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1 Introduction

In this paper, we design and state some theoretical results for the exact and inex‚

act versions of Non‚overlapping Spectral Additive Schwarz Methods ˘NOSAS¯ in

the framework of Hybridizable Discontinuous Galerkin ˘HDG¯ discretizations and

multiscale discretizations for the following elliptic problemȷ

�(�)−1q + ∇� = 0 in Ω,

∇ · q = � in Ω,

� = 0 on �Ω,

˘1¯

where �(�) ∈ �∞ (Ω), �(�) ≥ �0 > 0, � ∈ �2 (Ω) and Ω is a polyhedral domain

in R� (� ≥ 2). The problem ˘1¯ has a unique solution (q, �) ∈ H(div,Ω) × �1
0
(Ω),

where H(div,Ω) := {q ∈ �2 (Ω)� , div q ∈ �2 (Ω)}.

We begin by describing the HDG discretization. Consider a partitioning of the

domain Ω into a conforming mesh Tℎ with elements � . We assume that the partition

Tℎ is shape regular and quasi‚uniform of size � (ℎ). A face of K is denoted by F and

let Eℎ be the set of all faces of Tℎ excluding the ones on �Ω. The HDG yields a scalar

approximation �ℎ to �, a vector approximation qℎ to q, and a scalar approximation

�ℎ to the trace of � on element faces, in the spaces of Qℎ = {p ∈ �2 (Tℎ)
� :

p|� ∈ P� (�),∀� ∈ Tℎ}, �ℎ = {� ∈ �2 (Tℎ) : � |� ∈ �� (�),∀� ∈ Tℎ} and

�ℎ = {� ∈ �2 (Eℎ) : � |� ∈ �� (�),∀� ∈ Eℎ}, respectively. Here P� (�) = �� (�)
�

and �� (�) is the space of polynomials of order at most � on K.
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To cope with the heterogeneous coeicients for each element, we deine the numerical

lux q̂ℎ which is a double‚valued vector function on mesh interfaces as followȷ

q̂ℎ · n = qℎ · n + �� �� (�ℎ − �ℎ) on Eℎ . ˘2¯

Here � := �� �� is called stabilizer, and �� is a constant which approximates �(�)

in element � , the nonnegative constant function �� deined on Eℎ can be either a

single or a double valued function on the element interfaces and �� above denotes

the �−value on the �� . The novelty of writing � = �� �� is that we will introduce

an equivalent norm of �(·, ·) independently of the coeicients. With the deinitions

of the numerical lux q̂ℎ, the HDG discretization of problem ˘1¯ can be written asȷ

ind (qℎ, �ℎ, �ℎ) ∈ Qℎ ×�ℎ × �ℎ, such that for all (p, �, �) ∈ Qℎ ×�ℎ × �ℎȷ

(�ℎ,∇ · p)Tℎ − (�(�)−1qℎ, p)Tℎ− < �ℎ, p · n >�Tℎ = 0, ˘3a¯

−(qℎ,∇�)Tℎ+ < q̂ℎ · n, � >�Tℎ = ( � , �)Tℎ , ˘3b¯

< q̂ℎ · n, � >�Tℎ\�Ω = 0. ˘3c¯

It is proved in [1] that the system ˘3¯ is uniquely solvable and can be reduced into

the matrix form of the following problemȷ ind �ℎ ∈ �ℎ such that

�(�ℎ, �) = �(�), ∀� ∈ �ℎ . ˘4¯

Here

�(�, �) =
︁

� ∈Tℎ

�� (�, �) =
︁

� ∈Tℎ

(�−1
� ��,��)� + <�� �� (�� − �), (�� − �)>��

and �(�) =
︁

� ∈Tℎ

�� (�) =
︁

� ∈Tℎ

( � ,��)� , where �� ∈ Qℎ and �� ∈ �ℎ are the

unique solution of the local element problem ˘3¯ with �ℎ = � and right hand side

� = 0. We note that once we get �ℎ, the solution of ˘3¯ can be completed by

computing qℎ and �ℎ in each element separately. Note that the bilinear form �(·, ·)

is positive deinite. Let us deine the norm | | | · | | |�,ℎ as followsȷ

| | |� | | |�,ℎ =
( ︁

� ∈Tℎ

��

ℎ
| |� − �� (�) | |

2
�2 (��)

)1/2

, ˘5¯

where �� (�) =
1

|�� |

∫
��
���. The next theorem shows the norm | | | · | | |�,ℎ is equiv‚

alent to the energy norm �(·, ·), for the proof see [1].

Theorem 1 For all � ∈ �ℎ, there are positive constants �1, �2, independent of h

and �� , such that

�1 | | |� | | |
2
�,ℎ ≤ �(�, �) ≤ �2� | | |� | | |

2
�,ℎ,

where � = 1 + max� ∈Tℎ �
∗
�
ℎ, and �∗

�
denotes the second largest value of �� on �� .

NOSAS were irst introduced for Continuous Galerkin ˘CG¯ discretizations in

[7, 8] as domain decomposition preconditioners designed to elliptic problems with
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highly heterogeneous coeicients. NOSAS are non‚overlapping Schwarz precondi‚

tioners where the subdomain interactions are via the coarse problem. The coarse

problem involves local and global interactions. The global component is introduced

to guarantee the robustness of the preconditioners for any coeicients �(�) and

number of subdomains. The proposed global problem is built from generalized

eigenfunctions on the subdomains. The size of the global problem is equal to the

total number of those eigenfunctions and is only related to the number of islands or

channels with high‚contrast coeicients that touch the boundary of the subdomains,

see [9]. Additionally, the inexact version of NOSAS has good parallelization proper‚

ties. The main goal of this paper is to design and show results of NOSAS for HDG

and multiscale discretizations. We note that other kinds of domain decomposition

preconditioners for HDG were introduced in [1, 6].

2 Domain decomposition setting

We decompose Ω into N non‚overlapping polygonal subdomains Ω� of size � (�).

The local spaces �� , (1 ≤ � ≤ �) are the restriction of �ℎ on Ω� and vanishing on

�Ω� and coarse space �0 is the restriction of �ℎ on the interface of all subdomain.

Then �ℎ admits the following direct sum decompositionȷ

�ℎ = �
�
0�0 ⊕ �

�
1�1 ⊕ · · · ⊕ ����� .

The local extrapolation operators �
�

� : �� → �ℎ (1 ≤ � ≤ �) is the extension by

zero outside of Ω� . The coarse extrapolation operators ��
0

: �0 → �ℎ is the core of

NOSAS which we will deine and state theoretical results in Section 3.

For 1 ≤ � ≤ � , denote matrix �� corresponding to the exact local bilinear formȷ

�� (�, �) = �
� �� � = �(��� �, �

�
� �) �, � ∈ �� ,

For � = 0, we irst consider matrix �0 corresponding to the exact bilinear formȷ

�0 (�, �) = �
� �0 � = �(��0 �, �

�
0 �) �, � ∈ �0.

We will also consider inexact bilinear form �̂0 (·, ·) later in this paper. Then the

non‚overlapping Schwarz preconditioner have the following formsȷ

�� = �−1�, �−1
= ��0 �

−1
0 �0 +

�︁

�=1

��� �
−1
� �� .

We note that if we had chosen ��
0

as the �‚discrete harmonic extension, then the

above preconditioner would become a direct solver and it would be too expensive

to solve the coarse problem. The core of NOSAS is to use a low‚rank �‚discrete

harmonic extension ��
0

, which is inexpensive to solve the coarse problem, also

guarantees good condition numbers.
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3 NOSAS with exact and inexact solver

The linear system ��ℎ = � corresponding to ˘4¯ can be assembled by the Neumann

matrix �(�) and � (�) in each subdomain Ω� . We decompose �(�) into blocked matrix

(�
(�)

ΓΓ
�
(�)

Γ�
; �

(�)

�Γ
�
(�)

� �
) and � (�) into (�

(�)

Γ
; �

(�)

�
), where subscript Γ, � denote the parts

associated with the interface of subdomain and interior of subdomain, respectively.

The Schur complement of � and �(�) denote as � and � (�) , respectively.

For the NOSAS exact solver, solve the generalized eigenvalue problem in each

subdomain (� = 1, · · · , �) separatelyȷ

� (�)�
(�)
�

:= (�
(�)

ΓΓ
− �

(�)

Γ�
(�

(�)

� �
)−1�

(�)

�Γ
)�

(�)
�

= Λ
(�)
�
�
(�)

ΓΓ
�
(�)
�

(1 ≤ � ≤ ��), ˘6¯

where �� is the degrees of freedom on Γ� := Γ ∩ �Ω� . Note that the eigenvalue lies

in [0, 1] for the above generalized eigenvalue problem. We ix a threshold � < 1 and

pick the smallest �� eigenvalues ≤ � and corresponding eigenvectors to construct

eigenfunctions space � (�) and harmonic extension � (�) as followȷ

� (�)
= [�

(�)

1
, �

(�)

2
, · · · , �

(�)

��
] and � (�)

= −(�
(�)

� �
)−1�

(�)

�Γ
� (�) .

We also deine � (�)
= diagonal(1 − Λ

(�)

1
, 1 − Λ

(�)

2
, · · · , 1 − Λ

(�)

��
) = � − Λ

(�) .

For �0 ∈ �0, we deine the global extension ��
0

: �0 → �ℎ asȷ

��0 �0=



�0

−

�︁

�=1

� (�)(� (�)��
(�)

� �
� (�) )−1� (�)��

(�)

�Γ
�
(�)

0



=



�0
�︁

�=1

� (�)(� (�)��
(�)

ΓΓ
� (�) )−1� (�)��

(�)

ΓΓ
�
(�)

0



,

where �
(�)

0
is the restriction of �0 on Γ� . Below �

(�)

0
denotes the restriction of �0 to

Γ� . Next ∀�0, �0 ∈ �0, we deine the exact coarse bilinear form asȷ

�0 (�0, �0)=�(�
�
0 �0, �

�
0 �0)=

�︁

�=1

�
(�)�

0

(
�
(�)

ΓΓ
−�

(�)

Γ�
� (�) (� (�)� �

(�)

� �
� (�) )−1� (�)��

(�)

�Γ

)
�
(�)

0

=

�︁

�=1

�
(�)

0
(�

(�)

0
, �

(�)

0
)=

�︁

�=1

�
(�)�

0

(
�
(�)

ΓΓ
−�

(�)

ΓΓ
� (�)� (�)(� (�)��

(�)

ΓΓ
� (�))−1� (�)��

(�)

ΓΓ

)
�
(�)

0
.

Above, �0 (·, ·) is the global bilinear form and �
(�)

0
(·, ·) is the bilinear form on Γ�

locally. The next lemma shows that �
(�)

0
(·, ·) is equivalent to Schur complement

� (�) in the span of � (�) , and an extension by zero for the orthogonal complement

subspace.

Lemma 1 ([9]) Let Π
(�)

�
�
(�)

0
be the projection of �

(�)

0
onto Span{� (�)}. That is,

Π
(�)

�
�
(�)

0
:=� (�)(� (�)��

(�)

ΓΓ
� (�))−1� (�)��

(�)

ΓΓ
�
(�)

0
. Then:
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�
(�)

0
(�

(�)

0
, �

(�)

0
) = (Π

(�)

�
�
(�)

0
)�� (�) (Π

(�)

�
�
(�)

0
) + (�

(�)

0
− Π

(�)

�
�
(�)

0
)� �

(�)

ΓΓ
(�

(�)

0
− Π

(�)

�
�
(�)

0
).

Lemma 2 ([9]) Let �0 ∈ �0 then

�0 (�0, �0) =

�︁

�=1

�
(�)

0
(�

(�)

0
, �

(�)

0
) ≤

�︁

�=1

1

�
�
(�)�

0
� (�)�

(�)

0
=

1

�
��0 ��0.

Using Lemma 1 and Lemma 2 and the classical Schwarz Theory [5] we haveȷ

Theorem 2 ([9]) For any � ∈ �ℎ, the following holds:

(2 +
3

�
)−1�(�, �) ≤ �(���, �) ≤ 2�(�, �) =⇒ � (��) ≤ 2(2 +

3

�
).

In the implementation of NOSAS, the complexity of the coarse problem involves

computing �−1
ΓΓ

and this complexity can be reduced if we replace �ΓΓ by its diagonal

�̂ΓΓ. This version is called the inexact NOSAS with �̃� as the preconditioner. The

generalized eigenvalue problem is now given byȷ

� (�) �̂
(�)
�

:= (�
(�)

ΓΓ
− �

(�)

Γ�
(�

(�)

� �
)−1�

(�)

�Γ
)�̂

(�)
�

= Λ̂
(�)
�
�̂
(�)

ΓΓ
�̂
(�)
�
.

And for �0, �0 ∈ �0 (Ω), we deine the inexact coarse solver asȷ

�̂0 (�0, �0) =

�︁

�=1

�
(�)�

0

(
�̂
(�)

ΓΓ
− �̂

(�)

ΓΓ
�̂ (�) �̂ (�) (�̂ (�)��̂

(�)

ΓΓ
�̂ (�) )−1�̂ (�)��̂

(�)

ΓΓ

)
�
(�)

0
,

where �̂ (�)are the generalized eigenvectors and �̂ (�)
=diagonal(1−Λ̂

(�)

1
, · · · , 1−Λ̂

(�)

��
).

Then, we obtain the following condition number estimateȷ

Theorem 3 ([9]) For any � ∈ �ℎ, the following holds:

(2 +
5

�
)−1�(�, �) ≤ �(�̃��, �) ≤ 3�(�, �) =⇒ � (�̃�) ≤ 3(2 +

5

�
).

4 Multiscale discretizations methods

The idea of multiscale methods [2, 3] is to use ��� ∈ �of to approximate the exact

solution �ℎ from �(�ℎ, �) = �(�),∀� ∈ �ℎ, where �of is the space of multiscale

basis functions. The following procedures show how we construct �of. The irst

step, a snapshot space �snapshots is constructed by the solutions of local problems. In

our NOSAS methods, we construct the snapshot space by �snapshots = H��0, where

H� is the a‚discrete harmonic extension. Notice that the dimension of �snapshots can

be extremely large. The next step is to construct �of from �snapshots which can be

used to generate an eicient and accurate approximation to the multiscale solution.

We choose oline space �of = ��
0
�0 where ��

0
is the global extension for NOSAS.
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We use the following outline of the Generalized Multiscale Finite Element Method

˘GMsFEM¯ to show coarse space of NOSAS is a multiscale discretization.

Oline stagesȷ

1. Mesh partitioning to obtain the subdomains.

2. Construct �snapshots that will be used to compute an oline space.

3. Construct a small dimensional oline space �of by performing dimension re‚

duction in the space of local snapshots. This is done by choosing a threshold �

and then compute multiscale basis functions.

4. Build the coarse and local matrices and factorize.

Online stagesȷ

1. Given � , solve the local problems inside each subdomain and update the residual

on the interfaces.

2. Solve a coarse problem. Add coarse and local solutions.

In the oline stages, we construct the �of = ��
0
�0 by NOSAS and also compute

the factorization of matrices �0 and �� (1 ≤ � ≤ �). In the online stage, we irst

solve � local problems in parallelȷ

���� = ��� = �� 1 ≤ � ≤ �.

Then, we using the local solutions to form and solve the following coarse problemȷ

�0�0 = �0 (� − �

�︁

�=1

��� ��).

Finally, ��� = �
�
0
�0 +

∑�
�=1 �

�
� �� is obtained.

We note that we have similar numerical results if using �0�0 = �0� as the coarse

problem. Additionally, we can also develop a multiscale technique to reduce the

dimension of the local problems, see [4].

Theorem 4 For NOSAS methods with ��� = �
�
0
�0 +

∑�
�=1 �

�
� �� , holds

�(�ℎ − ��� , �ℎ − ���) ≤ (1 − �) �(H��Γ,H
��Γ),

where H� is the �-discrete harmonic extension and �Γ the restriction of �ℎ on Γ.

The proof follows from Lemma 1. This bound is not sharp since we can see on

numerical experiments for heterogeneous coeicient that a small � can give small

relative errors.

5 Numerical Experiments

We irst show results of problem ˘1¯ for square domain with side length 1, � ≡ 1

and with highly heterogeneous coeicients in the following mesh ˘see Figure 1¯.
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We choose � = 0 for HDG spaces Qℎ, �ℎ, and �ℎ. We divide the square domain

into � × � congruent square subdomains, and we ix the number of stripes in each

subdomain. That means we always have two horizontal stripes and two vertical stripes

in each subdomain. The coeicients �(�) = 1 in the green stripes and �(�) = 106 in

the white regions. We do not consider �(�) = 106 in stripes and �(�) = 1 elsewhere.

Because it is robust without the generalized eigenfunctions. In Table 2 we show

numerical results for HDG with diferent values of � = �� �� in this mesh using

NOSAS with exact solvers. By choosing � =
1
4

ℎ
�

the NOSAS will not deteriorate

due to the small eigenvalues related to the jumps of coeicients, and the condition

number is � (�/ℎ). We also note that we see little diference in numerical results

when we use inexact diagonal solvers or exact solvers ˘We do not include the results

here.¯ In Table 1, we show that the size of the global part for the coarse problem of

NOSAS is proportional to the number of subdomains and does not depend on �/ℎ.

Fig. 1: Coeicients �(�) = 1 in

green stripes and �(�) = 10
6 in

white regions.

�=1/2 �=1/4 �=1/8 �=1/16

�/ℎ=8 12 84 420 1860

�/ℎ=16 12 84 420 1860

Table 1: The number of all eigenfunctions ��
for NOSAS with the exact solver. The size of the

global problem is �� × �� .

Finally, Table 3 shows results for multiscale in HDG. We use a similar mesh in

Figure 1. However, the number of stripes ixed in the whole domain. That means we

always have eight horizontal stripes and eight vertical stripes with width ℎ in the

whole domain. The coeicients �(�) = 1 in the stripes and �(�) = 10
6 elsewhere.

We ix ℎ and �= ��, and choose diferent � to show the relative error of �ℎ −��� and

the number of coarse basis functions per subdomain. Since we use the exact local

solver in each subdomain, we expect that the relative error of �ℎ − ��� will increase

if we decrease� because the error arises from approximating the exact local solution

in each subdomain.

References

1. Bernardo Cockburn, Olivier Dubois, Jay Gopalakrishnan, and Shuguang Tan. Multigrid for an

HDG method. IMA Journal of Numerical Analysis, 34˘4¯ȷ1386–1425, 2014.

2. Yalchin Efendiev, Juan Galvis, and Thomas Y Hou. Generalized multiscale inite element

methods ˘GMsFEM¯. Journal of Computational Physics, 251ȷ116–135, 2013.



228 Yi Yu, Maksymilian Dryja, and Marcus Sarkis

� = �� � =
1
2

� =
1
4

� =
1

8
� =

1

16

�
ℎ

= 8
14 17 17 19

˘10.2596¯ ˘10.2686¯ ˘10.2732¯ ˘10.2756¯

�
ℎ

= 16
20 25 26 29

˘20.8039¯ ˘20.8062¯ ˘20.8074¯ ˘20.8080¯

˘a¯ �=����with��= 1.

� =
2

�−1

�1
+�−1

�2

� =
1

2
� =

1

4
� =

1

8
� =

1

16

�
ℎ

= 8
14 17 18 18

˘10.2516¯ ˘10.2646¯ ˘10.2713¯ ˘10.2746¯

�
ℎ

= 16
20 24 27 27

˘20.7990¯ ˘20.8038¯ ˘20.8062¯ ˘20.8074¯

˘b¯� is the harmonic mean of �� in adjacent elements.

� =
��1

+��2

2
� =

1

2
� =

1

4
� =

1

8
� =

1

16

�
ℎ

= 8
14 17 17 17

˘10.2562¯ ˘10.2669¯ ˘10.2724¯ ˘10.2752¯

�
ℎ

= 16
19 25 26 26

˘20.8019¯ ˘20.8052¯ ˘20.8069¯ ˘20.8078¯

˘c¯� is the arithmetic mean of �� in adjacent elements.

Table 2: NOSAS with exact solver for HDG with diferent choices of �. The number of iterations

of the PCG required to reduced the residual by 10
−6 and the condition number ˘in parenthesis¯.

� =
1

2
� =

1

4
� =

1

8
� =

1

16

� =10
−5 7 5.25 3.06 1.89

˘3.21�−5¯ ˘ 7.17�−5¯ ˘1.55�−4¯ ˘7.54�−4¯

� = 1/2
24.25 18.56 11.26 5.05

˘3.21�−5¯ ˘7.15�−5¯ ˘1.54�−4¯ ˘7.50�−4¯

� = 3/4
63 45.75 24.93 11.48

˘4.10�−18¯ ˘1.40�−14¯ ˘1.14�−13¯ ˘8.03�−13¯

Table 3: NOSAS as a multiscale methods with ix ℎ = 1/64. The number of global basis functions

per subdomain and the relative energy error �ℎ − ��� with respect to �ℎ ˘in parenthesis¯.

3. Shubin Fu, Eric Chung, and Guanglian Li. Edge multiscale methods for elliptic problems with

heterogeneous coeicients. Journal of Computational Physics, 396ȷ228–242, 2019.

4. Alexandre L. Madureira and Marcus Sarkis. Hybrid localized spectral decomposition for

multiscale problems. SIAM J. Numer. Anal., 59˘2¯ȷ829–863, 2021.

5. Andrea Toselli and Olof Widlund. Domain decomposition methods-algorithms and theory,

volume 34. Springer Science & Business Media, 2006.

6. Xuemin Tu and Bin Wang. A BDDC algorithm for second‚order elliptic problems with hybridiz‚

able discontinuous Galerkin discretizations. Electronic Transactions on Numerical Analysis,

45ȷ354–370, 2016.

7. Yi Yu, Maksymilian Dryja, and Marcus Sarkis. Non‚overlapping spectral additive Schwarz

methods. In International Conference on Domain Decomposition Methods Proceedings of

DD25, pages 375–382. Springer, 2018.

8. Yi Yu, Maksymilian Dryja, and Marcus Sarkis. From additive average Schwarz methods to

non‚overlapping spectral additive Schwarz methods. SIAM Journal on Numerical Analysis,

2021.

9. Yi Yu, Maksymilian Dryja, and Marcus Sarkis. Non‚overlapping spectral additive schwarz

methods for HDG discretizations. In preparation, 2021.


