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1 Introduction

Our main focus here is on cross points in non‚overlapping domain decomposition

methods, but our techniques can also be applied to cross points in overlapping

domain decomposition methods, which can be an issue as indicated already by P.L

Lions in his seminal paper [17], see Figure 1. The Additive Schwarz method [7] for

Fig. 1: Lions’ comment from the first international conference on domain decomposition methods

in Paris in 1987 on the difficulty of cross point situations for the parallel overlapping Schwarz

method ˘𝑚 is the number of subdomains, O𝑖 a subdomain, and 𝑛 the iteration index¯.
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example leaves the treatment of the divergent modes around cross points1 to Krylov

acceleration, which leads to the coloring constant in the condition number estimate.

A partition of unity can however be used to make the method convergent, as in

Restricted Additive Schwarz, see [10, 11] for more information.

For non‚overlapping domain decomposition methods, Dean and Glowinski pro‚

posed in 1993 [4] already a cross point treatment with specific Lagrange multipliers

for wave equations, and FETI‚DP treats cross points by imposing continuity there

[8, 20], see also [2] for the Helmholtz case. At the continuous level, the seminal

energy estimates of Lions in [18] and Després in [5] showed that Robin transmission

conditions do not pose any problem at cross points, but when discretized, standard

energy estimates do not work any more [14], and one needs to use methods like aux‚

iliary variables or complete communication to treat cross points [15], see also [19].

In an algebraic setting the optimized Robin parameter can also require a different

weight at cross points [13]. Less was known historically for higher order transmission

conditions containing also tangential derivatives in the presence of cross points, for

an early approach at the continuous level, see [22]2. More recently, cross points have

become a focus of attention in the domain decomposition communityȷ in [21] a new

approach at the cross points based on a corner treatment developed for absorbing

boundary conditions is proposed for higher order transmission conditions for lattice

type partitions; in [6] a new technique with quasi‚continuity relations is proposed

for polygonal domains; and in [3] cross points are treated with a non‚local problem

in the context of a multi‚trace formulation and non‚local transmission conditions, an

approach related to the algebraic non‚local approach in [12] which leads to a direct

solver without approximation, independent of the number of subdomains and type

of PDE solved.

Often however in the above references, several difficulties are mixedȷ the domain

decomposition method is for high frequency wave propagation instead of simple

Laplace problems, or non‚local transmission conditions instead of local ones are

used, which can make the cross point difficulties which exist already for Laplace

problems appear less clearly.

2 Optimized Schwarz with Ventcell Transmission Conditions

We consider an optimized Schwarz method ˘OSM¯ with Ventcell transmission con‚

ditions [9] for the Laplace problem and the decomposition of a square domain Ω

into four square subdomains Ωℓ , as shown in Figure 2,

Δ𝑢𝑛
ℓ
= 𝑓 in Ωℓ ,

(𝜕𝑛ℓ + 𝑝 − 𝑞𝜕2
𝜏)𝑢

𝑛
ℓ
= (𝜕𝑛ℓ + 𝑝 − 𝑞𝜕2

𝜏)𝑢
𝑛−1

𝑙
on Γℓ,𝑙 ,

˘1¯

1 For an illustration of these modes, see [10, Figure 3.2]

2 Note that the term ’additive’ in this reference does not refer to the additive Schwarz method!
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Fig. 2: Model problem domain and decomposition.

where 𝑛 is the iteration index, ℓ, 𝑙 ∈ {1, 2, 3, 4} are the subdomain indices, 𝜕𝑛ℓ is

the normal and 𝜕𝜏 the tangential derivative, and 𝑝, 𝑞 are the Ventcell transmission

parameters ˘or Robin if 𝑞 = 0¯ that can be optimized for best performance of the

OSM [9]. A standard second order five point finite difference discretization, omitting

the subdomain and iteration indices to avoid cluttering the notation, leads for generic

grid point indices 𝑖 in 𝑥 and 𝑗 in 𝑦 to

Δ𝑢 ≈
𝑢𝑖+1, 𝑗 + 𝑢𝑖−1, 𝑗 − 4𝑢𝑖, 𝑗 + 𝑢𝑖, 𝑗+1 + 𝑢𝑖, 𝑗−1

ℎ2
𝑢𝑖, 𝑗

𝑢𝑖+1, 𝑗𝑢𝑖−1, 𝑗

𝑢𝑖, 𝑗−1

𝑢𝑖, 𝑗+1

𝜕𝑛𝑢 ≈
𝑢𝑖+1, 𝑗 − 𝑢𝑖−1, 𝑗

2ℎ

𝑢𝑖+1, 𝑗𝑢𝑖−1, 𝑗

𝜕2
𝜏𝑢 ≈

𝑢𝑖, 𝑗+1 − 2𝑢𝑖, 𝑗 + 𝑢𝑖, 𝑗−1

ℎ2
𝑢𝑖, 𝑗

𝑢𝑖, 𝑗−1

𝑢𝑖, 𝑗+1

where we indicated the vertical interface in red. A problem is that for the normal

derivative approximation, one point lies outside of the domain, here 𝑢𝑖+1, 𝑗 on the

right. The value of this so called ghost point is however also involved in the interior

five point finite difference stencil when evaluated at the interface,

𝑢𝑖+1, 𝑗 + 𝑢𝑖−1, 𝑗 − 4𝑢𝑖, 𝑗 + 𝑢𝑖, 𝑗+1 + 𝑢𝑖, 𝑗−1

ℎ2
= 𝑓𝑖, 𝑗 𝑢𝑖, 𝑗

𝑢𝑖+1, 𝑗𝑢𝑖−1, 𝑗

𝑢𝑖, 𝑗−1

𝑢𝑖, 𝑗+1

𝑢𝑖+1, 𝑗 − 𝑢𝑖−1, 𝑗

2ℎ
= 𝑔 𝑗

𝑢𝑖+1, 𝑗𝑢𝑖−1, 𝑗
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Hence the ghost point value 𝑢𝑖+1, 𝑗 is determined by the approximation of the bound‚

ary condition 𝜕𝑛𝑢 = 𝑔 imposed in a centered fashion at the vertical red interface,

and the scheme is complete. The same approach can naturally be used for a centered

approximation of the more general Ventcell condition (𝜕𝑛 + 𝑝 + 𝑞𝜕2
𝜏)𝑢 = 𝑔.

Now at the ß0
𝑜 cross point in Figure 2, something special happens with this

discretizationȷ we have for example for subdomainΩ1 the interior five point Laplacian

at the cross point (𝑖, 𝑗) with the two Ventcell conditions

𝑢𝑖+1, 𝑗 + 𝑢𝑖−1, 𝑗 − 4𝑢𝑖, 𝑗 + 𝑢𝑖, 𝑗+1 + 𝑢𝑖, 𝑗−1

ℎ2
= 𝑓𝑖, 𝑗

𝑢𝑖+1, 𝑗−𝑢𝑖−1, 𝑗

2ℎ
+ 𝑝𝑢𝑖, 𝑗 − 𝑞

𝑢𝑖, 𝑗+1−2𝑢𝑖, 𝑗+𝑢𝑖, 𝑗−1

ℎ2
= 𝑔 𝑗

𝑢𝑖, 𝑗+1−𝑢𝑖, 𝑗−1

2ℎ
+ 𝑝𝑢𝑖, 𝑗 − 𝑞

𝑢𝑖+1, 𝑗−2𝑢𝑖, 𝑗+𝑢𝑖−1, 𝑗

ℎ2
= 𝑔̃𝑖

Ω1

𝑢𝑖, 𝑗

𝑢𝑖+1, 𝑗𝑢𝑖−1, 𝑗

𝑢𝑖, 𝑗−1

𝑢𝑖, 𝑗+1

and thus the scheme is complete for the subdomain solveȷ we have the two equations

from the two discretized boundary conditions for the two ghost points in color.

Once the subdomain solution is known, the ghost point values are known as well,

and one can easily extract the values to be transmitted to the neighboring subdomains,

again in the form of the centered discretized Ventcell conditions,

For Ω2ȷ
𝑢𝑖−1, 𝑗−𝑢𝑖+1, 𝑗

2ℎ
+ 𝑝𝑢𝑖, 𝑗 − 𝑞

𝑢𝑖, 𝑗+1−2𝑢𝑖, 𝑗+𝑢𝑖, 𝑗−1

ℎ2

For Ω4ȷ
𝑢𝑖, 𝑗−1−𝑢𝑖, 𝑗+1

2ℎ
+ 𝑝𝑢𝑖, 𝑗 − 𝑞

𝑢𝑖+1, 𝑗−2𝑢𝑖, 𝑗+𝑢𝑖−1, 𝑗

ℎ2 Ω1 Ω2

Ω4

𝑢𝑖, 𝑗

𝑢𝑖+1, 𝑗𝑢𝑖−1, 𝑗

𝑢𝑖, 𝑗−1

𝑢𝑖, 𝑗+1

The complete discrete OSM algorithm is thus for example for subdomain Ω1 given

by solving at iteration 𝑛 for 𝑖 = 1 . . . 𝐼, 𝑗 = 1 . . . 𝐽 for 𝑢𝑛
1,𝑖, 𝑗

the discrete equations

𝑢𝑛
1,𝑖+1, 𝑗

+ 𝑢𝑛
1,𝑖−1, 𝑗

− 4𝑢𝑛
1,𝑖, 𝑗

+ 𝑢𝑛
1,𝑖, 𝑗+1

+ 𝑢𝑛
1,𝑖, 𝑗−1

ℎ2
= 𝑓𝑖, 𝑗 ,

with the transmission condition for 𝑗 = 1 . . . 𝐽 on the right,

𝑢𝑛
1,𝑖+1, 𝑗

− 𝑢𝑛
1,𝑖−1, 𝑗

2ℎ
+ 𝑝𝑢𝑛

1,𝑖, 𝑗 − 𝑞
𝑢𝑛

1,𝑖, 𝑗+1
− 2𝑢𝑛

1,𝑖, 𝑗
+ 𝑢𝑛

1,𝑖, 𝑗−1

ℎ2
=

𝑢𝑛−1

2,𝑖+1, 𝑗
− 𝑢𝑛−1

2,𝑖−1, 𝑗

2ℎ
+ 𝑝𝑢𝑛−1

2,𝑖, 𝑗 − 𝑞
𝑢𝑛−1

2,𝑖, 𝑗+1
− 2𝑢𝑛−1

2,𝑖, 𝑗
+ 𝑢𝑛−1

2,𝑖, 𝑗−1

ℎ2
,

and the transmission condition for 𝑖 = 1 . . . 𝐼 at the top,

𝑢𝑛
1,𝑖, 𝑗+1

− 𝑢𝑛
1,𝑖, 𝑗−1

2ℎ
+ 𝑝𝑢𝑛

1,𝑖, 𝑗 − 𝑞
𝑢𝑛

1,𝑖+1, 𝑗
− 2𝑢𝑛

1,𝑖, 𝑗
+ 𝑢𝑛

1,𝑖−1, 𝑗

ℎ2
=
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𝑢𝑛−1

4,𝑖, 𝑗+1
− 𝑢𝑛−1

4,𝑖, 𝑗−1

2ℎ
+ 𝑝𝑢𝑛−1

4,𝑖, 𝑗 − 𝑞
𝑢𝑛−1

4,𝑖+1, 𝑗
− 2𝑢𝑛−1

4,𝑖, 𝑗
+ 𝑢𝑛−1

4,𝑖−1, 𝑗

ℎ2
,

and analogously for the other three subdomains. We thus have a very simple finite

difference scheme for the OSM with Ventcell transmission conditions, which takes

advantage of the rectangular structure of the Laplace operator at such rectangular

cross points.

3 Numerical Experiments

We show in Figure 3 the error in the first few iterates of the OSM with Ventcell trans‚

mission conditions in the left column, and for comparison in the right column the

case of optimized Robin transmission conditions, i.e. 𝑞 = 0. We used as mesh param‚

eter ℎ = 1/16, and solve directly the error equations, starting with a random initial

guess; for the importance of this, see [10, Section 5.1]. We observe that the OSM is

converging nicely also at the cross point, both for Robin and Ventcell transmission

conditions, and convergence is much faster for the Ventcell transmission conditions.

This appears even more clearly in the convergence plot shown in Figure 4. We see

that the OSM with optimized Ventcell transmission conditions converges almost

four times faster than with optimized Robin transmission conditions, at the same

cost per iteration, and Krylov acceleration with GMRES only leads to little further

improvement for the decay of the error in the iterations, especially for the Ventcell

transmission condition ˘as already seen in [10, Fig 5.1] for the two subdomain case¯.

4 Conclusions

We presented a simple finite difference discretization of optimized Schwarz methods

with Ventcell transmission conditions for the Laplace problem in the presence of

cross points in the decomposition. The discretization takes advantage of the rectan‚

gular structure of the Laplace operator and only works for rectangular cross points as

in Figure 2. For more general cross point situations, auxiliary variables or complete

communication can be used [15], but only in the simpler case of Robin conditions.

For a rectangular cross point, our technique can also be used in a variational

formulationȷ multiplying by a test function 𝑣 and integrating by parts on Ω1, we get

using the Ventcell condition

∫
Ω1

∇𝑢1∇𝑣 + 𝑝

∫
Γ12∪Γ14

𝑢1𝑣 − 𝑞

∫
Γ12∪Γ14

𝜕2

𝜏𝑢1𝑣,

and the last term gives when integrating by parts, and using the fact that the test

function 𝑣 vanishes on the outer boundary due to the Dirichlet condition there
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Fig. 3: Iterates of OSM with Ventcell transmission conditions on the left, and with Robin transmis‚

sion conditions on the right.
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Fig. 4: Comparison of the decay of the error in the OSM as function of the iteration index 𝑛 for

optimized Robin and Ventcell transmission conditions.

∫
Γ12∪Γ14

𝜕2

𝜏𝑢1𝑣 = 𝜕𝑦𝑢1 (
1

2
, 1

2
)𝑣( 1

2
, 1

2
) −

∫
Γ12

𝜕𝑦𝑢1𝜕𝑦𝑣 + 𝜕𝑥𝑢1 (
1

2
, 1

2
)𝑣( 1

2
, 1

2
) −

∫
Γ14

𝜕𝑥𝑢1𝜕𝑥𝑣.

Due to the rectangular nature of the cross point, the two remaining terms there are

well defined using the equation and the Ventcell condition at the cross point, as in

the finite difference discretization earlier,

𝜕2

𝑥𝑢1 + 𝜕2

𝑦𝑢1 = 𝑓 , (𝜕𝑥 + 𝑝 − 𝑞𝜕2

𝑦)𝑢1 = 𝑔, (𝜕𝑦 + 𝑝 − 𝑞𝜕2

𝑥)𝑢1 = 𝑔̃,

since solving the Ventcell conditions for the second order derivative terms and

inserting into the equation evaluated at the cross point leads to

𝜕𝑥𝑢1 (
1

2
, 1

2
) + 𝜕𝑦𝑢1 (

1

2
, 1

2
) = −2𝑝𝑢1 (

1

2
, 1

2
) + 𝑞 𝑓 ( 1

2
, 1

2
) + 𝑔( 1

2
, 1

2
) + 𝑔̃( 1

2
, 1

2
),

and the variational formulation is complete ˘for the time dependent case see [1], and

for well posedness in the Helmholtz case [16]¯. Analogously this can be done for

the other subdomains, and also the data for the next iteration can be extracted in this

way, which leads to a natural finite element discretization for Ventcell transmission

conditions at cross points, see also [21] for a similar approach.
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