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1 Discontinuous Interpolation for a Model Problem

Interpolation operators are very important for the construction of a multigrid method.

Since multigrid’s inception by Fedorenko [7], interpolation was identified as key,

deserving an entire appendix in Brandt’s seminal work [5]ȷ ’[...] even a small and

smooth residual function may produce large high-frequency residuals, and significant

amount of computational work will be required to smooth them out.’

For discontinuous Galerkin ˘DG¯ discretizations [2], the problem of choosing an

interpolation becomes particularly interesting. A good interpolation operator will

not produce undesirable high frequency components in the residual. In an inher‚

ited ˘Galerkin¯ coarse operator, the choice of restriction and prolongation operators

defines the coarse space itself, and then convergence of multigrid algorithms with

classical restriction and interpolation operators for DG discretizations of elliptic

problems cannot be independent of the number of levels [1]. In 1D, the reason for

this was identified in [9, §4.3]¯ȷ the DG penalization is doubled at each coarsening,

causing the coarse problem to become successively stiffer.

A simple classical interpolation operator is linear interpolationȷ in 1D one takes

the average from two adjacent points in the coarser grid and sets the two DG degrees

of freedom at the midpoint belonging to the fine mesh to this same value, therefore

imposing continuity at that point and discontinuity at coarse grid points. But why

should continuity be imposed on the DG interpolated solution on the fine mesh? Can

solver performance be improved with a discontinuous interpolation operator?

Convergence of two‚level methods for DG discretizations has been analyzed for

continuous interpolation operators using classical analysis, see [8, 3] and references

therein, and also Fourier analysis [10, 11, 12, 9]. We use Fourier analysis here
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Fig. 1: Mesh for our DG discretization of the Poisson equation.

to investigate the influence of a discontinuous interpolation operator on the two

level solver performance. We consider a symmetric interior penalty discontinuous

Galerkin ˘SIPG¯ finite element discretization of the Poisson equation as in [2],

𝑎ℎ (𝑢, 𝑣) ≔
∫
T

∇𝑢 · ∇𝑣𝑑𝑥 +
∫
F

(
[[𝑢]]

{{
𝜕𝑣

𝜕𝑛

}}
+
{{
𝜕𝑢

𝜕𝑛

}}
[[𝑣]]

)
𝑑𝑠 +

∫
F

𝛿 [[𝑢]] [[𝑣]] 𝑑𝑠, ˘1¯

on a 1D mesh as shown in Fig. 1. The resulting linear system is ˘for details see [9]¯
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≕ 𝒇 , ˘2¯

where the top and bottom blocks will be determined by the boundary condi‚

tions, ℎ is the mesh size, 𝛿0 ∈ R is the DG penalization parameter, 𝒇 =

(. . . , 𝑓 +
𝑗−1

, 𝑓 −𝑗 , 𝑓
+
𝑗 , 𝑓

−
𝑗+1

, . . . ) ∈ R2𝐽 is the source vector, analogous to the solution 𝒖.

The two‚level preconditioner 𝑀−1 we study consists of a cell‚wise nonoverlapping

Schwarz ˘a cell block‚Jacobi¯ smoother 𝐷−1
𝑐 , since the discretization leads to a

block matrix ˘see [8, 6]¯1, and a new discontinuous interpolation operator 𝑃 with

discontinuity parameter 𝑐, i.e.

𝐷−1

𝑐 𝒖 ≔ ℎ2
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where 𝑐 =
1

2
gives a continuous interpolation on the nodes not present in the coarse

mesh, and discontinuous elsewhere. The restriction operator is 𝑅 ≔ 1

2
𝑃⊺, and we use

𝐴0 := 𝑅𝐴𝑃. The action of our two‚level preconditioner 𝑀−1, with one presmoothing

step and a relaxation parameter 𝛼, acting on a residual 𝒈, is given by

1 In 1D this is simply a Jacobi smoother, which is not the case in higher dimensions.
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1. compute 𝒙 := 𝛼𝐷−1
𝑐 𝒈,

2. compute 𝒚 := 𝒙 + 𝑃𝐴−1

0
𝑅(𝒈 − 𝐴𝒙),

3. obtain 𝑀−1𝒈 = 𝒚.

2 Study of optimal parameters by Local Fourier Analysis

In [9] we described in detail, for classical interpolation, how Local Fourier Analysis

˘LFA¯ can be used to block diagonalize all the matrices involved in the definition

of 𝑀−1 by using unitary transformations. The same approach still works with our

new discontinuous interpolation operator, and we thus use the same definitions and

notation for the block‚diagonalization matrices 𝑄, 𝑄𝑙 , 𝑄𝑟 , 𝑄0, 𝑄𝑙0 and 𝑄𝑟 0 from

[9], working directly with matrices instead of stencils in order to make the important

LFA more accessible to our linear algebra community. We extract a submatrix 𝐴

containing the degrees of freedom of two adjacent cells from the SIPG operator

defined in ˘2¯,
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which we can block‚diagonalize, 𝐴 = 𝑄𝑙𝐴𝑄𝑟 , to obtain

𝐴 =
1
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The same mechanism can be applied to the smoother, 𝐷𝑐 = 𝑄𝑙𝐷𝑐𝑄𝑟 =
𝛿0

ℎ2
𝐼, where

𝐼 is the 4 × 4 identity matrix, and also to the restriction and prolongation operators,

𝑅 =
1

2
𝑄𝑙0𝑅𝑄𝑟 with

𝑅 =
1
√

2
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and 𝑃 = 2𝑅⊺, 𝑃 = 𝑄𝑙𝑃𝑄𝑟 0 = 2𝑅∗. Finally, for the coarse operator, we obtain

𝑄∗
0
𝐴0𝑄0 = 𝑄∗

0
𝑅𝐴𝑃𝑄0 = 𝑄∗

0
𝑅𝑄𝑄∗𝐴𝑄𝑄∗𝑃𝑄0, and thus 𝐴0 = 𝑅𝐴𝑃 with
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𝐴0=
1

𝐻2

©­­«
1
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(
𝑐 (4(𝑐 − 1)𝛿0 − 2𝑐 + 3) + (𝑐 − 1) cos

(
4𝜋𝑘
𝐽

)
+ 2𝛿0 − 1

)
1

2
(−1) 𝑗

(
−(2𝑐 − 1) (𝑐 (2𝛿0 − 1) − 𝛿0 + 1) 𝑒 4𝑖 𝜋𝑘

𝐽 − 𝑐 − 𝛿0 + 1

)
1

2
(−1) 𝑗

(
−(2𝑐 − 1) (𝑐 (2𝛿0 − 1) − 𝛿0 + 1) 𝑒− 4𝑖 𝜋𝑘

𝐽 − 𝑐 − 𝛿0 + 1

)
1

2

(
𝑐 (4(𝑐 − 1)𝛿0 − 2𝑐 + 3) + (𝑐 − 1) cos

(
4𝜋𝑘
𝐽

)
+ 2𝛿0 − 1

) ª®®¬
,

where 𝐻 = 2ℎ. We notice that the coarse operator is different for 𝑗 even and 𝑗 odd;

however, the matrices obtained for both cases are similar, with similarity matrix

(−1) 𝑗 𝐼 where 𝐼 is the identity matrix, and therefore have the same spectrum. In what

follows we assume 𝑗 to be even, without loss of generality. This means that we will

be studying a node that is present in both the coarse and fine meshes.

The error reduction capabilities of our two level preconditioner 𝑀−1 are given by

the spectrum of the stationary iteration operator

𝐸 = (𝐼 − 𝑃𝐴−1

0
𝑅𝐴) (𝐼 − 𝛼𝐷−1

𝑐 𝐴),

and as in [9], the 4‚by‚4 block Fourier‚transformed operator from LFA,

𝐸 (𝑘) = (𝐼 − 𝑃(𝑘)𝐴−1

0
(𝑘)𝑅(𝑘)𝐴(𝑘)) (𝐼 − 𝛼𝐷−1

𝑐 (𝑘)𝐴(𝑘)),

has the same spectrum. Thus, we focus on studying the spectral radius 𝜌(𝐸 (𝑘)) in

order to find the optimal choices for the relaxation parameter𝛼, the penalty parameter

𝛿0 and the discontinuity parameter 𝑐. The non zero eigenvalues of 𝐸 (𝑘) are of the

form 𝜆± := 𝑐1 ±
√︃

𝑐2

𝑐3
, with

𝑐1 =




{
− 𝛼

(
3𝑐2𝛿0 (4𝛿0 − 3) + 𝑐

(
−12𝛿2

0
+ ß𝛿0 + 1

)
+ 4𝛿2

0
− 2𝛿0 − 1

)

+ 𝛿0

(
𝑐2

(
8𝛿2

0
− 4𝛿0 − 1

)
+ 𝑐

(
−8𝛿2

0
+ 4𝛿0 + 2

)
+ 2𝛿2

0
− 1

)

+(1 − 𝑐) (𝛼 + 𝛼𝑐 (𝛿0 − 2) + (𝑐 − 1)𝛿0) cos

(
4𝜋𝑘

𝐽

)} /
(
2𝛿2

0
− 1 + 𝛿0𝑐

2

(
8𝛿2

0
− 4𝛿0 − 1

)
+ 𝛿0𝑐

(
−8𝛿2

0
+ 4𝛿0 + 2

)
− 𝛿0 (𝑐 − 1)2

cos

(
4𝜋𝑘

𝐽

))
,

𝑐2 =




2𝛼2

(
16(𝑐 − 1)2𝑐2𝛿4

0
− 2(𝑐 − 1)2

(
4𝑐2 + 𝑐 + 2

)
𝛿0 − 8(𝑐 − 1)𝑐(3(𝑐 − 1)𝑐 − 1)𝛿3

0

+
(
𝑐(17𝑐 + 8) (𝑐 − 1)2 + 2

)
𝛿2

0
+ 2(𝑐 − 1)2 ((𝑐 − 1)𝑐 + 1)

)

+ 4𝛼2

(
4(𝑐 − 1)𝑐𝛿2

0
− 3(𝑐 − 1)𝑐𝛿0 + 𝑐 + 𝛿0 − 1

)
(𝑐 (3(𝑐 − 1)𝛿0 − 2𝑐 + 3) + 𝛿0 − 1) cos

(
4𝜋𝑘

𝐽

)

+ 2𝛼2 (𝑐 − 1)2𝑐 (𝑐 ((𝛿0 − 4) 𝛿0 + 2) + 2 (𝛿0 − 1)) cos
2

(
4𝜋𝑘

𝐽

)
,

𝑐3 =




𝛿2

0

(
4𝑐(𝑐 − 1)𝛿0 − 2(1 − 2𝑐)2𝛿2

0
+ (𝑐 − 1)2

)2

+ 2𝛿2

0

(
−2

(
2𝑐2 − 3𝑐 + 1

)2

𝛿2

0
+ 4𝑐(𝑐 − 1)3𝛿0 + (𝑐 − 1)4

)
cos

(
4𝜋𝑘

𝐽

)

+ (𝑐 − 1)4𝛿2

0
cos

2

(
4𝜋𝑘

𝐽

)
.

A first approach to optimize would be to minimize the spectral radius for all frequency

parameters 𝑘 , but if we can find a combination of the parameters (𝛼, 𝛿0, 𝑐) such that

the eigenvalues of the error operator do not depend on the frequency parameter
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𝑘 , then the spectrum of the iteration operator, and therefore the preconditioned

system becomes perfectly clustered , i.e. only a few eigenvalues repeat many times,

regardless of the size of the problem. The solver then becomes mesh independent,

and the preconditioner very attractive for a Krylov method that will converge in a

finite number of steps.

For these equations not to depend on 𝑘 , they must be independent of cos

(
4𝜋𝑘
𝐽

)
,

and to achieve this, we impose three conditions on the coefficients accompanying the

cosine, and we deduce a combination of the parameters (𝛼, 𝛿0, 𝑐) which we verify

a posteriori fall into the allowed range of values for each parameter. Our conditions

areȷ

1. Set the coefficient accompanying the cosine in the numerator of 𝑐1 to zero.

2. Since the denominator of 𝑐1 also contains the cosine, set the rest of the numerator

of 𝑐1 to zero in order to get rid of 𝑐1 entirely. Note that this requirement

immediately implies an equioscillating spectrum ˘i.e. the maximum and the

minimum have equal absolute value¯, which often is characterizing the solution

minimizing the spectral radius, see e.g. [9].

3. 𝑐2 and 𝑐3 are second order polynomials in the cosine variable, if we want

the quotient to be non zero and independent of the cosine, we need for the

polynomials to simplify and for that, they must differ only by a multiplying

factor independent of the cosine. We then equate the quotient of the quadratic

terms with the quotient of the linear terms and verify a posteriori that 𝑐2/𝑐3

becomes indeed independent of the cosine.

These three conditions lead to the nonlinear system of equations




𝛼 + 𝛼𝑐 (𝛿0 − 2) + (𝑐 − 1)𝛿0 =0,

𝛼
(
3𝑐2𝛿0 (4𝛿0 − 3) + 𝑐

(
−12𝛿2

0
+ ß𝛿0 + 1

)
+ 4𝛿2

0
− 2𝛿0 − 1

)
=

𝛿0

(
𝑐2

(
8𝛿2

0
− 4𝛿0 − 1

)
+ 𝑐

(
−8𝛿2

0
+ 4𝛿0 + 2

)
+ 2𝛿2

0
− 1

)
,

2𝛼2 (𝑐 − 1)2𝑐 (𝑐 ((𝛿0 − 4) 𝛿0 + 2) + 2 (𝛿0 − 1))
(𝑐 − 1)4𝛿2

0

=

4𝛼2
(
4(𝑐 − 1)𝑐𝛿2

0
− 3(𝑐 − 1)𝑐𝛿0 + 𝑐 + 𝛿0 − 1

)
(𝑐 (3(𝑐 − 1)𝛿0 − 2𝑐 + 3) + 𝛿0 − 1)

2𝛿2

0

(
−2

(
2𝑐2 − 3𝑐 + 1

)2
𝛿2

0
+ 4𝑐(𝑐 − 1)3𝛿0 + (𝑐 − 1)4

) .

This system of equations can be solved either numerically or symbolically. After a

significant effort, the following values solve our nonlinear systemȷ

𝑐 =Root of 3 − 8𝑐 + 8𝑐2 − 8𝑐3 + 4𝑐4 such that 𝑐 ∈ R and 0 < 𝑐 < 1,

𝛿0 =Root of − 1 − 4𝛿0 + 24𝛿0

2 − 32𝛿0

3 + 12𝛿0

4
such that 𝛿0 ∈ R and 1 < 𝛿0, and

𝛼 =Root of − 1 − 40𝛼̃ + 214𝛼̃2 − 352𝛼̃3 + 183𝛼̃4 such that 𝛼̃ ∈ R and 0 < 𝛼̃ < 1.
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Fig. 2: Solving −Δ𝑢 = 1 in 1D with Dirichlet boundary conditions. Leftȷ eigenvalues of the error

operator 𝐸, for a 32‚cell mesh. Top curve at 0ȷ optimizing 𝛼 for 𝛿0 = 2 ˘classical choice¯. Bottom

curve at 0ȷ optimizing 𝛼 and 𝛿0. Middle curve at 0ȷ optimizing 𝛼, 𝛿0 and 𝑐. Rightȷ GMRES

iterations for classical interpolation 𝑐 = 0.5, with 𝛿0 = 2 and 𝛼 = 8/ß, and for the optimized

clustering choice, leading to finite step convergence.

The corresponding numerical values are approximately

𝑐 ≈ 0.564604, 𝛿0 ≈ 1.516ß80, 𝛼 ≈ 0.ß08154,

and we see that indeed the interpolation should be discontinuous! We have found

a combination of parameters that perfectly clusters the eigenvalues of the iteration

operator of our two level method, and therefore also the spectrum of the precondi‚

tioned operator. Such clustering is not very often possible in preconditioners, a few

exceptions are the HSS preconditioner in [4], and some block preconditioners, see

e.g. [13]. Furthermore, the spectrum is equioscillating, which often characterizes the

solution minimizing the spectral radius of the iteration operator.

3 Numerical Results

We show in Fig. 2 on the left the eigenvalues of the iteration operator for a 32‚cell

mesh in 1D with Dirichlet boundary conditions, for continuous interpolation and

𝛿0 = 2 optimizing only 𝛼, optimizing both 𝛼 and 𝛿0, and the optimized clustering

choice. We clearly see the clustering of the eigenvalues, including some extra clusters

due to the Dirichlet boundary conditions. We also note that the spectrum is nearly

equioscillating due to condition ˘1¯ and ˘2¯, which delivers visibly an optimal choice

in the sense of minimizing the spectral radius of the error operator. With periodic

boundary conditions, the spectral radius for the optimal choice of 𝛼, 𝛿0 and 𝑐 is

0.1ß732, while only optimizing𝛼 and 𝛿0 it is 0.2. The eigenvalues due to the Dirichlet

boundary conditions are slightly larger than 0.2, but tests with periodic boundary

conditions confirm that then these larger eigenvalues are not present. Refining the

mesh conserves the shape of the spectrum shown in Fig. 2 on the left, but with more

eigenvalues in each cluster, except for the clusters related to the Dirichlet boundary

conditions. Note also that since the error operator is equioscillating around zero, the
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Fig. 3: Spectrum of the iteration operator for a 32‚by‚32 square 2D mesh. First curve at 0 from the

topȷ optimizing 𝛼 for 𝛿0 = 2 ˘classical choice¯ in 1D. Third curve at 0 from the topȷ optimizing

𝛼 and 𝛿0 in 1D. Second curve at 0 from the topȷ optimizing 𝛼, 𝛿0 and 𝑐 in 1D. Fourth curve at 0

from the topȷ numerically optimizing 𝛼, 𝛿0 and 𝑐 in 2D.

spectrum of the preconditioned system is equioscillating around one, and since the

spectral radius is less than one, the preconditioned system has a positive spectrum

and is thus invertible.

In Fig. 2 on the right we show the GMRES iterations needed to reduce the residuals

by 10
−8 for different parameter choices and the clustering choice, for different mesh

refinements. We observe that the GMRES solver becomes exact after six iterations

for the clustering choice.

We next perform tests in two dimensions using an interpolation operator with

a stencil that is simply a tensor product of the 1D stencil

(
1 0

𝑐 1−𝑐
1−𝑐 𝑐

0 1

)
⊗

(
1 0

𝑐 1−𝑐
1−𝑐 𝑐

0 1

)
,

where ⊗ stands for the Kronecker product. This is very common in DG methods

where even the cell block‚Jacobi matrix can be expressed as a Kronecker sum for

fast inversion. We show in Fig. 3 the spectrum for different optimizations in two

dimensions. We observe that the clustering is not present, however as shown in

detail in [9] for classical interpolation, the optimal choice from the 1D analysis is

also here very close to the numerically calculated optimum in 2D.

4 Conclusion

We showed for a one dimensional discontinuous Galerkin model problem that the

optimization of a two grid method leads to a discontinuous interpolation operator,

and its performance is superior to using a continuous interpolation operator. The
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discontinuous interpolation operator allowed us also to cluster the spectrum for

our model problem, and thus a Krylov method with this preconditioner becomes a

direct solver, converging in the number of iterations corresponding to the number

of clusters in exact arithmetic. We showed numerically that this is indeed the case,

and that when using the one dimensional optimized parameters in higher spatial

dimensions, we still get a spectrum close to the numerically best possible one, even

though the spectrum is not clustered any more. We currently investigate if there exist

discontinous interpolation operators in 2D that cluster the spectrum, and what their

influence is on the Galerkin coarse operator obtained.
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