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1 Introduction

Adaptive inite element method ˘AFEM¯ is an efective numerical tool for solving

linear and nonlinear PDEs. A proper local reinement plays a key role in AFEM and

relies on proper a‚posteriori error estimators. In this contribution, we introduce a

pointwise a posteriori error estimator for the symmetric interior penalty discontin‚

uous Galerkin ˘SIPG¯ approximation of the elliptic obstacle problem. The elliptic

obstacle problem is a prototype of the elliptic variational inequalities of the irst

kind. This problem exhibits the free boundary and appears in various processes in

engineering and physical sciences such as elasto‚plasticity, dam problem and math‚

ematical inance [3]. A‚posteriori error analysis in maximum norm for conforming

approximation of obstacle problems is given in the seminal works [6, 7]. For dis‚

continuous Galerkin ˘DG¯ approximation, the a‚posteriori error analysis in energy

norm is contained in [4]. In the maximum norm, to the best of our knowledge, the

results in [1] are the irst in this direction. Here, due to space limitation, we state the

reliability result and focus on its numerical veriication and validation. Details on

the analysis as well as further discussion can be found in [1].
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2 The elliptic obstacle problem

Let Ω ⊂ R� , � = 2, 3 be a bounded, polygonal ˘� = 2¯ or polyhedral ˘� = 3¯ domain

with boundary �Ω. Let � ∈ �∞ (Ω) and the obstacle � ∈ �1 (Ω) ∩ �0 (Ω) be such

that � ≤ 0 on �Ω. The variational formulation of the obstacle problem then readsȷ

ind � ∈ K such that
∫

Ω

∇� · ∇(�−�) �� ≤ ( � , �−�) ∀� ∈ K := {� ∈ �1
0 (Ω) : � ≥ � a.e. inΩ} , ˘1¯

where (·, ·) refers to the �2 (Ω) inner‚product and K is the so‚called set of admissible

displacements which is a non‚empty, closed and convex set. In ˘1¯, the solution �

could be regarded as the equilibrium position of an elastic membrane subject to the

load � whose boundary is held ixed ˘� ∈ �1
0
(Ω)¯ and which is constrained to lie

above the given obstacle �. Such constraint results in non‚linearity inherent to the

PDE. The contact and non‚contact sets of the exact solution � are deined as

C := {� ∈ Ω : �(�) = �(�)}�, N := {� ∈ Ω : �(�) > �(�)}.

The continuous Lagrange multiplier �(�) ∈ �−1 (Ω) is deined by

⟨�(�), �⟩ = ( � , �) − (∇�,∇�), ∀� ∈ �1
0 (Ω), ˘2¯

where ⟨·, ·⟩ denotes the duality pairing of �−1 (Ω) and �1
0
(Ω). From ˘2¯ and ˘1¯, it

follows that

⟨�(�), � − �⟩ ≤ 0, ∀� ∈ K .

In particular, �(�) = 0 on the non‚contact setN. The classical theory of Stampacchia

[3, Chapter 1, page 4] guarantees the existence and uniqueness of the solution. Notice,

however that the solution operator is not only non‚linear and non‚diferentiable, but

it is strikingly not one‚to‚one ˘observe that any variation in � within the contact set

might or might not result in a variation in the solution �¯.

3 The Symmetric Interior Penalty method

Basic Notations and Finite Element spaces

Let Tℎ be a shape‚regular family of partitions of Ω into triangles or tetrahedra � and

let ℎ� denote the diameter of each � ∈ Tℎ and set ℎ��� = min{ℎ� : � ∈ Tℎ}. We

denote by E�
ℎ

and E�
ℎ

the sets of all interior and boundary edges/faces, respectively,

and we set Eℎ = E�
ℎ
∪ E�

ℎ
. The average and jump trace operators are deined in the

usual wayȷ let �+ and �− be two neighbouring elements, and n+, n− be their outward

normal unit vectors, respectively ˘n± = n�± ¯ and let �± be the restriction of � to �±.

We setȷ
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2{� } = (�+ + �−), [[ � ]] = �+n+ + �−n− on � ∈ E�
ℎ ,

and on � ∈ E�
ℎ

we set [[ � ]] = �n. We will also use the notations

(�, �)Tℎ =

︁

� ∈Tℎ

∫

�

����, ⟨�, �⟩Eℎ
=

︁

�∈Eℎ

∫

�

���� ∀�, � ∈ �.

Let P1 (�) be the space of linear polynomials on � and V� denotes the set of vertices

of the simplex � . We denote by �ℎ and �
��� �

ℎ
the discontinuous and conforming

inite element spaces deined respectively, by

�ℎ =
{
� ∈ �2 (Ω) : � |� ∈ P1 (�) ∀� ∈ Tℎ

}
, �

��� �

ℎ
= �ℎ ∩ �1

0 (Ω) . ˘3¯

Let �ℎ ∈ �
��� �

ℎ
be the nodal Lagrange linear interpolant of �. We deine the discrete

analogue of K by

Kℎ := {�ℎ ∈ �ℎ : �ℎ |� (�) ≥ �ℎ (�), ∀� ∈ V� , ∀� ∈ Tℎ} ≠ ∅,

which is a nonempty, closed and convex subset of �ℎ. Note that, Kℎ ⊈ K.

• SIPG method: The method readsȷ ind �ℎ ∈ Kℎ such that

Aℎ (�ℎ, �ℎ − �ℎ) ≤ ( � , �ℎ − �ℎ) ∀ �ℎ ∈ Kℎ, ˘4¯

where the SIPG bilinear form Aℎ (·, ·) is deined asȷ

Aℎ (�, �) = (∇�,∇�)Tℎ−⟨{∇�}, [[ � ]]⟩Eℎ
−⟨[[ � ]], {∇�}⟩Eℎ

+⟨�� [[ � ]], [[ � ]]⟩Eℎ
,

˘5¯

with �� = ��ℎ
−1
� , �� ≥ �∗ > 0, ∀ � ∈ Eℎ and ℎ� the length of the edge/face �.

Following [8, 4], we deine the discrete Lagrange multiplier �ℎ ∈ �ℎȷ

⟨�ℎ, �ℎ⟩ℎ := ( � , �ℎ) − Aℎ (�ℎ, �ℎ) ∀�ℎ ∈ �ℎ, ˘6¯

where ⟨·, ·⟩ℎ is given by

⟨�ℎ, �ℎ⟩ℎ :=
︁

� ∈Tℎ

∫

�

Iℎ (�ℎ |��ℎ |� ) �� =

︁

� ∈Tℎ

|� |
� + 1

︁

�∈V�

�ℎ (�)�ℎ (�),

with Iℎ denoting the nodal Lagrange linear interpolation operator. The use of the
⟨·, ·⟩ℎ inner product in the deinition ˘6¯ of �ℎ allows for localizing �ℎ at the vertices
of the partition, which facilitates the implementation. The discrete contact and non‚
contact sets relative to �ℎ, are deined byȷ

Cℎ := {� ∈ Tℎ : �ℎ (�) = �ℎ (�) ∀ � ∈ V� }, Nℎ := {� ∈ Tℎ : �ℎ (�) > �ℎ (�) ∀ � ∈ V� },

and the free boundary set is given by Mℎ = Tℎ \ (Cℎ ∪ Nℎ). Using ˘6¯ and the

discrete problem ˘4¯, we obtain that ⟨�ℎ, �ℎ − �ℎ⟩ℎ ≤ 0 ∀ �ℎ ∈ Kℎ, from which it

can be further deduced that �ℎ (�) = 0 on � vertex of � ⊂ Nℎ.
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4 Reliable a posteriori error estimates in maximum norm

We now deine the error estimators that enter in full error estimator �ℎ ȷ

�1 = max
� ∈Tℎ

∥ℎ2
� ( � − �ℎ)∥�∞ (�) , �2 = max

� ∈Cℎ∪Mℎ

∥ℎ2
�∇�ℎ∥�� (�) ,

�3 = max
�∈E�

ℎ

∥ℎ� [[ ∇�ℎ ]] ∥�∞ (�) , �4 = ∥ [[ �ℎ ]] ∥�∞ (Eℎ) ,

�5 = ∥(� − �ℎ)+∥�∞ (Ω) , �6 = ∥(�ℎ − �)+∥�∞ ( {�ℎ<0}) .

The full a‚posteriori error estimator �ℎ is then deined asȷ

�ℎ = | log ℎ��� |
(
�1 + �2 + �3 + �4

)
+ �5 + �6

Theorem 1 Let � ∈ K and �ℎ ∈ Kℎ be the solution of ˘1¯ and ˘4¯, respectively.

Then,

∥� − �ℎ∥�∞ (Ω) ≲ �ℎ

The proof of the theorem is technical and we refer to [1] for the details as well as the

results regarding local eiciency of the estimator.

5 Numerical Results

To solve ˘4¯, we use the iterative primal dual active set method [5]. We briely

describe the algorithm in the present setting.

Primal dual active set method: Let �ℎ ∈ �ℎ be deined by setting for every � ∈
Tℎ, � ∈ V� �ℎ (�) :=

|� |
�+1

�ℎ (�). Then equation ˘6¯ can be rewritten as

Aℎ (�ℎ, �ℎ) +
︁

� ∈Tℎ

︁

�∈V�

�ℎ (�)�ℎ (�) = ( � , �ℎ) ∀�ℎ ∈ �ℎ . ˘7¯

The so‚called complementarity conditions are then given byȷ ∀� ∈ V� , � ∈ Tℎ

�ℎ (�) ≤ 0, �ℎ (�) ≥ �ℎ (�) and
︁

� ∈Tℎ

︁

�∈V�

�ℎ (�) (�ℎ (�) − �ℎ (�)) = 0 .

˘8¯

After choosing Lagrangian linear basis for �ℎ in ˘3¯, with � = dim(�ℎ), we denote

by A ∈ R�×� and � ∈ R� the matrix and vector representation of Aℎ (·, ·) in

˘5¯ and the right hand side in ˘4¯, respectively. Similarly, �, �,� ∈ R� denote

respectively the vector representations of �ℎ, �ℎ and �ℎ. The algebraic formulation

of ˘7¯‚˘8¯ readsȷ

A� + I Λ = �, (Λ,� − �) = 0, Λ ≤ 0, � ≥ �, ˘9¯
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where I ∈ R�×� is the identity matrix and (·, ·) the standard R� ‚scalar product. By

deining

C(�,Λ) := Λ − min(0,Λ + (� − �)), ˘10¯

the complementarity conditions in ˘9¯ reduce to C(�,Λ) = 0. Indeed, from the

deinition ˘10¯ , notice that if Λ + (� − �) < 0 =⇒ C(�,Λ) = (� − �) and

so, C(�,Λ) = 0 implies � = �, which together with Λ + (� − �) < 0 gives

Λ < 0. Similarly, Λ + (� − �) > 0 would imply C(�,Λ) = Λ. In this case

the complementarity condition C(�,Λ) = 0 gives Λ = 0 which together with

Λ + (� − �) > 0 yields � > �. Hence, the solution of ˘9¯ is reduced to solve the

system

A� + I Λ = �, C(�,Λ) = 0. ˘11¯

The primal‚dual active set algorithm solves ˘11¯ iterativelyȷ

˘i¯ Set � = 0, Initialise � (0) , Λ(0) .
˘ii¯ Find the sets of vertices AC(�) and D(�) deined as

AC(�)
= {1 ≤ � ≤ � : Λ

(�)
�

+ (� (�)
�

− �
(�)
�

) < 0} indices in active set,

D(�)
= {1 ≤ � ≤ � : Λ

(�)
�

+ (� (�)
�

− �
(�)
�

) ≥ 0} indices not in active set.

˘iii¯ Solve for (� (�+1) ,Λ(�+1) ) from the following systemȷ

A� (�+1) + I Λ(�+1)
= �, �

(�+1)
�

= � � ∀ � ∈ AC(�) , Λ
(�+1)
�

= 0 ∀ � ∈ D(�) .

˘iv¯ Set � = � + 1. Go to Step ˘ii¯ and compute AC(�) and its complementary D(�) .
The iteration is stopped when AC(�)

= AC(�+1) . The set AC(�) contains the indices

for the vertices in the discrete contact set Cℎ; D(�) contains the indices of the

remaining nodes.

5.1 Numerical experiments

We present now some test examples to illustrate the performance of a‚posteriori

error estimator. For the adaptive reinement, we use the paradigm

SOLVE −→ ESTIMATE −→ MARK −→ REFINE

In the step SOLVE, we compute �ℎ using the primal‚dual active set algorithm as

described before. Thereafter, we compute the error estimator �ℎ on each element

� ∈ Tℎ and use maximum marking strategy with parameter � = 0.4. Finally, the

mesh is reined using the newest vertex bisection algorithm. In all examples, we set

�� = 25 and AC refers to the discrete active set ˘depicted in yellow¯.

Example 1: Madonna’s obstacle: ˘scaled version of [7, example 3.1]¯¯. Let Ω =

(0, 1)2, � = 0 and �2 = (� − 1/2)2 + (� − 1/2)2 , �, � ∈ Ω
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� = 1 − 4�, � =

{
1 − 4�, � < 1/4
−(log(�) + 2 log(2)), � ≥ 1/4.

In Figure 1a we report the error and the estimator �ℎ. This graphic indicates a

rate ˘1/���¯ with respect to degrees of freedom ˘DOF¯. The single estimators

�� , � = 1...6 are plotted in Figure 1b. Both graphics conirm the reliability of

the estimator. In Figure 2 are depicted the eiciency indices ˘leftmost subigure¯,

the adaptive mesh reinement at level 20 ˘center¯ and the discrete contact set Cℎ
˘rightmost igure¯. Note that the solution is singular in the C due to the singularity

of the obstacle therein, which leads to the more reinement in Cℎ. Also as expected,

we observe more reinement near free boundary.
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Example 2: non-convex domain [2]:

Ω = (−2, 2)2 \ [0, 2) × (−2, 0], � = 0,

� = �2/3���(2�/3)�1 (�), �2
= �2 + �2 , �̃ = 2(� − 1/4)

� = − �2/3���(2�/3)
(�

′
1
(�)
�

+ �
′′
1 (�)

)
− 4

3
�−1/3���(2�/3)�′

1 (�) − �2 (�)
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�1 (�) =




1, �̃ < 0

−6�̃5 + 15�̃4 − 10�̃3 + 1, 0 ≤ �̃ < 1

0, �̃ ≥ 1,

�2 (�) =
{

0, � ≤ 5
4

1, otherwise.

In Figure 3˘a¯ we compare the estimator �ℎ with the one in energy norm. From this

graphic, it is evident that the error and the estimator converge with rate 1/��� in

�∞ and 1/
√
��� in energy norm. The convergence behaviour of the single estima‚

tors �� , � = 1...6 is given in Figure 3˘b¯. Note that, �5 is zero since � = �ℎ = 0 in

this example. Figure 4 conirms the eiciency of the estimator �ℎ. In Figure 4 are

also given the adaptive mesh reinement at the level 24 and Cℎ. We observe that the

estimator captures well the singular behavior of the solution. The mesh reinement

near the free boundary is higher due to the large jump in gradients.
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Example 3: taken from [6] ( Liptschiz obstacle):

Ω = {(�, �) ∈ R2 : |� | + |� | < 1}, � = −5, � = dist(�, �Ω) − 1/5.

In Figure 5 we have reported the estimator �ℎ and the single estimators �� , � = 1...6,

˘�5 = 0 since � is piecewise linear¯ ˘leftmost¯ together with the adaptive mesh at

reinement level 7 ˘center¯ and Cℎ ˘rightmost¯. It can be observed that the estimator

converges with the optimal rate. The obstacle function is in the shape of a pyramid
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and the continuous Lagrange multiplier has support along the edges of the obstacle

which justiies the reinement along the edges of the obstacle in the contact region.
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