

and 𝜋 as 𝑞 → ∞. Hence, by taking the limit 𝑞 → 0, one can pass

from the conditions ˘DR¯, ˘RR¯ and ˘NR¯ to ˘DN¯, ˘NN¯ and ˘NN¯, respectively.

Similarly, by taking the limit 𝑞 → ∞, the conditions ˘DR¯, ˘RR¯ and ˘NR¯ become

˘DD¯, ˘DD¯ and ˘DN¯, respectively.

3 Convergence and scalability

Consider the Schwarz method ˘2¯ and any pair (B𝑏,B𝑡 ) of operators as in Section

2. The Fourier expansions of 𝑢𝑛
𝑗
(𝑥, 𝑦), 𝑗 = 1, . . . , 𝑁 , are

𝑢𝑛𝑗 (𝑥, 𝑦) =
∑︁

𝑘

�̂�𝑛𝑗 (𝑥, 𝜆𝑘)𝜑𝑘 (𝑦), ˘6¯

where the sum is over 𝑘 = 1, 2, . . . for ˘DD¯, ˘DR¯, ˘RR¯ and ˘NR¯, and over

𝑘 = 0, 1, 2, . . . for ˘DN¯ and ˘NN¯. The functions 𝜑𝑘 depend on the external boundary

conditions and are the ones obtained in Theorem 1. The Fourier coefficients �̂�𝑛
𝑗
(𝑥, 𝜆𝑘)

satisfy2

2 Notice that the procedure to obtain ˘7¯ is standard. We refer to, e.g., [10] for more details and

examples.
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−𝜕𝑥𝑥 �̂�𝑛𝑗 (𝑥, 𝜆𝑘) + 𝜆𝑘 �̂�
𝑛
𝑗 (𝑥, 𝜆𝑘) = �̂� 𝑗 (𝑥, 𝜆𝑘) in (𝑎 𝑗 , 𝑏 𝑗 ),

Tℓ (�̂�𝑛𝑗 (·, 𝜆𝑘)) (𝑎 𝑗 ) = Tℓ (�̂�𝑛−1

𝑗−1
(·, 𝜆𝑘)) (𝑎 𝑗 ),

T𝑟 (�̂�𝑛𝑗 (·, 𝜆𝑘)) (𝑏 𝑗 ) = T𝑟 (�̂�𝑛−1

𝑗+1
(·, 𝜆𝑘)) (𝑏 𝑗 ),

˘7¯

for 𝑗 = 1, . . . , 𝑁 . For 𝑗 = 1, the condition at 𝑎1 must be replaced by 𝑢𝑛
1
(𝑎1) = 0 and

for 𝑗 = 𝑁 the condition at 𝑏𝑁 must be replaced by 𝑢𝑛
𝑁
(𝑏𝑁 ) = 0. If the operators

Tℓ and T𝑟 correspond to Dirichlet conditions ˘see ˘3¯¯, then ˘7¯ is a PSM. If they

correspond to Robin conditions ˘see ˘4¯¯, then ˘7¯ is an OSM. The convergence of

the iteration ˘7¯ is analyzed in Theorem 2.

Theorem 2 (Convergence of Schwarz methods in Fourier space)

The contraction factors of the Schwarz methods3 ˘7¯ are bounded by

𝜌(𝜆𝑘 , 𝛿) =
𝑒2𝜆𝑘 𝛿 + 𝑒𝜆𝑘𝐿

𝑒2𝜆𝑘 𝛿+𝜆𝑘𝐿 + 1
. ˘8¯

Moreover, it holds that 𝜌(𝜆𝑘 , 𝛿) ∈ [0, 1] with 𝜌(0, 𝛿) = 1 (independently of 𝑁), and

that 𝜆 ↦→ 𝜌(𝜆, 𝛿) is strictly monotonically decreasing.

Proof The Dirichlet case follows from [4, Lemma 2 and Theorem 3]. See also [3,

Lemma 2 and Theorem 1]. We focus here on the Robin case. From Theorem 3 in

[3] and the corresponding proof we have that the contraction factor of the OSM is

bounded by max{𝜑(𝜆, 𝛿, 𝑝), |𝜁 (𝜆, 𝛿, 𝑝) |} where

𝜑(𝜆, 𝛿, 𝑝) :=
(𝜆 + 𝑝)2𝑒2𝛿𝜆 − (𝜆 − 𝑝)2𝑒−2𝛿𝜆 + (𝜆 + 𝑝) |𝜆 − 𝑝 | (𝑒𝜆𝐿 − 𝑒−𝜆𝐿)

(𝜆 + 𝑝)2𝑒𝜆𝐿+2𝜆𝛿 − (𝜆 − 𝑝)2𝑒−𝜆𝐿−2𝜆𝛿
≥ 0,

𝜁 (𝜆, 𝛿, 𝑝) :=
(𝜆 + 𝑝)𝑒−𝜆𝐿 + (𝜆 − 𝑝)𝑒𝜆𝐿

(𝜆 + 𝑝)𝑒𝜆(𝐿+2𝛿) + (𝜆 − 𝑝)𝑒−𝜆(𝐿+2𝛿) ,

with 𝜑(𝜆, 𝛿, 𝑝) ≤ 𝜑(𝜆, 𝛿, 0) = lim𝑝→∞ 𝜑(𝜆, 𝛿, 𝑝) = 𝑒2𝛿𝜆−𝑒−2𝛿𝜆+𝑒𝜆𝐿−𝑒−𝜆𝐿
𝑒𝜆𝐿+2𝛿𝜆−𝑒−𝜆𝐿−2𝛿𝜆 for all 𝜆 ≥ 0

and 𝛿 > 0. If we compute the derivative of 𝜆 ↦→ 𝜑(𝜆, 𝛿, 0) we get

𝜕𝜆𝜑(𝜆, 𝛿, 0) = −𝐿 (𝑒4𝛿𝜆+𝐿𝜆 − 𝑒𝐿𝜆) + 2𝛿(𝑒2𝛿𝜆+2𝐿𝜆 − 𝑒2𝛿𝜆)
(𝑒2𝛿𝜆+𝐿𝜆 + 1)2

,

which is negative for any 𝜆 ≥ 0 and 𝛿 > 0. Thus, 𝜆 ↦→ 𝜑(𝜆, 𝛿, 0) is strictly mono‚

tonically decreasing. Let us now study the function 𝜁 (𝜆, 𝛿, 𝑝). Direct calculations

reveal that 𝜕𝑝𝜁 (𝜆, 𝛿, 𝑝) = − 2𝜆𝑒2𝛿𝜆 (𝑒4𝜆(𝛿+𝐿)−1)
( (𝜆+𝑝)𝑒4𝛿𝜆+2𝐿𝜆+𝜆−𝑝)2

, which is negative for any 𝜆 ≥ 0 and

𝛿 > 0, and 𝜁 (𝜆, 𝛿, 0) = (𝑒2𝐿𝜆+1)𝑒2𝛿𝜆

𝑒4𝛿𝜆+2𝐿𝜆+1
> 0 and lim𝑝→∞ 𝜁 (𝜆, 𝛿, 𝑝) = − (𝑒2𝐿𝜆−1)𝑒2𝛿𝜆

𝑒4𝛿𝜆+2𝐿𝜆−1
< 0

for any 𝜆 ≥ 0 and 𝛿 > 0. These observations imply that 𝑝 ↦→ 𝜁 (𝜆, 𝛿, 𝑝) is strictly

monotonically decreasing and attains its maximum at 𝑝 = 0. Finally, a direct compar‚

ison shows that 𝜑(𝜆, 𝛿, 0) ≥ 𝜁 (𝜆, 𝛿, 0) ≥ lim𝑝→∞ |𝜁 (𝜆, 𝛿, 𝑝) | and the result follows,

because 𝜑(𝜆, 𝛿, 0) = 𝑒2𝛿𝜆−𝑒−2𝛿𝜆+𝑒𝜆𝐿−𝑒−𝜆𝐿
𝑒𝜆𝐿+2𝛿𝜆−𝑒−𝜆𝐿−2𝛿𝜆 =

𝑒2𝜆𝛿+𝑒𝜆𝐿
𝑒2𝜆𝛿+𝜆𝐿+1

. □

3 The contraction factor for ˘7¯ ˘corresponding to the 𝑘‚th Fourier component¯ is the spectral radius

of the Schwarz iteration matrix; see [4, 3].
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Theorem 2 gives the same bound ˘8¯ for the convergence factors of PSM and

OSM. This fact is not surprising. First, it is well known that OSM converges faster

than PSM for 𝛿 > 0. Hence, a convergence bound for the PSM is a valid bound

also for the OSM. Second, in the above proof the convergence bound for the OSM

is obtained for 𝑝 → ∞, which corresponds to passing from Robin transmission

conditions to Dirichlet transmission conditions. The bound ˘8¯ is based on the ones

obtained in [4, 3]. These are quite sharp for large values of 𝑁; see, e.g., [3, Fig. 4

and Fig. 5].

We can now prove our main convergence result, which allows us to study conver‚

gence and scalability of PSM and OSM for all the external conditions considered in

Section 2.

Theorem 3 (Convergence of PSM and OSM)

The contraction factors (in the 𝐿2 norm) of PSM and OSM for the solution to ˘1¯

are bounded by

(DD) 𝜌DD (𝛿) := 𝜌(𝜋2, 𝛿), (DR) 𝜌DR (𝛿, 𝑞) := 𝜌(𝜇1 (𝑞)2, 𝛿),
(DN) 𝜌DN (𝛿) := 𝜌(𝜋2/4, 𝛿), (RR) 𝜌RR (𝛿, 𝑞) := 𝜌(𝜏1 (𝑞)2, 𝛿),
(NR) 𝜌NR (𝛿, 𝑞) := 𝜌(𝜈1 (𝑞)2, 𝛿), (NN) 𝜌NN (𝛿) := 𝜌(0, 𝛿) = 1,

where 𝑞 ∈ (0,∞) and 𝜌(𝜆, 𝛿) is defined in Theorem 2. Moreover, for any 𝛿 > 0 we

have that

𝜌DD (𝛿) < 𝜌DR (𝛿, 𝑞) < 𝜌DN (𝛿) < 𝜌NR (𝛿, 𝑞) < 𝜌NN (𝛿) = 1, ˘9¯

𝜌DD (𝛿) < 𝜌RR (𝛿, 𝑞) < 𝜌NN (𝛿) = 1. ˘10¯

Proof According to Theorem 2, the bounds of the Fourier contraction factor 𝜌(𝜆, 𝛿)
is monotonically decreasing in 𝜆. Therefore, an upper bound for the convergence

factor of PSM and OSM ˘in the 𝐿2 norm¯ can be obtained by taking the maximum

over the admissible Fourier frequencies 𝜆𝑘 and invoking Parseval’s identity ˘see, e.g.,

[4]¯. Recalling Theorem 1, these maxima are attained at 𝜆1 = 𝜋2 for ˘DD¯, 𝜆1 = 𝜇2

1

for ˘DR¯, 𝜆0 = 𝜋2/4 for ˘DN¯, 𝜆1 = 𝜏2

1
for ˘RR¯, 𝜆1 = 𝜈2

1
for ˘NR¯, and 𝜆0 = 0 for

˘NN¯. The inequalities ˘9¯ and ˘10¯ follow from the monotonicity 𝜆 ↦→ 𝜌(𝜆, 𝛿) and

the fact that 𝜈1 (𝑞) < 𝜋
2
< 𝜇1 (𝑞) < 𝜋 and 𝜏1 (𝑞) ∈ (0, 𝜋). □

The inequalities ˘9¯ and ˘10¯ imply that the contraction factor is bounded, inde‚

pendently of 𝑁 , by a constant strictly smaller than 1 for all the cases except ˘NN¯. In

the case ˘NN¯, the first Fourier frequency is 𝜆0 = 0. Hence, the coefficients �̂�𝑛
𝑗
(𝑥, 𝜆0)

are generated by the 1D Schwarz method

−𝜕𝑥𝑥 �̂�𝑛𝑗 (𝑥, 𝜆0) = �̂� 𝑗 (𝑥, 𝜆0) in (𝑎 𝑗 , 𝑏 𝑗 ),
Tℓ (�̂�𝑛𝑗 (·, 𝜆0)) (𝑎 𝑗 ) = Tℓ (�̂�𝑛−1

𝑗−1
(·, 𝜆0)) (𝑎 𝑗 ),

T𝑟 (�̂�𝑛𝑗 (·, 𝜆0)) (𝑏 𝑗 ) = T𝑟 (�̂�𝑛−1

𝑗+1
(·, 𝜆0)) (𝑏 𝑗 ),

˘11¯

which is known to be not scalable; see, e.g., [3, 8]. The scalability of PSM and

OSM for different external conditions applied at the top and at the bottom of the

domain is summarized in Table 1. Inequalities ˘9¯ and ˘10¯ lead to another interesting
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bottom
top Dirichlet Robin Neumann

Dirichlet yes yes yes

Robin yes yes yes

Neumann yes yes no

bottom
top Dirichlet Robin Neumann

Dirichlet ‚ yes ‚

Robin yes no no

Neumann ‚ no ‚

Table 1: Leftȷ Scalability of PSM and OSM for different external conditions ˘for a fixed and finite

𝑞 > 0¯ applied at the top and at the bottom of the domain. Rightȷ Robustness of PSM and OSM

with respect to 𝑞 ∈ [0,∞].

observation. The contraction factors are clearly influenced by the external boundary

conditions. Dirichlet conditions lead to faster convergence than Robin conditions,

which in turn lead to faster convergence than Neumann conditions. For example,

if one external condition is of the Dirichlet type, then PSM and OSM converge

faster if the other condition is of the Dirichlet type and slower if this is of Robin

and even slower for the Neumann type. The case ˘RR¯ is slightly different, because

the corresponding convergence of PSM and OSM depends heavily on the Robin

parameter 𝑞. The behavior of the bounds 𝜌RR (𝛿, 𝑞), 𝜌DR (𝛿, 𝑞) and 𝜌NR (𝛿, 𝑞) with

respect to 𝑞 is depicted in Fig. 2 ˘right¯, which shows the bounds discussed in

Theorem 3 as functions of 𝑞 ˘recall that 𝜌NN = 1¯. Here, we can observe that the

inequalities ˘9¯ and ˘10¯ are satisfied and that

• As 𝑞 increases the Dirichlet part of the Robin external condition dominates.

In addition, the bounds 𝜌RR and 𝜌DR decrease and approach 𝜌DD as 𝑞 → ∞.

Similarly, 𝜌NR decreases and approaches 𝜌DN.

• As 𝑞 decreases the Neumann part of the Robin external condition dominates. In

addition, the bounds 𝜌NR and 𝜌RR decrease and approach 𝜌NN = 1 as 𝑞 → 0.

Similarly, 𝜌DR increases and approaches 𝜌DN.

These observations lead to Tab. 1 ˘right¯, where we summarize the robustness of

PSM and OSM with respect to the parameter 𝑞. The methods are robust with respect

to 𝑞 only if one of the two external boundary conditions is of Dirichlet type. This is

due to the fact that Robin conditions become Neumann conditions for 𝑞 → 0.

4 Numerical experiments

In this section, we test the scalability of PSM and OSM by numerical simulations.

For this purpose, we run PSM and OSM for all the external boundary conditions

discussed in this paper and measure the number of iterations required to reach

a tolerance on the error of 10
−6. To guarantee that the initial errors contain all

frequencies, the methods are initialized with random initial guesses. In all cases,

each subdomain is discretized with a uniform grid of size ß0 interior points in

direction 𝑥 and 50 interior points in direction 𝑦. The mesh size is ℎ =
𝐿
51

, with 𝐿 = 1,

and the overlap parameter is 𝛿 = 10ℎ. For the OSM the robin parameter is 𝑝 = 10.

The Robin parameter 𝑞 of the external Robin conditions is 𝑞 = 10, and the ˘RR¯ case

is also tested with 𝑞 = 0.1. The results of our experiments are shown in Tab. 2 and

confirm the theoretical results discussed in the previous sections.
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𝑁 DD DR˘10¯ DN RR˘10¯ NR˘10¯ NN RR˘0.1¯

3 12 ‚ 9 13 ‚ 10 27 ‚ 19 14 ‚ 10 26 ‚ 19 77 ‚ 54 65 ‚ 45

4 13 ‚ 9 14 ‚ 10 29 ‚ 21 15 ‚ 11 29 ‚ 21 130 ‚ 90 95 ‚ 66

5 13 ‚ 9 14 ‚ 10 31 ‚ 22 15 ‚ 11 31 ‚ 22 194 ‚ 134 124 ‚ 86

10 13 ‚ 10 14 ‚ 10 33 ‚ 24 15 ‚ 11 34 ‚ 24 >401 ‚ >401 227 ‚ 155

30 13 ‚ 10 14 ‚ 10 34 ‚ 24 15 ‚ 11 35 ‚ 24 >401 ‚ >401 311 ‚ 210

50 13 ‚ 10 14 ‚ 10 34 ‚ 24 15 ‚ 11 35 ‚ 24 >401 ‚ >401 319 ‚ 216

Table 2: Number of iterations of PSM ˘left¯ and OSM ˘right¯ needed to reduce the norm of the

error below a tolerance of 10
−6 for increasing number 𝑁 of fixed‚sized subdomains. The maximum

number of allowed iterations is 401. This limit is only reached in the ˘NN¯ case, for which PSM

and OSM are not scalable.
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