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1 Introduction

ASPIN [3], RASPEN [5], and MSPIN [8] rely on various Schwarz methods to

precondition either Newton‚Raphson or inexact Newton. While a priori convergence

criteria have been found for the underlying Schwarz methods, so far none exist for

their combination with Newton‚Raphson.

Like in the linear case when combining a Krylov method and a Schwarz method,

there is an equivalence between preconditioning Newton‚Raphson with a Schwarz

method and accelerating that same Schwarz method with Newton‚Raphson [6]ȷ A

domain is first subdivided into subdomains, the problem solved on each subdo‚

main, and the resulting formulation iterated through Krylov and Newton‚Raphson,

respectively.

We examine cycling behaviour in alternating Schwarz in one dimension that

has been accelerated by applying Newton‚Raphson. We begin by presenting the

algorithm for alternating Schwarz and how it is accelerated by Newton‚Raphson.

Suppose we seek to solve the boundary value problem

𝐹 (𝑥, 𝑢, 𝑢′, 𝑢′′) = 0, 𝑥 ∈ [𝑎, 𝑏], 𝑢(𝑎) = 𝐴, 𝑢(𝑏) = 𝐵

for some function 𝐹 (𝑥, 𝑢, 𝑣, 𝑤). Then an iteration of alternating Schwarz with sub‚

domains (𝑎, 𝛽) and (𝛼, 𝑏), 𝛼 < 𝛽, is comprised of the following three stepsȷ

(1) 𝐹 (𝑥, 𝑢1, 𝑢
′
1, 𝑢

′′
1 ) = 0, 𝑢1 (𝑎) = 𝐴, 𝑢1 (𝛽) = 𝛾𝑛,

(2) 𝐹 (𝑥, 𝑢2, 𝑢
′
2, 𝑢

′′
2 ) = 0, 𝑢2 (𝛼) = 𝑢1 (𝛼), 𝑢2 (𝑏) = 𝐵,

(3) 𝛾𝑛+1 = 𝑢2 (𝛽) = 𝐺 (𝛾𝑛).
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The function 𝐺 (𝛾) thus represents one iteration of alternating Schwarz in sub‚

structured form. The process is repeated until convergence, ie.

(𝐺 ◦ 𝐺 ◦ · · · ◦ 𝐺) (𝛾) = 𝐺𝑛 (𝛾) ≈ 𝐺𝑛+1 (𝛾) = (𝐺 ◦ 𝐺𝑛) (𝛾).

This is naturally a fixed point iteration applied to the function 𝐺 (𝛾).

To accelerate the method one applies Newton‚Raphson to the function 𝑓 (𝛾) =

𝐺 (𝛾) − 𝛾, which has a root at the fixed point. If the fixed point is unique, this is the

only root of 𝑓 (𝛾). To apply Newton‚Raphson, one needs to know the value of 𝐺 ′(𝛾),

which may be found by adding two new steps, ˘1’¯ and ˘2’¯, to alternating Schwarzȷ

(1) 𝐹 (𝑥, 𝑢1, 𝑢
′
1, 𝑢

′′
1 ) = 0, 𝑢1 (𝑎) = 𝐴, 𝑢1 (𝛽) = 𝛾𝑛,

(1′) 𝐽 (𝑢1) · (𝑣1, 𝑣
′
1, 𝑣

′′
1 ) = 0, 𝑣1 (𝑎) = 0, 𝑣1 (𝛽) = 1,

(2) 𝐹 (𝑥, 𝑢2, 𝑢
′
2, 𝑢

′′
2 ) = 0, 𝑢2 (𝛼) = 𝑢1 (𝛼), 𝑢2 (𝑏) = 𝐵,

(2′) 𝐽 (𝑢2) · (𝑣2, 𝑣
′
2, 𝑣

′′
2 ) = 0, 𝑣2 (𝛼) = 1, 𝑣2 (𝑏) = 0,

(3) 𝛾𝑛+1 = 𝛾𝑛 −
𝑢2 (𝛽) − 𝛾𝑛

𝑣1 (𝛼)𝑣2 (𝛽) − 1
= 𝛾𝑛 −

𝐺 (𝛾𝑛) − 𝛾𝑛

𝐺 ′(𝛾𝑛) − 1
,

where 𝑣𝑖 (𝑥) = 𝜕𝑢𝑖 (𝑥)/𝜕𝛾 and 𝐽 (𝑢𝑖) is the Jacobian of 𝐹 (𝑥, 𝑢𝑖 , 𝑢
′
𝑖 , 𝑢

′′
𝑖 ).

2 Convergence of generic fixed point iterations and

Newton-Raphson

A generic fixed point iteration 𝑥𝑛+1 = 𝑔(𝑥𝑛) converges when |𝑔(𝑥𝑛) − 𝑥∗ | <

|𝑥𝑛 − 𝑥∗ |, where 𝑥∗ is the fixed point. This occurs when 𝑔(𝑥) lies between 𝑥 and

2𝑥∗ − 𝑥. The convergence or divergence of the fixed point iteration is monotonic if

sign(𝑔(𝑥) − 𝑥∗) = sign(𝑥 − 𝑥∗) and oscillatory otherwise. This creates four lines,

𝑦 = 𝑥, 𝑦 = 2𝑥∗ − 𝑥, 𝑦 = 𝑥∗ and 𝑥 = 𝑥∗, that divide the plane into octants. The four

pairs of opposite octants form four regions with distinct behaviour of the fixed point

iteration, see left of Figure 1 or Figure 5.7 from [7]ȷ

1, 𝑔(𝑥) < 𝑥 < 𝑥∗ or 𝑔(𝑥) > 𝑥 > 𝑥∗ȷ monotonic divergence;

2, 𝑥 < 𝑔(𝑥) < 𝑥∗ or 𝑥 > 𝑔(𝑥) > 𝑥∗ȷ monotonic convergence;

3, 𝑥 < 𝑥∗ < 𝑔(𝑥) < 2𝑥∗ − 𝑥 or 𝑥 > 𝑥∗ > 𝑔(𝑥) > 2𝑥∗ − 𝑥ȷ convergent oscillations;

4, 𝑥 < 𝑥∗ < 2𝑥∗ − 𝑥 < 𝑔(𝑥) or 𝑥 > 𝑥∗ > 2𝑥∗ − 𝑥 > 𝑔(𝑥)ȷ divergent oscillations.

If the function 𝑔(𝑥) intersects the line 𝑦 = 𝑥 at a point other than 𝑥∗ then there

are additional fixed points that the method can converge towards. If it intersects the

line 𝑦 = 2𝑥∗ − 𝑥 then a stable cycle can form. A fixed point iteration is therefore only

guaranteed to converge if 𝑔(𝑥) lies entirely between the lines 𝑦 = 𝑥 and 𝑦 = 2𝑥∗ − 𝑥,

ie. within regions 2 and 3.

Newton‚Raphson can make use of this analysis by considering it as a fixed point

iterationȷ
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Fig. 1: Left: Behaviour of the fixed point iteration 𝑥𝑛+1 = 𝑔 (𝑥𝑛) , where the origin is the fixed

point, 𝑔 (0) = 0. Right: Regions of Newton‚Raphson, 𝑥𝑛+1 = 𝑥𝑛 − 𝑓 (𝑥𝑛)/ 𝑓
′ (𝑥𝑛) , where the

origin is the root, 𝑓 (0) = 0. The tangent line to 𝑓 (𝑥) can be traced from (𝑥, 𝑓 (𝑥)) towards the

line 𝑦 = 0. Where it lands on this line indicates which fixed point iteration behaviour occurs.

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 (𝑥𝑛)

𝑓 ′(𝑥𝑛)
= 𝑔 𝑓 (𝑥𝑛).

The borders between the regions no longer depend solely on the value of 𝑓 (𝑥) but

also 𝑓 ′(𝑥). The right of Figure 1 shows which type of behaviour Newton‚Raphson

will have based on where the tangent line points.

As stated, if 𝑔 𝑓 (𝑥) intersects the line 𝑦 = 𝑥 there are additional fixed points, and

if it intersects 𝑦 = 2𝑥∗ − 𝑥 there may be stable cycles. For guaranteed convergence

𝑔 𝑓 (𝑥) must lie between these lines. Intersections of 𝑔 𝑓 (𝑥) with 𝑦 = 𝑥 occur only

if 𝑓 (𝑥) = 0 and 𝑓 (𝑥) has additional roots or 𝑓 ′(𝑥) = ∞. Both circumstances are

assumed not to occur. Intersections of 𝑔 𝑓 (𝑥) with 𝑦 = 2𝑥∗ − 𝑥 may be represented

as a first order ODEȷ

𝑓 ′𝐶 (𝑥) = −
𝑓𝐶 (𝑥)

2(𝑥∗ − 𝑥)
, 𝑓𝐶 (𝑥

∗) = 0.

The solution to this ODE is 𝑓𝐶 (𝑥) = 𝐶
√︁

|𝑥 − 𝑥∗ | where 𝐶 ∈ R. If a function 𝑓 (𝑥)

with root 𝑥∗ is tangential to 𝑓𝐶 (𝑥) for any value of 𝐶 then 𝑔 𝑓 (𝑥) intersects the line

𝑦 = 2𝑥∗ − 𝑥. The left of Figure 2 shows the functions 𝑓𝐶 (𝑥).

A function 𝑓 (𝑥) that is monotonic with respect to this geometry has guaranteed

convergence under Newton‚Raphson. That is, if 𝑓 (𝑥) is nowhere tangential to 𝑓𝐶 (𝑥)

in a given domain containing 𝑥∗ for any value of 𝐶 then 𝑔 𝑓 (𝑥) converges to the root

for any initial guess in that domain. Since 𝑓 ′
𝐶
(𝑥∗) = ∞ and 𝑓 (𝑥∗) = 0 there is always

a region around the root 𝑥∗ where 𝑓 (𝑥) crosses all of these lines monotonically. This

conforms with the theory on Newton‚Raphson.

The corresponding geometry for a fixed point function accelerated by Newton‚

Raphson is skewed such that the line 𝑦 = 0 is aligned to 𝑦 = 𝑥, as seen in the right

of Figure 2. The lines of this figure are the functions 𝑔𝐶 (𝑥) = 𝑓𝐶 (𝑥) + 𝑥. A function

𝑔(𝑥) must be monotonic in this geometry or Newton‚Raphson applied to 𝑔(𝑥) − 𝑥

may exhibit cycling behaviour.
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Fig. 2: Left: Solutions 𝑓𝐶 (𝑥) such that 𝑔 𝑓 (𝑥) intersects 𝑦 = 2𝑥∗ − 𝑥 for all 𝑥. Right: Functions

𝑔𝐶 (𝑥) = 𝑓𝐶 (𝑥) + 𝑥 such that 𝑔 𝑓 (𝑥) for 𝑓 (𝑥) = 𝑔𝐶 (𝑥) − 𝑥 intersects 𝑦 = 2𝑥∗ − 𝑥 for all 𝑥.

Table 1: Conditions for convergent behaviour of Newton‚Raphson applied to 𝑔 (𝑥) − 𝑥.

𝑔 (𝑥) lies in Necessary condition Sufficient condition

1 𝑔′ (𝑥) > 1

2 𝑔′ (𝑥) < 1 𝑔′ (𝑥) < 1/2

3 𝑔′ (𝑥) < 1/2 𝑔′ (𝑥) < 0

4 𝑔′ (𝑥) < 0

If it is known in which fixed point region of the left of Figure 1 𝑔(𝑥) lies then one

can find necessary and, in some cases, sufficient conditions for Newton‚Raphson to

have convergent behaviour based on the slopes of the lines 𝑔𝐶 (𝑥). For example, in

region 2 the maximum of 𝑔′
𝐶
(𝑥) is 1. If 𝑔(𝑥) lies in region 2 then its slope must

therefore be less than 1 everywhere or there will be a point where 𝑔(𝑥) runs tangent

to 𝑔𝐶 (𝑥) for some𝐶. Moreover, the minimum of 𝑔′
𝐶
(𝑥) is 1/2. If 𝑔(𝑥) has a slope less

than 1/2 then it cannot run tangent to 𝑔𝐶 (𝑥) for any 𝐶. The list of these conditions

is summarized in Table 1.

3 The fixed point iteration of alternating Schwarz

We now seek to apply this theory to alternating Schwarz. As stated earlier, we

consider alternating Schwarz as a function 𝐺 (𝛾), taking as input the value of 𝑢1 (𝛽)

and as output the value of 𝑢2 (𝛽). Under reasonable conditions we can prove a number

of useful properties of 𝐺 (𝛾) without prior knowledge of the fixed point 𝛾∗.

Theorem 1 If the problem 𝐹 (𝑥, 𝑢, 𝑢′, 𝑢′′) = 0 for 𝑥 ∈ Ω, 𝑢(𝑥) = ℎ(𝑥) for 𝑥 ∈ 𝜕Ω

has a unique solution on Ω = [𝑎, 𝛼] and Ω = [𝛽, 𝑏] and the continuations of these

solutions are also unique, then the function 𝐺 (𝛾) is strictly monotonic.

Proof It suffices to show that 𝐺 (𝛾1) = 𝐺 (𝛾2) implies 𝛾1 = 𝛾2. Let 𝑢
𝑗

1
solve the

problem on [𝑎, 𝛽] with 𝑢
𝑗

1
(𝛽) = 𝛾 𝑗 . Likewise, 𝑢

𝑗

2
solves the problem on [𝛼, 𝑏]

with 𝑢
𝑗

2
(𝛼) = 𝑢

𝑗

1
(𝛼). Suppose 𝑢1

2
(𝛽) = 𝑢2

2
(𝛽). Then both 𝑢1

2
and 𝑢2

2
solve the same

problem on [𝛽, 𝑏]. By assumption, this must mean 𝑢1
2
= 𝑢2

2
and 𝑢1

1
(𝛼) = 𝑢2

1
(𝛼). By
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a similar argument, this implies 𝑢1
1

and 𝑢2
1

solve the same problem on [𝑎, 𝛼]. Again

by assumption 𝑢1
1
= 𝑢2

1
and 𝛾1 = 𝛾2. □

We can even prove that 𝐺 (𝛾) is restricted to region 2 with additional properties.

As an example, we reprove a result from Lui [9].

Theorem 2 (Theorem 2 from [9])

Consider the equation 𝑢′′(𝑥) + 𝑓 (𝑥, 𝑢, 𝑢′) = 0 for 𝑥 ∈ (𝑎, 𝑏), 𝑢(𝑎) = 𝑢(𝑏) = 0

under the assumptions that

• 𝑓 ∈ 𝐶1 ( [𝑎, 𝑏] × R × R) ,

•
𝜕 𝑓 (𝑥,𝑣,𝑣′)

𝜕𝑢
≤ 0 for all 𝑥 ∈ [𝑎, 𝑏] and 𝑣 ∈ 𝐻1

0
( [𝑎, 𝑏]) ,

• | 𝑓 (𝑥, 𝑣, 𝑣′) | ≤ 𝐶 (1 + |𝑣′ |𝜂) for all 𝑥 ∈ [𝑎, 𝑏] and 𝑣 ∈ 𝐻1
0
( [𝑎, 𝑏]) and some

𝐶 > 0, 0 < 𝜂 < 1 .

The problem is solved using alternating Schwarz with two subdomains and Dirichlet

transmission conditions. Then 𝐺 (𝛾) for this problem lies within region 2.

Proof It suffices to prove that the problem is well posed and 0 < 𝐺 ′(𝛾) < 1 for

all 𝛾 ∈ R. The well‚posedness of the problem is guaranteed by Proposition 2 from

[9]. As Lui points out, this also means the problem is well posed on any subdomain.

Using Theorem 1 this gives monotonicity of 𝐺 (𝛾). Moreover, if 𝑢(𝑥) = 0 for any

𝑥 ∈ (𝑎, 𝑏) then the problem would be well posed on the domains [𝑎, 𝑥] and [𝑥, 𝑏].

As such, 𝑢(𝑥) has the same sign as 𝛾 and 𝐺 ′(𝛾) > 0.

Consider the problem in 𝑔1ȷ

𝑔′′1 (𝑥) +
𝜕 𝑓

𝜕𝑢
𝑔1 +

𝜕 𝑓

𝜕𝑢′
𝑔′1 = 0, 𝑥 ∈ [𝑎, 𝛽], 𝑔1 (𝑎) = 0, 𝑔1 (𝛽) = 1.

From the second assumption on 𝑓 the operator on 𝑔1 satisfies a maximum principle

˘see, for example, [9]¯. Therefore, 𝑔1 (𝑥) < 1 for all 𝑥 ∈ (𝑎, 𝛽). By the same

reasoning, 𝑔2 (𝑥) < 𝑔1 (𝛼) < 1 for all 𝑥 ∈ (𝛼, 𝑏) and 𝐺 ′(𝛾) < 1. Incidentally, the

same maximum principle applies for the operator on −𝑔1 and −𝑔2, and so 𝐺 ′(𝛾) > 0

as we had before. □

This provides guaranteed convergence of alternating Schwarz. However, it does

not guarantee the convergence when one accelerates it through Newton‚Raphson.

Using Table 1 we know that such convergence is assured if 𝐺 ′(𝛾) < 1/2 for all 𝛾,

but this is not true in all cases and cannot be determined a priori.

Take as an example the following second order nonlinear differential equation

𝑢′′(𝑥) − sin(𝑎𝑢(𝑥)) = 0, 𝑥 ∈ (−1, 1), ˘1¯

with homogeneous Dirichlet boundary conditions. The problem is well posed and

admits only the trivial solution 𝑢(𝑥) = 0. It is easy to see that this equation satisfies

the conditions of Theorem 2. Therefore, the alternating Schwarz fixed point iteration,

𝐺 (𝛾), lies within region 2 and is guaranteed to converge to the fixed point. Sadly, its

Newton‚Raphson acceleration will not do so for all initial conditions. Take 𝑎 = 3.6
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Fig. 3: Left: Results of Newton‚Raphson accelerated alternating Schwarz as a function of initial

condition in solving equation ˘1¯. The value of 𝑎 is 3.6 and the subdomains are Ω1 = (−1, 0.2) and

Ω2 = (−0.2, 1) . Middle: 𝐺 (𝛾) and its Newton‚Raphson acceleration. Right: 𝐺 (𝛾) plotted with

the geometry of the right of Figure 2.

with an overlap of 0.4 and symmetric regions. The results of the Newton‚Raphson

acceleration are found in Figure 3 ˘left¯. While for most initial values of 𝛾 the

method converges to the correct solution 𝑢 = 0 there are two small intervals where

the method enters a stable cycle.

The function 𝐺 (𝛾) can be plotted numerically, along with its Newton‚Raphson

acceleration, see Figure 3 ˘middle¯, which shows that 𝐺 (𝛾) does indeed lie within

region 2 as predicted by Theorem 2. However, 𝐺 (𝛾) runs tangential to one of the

lines 𝑔𝐶 (𝛾), see Figure 3 ˘right¯, and so its Newton‚Raphson acceleration crosses

into region 4. Due to symmetry, there is a 2‚cycle at each crossing. Depending on

the slope of the acceleration as it crosses into region 4 this cycle may be stable.

Where stable cycles exist so too must there be period doubling bifurcation. Chang‚

ing the value of the parameter 𝑎 we find that the 2‚cycle found in Figure 3 ˘left¯

becomes two 2‚cycles, then two 4‚cycles, and so on until it devolves into chaos, see

Fig. 4: Period doubling bifurcation in the example caused by Newton‚Raphson acceleration.
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Fig. 5: Left: value of 𝑎 at which bifurcation starts. Right: width of basin of cycling in 𝛾 and 𝑎.

Figure 4. With enough chaos the cycles are no longer stable and the acceleration

exits into a convergent region.

While a change in the parameter 𝑎 is the most obvious way to alter the dynamics,

one can also change the size of the overlap. This has a direct effect on the basin

of cycling in the spaces of both initial condition 𝛾 and the parameter 𝑎. Figure 5

˘left¯ shows a nonlinear relationship between the first value of 𝑎 at which cycling is

observed and the size of the overlap. As the overlap grows the parameter 𝑎 must be

larger and larger for cycling to occur. Figure 5 ˘right¯ indicates that the interval of

initial conditions that result in cycling shrinks as the overlap grows. Meanwhile, the

length of the bifurcation diagram increases, meaning there are more values of 𝑎 with

stable cycling.

4 Accelerated alternating Schwarz with guaranteed convergence

Given Theorem 2 and the conditions of Table 1 one can construct a series of tests to

see if the Newton‚Raphson acceleration is suitable for a given iteration. We present

one further useful trick to strengthen convergence, a correction to Newton‚Raphson

due to Davidenko and Branin [1, 2, 4]. We replace step ˘3¯ in the algorithm with

(3∗) 𝛾̃𝑛 = 𝛾𝑛 −
𝐺 (𝛾𝑛) − 𝛾𝑛

|𝐺 ′(𝛾𝑛) − 1|
.

For 𝐺 (𝛾) within region 2 the Newton‚Raphson acceleration will now always march

in the direction of the fixed point. It may still overshoot and cycle but the direction

will always be correct.

For a problem satisfying the conditions of Theorem 2 or similar that guarantees

that 𝐺 (𝛾) lies in region 2 the algorithm proceeds as followsȷ

1. Select some 𝛾0 ∈ R. Set 𝑛 = 0.

2. Calculate 𝐺 (𝛾𝑛) and 𝐺 ′(𝛾𝑛). If 𝐺 ′(𝛾𝑛) = 1 then set 𝛾𝑛+1 = 𝐺 (𝛾𝑛), increment

𝑛 and return to step 2. If this is not true, proceed to step 3.
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3. Perform step ˘3*¯, which is the Newton‚Raphson acceleration using the

Davidenko‚Branin trick. If |𝐺 ′(𝛾𝑛) − 1| ≥ 1/2 then set 𝛾𝑛+1 = 𝛾̃𝑛, increment 𝑛

and return to step 2. If this is not true, calculate 𝛾̂𝑛, the average of 𝛾𝑛 and 𝛾̃𝑛,

and proceed to step 4.

4. Calculate 𝐺 (𝛾̂𝑛). If 𝐺 (𝛾̂𝑛) − 𝛾̂𝑛 has the same sign as 𝐺 (𝛾𝑛) − 𝛾𝑛 then set

𝛾𝑛+1 = 𝛾̃𝑛, increment 𝑛 and return to step 2. If this is not true, set 𝛾𝑛+1 = 𝐺 (𝛾𝑛),

increment 𝑛 and return to step 2.

Each of steps 2, 3 and 4 contain a test of whether Newton‚Raphson will converge.

In step 2, Newton‚Raphson will not converge if the derivative of 𝐺 (𝛾) − 1 is zero. In

step 3, convergence is guaranteed if 𝐺 ′(𝛾) ≤ 1/2 based on Table 1. The Davidenko‚

Branin trick strengthens this and also guarantees convergence if 𝐺 ′(𝛾) ≥ 3/2.

In step 4 we test the point halfway between the starting value 𝛾𝑛 and the Newton‚

Raphson acceleration 𝛾̃𝑛, denoted 𝛾̂𝑛. Since 𝐺 (𝛾) is in region 2 if 𝐺 (𝛾) > 𝛾 then

𝛾 < 𝛾∗ and vice versa. Therefore, we can easily determine whether 𝛾̂𝑛 is on the same

side of the fixed point as 𝛾𝑛. If it is, then the fixed point 𝛾∗ lies on the same side

of 𝛾̂𝑛 as 𝛾̃𝑛, and so 𝛾̃𝑛 is closer to 𝛾∗ than 𝛾𝑛. If it is not, then 𝛾∗ lies between 𝛾𝑛
and 𝛾̂𝑛. Since 𝛾̃𝑛 is on the other side of 𝛾̂𝑛 it is further from 𝛾∗ than 𝛾𝑛 and we have

divergence. In such a case, the fixed point iteration should be used.

Note that while 𝐺 (𝛾) represents alternating Schwarz in this context, it may be

exchanged for any fixed point iteration, in particular any Schwarz method. All that is

required for the algorithm to function is for 𝐺 (𝛾) to be within region 2. For Schwarz

methods, this would necessitate a theorem similar to Theorem 2.
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