
Spectral Equivalence Properties of

Higher-Order Tensor Product Finite Elements

Clark R. Dohrmann

1 Introduction

The focus of this study is on spectral equivalence results for higher‚order tensor

product finite elements in the 𝐻 (curl), 𝐻 (div), and 𝐿2 function spaces. For certain

choices of the higher‚order shape functions, the resulting mass and stiffness matrices

are spectrally equivalent to those for an assembly of lowest‚order edge‚, face‚ or

interior‚based elements on the associated Gauss‚Lobatto‚Legendre ˘GLL¯ mesh.

This equivalence will help enable the development of efficient domain decomposition

or multigrid preconditioners. Specifically, preconditioners for the equivalent lowest‚

order linear system can be used for the higher‚order problem and avoid the demands

of assembling a higher‚order coefficient matrix.

Using assemblies of lowest‚order ˘linear¯ elements for efficient preconditioning

of higher‚order discretizations in the function space 𝐻1 is not new. We refer the

interested reader to Section 7.1 of [10] or the introduction of [2] for a discussion of

the pioneering work by Orszag [9], Deville and Mund [3, 8], Canuto [1] and others.

We are, however, not aware of similar approaches for problems using higher‚order

edge‚ ˘Nédélec¯, face‚ ˘Raviart‚Thomas¯ or interior‚based elements. We note for the

case of nodal elements that the degrees of freedom ˘DOFs¯ for a higher‚order element

and its equivalent assembly of lowest‚order elements are nodal values in both cases.

This natural one‚to‚one correspondence of DOFs can be realized for edge‚, face‚ and

interior‚based elements by using shape functions ˘bases¯ associated with integrals

and introduced by Gerritsma [5].

For edge‚based elements, the DOFs for the shape functions are associated with

integrals of tangential components of a vector field along each edge of the associated

GLL mesh ˘see Figure 1 left¯. Similarly, DOFs for face‚based elements correspond

to integrals of the normal component of a vector field over individual faces of the

GLL mesh ˘see Figure 1 right¯. For completeness, we also present shape functions
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and equivalence results for related interior‚based elements. For these elements, the

DOFs correspond to integrals of a scalar function over individual elements of the

GLL mesh. We note in all three cases that the shape functions can be expressed

simply in terms of one‚dimensional interpolatory nodal functions at the GLL points

along with a one‚dimensional function which enables the correspondence between

DOFs of the higher‚ and lowest‚order elements.

The paper is organized as follows. Shape functions for edge‚, face‚, and interior‚

based elements are described in §2. This is followed in §3 by a presentation of

spectral equivalence results between higher‚order elements and their lowest‚order

counterparts. Numerical results are presented in §4 which confirm these results. A

more comprehensive report [4] can be consulted for complete proofs and applications

of the spectral equivalence results to preconditioning.

Fig. 1: Edge ˘left¯ and face ˘right¯ locations on three faces of a cube for a higher‚order element

of degree 𝑝 = 4. Also shown is the corresponding assembly of 𝑝3 lowest‚order elements on the

associated Gauss‚Lobatto‚Legendre ˘GLL¯ mesh.

2 Shape Functions

Following the notation in [7], let 𝑄𝑖, 𝑗 ,𝑘 denote the space of polynomials in reference

element coordinates ˘𝜂1, 𝜂2, 𝜂3) ∈ [−1, 1] for which the maximum degree is 𝑖 in 𝜂1,

𝑗 in 𝜂2 and 𝑘 in 𝜂3.

As is commonly done for nodal elements, one‚dimensional GLL shape functions

𝜑0, . . . , 𝜑𝑝 are used to construct higher‚order shape functions in three dimensions.

See Figure 2 ˘left¯ for the case of degree 𝑝 = 4. Notice that these functions are

simply interpolatory ˘Lagrange¯ shape functions at the GLL points 𝑥0 = −1, 𝑥𝑝 = 1,



Spectral Equivalence Properties of Higher‚Order Tensor Product Finite Elements 207

and 𝑥𝑖−1 < 𝑥𝑖 for 𝑖 = 1, . . . , 𝑝. We remark that the internal GLL points 𝑥1, . . . , 𝑥𝑝−1

are the roots of 𝐿 ′
𝑝−1

, where 𝐿𝑝 is the Legendre polynomial of degree 𝑝.

Shape functions for edge‚, face‚, and interior‚based elements based on the work

of Gerritsma [5] are described next. Although different from the shape functions in

[7], they span the same polynomial spaces and are conforming between elements.

Fig. 2: One‚dimensional higher‚order ˘left¯ and linear ˘right¯ shape functions associated with GLL

points for degree 𝑝 = 4.

2.1 Edge Shape Functions

The vector field for an edge‚based finite element of degree 𝑝 can be expressed in

terms of the reference element coordinates as

𝒖e

𝑝 = 𝑢e

1𝑝𝒃1 + 𝑢e

2𝑝𝒃2 + 𝑢e

3𝑝𝒃3,

where 𝑢e

1𝑝
∈ 𝑄𝑝−1, 𝑝, 𝑝 , 𝑢e

2𝑝
∈ 𝑄𝑝,𝑝−1, 𝑝 , 𝑢e

3𝑝
∈ 𝑄𝑝,𝑝, 𝑝−1, and 𝒃1, 𝒃2, 𝒃3 are unit

vectors associated with the element coordinates ˘see e.g. [7]¯.

Our present focus is on edges aligned with the 𝒃1 direction; similar constructions

of shape functions hold for edges aligned with the other two directions. For each

𝑖 ∈ {0, . . . , 𝑝 − 1} define

𝜓𝑖 (𝜂1) =

𝑝
∑︁

𝑚=0

𝑎𝑖𝑚𝜑𝑚 (𝜂1), 𝑎𝑖𝑚 =

{

0 𝑚 ≤ 𝑖

1 𝑚 > 𝑖

Since 𝜓𝑖 (𝑥𝑚+1) − 𝜓𝑖 (𝑥𝑚) is 1 for 𝑚 = 𝑖 and 0 for 𝑚 ≠ 𝑖, it follows that

∫ 𝑥𝑚+1

𝑥𝑚

𝜓 ′
𝑖 𝑑𝑥 = 𝛿𝑖𝑚, ˘1¯

where 𝛿𝑖𝑚 is the Kronecker delta function. The edge functions 𝜓 ′
0
, . . . , 𝜓 ′

𝑝−1
and

their application to tensor product finite elements are discussed in [5].
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Let E𝑖 𝑗𝑘 denote the edge with 𝜂1 ∈ (𝑥𝑖 , 𝑥𝑖+1), 𝜂2 = 𝑥 𝑗 and 𝜂3 = 𝑥𝑘 . The shape

function associated with this edge is given by

𝝋e

𝑖 𝑗𝑘 (𝜂1, 𝜂2, 𝜂3) = 𝜓 ′
𝑖 (𝜂1)𝜑 𝑗 (𝜂2)𝜑𝑘 (𝜂3)𝒃1. ˘2¯

Notice that 𝝋e

𝑖 𝑗𝑘
· 𝒃2 = 𝝋e

𝑖 𝑗𝑘
· 𝒃3 = 0. Thus, the tangential component of 𝝋e

𝑖 𝑗𝑘
vanishes

along all edges not in the 𝒃1 direction. Consider the integral 𝑎e

𝑙𝑚𝑛
:=

∫

E𝑙𝑚𝑛
𝝋e

𝑖 𝑗𝑘
·𝒃1 𝑑𝑥.

Since 𝜑 𝑗 (𝑥𝑚) = 𝛿 𝑗𝑚 and 𝜑𝑘 (𝑥𝑛) = 𝛿𝑘𝑛, we find using ˘1¯ that

𝑎e

𝑙𝑚𝑛 = 𝛿 𝑗𝑚𝛿𝑘𝑛

∫ 𝑥𝑙+1

𝑥𝑙

𝜓 ′
𝑖 (𝜂1) 𝑑𝑥 = 𝛿𝑖𝑙𝛿 𝑗𝑚𝛿𝑘𝑛.

In other words, the integral of the tangential component of 𝝋e

𝑖 𝑗𝑘
vanishes over

all edges except for E𝑖 𝑗𝑘 , for which this integral is 1. This feature ensures linear

independence of the shape functions. Moreover, arguments similar to those in [7]

can be used to show the finite element space is conforming in the space 𝐻 (curl; Ω̂),

where Ω̂ := (−1, 1)3. Using the curl‚conserving transformation described in §3.9 of

[6], the finite elements are also conforming in the space 𝐻 (curl;Ω), where Ω is the

domain of the higher‚order finite element mesh.

2.2 Face Shape Functions

The vector field for a face‚based finite element of degree 𝑝 can be expressed in terms

of the element coordinates as

𝒖f

𝑝 = 𝑢f

1𝑝𝒃1 + 𝑢f

2𝑝𝒃2 + 𝑢f

3𝑝𝒃3,

where 𝑢f

1𝑝
∈ 𝑄𝑝,𝑝−1, 𝑝−1, 𝑢f

2𝑝
∈ 𝑄𝑝−1, 𝑝, 𝑝−1, and 𝑢f

3𝑝
∈ 𝑄𝑝−1, 𝑝−1, 𝑝 ˘again, see e.g.

[7]¯.

Our present focus is on faces aligned with the 𝒃3 direction; similar constructions

of shape functions hold for faces aligned with the other two directions. Let F𝑖 𝑗𝑘

denote the face with 𝜂1 ∈ (𝑥𝑖 , 𝑥𝑖+1), 𝜂2 ∈ (𝑥 𝑗 , 𝑥 𝑗+1), and 𝜂3 = 𝑥𝑘 . The shape function

associated with this face is given by

𝝋f

𝑖 𝑗𝑘 (𝜂1, 𝜂2, 𝜂3) = 𝜓 ′
𝑖 (𝜂1)𝜓

′
𝑗 (𝜂2)𝜑𝑘 (𝜂3)𝒃3. ˘3¯

Notice that 𝝋f

𝑖 𝑗𝑘
· 𝒃1 = 𝝋f

𝑖 𝑗𝑘
· 𝒃2 = 0. Thus, the normal component of 𝝋f

𝑖 𝑗𝑘
vanishes

over all faces with normals not in the 𝒃3 direction. Next, consider the area integral

𝑎f

𝑙𝑚𝑛
:=

∫

F𝑙𝑚𝑛
𝝋f

𝑖 𝑗𝑘
· 𝒃3 𝑑𝑥. Since 𝜑𝑘 (𝑥𝑛) = 𝛿𝑘𝑛, we find using ˘1¯ that

𝑎f

𝑙𝑚𝑛 =

∫

F𝑙𝑚𝑘

𝛿𝑘𝑛𝜓
′
𝑖 (𝜂1)𝜑

′
𝑗 (𝜂2) 𝑑𝑥
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= 𝛿𝑘𝑛

∫ 𝑥𝑙+1

𝑥𝑙

𝜓 ′
𝑖 (𝜂1) 𝑑𝜂1

∫ 𝑥𝑚+1

𝑥𝑚

𝜓 ′
𝑗 (𝜂2) 𝑑𝜂2 = 𝛿𝑖𝑙𝛿 𝑗𝑚𝛿𝑘𝑛.

In other words, the integral of the normal component of 𝝋f

𝑖 𝑗𝑘
vanishes over all faces

except for F𝑖 𝑗𝑘 , for which this integral is 1. Again, this ensures linear independence

of the shape functions, and arguments similar to those in [7] can be used to show the

finite element space is conforming in 𝐻 (div; Ω̂). Using the divergence‚conserving

transformation described in §3.9 of [6], the finite elements are also conforming in

the space 𝐻 (div;Ω), where Ω is the domain of the higher‚order finite element mesh.

2.3 Interior Shape Functions

The scalar field of an interior‚based element is approximated by functions 𝑢v
𝑝 ∈

𝑄𝑝−1, 𝑝−1, 𝑝−1. Let 𝑉𝑖 𝑗𝑘 denote the cell with 𝜂1 ∈ (𝑥𝑖 , 𝑥𝑖+1), 𝜂2 ∈ (𝑥 𝑗 , 𝑥 𝑗+1), and

𝜂3 ∈ (𝑥𝑘 , 𝑥𝑘+1). The shape function associated with this cell is given by

𝜑v

𝑖 𝑗𝑘 (𝜂1, 𝜂2, 𝜂3) = 𝜓 ′
𝑖 (𝜂1)𝜓

′
𝑗 (𝜂2)𝜓

′
𝑘 (𝜂3). ˘4¯

Consider the volume integrals 𝑎v

𝑙𝑚𝑛
:=

∫

𝑉𝑙𝑚𝑛
𝜑v

𝑖 𝑗𝑘
𝑑𝑥. We find using ˘1¯ that

𝑎v

𝑙𝑚𝑛 =

∫ 𝑥𝑙+1

𝑥𝑙

𝜓 ′
𝑖 (𝜂1)

∫ 𝑥𝑚+1

𝑥𝑚

𝜓 ′
𝑗 (𝜂2)

∫ 𝑥𝑛+1

𝑥𝑛

𝜓 ′
𝑘 (𝜂3) 𝑑𝑥 = 𝛿𝑖𝑙𝛿 𝑗𝑚𝛿𝑘𝑛.

In other words, the integral of 𝜑v

𝑖 𝑗𝑘
vanishes over all regions except for 𝑉𝑖 𝑗𝑘 , for

which this integral is 1. This ensures linear independence of the shape functions.

Further, a polynomial function 𝑢v
𝑝 ∈ 𝑄𝑝−1, 𝑝−1, 𝑝−1 can be expressed in terms of the

shape functions as

𝑢v

𝑝 =

𝑝−1
∑︁

𝑖, 𝑗 ,𝑘=0

𝑐v

𝑖 𝑗𝑘𝜓
′
𝑖 (𝜂1)𝜓

′
𝑗 (𝜂2)𝜓

′
𝑘 (𝜂3), 𝑐v

𝑖 𝑗𝑘 (𝑢
v

𝑝) =

∫

𝑉𝑖 𝑗𝑘

𝑢v

𝑝 𝑑𝑥.

Remark 1 Starting with the edge shape function 𝝋e

𝑖 𝑗𝑘
in ˘2¯, notice that the face shape

function 𝝋f

𝑖 𝑗𝑘
in ˘3¯ is obtained simply by replacing 𝜑 𝑗 (𝜂2)𝒃1 with 𝜓 ′

𝑗𝒃3. Likewise,

𝜑v

𝑖 𝑗𝑘
in ˘4¯ is obtained from 𝝋f

𝑖 𝑗𝑘
simply by replacing 𝜑𝑘 (𝜂3)𝒃3 with 𝜓 ′

𝑘
(𝜂3).

2.4 Lowest-Order Shape Functions

The lowest‚order counterparts of the one‚dimensional higher‚order shape functions

𝜑0, . . . , 𝜑𝑝 are piecewise linear and are denoted by 𝜑0ℎ, . . . 𝜑𝑝ℎ ˘see Figure 2 ˘right¯

for the case of 𝑝 = 4¯. Analogous to the the higher‚order edge, face, and interior

shape functions, we may define the lowest‚order counterparts of ˘2¯, ˘3¯ and ˘4¯ as
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𝝋e

𝑖 𝑗𝑘ℎ (𝜂1, 𝜂2, 𝜂3) = 𝜓 ′
𝑖ℎ (𝜂1)𝜑 𝑗ℎ (𝜂2)𝜑𝑘ℎ (𝜂3)𝒃1, ˘5¯

𝝋f

𝑖 𝑗𝑘ℎ (𝜂1, 𝜂2, 𝜂3) = 𝜓 ′
𝑖ℎ (𝜂1)𝜓

′
𝑗ℎ (𝜂2)𝜑𝑘ℎ (𝜂3)𝒃3, ˘6¯

𝜑v

𝑖 𝑗𝑘ℎ (𝜂1, 𝜂2, 𝜂3) = 𝜓 ′
𝑖ℎ (𝜂1)𝜓

′
𝑗ℎ (𝜂2)𝜓

′
𝑘ℎ (𝜂3), ˘7¯

where 𝜓𝑖ℎ is defined analogously to 𝜓𝑖 as

𝜓𝑖ℎ (𝜂1) =

𝑝
∑︁

𝑚=0

𝑎𝑖𝑚𝜑𝑚ℎ (𝜂1).

By construction, the lowest‚order edge, face, and interior shape functions in ˘5‚7¯

have similar interpolatory properties to their higher‚order counterparts. For example,

the integrated tangential component of 𝝋e

𝑖 𝑗𝑘ℎ
is 1 along edge E𝑖 𝑗𝑘 and vanishes along

all other edges of the GLL mesh just like the higher‚order shape function 𝝋e

𝑖 𝑗𝑘
.

3 Spectral Equivalence Results

In this section, we summarize the spectral equivalence of mass and stiffness matrices

of higher‚order edge, face and interior‚based elements with their assembled lowest‚

order counterparts on the GLL mesh. By spectral equivalence we mean that constants

in the estimates are independent of the polynomial degree. In three dimensions, the

constants for the equivalence are independent of element aspect ratios for mass

matrices, while stiffness matrices have a weak dependence for edge‚based elements

but no dependence for face‚based elements. More details, including proofs of the

results, can be found in [4]. We use the notational convention 𝑓 ≃ 𝑔 to mean that

there exist positive constants 𝑐 and 𝐶, independent of polynomial degree, such that

𝑐𝑔 ≤ 𝑓 ≤ 𝐶𝑔 for non‚negative scalars 𝑓 and 𝑔.

3.1 Mass Matrix Equivalence

We follow closely in [4] the development given on pages 16 and 17 of [1] to show

spectral equivalence of mass matrices. Based on these results, spectral equivalence

for stiffness matrices is shown to follow.

Lemma 1 Let 𝒖k

ℎ
denote the lowest-order interpolant of the higher-order vector

function 𝒖k
𝑝 , where k ∈ {e, f}. Similarly, let 𝑢v

ℎ
denote the lowest-order interpolant

of the higher-order scalar function 𝑢v
𝑝 . It holds that

∥𝒖e

ℎ∥𝐿2 (Ω̂) ≃ ∥𝒖e

𝑝 ∥𝐿2 (Ω̂) , ˘8¯

∥𝒖f

ℎ∥𝐿2 (Ω̂) ≃ ∥𝒖f

𝑝 ∥𝐿2 (Ω̂) , ˘9¯

∥𝑢v

ℎ∥𝐿2 (Ω̂) ≃ ∥𝑢v

𝑝 ∥𝐿2 (Ω̂) . ˘10¯
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3.2 Stiffness Matrix Equivalence

The stiffness matrix for a higher‚order edge‚based element is associated with the curl

semi‚norm of 𝒖e
𝑝 , which we denote by |∇ × 𝒖e

𝑝 |𝐿2 (Ω̂) . Similarly, the stiffness matrix

for a higher‚order face‚based element is associated with the divergence semi‚norm

of 𝒖f
𝑝 , which we denote by |∇ · 𝒖f

𝑝 |𝐿2 (Ω̂) .

Lemma 2 Let 𝒖k

ℎ
denote the lowest-order interpolant of 𝒖k

𝑝 , where k ∈ {e, f}. It

holds that

|∇ × 𝒖e

ℎ |𝐿2 (Ω̂) ≃ |∇ × 𝒖e

𝑝 |𝐿2 (Ω̂) , ˘11¯

|∇ · 𝒖f

ℎ |𝐿2 (Ω̂) ≃ |∇ · 𝒖f

𝑝 |𝐿2 (Ω̂) . ˘12¯

4 Numerical Results

Numerical support for the estimates in ˘8‚12¯ is provided in this section. For each of

these estimates, we consider a generalized eigenvalue problem of the form 𝐵𝑝𝑥 =

𝜆𝐵ℎ𝑥, where 𝐵𝑝 and 𝐵ℎ are the higher‚ and lowest‚order element mass or stiffness

matrices corresponding to the estimate. Notice that 𝐵𝑝 and 𝐵ℎ are singular for ˘11¯

and ˘12¯, with null spaces corresponding to gradients of node‚based finite element

functions and curls of edge‚based finite element functions, respectively. For these

two cases, we confirmed that the null spaces for 𝐵𝑝 and 𝐵ℎ are identical. Further, the

generalized eigenvalue problem was solved in a space orthogonal to the null space.

The smallest and largest eigenvalues corresponding to ˘8‚10¯ are shown in Figure 3

˘left¯ for elements in three dimensions. For completeness, results are also shown for

node‚based elements in the space 𝐻1. Notice in all cases that the smallest and largest

eigenvalues are bounded by those for node‚based elements. This provides numerical

support for ˘8‚10¯ based on node‚based spectral equivalence results in [1]. Similar

results are shown in Figure 3 ˘right¯ which correspond to ˘11‚12¯.
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Fig. 3: Generalized eigenvalues associated with mass ˘left¯ and stiffness ˘right¯ matrices in three

dimensions.
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