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1 The Helmholtz problem

Motivated by the large range of applications, there is currently great interest in

designing and analysing preconditioners for inite element discretisations of the

Helmholtz equation

−(Δ + �2 )� = � on Ω , ˘1¯

on a �−dimensional domain Ω ˘� = 2, 3¯, with � the ˘assumed constant, but pos‚

sibly large¯ angular frequency. While the methods presented easily apply to quite

general scattering problems and geometries, we restrict attention here to the interior

impedance problem, where Ω is bounded, and the boundary condition is

(
�

��
− i�

)
� = � on �Ω , ˘2¯

where ��/�� is the outward‚pointing normal derivative of � on Ω.

The weak form of problem ˘1¯, ˘2¯ is to seek � ∈ �1 (Ω) such that

�(�, �) = � (�) :=

∫

Ω

� �̄ �� +

∫

�Ω

��̄ ��, ˘3¯

where �(�, �) :=

∫

Ω

(∇�.∇� − �2��) − i�

∫

�Ω

��, for �, � ∈ �1 (Ω).
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2 Parallel iterative Schwarz method

To solve ˘1¯, ˘2¯, we shall consider domain decomposition methods, based on a set of

Lipschitz polyhedral subdomains {Ωℓ }
�
ℓ=1

, forming an overlapping cover of Ω and

equipped with a partition of unityȷ {�ℓ }
�
ℓ=1

, such that

for each ℓ : supp �ℓ ⊂ Ωℓ , 0 ≤ �ℓ (�) ≤ 1 when � ∈ Ωℓ ,

and
∑

ℓ �ℓ (�) = 1 for all � ∈ Ω.

}
˘4¯

Then, the parallel Schwarz method for ˘1¯, ˘2¯ with Robin ˘impedance¯ transmis‚

sion conditions isȷ given �� deined on Ω, we solve the local problemsȷ

−(Δ + �2)��+1
ℓ = � in Ωℓ , ˘5¯

(
�

��ℓ
− i�

)
��+1
ℓ =

(
�

��ℓ
− i�

)
�� on �Ωℓ\�Ω , ˘6¯

(
�

��ℓ
− i�

)
��+1
ℓ = � on �Ωℓ ∩ �Ω. ˘7¯

Then the next iterate is the weighted sum of the local solutions

��+1 :=
︁

ℓ

�ℓ�
�+1
ℓ . ˘8¯

Information is shared between neighbouring subdomains at each iteration via ˘8¯.

In [6], we analyse the iteration ˘5¯ – ˘8¯ in the function space

� (Ω) :=
{
� ∈ �1 (Ω) : Δ� ∈ �2 (Ω), ��/�� ∈ �2 (�Ω)

}
,

and its local analogues � (Ωℓ). Using the fact that any function � ∈ � (Ωℓ) has

impedance trace (�/�� − i�)� ∈ �2 (Γ) on any Lipschitz curve Γ ⊂ Ωℓ , we prove

in [6] that ˘5¯ – ˘8¯ is well‚deined in the space � (Ω). Moreover, introducing ��
ℓ
=

� |Ωℓ
− ��

ℓ
, and letting e� = (��

1
, . . . , ��

�
), we prove in [6] that e�+1 = T e�, where

under certain geometric assumptions, T has the ‘power contraction’ property

∥T � ∥ ≪ 1, ˘9¯

with respect to the product norm on
∏

ℓ �0 (Ωℓ), where �0 (Ωℓ) is the subspace of

functions � ∈ � (Ωℓ), for which Δ� + �2� = 0 on Ωℓ . Analogously to [1], the norm

of � is the �2 norm of its impedance data on �Ωℓ . See the remarks in §5, especially

˘24¯, for a more precise explanation of ˘9¯.

The aim of this note is to show that a natural inite element analogue of ˘5¯ – ˘8¯

corresponds to a preconditioned Richardson‚type iterative method for the inite ele‚

ment approximation of ˘1¯, ˘2¯, where the preconditioner is a Helmholtz‚orientated

version of the popular Restricted Additive Schwarz method. This preconditioner

is given several diferent names in the literature – WRAS‚H ˘Weighted RAS for
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Helmholtz¯ [9], ORAS ˘Optimized Restricted Additive Schwarz¯ [10, 2, 5], IM‚

PRAS1 ˘RAS with impedance boundary condition¯ [7]. However it has not previ‚

ously been directly connected via a variational argument to the iterative method ˘5¯

– ˘8¯ in the Helmholtz case, although there are algebraic discussions ˘e.g., [3], [2,

§2.3.2]¯. We also demonstrate numerically in §5, that the inite element analogue of

˘5¯ – ˘8¯ inherits the property ˘9¯ proved at the continuous level in [6].

Method ˘5¯–˘8¯ is an example of methods studied more generally in the Optimized

Schwarz literature ˘e.g., [4, 10]¯, where Robin ˘or more sophisticated¯ transmission

conditions are constructed with the aim of optimizing convergence rates. Although

the transmission condition ˘6¯ above can be justiied directly as a irst order absorbing

condition for the local Helmholtz problem ˘5¯ ˘without considering optimization¯,

this method is still often called ‘Optimized Restricted Additive Schwarz’ ˘or ‘ORAS’¯

and we shall continue this naming convention here. ORAS is arguably the most

successful one‚level parallel method for Helmholtz problems. It can be applied on

very general geometries, does not depend on parameters, and can even be robust to

increasing � [5]. More generally it can be combined with coarse spaces to improve

its robustness properties.

3 Variational formulation of RAS with impedance transmission

condition (ORAS)

Here we formulate a inite element approximation of ˘1¯, ˘2¯ and show that it

coincides with ORAS. We introduce a nodal inite element space Vℎ ⊂ �1 (Ω)

consisting of continuous piecewise polynomials of total degree ≤ � on a conforming

mesh T ℎ. Functions in Vℎ are uniquely determined by their values at nodes in

Ω, denoted {� � : � ∈ I}, for some index set I. The local space on Ωℓ is Vℎ
ℓ

:=

{�ℎ |Ωℓ
: �ℎ ∈ Vℎ} with corresponding nodes denoted {� � : � ∈ Iℓ }, for some

Iℓ ⊂ I.

Using the sesquilinear form � and right‚hand side � appearing in ˘3¯, we can

deine the discrete operators Aℎ, �ℎ : Vℎ ↦→ (Vℎ) ′ by

(Aℎ�ℎ) (�ℎ) := �(�ℎ, �ℎ) and �ℎ (�ℎ) = � (�ℎ), for all �ℎ, �ℎ ∈ Vℎ . ˘10¯

Analogously, on each subdomain Ωℓ , we deine Aℎ,ℓ : Vℎ
ℓ

→ (Vℎ
ℓ
) ′ by

(Aℎ,ℓ�ℎ,ℓ) (�ℎ,ℓ) := �ℓ (�ℎ,ℓ , �ℎ,ℓ). We also need prolongations R⊤
ℎ,ℓ

, R̃⊤
ℎ,ℓ

: Vℎ
ℓ
→

Vℎ deined for all �ℎ,ℓ ∈ Vℎ
ℓ

by

(R⊤
ℎ,ℓ�ℎ,ℓ) (� � ) =

{
�ℎ,ℓ (� � ) � ∈ Iℓ ,

0 otherwise,
and R̃⊤

ℎ,ℓ�ℎ,ℓ = R⊤
ℎ,ℓ (�ℓ�ℎ,ℓ).

˘11¯

Note the subtlety in ˘11¯ȷ The extension R⊤
ℎ,ℓ

�ℎ,ℓ is deined nodewiseȷ It coin‚

cides with �ℎ,ℓ at nodes in Ωℓ and vanishes at nodes in Ω\Ωℓ . Thus R⊤
ℎ,ℓ

�ℎ,ℓ ∈
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Vℎ ⊂ �1 (Ω). This is an �1− conforming inite element approximation of the zero

extension of �ℎ,ℓ to all of Ω. ˘The zero extension is not in �1 (Ω) in general.¯ We

deine the restriction operator Rℎ,ℓ : V ′
ℎ
→ V ′

ℎ,ℓ
by duality, i.e., for all �ℎ ∈ V ′

ℎ
,

(Rℎ,ℓ�ℎ) (�ℎ,ℓ) := �ℎ (R
⊤
ℎ,ℓ�ℎ,ℓ), �ℎ,ℓ ∈ Vℎ

ℓ .

Then the ORAS preconditioner is the operator B−1
ℎ

: V ′
ℎ
→ Vℎ deined by

B−1
ℎ :=

︁

ℓ

R̃⊤
ℎ,ℓA

−1
ℎ,ℓRℎ,ℓ . ˘12¯

This preconditioner can also be written in terms of operators Qℎ,ℓ : Vℎ → Vℎ
ℓ

deined for all �ℎ ∈ Vℎ by

�ℓ (Qℎ,ℓ�ℎ, �ℎ,ℓ) = �(�ℎ,R
⊤
ℎ,ℓ�ℎ,ℓ), for all �ℎ,ℓ ∈ Vℎ

ℓ , ˘13¯

where R⊤
ℎ,ℓ

is deined in ˘11¯, and then B−1
ℎ

=
∑

ℓ R̃
⊤
ℎ,ℓ

Qℎ,ℓ . The corresponding

preconditioned Richardson iterative method can be written as

��+1
ℎ = ��ℎ + B−1

ℎ (�ℎ − Aℎ�
�
ℎ). ˘14¯

The matrix realisation of ˘14¯ is given in §5.

4 Connecting the parallel iterative method with ORAS

In this section, we show that a natural inite element approximation of ˘5¯–˘8¯

yields ˘14¯. First, to write ˘5¯ ‚ ˘8¯ in a residual correction form, we introduce the

“corrections” ��
ℓ

:= ��+1
ℓ

− �� |
Ωℓ
,. With this deinition we have

−(Δ + �2)��ℓ = � + (Δ + �2)�� in Ωℓ , ˘15¯
(

�

��ℓ
− i�

)
��ℓ = 0 on �Ωℓ\�Ω , ˘16¯

(
�

��ℓ
− i�

)
��ℓ = � −

(
�

��ℓ
− i�

)
�� on �Ωℓ ∩ �Ω , ˘17¯

and then ��+1
= �� +

︁

ℓ

�ℓ�
�
ℓ . ˘18¯

Note, there is more subtlety hereȷ Because of ˘8¯, �� |
Ωℓ

is not the same as ��
ℓ
.

The theory in [6] can be used to show that ˘15¯–˘18¯ is still well‚posed in � (Ω).

Multiplying ˘15¯ by �ℓ ∈ �1 (Ωℓ), integrating by parts and using ˘16¯, ˘17¯, ��
ℓ

satisies, for �ℓ ∈ �1 (Ωℓ),
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�ℓ (�
�
ℓ , �ℓ) =

∫

Ωℓ

� �ℓ +

∫

�Ωℓ∩�Ω

� �ℓ

+

∫

Ωℓ

(Δ + �2)�� �ℓ −

∫

�Ωℓ∩�Ω

(
�

��ℓ
− i�

)
�� �ℓ . ˘19¯

To implement the inite element discretization of this, we will need to handle the

case when �� on the right‚hand side is replaced by a given iterate ��
ℎ
∈ Vℎ and

when the test function �ℓ ∈ �1 (Ωℓ) is replaced by �ℎ,ℓ ∈ Vℎ
ℓ

. The third term on

the right hand side of ˘19¯ then requires integration by parts to make sense. Using

the nodewise extension R⊤
ℎ,ℓ

we replace the third and fouth terms in ˘19¯ by

∫

Ω

(Δ + �2)�� R⊤
ℎ,ℓ

�ℎ,ℓ −

∫

�Ω

(
�

��
− i�

)
�� R⊤

ℎ,ℓ
�ℎ,ℓ = −�(��,R⊤

ℎ,ℓ�ℎ,ℓ),

˘20¯

where the right‚hand side is obtained from the left via integration by parts over Ω.

This leads to the FEM analogue of ˘15¯ – ˘18¯ȷ Suppose ��
ℎ
∈ Vℎ is given. Then

��+1
ℎ := ��ℎ +

︁

ℓ

R̃⊤
ℎ,ℓ�

�
ℎ,ℓ , ˘21¯

where ˘using ˘19¯, ˘20¯ and ˘10¯¯, �ℓ (�
�
ℎ,ℓ

, �ℎ,ℓ) = Rℎ,ℓ�ℎ (�ℎ,ℓ) − �(��,R⊤
ℎ,ℓ

�ℎ,ℓ).

Thus,

��ℎ,ℓ = A−1
ℎ,ℓRℎ,ℓ (�ℎ − Aℎ�

�
ℎ).

Combining this with ˘21¯, we obtain exactly ˘14¯.

5 Numerical results

Denoting the nodal bases for Vℎ and Vℎ
ℓ

by {� � } and {�ℓ, � } respectively, we

introduce stifness matrices A�, � := �(� � , ��) and (Aℓ)�, � := �ℓ (�ℓ, � , �ℓ,�), and the

load vector �� := �ℎ (��). Then we can write ˘14¯ as

u�+1
= u� + B

−1 (f − Au�). ˘22¯

Here u� is the coeicient vector of ��
ℎ

with respect to the nodal basis of Vℎ, and

B
−1

=

︁

ℓ

R̃
⊤
ℓ A

−1
ℓ Rℓ ,

where (R⊤
ℓ
)�,� := (R⊤

ℓ
�ℓ,�) (��), (R̃

⊤
ℓ
)�,� := (R̃⊤

ℓ
�ℓ,�) (�ℓ, �), and Rℓ = (R⊤

ℓ
)⊤.

In this section, ˘motivated by ˘9¯¯, we numerically investigate the contractive

property of the ORAS iteration ˘22¯. Letting u be the solution of Au = f, we can

combine with ˘22¯ to obtain the error propagation equation
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u�+1 − u = E(u� − u), where E = I − B
−1�.

Since
∑

ℓ R̃
⊤
ℓ

Rℓ = I, we can write

E =

︁

ℓ

R̃
⊤
ℓ (Rℓ − A

−1
ℓ RℓA) = R̃⊤ (R − Q),

where R̃⊤ is the row vector of matricesȷ R̃⊤ = (R̃⊤
1
, R̃⊤

2
, · · · , R̃⊤

�
), and R =

(R1; R2; · · · ; R� ), and Q = (A−1
1

R1A; A
−1
2

R2A, · · · ,A−1
�

R�A) are column vectors.

Then it is easily seen that ER̃⊤ = R̃⊤T, where T := (R − Q)R̃⊤. Moreover, since

R̃⊤R = I, we have TRR̃⊤ = T, and so it follows that

E
�
= R̃⊤T�R for any � ≥ 1, ˘23¯

As explained in [6, §5.1], T is a discrete version of the operator T appearing in ˘9¯

above. In [6], we study ixed point iterations with matrix T and use these to illustrate

various properties of the ixed point operator T in the product norm described

above. In this paper we consider only the norms of E
� . By ˘23¯, if T� is suiciently

contactive, then E
� will also be contractive.

To compute the norm of E
� , we introduce the vector normȷ ∥u∥2

1,�
= u∗

D�u,

for u ∈ C� , where � = dim(Vℎ) and, for all nodes �� , �� of Vℎ, (D�)�,� =∫
Ω
∇�� · ∇�� + �2���� ��, . This is the matrix induced by the usual �−weighted

�1 inner product on Vℎ . We shall compute

∥E
� ∥ := max

0≠v∈C�

∥E
�v∥1,�

∥v∥1,�

, for integers � ≥ 1,

which is equal to the square root of the largest eigenvalue of the matrix D
−1
�
(E∗)�D�E

� .

This is computed using the SLEPc facility within the package FreeFEM++ [8]. In the

following numerical experiments, done on rectangular domains, we use conforming

Lagrange elements of degree 2, on uniform meshes with mesh size decreasing with

ℎ ∼ �−5/4 as � increases, suicient for avoiding the pollution efect.

We consider two diferent examples of domain decomposition. First we consider

a long rectangle of size (0, 2
3
�) × (0, 1), partitioned into � non‚overlapping strips of

equal width 2/3. We then extend each subdomain by adding neighbouring elements

whose distance from the boundary is ≤ 1/6. This gives an overlapping cover, with

each subdomain a unit square, except for the subdomains at the ends, which are

rectangles with aspect ratio 6/5. For this example, a rigorous estimate ensuring ˘9¯

is proved in [6]. The result implies that

∥T � ∥ ≤ � (� − 1)� + O(�2). ˘24¯

Here, � is the maximum of the �2 norms of the ‘impedance maps’ which describe the

exchange of impedance data between boundaries of overlapping subdomains within

a single iteration. The constant � is independent of � , but the hidden constant may
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� 2 4 8 16

k ∥E∥ ∥E
� ∥ ∥E

�+1 ∥ ∥E∥ ∥E
�−1 ∥ ∥E

� ∥ ∥E∥ ∥E
�−1 ∥ ∥E

� ∥ ∥E∥ ∥E
�−1 ∥ ∥E

� ∥

20 5.6 0.52 0.05 5.8 5.24 0.18 5.8 4.5 0.11 5.9 3.4 0.17

40 9.0 1.0 0.094 9.1 8.5 0.46 9.1 8.1 0.34 9.1 7.6 0.36

80 14.3 1.9 0.17 14.3 13.1 0.78 14.3 13.0 0.61 14.3 12.6 0.66

Table 1: Strip partition of (0, 2
3
� ) × (0, 1)ȷ Norms of powers of E ˘� = � ¯

depend on � . Thus for small enough �, T � is a contraction. Conditions ensuring

this are explored in [6].

In Table 1 we observe the rapid drop in the norm of ∥E
� ∥ compared with ∥E

�−1∥

˘with � = �¯. Moreover E
� is a contraction when � = 4, 8, 16. When � = 2 we do

not have E
2 contracting, but E

3 certainly is. Although ∥�� ∥ is increasing ˘apparently

linearly¯ with � , ∥� � ∥ decreases rapidly for � > � , when � is ixed. Note that ∥E∥ can

be quite large, and is growing as � increasesȷ thus the error of the iterative method

may grow initially before converging to zero. Also, although the right‚hand side of

˘24¯ grows linearly in � for ixed �, the norm of �� does not exhibit substantial

growth. Thus we conclude that ˘24¯ may be pessimistic in its �‚dependence. In fact

sharper estimates are proved and explored computationally in [6]. An interesting

open question is to ind a lower bound for � as a function of � and � which ensures

contractivity.

In [6] it is shown that the computation of �, or related more detailed quantities

can be done by solving eigenvalue problems on subdomains. This, combined with

estimates like ˘24¯ could be seen as an a priori condition for convergence, rather

like convergence predictions via condition number estimates. These always give a

suicient condition for good performance ˘which is often not sharp¯.

In the next experiment the domain Ω is the unit square, divided into � × � equal

square subdomains in a “checkerboard” domain decomposition. Each subdomain is

extended by adding neighbouring elements a distance ≤ 1/4 of the width of the

non‚overlapping subdomains, thus yielding an overlapping domain decomposition

with “generous” overlap. In Table 2 we tabulate ∥E
�−1∥ and ∥E

� ∥, for � = �2 ˘i.e.,

� × � 2 × 2 4 × 4 6 × 6 8 × 8

k ∥��−1 ∥ ∥�� ∥ ∥��−1 ∥ ∥�� ∥ ∥��−1 ∥ ∥�� ∥ ∥��−1 ∥ ∥�� ∥ GMRES

20 4.0e‚1 8.8e‚2 2.3e‚3 1.2e‚3 38 41 1.2e6 1.4e6 34

40 7.2e‚1 1.6e‚1 4.4e‚2 2.8e‚3 1.5e‚3 1.0e‚3 6.4e‚5 5.3e‚5 28

80 1.0 2.4e‚1 1.5e‚2 9.8e‚3 3.9e‚4 2.8e‚4 1.9e‚6 9.2e‚7 26

160 1.8 5.0e‚1 1.1e‚2 6.3e‚3 7.3e‚4 5.3e‚4 9.2e‚5 7.5e‚5 24

Table 2: Checkerboard partition of the unit squareȷ Norms of powers of E ˘� = � 2¯,

the total number of subdomains¯. Here we do not see such a diference between these

two quantities, but we do observe very strong contractivity for E
� , except in the case

of � small and � large. In the latter case the problem is not very indeiniteȷ and

GMRES iteration counts are modest even though the norm of E
� is large ˘we give



286 S. Gong, M. J. Gander, I. G. Graham, and E. A. Spence

1 3 5 7 9 11 13 15 17 19

Exponent s

0.05

0.1

0.5

1

5

10

N
o

rm
 o

f 
E

s

2  2 DD, k=40
4  4 DD, k=40

6  6 DD, k=40
8  8 DD, k=40

1 3 5 7 9 11 13 15 17 19

Exponent s

0.05

0.1

0.5

1

7.5

15

N
o

rm
 o

f 
E

s

2  2 DD, k=80
4  4 DD, k=80

6  6 DD, k=80
8  8 DD, k=80

Fig. 1: Norm of the power of the error propagation matrix ˘leftȷ � = 40, rightȷ � = 80¯

these for the case � = 8 in the column headed GMRES¯. In most of the experiments in

the checkerboard case, E
� is contracting when � is much smaller that �2. In Figure

1, we plot ∥E
� ∥ against � and observe that ∥E

� ∥ < 1 for exponents � ≪ �2.
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