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1 Introduction

Schwarz‚like domain decomposition methods are very popular in mathematics, com‚

putational sciences and engineering notably for the implementation of coupling

strategies. Such an iterative method has been recently applied in a state‚of‚the‚art

Earth System Model ˘ESM¯ to evaluate the consequences of inaccuracies in the

usual ad‚hoc ocean‚atmosphere coupling algorithms used in realistic models [2].

For such a complex application it is challenging to have an a priori knowledge of the

convergence properties of the Schwarz method. Indeed coupled problems arising in

ESMs often exhibit sharp turbulent boundary layers whose parameterizations lead

to peculiar transmission conditions. The objective in this paper is to study a model

problem representative of the coupling between the ocean and the atmosphere, in‚

cluding discretization and so‚called bulk interface conditions which are analogous

to a quadratic friction law. Such a model is introduced in Sec. 2 and its discretization,

as done in state‚of‚the‚art ESMs, is described in Sec. 3. In the semi‚discrete case in

space we conduct in Sec. 4 a convergence analysis of the model problem first with

a linear friction and then with a quadratic friction linearized around equilibrium

solutions. Finally, in Sec. 5, numerical experiments in the linear and nonlinear case

are performed to illustrate the relevance of our analysis.
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2 Model problem for ocean-atmosphere coupling

We focus on the dynamical part of the oceanic and atmospheric primitive equations

and neglect the horizontal variations of the velocity field, which leads to a model

problem depending on the vertical direction only. This assumption, commonly made

to study turbulent mixing in the boundary layers near the air‚sea interface, is justified

because of the large disparity between the vertical and the horizontal spatial scales

in these layers. We consider the following diffusion problem accounting for Earth’s

rotation ˘ 𝑓 is the Coriolis frequency and k a vertical unit vector¯ȷ




𝜕𝑡u + 𝑓 k × u − 𝜕𝑧 (𝜈(𝑧, 𝑡)𝜕𝑧u) = g, in Ω × (0, 𝑇),
u(𝑧, 0) = u0 (𝑧), ∀𝑧 in Ω,

u(𝐻𝑜, 𝑡) = u∞
𝑜 (𝑡), u(𝐻𝑎, 𝑡) = u∞

𝑎 (𝑡), 𝑡 ∈ (0, 𝑇),

with u = (𝑢, 𝑣) the horizontal velocity vector, 𝜈(𝑧, 𝑡) > 0 the turbulent viscosity

and Ω = (𝐻𝑜, 𝐻𝑎) a bounded open subset of R containing the air‚sea interface

Γ = {𝑧 = 0}. In the ocean and the atmosphere, which are turbulent fluids, the

velocity field varies considerably in the few meters close to the interface ˘in a region

called surface layer¯. The cost of an explicit representation of the surface layer

in numerical simulations being unaffordable, this region is numerically accounted

for using wall laws a.k.a. log laws ˘e.g. [4]¯. This approach, traditionally used to

deal with solid walls, is also used in the ocean‚atmosphere context, with additional

complexity arising from the stratification effects [5]. In this context wall laws are

referred to as surface layer parameterizations. The role of such parameterizations is

to provide 𝜈𝜕𝑧u on the upper and lower interfaces of the surface layer as a function

of the difference of fluid velocities. Thus the coupling problem of interest should

be understood as a domain decomposition with three non‚overlapping subdomains.

For the sake of convenience the velocity vector u = (𝑢, 𝑣) is rewritten as a complex

variable 𝑈 = 𝑢 + 𝑖𝑣. Then the model problem reads

𝜕𝑡𝑈 𝑗 + 𝑖 𝑓𝑈 𝑗 − 𝜕𝑧
(
𝜈 𝑗 (𝑧, 𝑡)𝜕𝑧𝑈 𝑗

)
= 𝑔 𝑗 , ( 𝑗 = 𝑜, 𝑎) in Ω 𝑗 × (0, 𝑇)

𝑈 𝑗 (𝐻 𝑗 , 𝑡) = 𝑈∞
𝑗 (𝑡), 𝑡 ∈ (0, 𝑇),

𝑈 𝑗 (𝑧, 0) = 𝑈0 (𝑧), ∀𝑧 in Ω 𝑗 ,

𝜌𝑜𝜈𝑜𝜕𝑧𝑈𝑜 (𝛿𝑜, 𝑡) = 𝜌𝑎𝜈𝑎𝜕𝑧𝑈𝑎 (𝛿𝑎, 𝑡) = Fsl (𝑈𝑎 (𝛿𝑎, 𝑡) −𝑈𝑜 (𝛿𝑜, 𝑡)), 𝑡 ∈ (0, 𝑇)
˘1¯

where Ω𝑜 = (𝐻𝑜, 𝛿𝑜), Ω𝑎 = (𝛿𝑎, 𝐻𝑎), and Fsl is a parameterization function for the

surface layer extending over Ωsl = (𝛿𝑜, 𝛿𝑎). A typical formulation for Fsl is

Fsl (𝑈𝑎 (𝛿𝑎, 𝑡) −𝑈𝑜 (𝛿𝑜, 𝑡)) = 𝜌𝑎𝐶𝐷 |𝑈𝑎 (𝛿𝑎, 𝑡) −𝑈𝑜 (𝛿𝑜, 𝑡) | (𝑈𝑎 (𝛿𝑎, 𝑡) −𝑈𝑜 (𝛿𝑜, 𝑡))

which corresponds to a quadratic friction law with 𝐶𝐷 a drag coefficient ˘assumed

constant in the present study¯. Geostrophic winds and currents are used in this study

as source terms and boundary conditions. Geostrophic equilibrium is the stationary

state for which the Coriolis force compensates for the effects of gravity. It corresponds
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to the large scale dynamics of ocean and atmosphere, and leads to reasonable values

of the solution 𝑈.

The well‚posedness of ˘1¯ has been studied in [6] where it is proved that its

stationary version admits a unique solution for realistic values of the parameters. The

study of the nonstationary case is much more challengingȷ numerical experiments

tend to confirm this well‚posedness, but with no theoretical proof.

3 Discretized coupled problem

3.1 Implementation of the surface layer

As described in Sec. 2, the full domain Ω is split into three partsȷ Ω𝑜 in the ocean,

Ω𝑎 in the atmosphere and Ωsl a thin domain containing the interface ˘see Fig. 1¯.

The role of Ωsl is to provide 𝜌 𝑗𝜈 𝑗𝜕𝑧𝑈 𝑗 at 𝑧 = 𝛿 𝑗 ˘ 𝑗 = 𝑜, 𝑎¯ as a function of fluid

velocities at the same locations. However, in state‚of‚the‚art climate models, the

discretization is based on an approximate form of the coupled problem ˘1¯. For

practical reasons, the computational domains are Ω̃𝑜 = (𝐻𝑜, 0) = Ω𝑜

⋃(𝛿𝑜, 0) and

Ω̃𝑎 = (0, 𝐻𝑎) = (0, 𝛿𝑎)
⋃

Ω𝑎, and the locations of the lower and upper boundaries

of the surface layer ˘𝑧 = 𝛿 𝑗 ¯ are assimilated to the centers of the first grid cells ˘i.e.

𝛿𝑜 = −ℎo/2 and 𝛿𝑎 = ℎa/2 with ℎo and ℎa the thicknesses of the first grid cell in each

subdomain¯, where the values of the velocity closest to the interface are available.

Typical resolutions in the models are 𝛿𝑎 = ℎa/2 = 10 m and 𝛿𝑜 = −ℎo/2 = −1 m.

At a discrete level, the transmission condition in ˘1¯ is replaced by

𝜌o𝜈o𝜕𝑧𝑈o (0, 𝑡) = 𝜌a𝜈a𝜕𝑧𝑈a (0, 𝑡) = 𝜌a𝛼

(
𝑈a

(
ℎa

2
, 𝑡

)
−𝑈o

(
− ℎo

2
, 𝑡

))
˘2¯

where 𝛼 = 𝐶𝐷

���𝑈a

(
ℎa

2
, 𝑡
)
−𝑈o

(
− ℎo

2
, 𝑡
)��� for the nonlinear case. In the following, for

the analysis in Sec. 4, we consider a linear friction where 𝛼 is assumed constant and

a quadratic friction linearized around equilibrium solutions.

3.2 Schwarz Waveform Relaxation

As discussed for example in [2], current ocean‚atmosphere coupling methods can

actually be seen as a single iteration of a Schwarz Waveform Relaxation ˘SWR¯

algorithm. SWR applied to the coupling problem presented in Sec. 2 with the

transmission conditions ˘2¯ and constant viscosity in each subdomain readsȷ

(𝜕𝑡 + 𝑖 𝑓 )𝑈𝑘
𝑗 − 𝜈 𝑗𝜕𝑧𝜑

𝑘
𝑗 = 𝑔 𝑗 , in Ω̃ 𝑗 × (0, 𝑇) ˘3a¯
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Fig. 1: Discrete representation of the

three domains Ω𝑎 ,Ωsl,Ω𝑜 together

with a typical stationary state. Note

the different scales for (𝑢, 𝑣) in the

ocean and in the atmosphere.

}
}

}

𝑈𝑘
𝑗 (𝑧, 0) = 𝑈0 (𝑧), ∀𝑧 ∈ Ω̃ 𝑗 ˘3b¯

𝑈𝑘
𝑗 (𝐻 𝑗 , 𝑡) = 𝑈∞

𝑗 , 𝑡 ∈ [0, 𝑇] ˘3c¯

𝜈a𝜑
𝑘
a (0, 𝑡) = 𝛼𝑘−1

(
𝑈𝑘−1+𝜃

a

(
ℎa

2
, 𝑡

)
−𝑈𝑘−1

o

(
− ℎo

2
, 𝑡

))
, 𝑡 ∈ [0, 𝑇] ˘3d¯

𝜌o𝜈o𝜑
𝑘
o (0, 𝑡) = 𝜌a𝜈a𝜑

𝑘
a (0, 𝑡), 𝑡 ∈ [0, 𝑇] ˘3e¯

where 𝑗 = a, o, 𝜑 𝑗 = 𝜕𝑧𝑈 𝑗 , and 𝑈𝑘−1+𝜃
a = 𝜃𝑈𝑘

a + (1 − 𝜃)𝑈𝑘−1
a with 𝜃 a relaxation

parameter ˘interpolation for 0 ≤ 𝜃 ≤ 1 or extrapolation for 𝜃 > 1¯. At each iteration,

˘3e¯ ensures that the kinetic energy is conserved at the machine precision in the

coupled system which is a major constraint for climate models. In ˘3d¯, the presence

of the parameter 𝜃 makes it resemble to a Dirichlet‚Neumann Waveform Relaxation

algorithm. Indeed, if ˘3d¯ is replaced by 𝑈𝑘
a = 𝜃𝑈𝑘−1

o + (1 − 𝜃)𝑈𝑘−1
a the DNWR

algorithm is retrieved, as examined in the continuous case in [1] and in the discrete

case in [3]. However ˘3d¯ involves both 𝜑𝑘
a and 𝑈𝑘−1+𝜃

a ȷ the 𝜃 parameter appears

thus here within ˘close to Robin¯ condition ˘𝜈a𝜑a (0) − 𝛼𝜃𝑈a (ℎa/2) = . . .¯, i.e.

the relaxation is not performed directly on the converging variable which leads to

convergence properties different from the DNWR case, as shown in Sec. 4.

In the following, centered finite difference schemes in space are used with constant

space steps ℎ 𝑗 . Derivatives are 𝜑 𝑗 (𝑧, 𝑡) =
𝑈 𝑗 (𝑧+ℎ 𝑗/2,𝑡)−𝑈 𝑗 (𝑧−ℎ 𝑗/2,𝑡)

ℎ 𝑗
and the semi‚

discrete version of ˘3a¯ in the homogeneous case is

(𝜕𝑡 + 𝑖 𝑓 )𝑈 𝑗 (𝑧, 𝑡) = 𝜈 𝑗

𝜑 𝑗 (𝑧 + ℎ 𝑗/2, 𝑡) − 𝜑 𝑗 (𝑧 − ℎ 𝑗/2, 𝑡)
ℎ 𝑗

˘4¯
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4 Convergence analysis

In this section we conduct a convergence analysis of the SWR algorithm ˘3¯ first

with 𝛼 a constant and then in a more complicated case where the problem is lin‚

earized around its equilibrium solutions. In the following we systematically make

the assumption that the space domain is of infinite size ˘i.e. 𝐻 𝑗 → ∞¯ for the sake

of simplicity.

Linear friction case (𝛼 = const) We assume in this paragraph that 𝛼 = 𝛼𝑐 with

𝛼𝑐 a constant independent of 𝑈 𝑗 and we study the system satisfied by the errors ˘i.e.

𝑔 𝑗 ,𝑈0,𝑈
∞

= 0¯. The Fourier transform in time of the finite difference scheme ˘4¯

yields 𝑈a (ℎa/2) = 𝜈a
𝜑a (ℎa)−𝜑a (0)
𝑖 (𝜔+ 𝑓 )ℎa

with 𝜔 ∈ R the frequency variable. After simple

algebra, the transmission condition ˘3d¯ in Fourier space expressed in terms of the

𝜑 𝑗 is
(
𝜒𝑎𝜈𝑎

ℎ𝑎
+ 𝜃𝛼𝑐

)
𝜑𝑘

a (0) − 𝜃𝛼𝑐𝜑
𝑘
a (ℎ𝑎) =(1 − 𝜃)𝛼𝑐 (𝜑𝑘−1

a (ℎa) − 𝜑𝑘−1
a (0))

− 𝛼𝑐

ℎ𝑎𝜈𝑜

ℎ𝑜𝜈𝑎
(𝜑𝑘−1

o (0) − 𝜑𝑘−1
o (−ℎo))

˘5¯

with 𝜒 𝑗 =
𝑖 (𝜔+ 𝑓 )ℎ2

𝑗

𝜈 𝑗
. A discrete analysis of the finite difference scheme ˘4¯ in the

frequency domain ˘e.g. [7]¯ leads to 𝜑𝑘
o (−𝑚ℎo) = 𝐴𝑘 (𝜆o + 1)𝑚 and 𝜑𝑘

a (𝑚ℎa) =

𝐵𝑘 (𝜆a + 1)𝑚 with 𝜆 𝑗 =
1
2

(
𝜒 𝑗 −

√
𝜒 𝑗

√︁
𝜒 𝑗 + 4

)
and 𝑚 the space index. The conver‚

gence factor of SWR is then the rate at which 𝐴𝑘 or 𝐵𝑘 tends to 0. Combining

˘5¯ with the Fourier transform in time of ˘3e¯, we get the evolution of 𝐵𝑘 which

eventually leads to the following convergence factorȷ

𝜉 =

����
𝐵𝑘

𝐵𝑘−1

���� =
�����
(1 − 𝜃) + 𝜖

ℎa𝜆o

ℎo𝜆a

𝜈a𝜒a

𝛼𝑐ℎa𝜆a
− 𝜃

����� , ˘6¯

where 𝜖 =
𝜌a

𝜌o
≈ 10−3 in the ocean‚atmosphere context. Note that the convergence

factor ˘6¯ differs significantly from the semi‚discrete convergence factor 𝜉DNWR =

|1 − 𝜃DNWR (1 − 𝜖ℎa𝜆o/(𝜆aℎo)) | of the DNWR algorithm. Moreover, it can be found

that

lim
(𝜔+ 𝑓 )→0

𝜉 =
1

𝜃

����1 − 𝜃 + 𝜖

√︂
𝜈a

𝜈o

���� = 𝜉0, lim
(𝜔+ 𝑓 )→∞

𝜉 = 0.

As 𝜔 + 𝑓 → 0 the asymptotic value 𝜉0 depends on 𝜃ȷ it is +∞ for 𝜃 = 0 ˘i.e. a

fast divergence¯, and 𝜉0 = 𝜖
√︃

𝜈a

𝜈o
for 𝜃 = 1. When 𝜔 → ∞, the convergence factor

tends to zero ˘i.e. the convergence is fast for high frequencies¯. Whatever 𝜔, it can

be shown that the value 𝜉0 is an upper bound of the convergence factor when 𝜃 ≤ 1

if
√︃

𝜈o

𝜈a
≤ ℎo

ℎa
, the latter condition being easily satisfied. Since we have 𝜖 ≈ 10−3, the

convergence is fast for 𝜃 = 1 whereas 𝜖 does not play any role for 𝜃 = 0. The optimal

parameter 𝜃opt for low frequencies is 1 + 𝜖
√︃

𝜈a

𝜈o
which is very close to 1.
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Linearized quadratic friction case The analysis of the nonlinear quadratic

friction case ˘i.e. with 𝛼 = 𝐶𝐷 | 𝑈a (ℎa/2, 𝑡) − 𝑈o (−ℎo/2, 𝑡) |¯ cannot be pursued

through a Fourier transform. We thus consider the linearization of the problem

around a stationary state 𝑈𝑒
𝑗
, 𝜑𝑒

𝑗
satisfying ˘1¯ȷ assuming that 𝑈𝑘

𝑗
(±ℎ 𝑗/2, 𝑡) is in a

neighborhood of 𝑈𝑒 (±ℎ 𝑗/2), the modulus in 𝛼 is non‚zero and we can differentiate

𝛼. Differences with the stationary state are noted 𝛿𝜑𝑘
𝑗
= 𝜑𝑘

𝑗
(0, 𝑡) − 𝜑𝑒

𝑗
(0) and

𝛿𝑈𝑘
𝑗
= 𝑈𝑘

𝑗
(±ℎ 𝑗/2, 𝑡) −𝑈𝑒

𝑗
(±ℎ 𝑗/2). After some algebra, the linearized transmission

operator reads

𝜈a𝛿𝜑
𝑘
a = 𝛼𝑒

((
3

2
− 𝜃

)
𝛿𝑈𝑘−1

a + 𝜃 𝛿𝑈𝑘
a − 3

2
𝛿𝑈𝑘−1

o +1

2

𝑈𝑒
a −𝑈𝑒

o

𝑈𝑒
a −𝑈𝑒

o

𝛿𝑈𝑘−1
a − 𝛿𝑈𝑘−1

o

)

˘7¯

with 𝛼𝑒
= 𝐶𝐷

��𝑈𝑒
a (ℎa/2) −𝑈𝑒

o (−ℎo/2)
��. Following the derivation in the previous

paragraph, we find that the convergence factor 𝜉𝑞 in the linearized quadratic friction

case differs from one iteration to another ˘it is indeed a function of
𝐵𝑘−1 (−𝜔)
𝐵𝑘−1 (𝜔) ¯.

However, for (𝜔 + 𝑓 ) → 0 the term 1
2

𝑈𝑒
a −𝑈𝑒

o

𝑈𝑒
a −𝑈𝑒

o

𝛿𝑈𝑘−1
a − 𝛿𝑈𝑘−1

o vanishes, therefore the

asymptotic convergence rate 𝜉
𝑞

0
is independent of the iterateȷ

lim
(𝜔+ 𝑓 )→0

𝜉𝑞 =
1

𝜃

����
3

2
− 𝜃 + 3

2
𝜖

√︂
𝜈a

𝜈o

���� = 𝜉
𝑞

0
, lim

(𝜔+ 𝑓 )→∞
𝜉𝑞 = 0.

The convergence is fast for high frequencies, as in the linear friction case. However

the optimal parameter for (𝜔 + 𝑓 ) → 0 is here 𝜃
𝑞
opt =

3
2
+ 3

2
𝜖
√︃

𝜈a

𝜈o
. It is different

from the optimal parameter 𝜃opt obtained with linear frictionȷ for typical values of

the ocean‚atmosphere coupling problem, 𝜃
𝑞
opt is close to 3

2
. The asymptotic value 𝜉

𝑞

0

is not an upper bound of the convergence factor but it is a good choice for 𝜃
𝑞
opt.

5 Numerical experiments

The aim of this section is to illustrate the influence of the parameter 𝜃, in the

linear and quadratic friction cases. The stationary state 𝑈𝑒
𝑗

is used to compute

𝛼𝑐 = 𝛼𝑒
= 𝐶𝐷 |𝑈𝑒

a ( ℎa

2
) −𝑈𝑒

o ( ℎo

2
) | in the linear case. Parameters of the problem are

taken as realisticȷ𝐶𝐷 = 1.2×10−3, the space steps are
ℎa

2
= 10 m,

ℎo

2
= 1 m, the time

step is 60 s, the size of the time window 𝑇 is 1 day ˘1440Δ𝑡¯ and the computational

domains sizes are 𝐻𝑜 = 𝐻𝑎 = 2000 m ˘100 and 1000 nodes respectively in Ω𝑎

and Ω𝑜¯. The Coriolis parameter is 𝑓 = 10−4 s−1 and the diffusivities are 𝜈a =

1 m2 s−1, 𝜈o = 3 × 10−3 m2 s−1. 𝑈∞
𝑗 are set to constant values of 10 m s−1 in the

atmosphere and 0.1 m s−1 in the ocean, while the forcing terms 𝑔 𝑗 = 𝑖 𝑓𝑈∞
𝑗 and

the initial condition 𝑈0 (𝑧) = 𝑈𝑒
𝑗
(𝑧). SWR is initialized at the interface with a white

noise around the interface value of the initial condition. Figure 2 shows the evolution
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of the error for two choices of 𝜃. The theoretical convergence according to 𝜉0 is

also displayedȷ sup𝜔 𝜉 is an upper bound of the 𝐿2 convergence factor [6] and 𝜉0

is an approximation of sup𝜔 𝜉. Both 𝜉0 and 𝜉
𝑞

0
are close to the convergence rate,

with the exception of 𝜉
𝑞

0
that predicts much faster convergence than observed when

𝜃 = 1.5. This shows that the maximum of the convergence factor is not reached when

(𝜔 + 𝑓 ) → 0 in this case. Figure 2 confirms the results of Sec. 4ȷ when considering

𝛼 = 𝛼𝑐 constant, the fastest convergence is achieved when 𝜃 is close to 1, similarly to

the DNWR algorithm. However this does not translate into the nonlinear case, which

converges faster with 𝜃 = 1.5. Figure 3 shows that the convergence behavior with the

linearized transmission condition is similar to the nonlinear case. As expected the

convergence is faster for 𝜃 = 1.5 than for 𝜃 = 1. We observed that those results are

robust to changes in the values of the parameters in the range of interest. Linearized

transmission conditions are hence relevant to study theoretically the convergence

properties of our nonlinear problem.
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Fig. 2: Evolution of the 𝐿2 norm of the errors. Black lines represent the observed convergence;
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Fig. 3: Evolution of the 𝐿2 norm of the errors with linearized ˘L¯ and nonlinear ˘NL¯ transmission

conditions. The legend indicates the changes in the parameters for each case.
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6 Conclusion

In this paper, we studied a SWR algorithm applied to a simplified ocean‚atmosphere

problem. This problem considers nonlinear transmission conditions arising from

wall laws representative of the ones used in Earth‚System Models and analogous to

a quadratic friction law. We motivated the fact that the convergence analysis of such

problems can only be done at a semi‚discrete level in space due to the particular

practical implementation of continuous interface conditions in actual climate models.

Then we analytically studied the convergence properties in a case with linear friction

and in a case with linearized quadratic friction. We formulated the problem with a

relaxation parameter 𝜃 in the transmission conditions and systematically assessed

its impact on the convergence speed. For the two cases of interest, the convergence

factors are derived and the asymptotic limits for small values of the frequency

𝜔 + 𝑓 are given. This asymptotic limit allowed us to choose appropriate values for

the parameter 𝜃 to guarantee fast convergence of the algorithm. The behavior of

the algorithm for linear friction and linearized quadratic friction turns out to be

different which leads to different "optimal" values of 𝜃. Numerical experiments in

the nonlinear case showed that the observed convergence behaves as predicted by

the linearized quadratic friction case whose thorough theoretical analysis is left for

future work.
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