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1 Summary

We consider parametric families of partial diferential equations–PDEs where the

parameter � modiies only the ˘1,1¯ block of a saddle point matrix product of a

discretization below. The main goal is to develop an algorithm that removes some

of the dependence of iterative solvers on the parameter �. The algorithm we propose

requires only one matrix factorization which does not depend on �, therefore, allows

to reuse it for solving very fast a large number of discrete PDEs for diferent � and

forcing terms. The design of the proposed algorithm is motivated by previous works

on natural factor formulation of the stifness matrices and their stable numerical

solvers. As an application, in two dimensions, we consider an iterative preconditioned

solver based on the null space of Crouzeix‚Raviart discrete gradient represented as the

discrete curl of �1 conforming inite element functions. For the numerical examples,

we consider the case of random coeicient pressure equation where the permeability

is modeled by an stochastic process. We note that contrarily from recycling Krylov

subspace techniques, the proposed algorithm does not require ixed forcing terms.

2 Introduction

The general form of a saddle point system of linear equations we consider is

[
� (�)−1 �

�� 0

] [
�

�

]
=

[
�

�

]
, ˘1¯
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where the matrix � is symmetric positive deinite. This form is standard in the

formulation of mixed inite elements. What is not very well‚known, as pointed out

by Argyris and Brønlund [1], is that classical conforming and nonconforming inite

element methods – FEMs can also be written in the form ˘1¯ with � = 0; see Section

3 for the case of Crouzeix‚Raviart FEM and Section 4 for �1 conforming FEM.

We show that the stifness matrix, associated to the Crouzeix‚Raviart FEM element

discretization for the PDE ˘2¯ with isotropic coeicients �(�), has the the natural

factor of the form ��� = ��
��
� (�)���, where ��� is the discrete gradient ˘not

afected by the parameter �¯ and � (�) is a diagonal matrix with entries depending

of the integration of � in each element, hence, it is easy to update the natural factor if

� is modiied. Due to the superior numerical stability with respect to roundof errors

when operating with �� , � (�) and � rather than the assembled stifness matrix,

several works [5, 4, 3, 2] were dedicated in solving the saddle point problem ˘1¯ or

associated SVD and diagonalization. In Sections 5 and 6 we review some aspects of

these works. The methods start by representing � on the range of the matrix [� �]
where � is such that � = [� �] is a square invertible matrix; two common choices

of � are ��� = 0 or ���−1� = 0. These works generate very stable algorithms

for ill‚conditioned �, however, they do not remove the dependence on � of the

factorizations, hence, they do not it our goal of reusing the same factorization for

diferent values of �. In Section 7 we propose our method, we irst use discrete Hodge

Laplacian ideas to choose � = �� as the curl of �1 conforming piecewise linear

basis functions, hence ��
��
�� = 0. Then we consider the coupled system

(grad ��� + curl��1
, � (grad ��� + curl ��1

))�2 (Ω)

as a preconditioner for the uncoupled system

(grad ���, � grad ���)� + (curl��1
, � curl ��1

)�2 (Ω) .

3 Crouzeix-Raviart nonconforming finite elements

Consider the heterogeneous difusion equation

{
−�1 (�(�)�1�(�)) − �2 (�(�)�2�(�)) = � (�), � ∈ Ω,

�(�) = 0, � ∈ �Ω, ˘2¯

where Ω ⊆ R2 and � : Ω → R+, � : Ω → R are given.

In particular, in the target application �(�) is a random ield that describes the

permeability and allows modeling the lack of data and uncertainties of the problem

˘e.g., subsurface low¯. The forcing term � may also be a random ield. In general,

in many practical situations we must solve ˘2¯ for a large family of coeicients � and

forcing terms � . See Section 8.

Let us introduce a triangulation T ℎ of Ω. Discretize ˘2¯ by the Crouzeix‚Raviart

˘CR¯ non‚conforming inite element space. Deine the CR space �̃�� as the space of
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all piecewise linear functions with respect to T ℎ that are continuous at interior edges

midpoints. The degrees of freedom are located in the midpoint of the edges of T ℎ.

Let��� ⊆ �̃�� the subspace of functions in �̃�� with zero value at the midpoint of

boundary edges. The approximation ��� ∈ ��� of the solution of ˘2¯ is the solution

of
︁

� ∈Tℎ

∫

�

�(�) (�1��� (�)�1�(�) + �2��� (�)�2�(�))�� =
∫

Ω

� (�)�(�)��,

for all � ∈ ��� . The linear system of the �� approximation is given by

������ = ���, ˘3¯

where ��� =
[
���
��

]��

�,�=1
and ��� = [��]��

�=1
. Here, �� denotes the number of

interior edges of T ℎ, �� =
∫
Ω
� (�)���� (�)�� and

����� =

︁

� ∈Tℎ

∫

�

�(�)
(
�1�

��
� (�)�1�

��
� (�) + �2�

��
� (�)�2�

��
� (�)

)
��.

Let �� denote the barycenter of triangle� ∈ T ℎ. Piecewise gradients of functions

in ��� are piecewise constant vector functions and then

����� =

︁

� ∈Tℎ

�� |� |�1�� (�� )�1�� (�� ) +
︁

� ∈Tℎ

�� |� |�2�� (�� )�2�� (�� ) ˘4¯

where �� is the average value of �(�) in � . Therefore, we can write ˘see [1]¯

��� = �������� = ����,1�1���,1 + ����,2�2���,2

where ���,� =

[
�
��,�
�,�

]
��×��

=

[︁
|� |������ (�� )

]
��×��

, and �� denotes the

number of triangles in T ℎ and � = 1, 2. Furthermore, write,

�� = diag(�� )� ∈Tℎ , � = diag(�1, �2) and ��� =

[
���,1
���,2

]

2��×��

. ˘5¯

We can write the matrix formulalation as

����������� = ��� . ˘6¯

We see that problem ˘6¯ is the Schur complement of the saddle point problem

[
�−1 ���
��
��

0

] [
�

���

]
=

[
0

−���

]
. ˘7¯

4 Conforming finite elements �1

Let �̃� = �1 (T ℎ) = {� : Ω → R| � |� is linear for all � ∈ T ℎ} ∩ �0 (�). The

space �̃� has a base {��� }
�̃�

�=1
, where �̃� is the number of vertices and ��� is the
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function that takes value 1 at the � − �ℎ node and 0 at the other nodes. Also deine

�� = �̃� ∩ �1
0
(Ω) and �� the number of interior vertices.

The approximation �� of the solution of ˘2¯ isȷ ind �� ∈ �� such that

∫

Ω

�(�) (�1�� (�)�1�(�) + �2�� (�)�2�(�))�� =
∫

Ω

� (�)�(�)��,

for all � ∈ �� , with matrix form ���� = �� , where, �� = [��� � ]
��

�, �=1
and

�� = [��� ]
��

�=1
with ��� =

∫
�
� (�)��� (�)�� and ��� � =

∫
Ω
�(�)

(
�1�

�
� (�)�1�

�
� (�) +

�2�
�
� (�)�2�

�
� (�)

)
��. As before, we have ˘see [1]¯

�� = ��
�
��� = ��

�,1
�1��,1 + ���,2�2��,2

where ��,� =
[
�
�,�
�,�

]
��×��

=

[︁
|� |����� (�� )

]
��×��

and �� =

[
��,1
��,2

]

2��×��

.

We can write the matrix formulation as

�������� = �� , ˘8¯

and the corresponding saddle point problem is

[
�−1 ��
��
�

0

] [
�

��

]
=

[
0

−��

]
.

5 The null space method

A method for solving the saddle point problem ˘1¯ is called the null space method,

see [3]. We split ˘1¯ into two equations, �−1�+�� = � and��� = �. The null space

method consists in inding � that represents the null space of �� , ��� = 0, and

such that [� �] is a non‚singular square matrix. Therefore, we can change variables

to potentials � and � such that

� = [� �]
[
�

�

]
= �� + ��. ˘9¯

From ˘9¯ and ��� = 0 we have ��� = ���� and from ��� = � we have

� = ���� which gives � = (���)−1�, that can be pre‚computed. On the other

hand, from �−1� + �� = � and ˘9¯ we have that �−1�� + �−1�� + �� = � which

gives ���−1�� = ��� − ���−1�� and if we call � = ��� − ���−1��, we can

write the system

���−1�� = �. ˘10¯

This is the null space system and it is similar to the Schur complement of ˘1¯. See

˘8¯.
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6 Range null-space hybrid

Now we combine the irst equation of ˘1¯ and ˘9¯. We have �−1 (�� + ��) +�� = �

which gives �� + ��� = �� − �� and it allows as to write the system ˘[4, 5]¯

[�� �]
[
�

�

]
= �� − ��. ˘11¯

We note that the matrix [�� �] is a square matrix and this system is called range

space scaled system. The related matrix [� �−1�] is called null space scaled

matrix. This algorithm is called “hybrid” because uses both the range‚space and the

null‚space. See [4, 5].

Alternatively, we can write �� (�−1� + ��) = ��� which gives ���−1� = ���

and together with ˘9¯ gives the system

[
��

���−1

]
� =

[
�

���

]
. ˘12¯

Note that matrices ˘11¯ and ˘12¯ have a dependence on �, however, for numerical

stability purpose is very eicient since the matrix is based on discrete gradient times

� rather than the assembled second‚order derivatives with �.

7 An auxiliary problem and 2 × 2 systems

Recall that for a scalar �,
−−−→
curl � = (�2�,−�1�) and for a vector −→� = (�1, �2),

curl −→� = �1�2 − �2�1. Consider now the elliptic equation

{
−curl (�(�)−−−→curl �(�)) = �(�), � ∈ Ω,

�(�)curl �(�) · � = 0, � ∈ �Ω,

where � is the tangential vector on the boundary of Ω. Note that we have

curl (�(�)−−−→curl �(�)) = −�1 (�(�)�1�(�)) − �2 (�(�)�2�(�)) and �(�)−−−→curl �(�) · � =

−�2�(�)�1�(�) − �1�(�)�2�(�) = −�(�)∇�(�) · �, where � is the normal vector.

We approximate this problem by conforming elements. Let �̃� = �1 (T ℎ) = {� :

Ω → R such that � |� is linear for all � ∈ T ℎ} ∩ �0 (Ω). The approximation of the

problem above isȷ Find �̃� ∈ �̃� such that

∫

Ω

�(�)−−−→curl �̃� (�) ·
−−−→
curl �(�)�� =

∫

Ω

�(�)�(�)�� for all � ∈ �̃� ,

with additional requirement that
∫
Ω
�̃� (�)�� = 0. The matrix form is

�̃��̃� = �̃� ,
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where �̃� = [��� � ] �̃�×�̃�
and �̃� = [��� ] �̃�×1 with entries deined by ��� � =

∫
Ω
�(�)−−−→curl ��� (�) ·

−−−→
curl ��� (�)�� and ��� =

∫
Ω
�(�)��� (�)��. Here �̃� is the number

of vertices in T ℎ. As before, we have

�̃� = �̃����̃� = �̃��,2�1�̃�,2 + (−�̃�,1)��2 (−�̃�,1)

where �̃�,� =
[
�
�,�
�,�

]
��×�̃�

=

[︁
|� |����� (�� )

]
and �̃� =

[
�̃�,2

−�̃�,1

]

2��×�̃�

. Note

that (���, �̃�) satisfy the 2 × 2 system

[
��� 0

0 �̃�

] [
���
�̃�

]
=

[
���

�̃�

]
.

Denote

�̂ =

[
��� 0

0 �̃�

]
, �̂ =

[
���
�̃�

]
and �̂ =

[
���

�̃�

]
˘13¯

and introduce the matrices � = [��� �̃�] and

� = ���� =

[
��� ��

��
��̃�

�̃�
�
���� �̃�

]
. ˘14¯

The preconditioned system is given by

�−1 �̂�̂ = �−1�̂. ˘15¯

Fig. 1: Triangulation of � = [0, 1]2.

For any planar triangulation ˘with triangular elements¯ of a simply connected

domain we have 2�� = �� + �̃� − 1 ˘where �� is the number of interior edges and

�̃� is the number of vertices¯. See Figure 1 for the particular case of Ω = [0, 1]2 and

T ℎ constructed by dividing Ω into �2 squares and further dividing each square into

two triangles by adding and edge from the left‚bottom vertex to right‚top one. The

following lemma shows that no extra computation is required to obtain basis of null

spaces. Also, recall that ��� is the stifness matrix of the Laplace operator.
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Lemma 1. We have: (a) � = [��� �̃�] is a square matrix of size 2�� × 2�� . (b)

��
��
�̃� = 0. (c) Because of (b), � is non singular and �̃� spans the kernel of ��

��
.

Also ��� spans the kernel of �̃�
�

. (d) � = ���� is the product of three square

matrices. Therefore the solution of ��̂ = �̂ can be computed as �̂ = �−1�−1�−� �̂ .

Proofȷ We prove ˘b¯. Let � be an interior edge and � a vertex of T ℎ. Then

(�����̃�)�,� =
︁

� ∈Tℎ

�
��,1
�,�

�
�,2
�,�

−
︁

� ∈Tℎ

�
��,2
�,�

�
�,1
�,�

=

︁

� ∈Tℎ

|� |
[
�1�

��
� (�� )�2�

�
� (�� ) − �2�

��
� (�� )�1�

�
� (�� )

]

=

︁

� ∈Tℎ

∫

�

∇���� (�) · −−−→curl ��� (�) ��

=

︁

� ∈Tℎ

∫

��

���� (�) −−−→curl ��� (�) · � �� = 0.

We have the following condition number bound.

Theorem 1. Let �min ≤ �(�) ≤ �max and � = �max/�min the contrast. Then

cond (�−1�−1�−� �) ≤ 2� − 1.

Proofȷlet � = ��
��
������ + �̃�

�
�̃��̃� , using Lemma 1 ˘b¯, the result follows from

2|��
��
��
��
��̃��̃� | = 2|��

��
��
��

(� − � (�min))�̃��̃� | ≤ (1 − 1/�)�.

8 PCG for the block system and numerical experiments

We propose to solve �̂�̂ = �̂ with �̂ and �̂ deined in ˘13¯ with �̃� = 0 using

PCG with preconditioner � in ˘14¯. See ˘15¯. Recall that we use the construction in

Section 7. For the numerical test we compute an LU or QR factorizations for � and

apply �−1
= �−1�−1�−� . Note that �−1 depends on the coeicient � only through

the matrix � = � (�). See ˘5¯.

Condition Iterations Contrast

Mean 1.79 7.32 5.65

Variance 0.23 1.46 23.91

Table 1: Condition number, number of iteration and coeicient contrast in the CG method for

the Monte Carlo computation of �(�) for ˘2¯. The log‚coeicient � is given by a truncated KL

expansion with � = 15 terms with covariance function shown in ˘16¯. We use � = 40 elements in

each direction and � = 1000 realizations.
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Numerical tests for exponential covariance function. For problem ˘2¯ we consider

the coeicient � of the form �(�, �) = �c(�,�) , where the stochastic process � is

deined by the Karhunen‚Loève expansion with associated covariance function

c(�, � ′) = exp

(
−1

2
∥ � − � ′ ∥2

)
. ˘16¯

We approximate the expected value �(�) of the solution ˘2¯, through Monte Carlo

method with � realizations. In Table 1 we show the mean and variance of condi‚

tion number of the preconditioned system, the number of iterations and the contrast

max� �(�, �)/min� �(�, �) during the Monte Carlo solve. The small variance in the

condition number indicates low dependence of the method on the parameter �.

Matérn class of covariance functions. Now, the coeicient � is deined with the

Matérn class of covariance functions

c
Matern

(�, � ′) = 21−�

Γ(�)

(√
2�∥� − � ′∥

�

)�
��

(√
2�∥� − � ′∥

�

)
˘17¯

with ˘probabilistic¯ parameters �, � > 0 and �� is the modiied Bessel function of the

second kind. With this function in the KL expansion, we obtain the results in Table

2. In Table 2 we show the dependence of the condition number, number of iteration

and coeicient contrast. We note that the small variance of the number of iterations

and the value of the condition number indicate that the iteration do not depend much

on the parameter �(�, �). Additional experiments and results are object of current

research and will be presented elsewhere.

Condition Iterations Contrast

Mean 3.07 11.1 11.18

Variance 0.73 1.3 67.28

Table 2: Condition number, iterations numbers and contrast of coeicient � in the CG method in

the Monte Carlo computation of �(�) solution of ˘2¯. The log‚coeicient � given as a truncated KL

expansion with � = 30 terms constructed from the covariance function shown in ˘17¯ with � = 0.5

and � = 1. We use � = 20 elements in each direction and � = 1000 realizations.

Acknowledgements The authors are grateful to Professor Zlatko Drmac from Univesity of Zagreb

for introducing M. Sarkis to the natural factor formulation of the stifness matrices in inite element

computations during our discussions in Rio de Janeiro. J. Galvis thanks partial support from the

European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska‚

Curie grant agreement No 777778 ˘MATHROCKS¯.



Natural Factor Based Solvers 245

References

1. JH Argyris and OE Brønlund. The natural factor formulation of the stifness for the matrix

displacement method. Computer Methods in Applied Mechanics and Engineering, 5˘1¯ȷ97–

119, 1975.

2. Zlatko Drmač. Numerical methods for accurate computation of the eigenvalues of hermitian

matrices and the singular values of general matrices. SeMA Journal, 78˘1¯ȷ53–92, 2021.

3. Tyrone Rees and Jennifer Scott. A comparative study of null‚space factorizations for sparse

symmetric saddle point systems. Numerical Linear Algebra with Applications, 25˘1¯ȷe2103,

2018.

4. Stephen A Vavasis. Stable numerical algorithms for equilibrium systems. SIAM Journal on

Matrix Analysis and Applications, 15˘4¯ȷ1108–1131, 1994.

5. Stephen A Vavasis. Stable inite elements for problems with wild coeicients. SIAM journal on

numerical analysis, 33˘3¯ȷ890–916, 1996.




