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1 Introduction

We deal with the numerical solution of problems of incompressible flows and in‚
vestigate the applicability of the Balancing Domain Decomposition by Constraints
˘BDDC¯ by [2] for solving the arising linear systems. In [5], we extended the mul‚
tilevel version of BDDC ˘[12, 7]¯ to nonsymmetric problems arising from steady
problems described by the Navier‚Stokes equations. In the present contribution, we
are interested in solving unsteady problems, for which we employ the pressure‚
correction operator‚splitting scheme ˘see e.g. the overview paper by [4]¯. It presents
a very efficient approach for solving the problem by transforming the coupled Navier‚
Stokes equations into a sequence of a scalar convection‚diffusion problem for each
velocity component, a Poisson problem for pressure ˘corrector¯, and an 𝐿2‚projection
problem in each time step.

In [10], we studied efficient solution techniques for the arising systems based on
Krylov subspace methods with one‚level domain decomposition ˘DD¯ precondition‚
ers from the PETSc library. A conclusion of the study was that while these relatively
simple preconditioners work well for the nonsymmetric problems for velocities and
the 𝐿2‚projection problem, the known dependence of one‚level DD methods on the
number of subdomains made the pressure Poisson problem increasingly difficult for
a solution with growing problem size, eventually becoming the bottleneck of the
simulations.
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In this paper, we want to investigate the applicability of several variants of BDDC
for the problem of pressure corrector. As long as the mesh is not changed, the matrix
and the preconditioner are set up just once for all time steps. This makes it interesting
to use variants of BDDC with more expensive setup, saving the number of iterations
in each time step, such as the BDDC method with the adaptive selection of constraints
by [8], and its combination with the multilevel extension [11] implemented in our
BDDCML library.

Another strategy worth investigating for sequences of algebraic problems is a
recycling of the Krylov subspace across time steps, proposed e.g. by [3]. It has been
shown in the literature that if the differences of the successive right‚hand sides are
not large, after expanding the new right‚hand side in the pre‚existing Krylov basis,
one may require only very few or even no additional iterations for convergence to
the full accuracy. Hence, it is another aim of this paper to investigate the benefits of
the approach by [3] to the present problem.

2 The Pressure-Correction Method

We consider a domain Ω ⊂ R3 with its boundary Γ consisting of three disjoint parts
Γ𝑆 , Γ∞, and Γ𝑂, Γ = Γ𝑆 ∪ Γ∞ ∪ Γ𝑂. Part Γ𝑆 is the interface between fluid and the
rigid body, Γ∞ is the inflow free‚stream boundary, and Γ𝑂 is the outflow boundary.
The flow is governed by the Navier‚Stokes equations of an incompressible viscous
fluid,

𝜕𝒖

𝜕𝑡
+ (𝒖 · ∇)𝒖 − 𝜈Δ𝒖 + ∇𝑝 = 0 in Ω,

∇ · 𝒖 = 0 in Ω,

˘1¯

where 𝒖 is the velocity vector of the fluid, 𝑡 denotes time, 𝜈 is the kinematic viscosity
of the fluid and 𝑝 is the kinematic pressure. System ˘1¯ is complemented by the
following initial and boundary conditionsȷ 𝒖(𝑡 = 0, 𝒙) = 0 in Ω, 𝒖(𝑡, 𝒙) = 𝒖∞ on
Γ∞, 𝒖(𝑡, 𝒙) = 0 on Γ𝑆 , and −𝜈(∇𝒖)𝒏 + 𝑝𝒏 = 0 on Γ𝑂, with 𝒏 being the unit outer
normal vector of Γ.

System ˘1¯ can be efficiently solved with a pressure‚correction method. In par‚
ticular, we use the incremental pressure‚correction method in the rotational form

discussed by [4]. Details of our implementation can be found in [10].
In this approach, we first define the pressure increment ˘corrector¯ 𝜓𝑛+1 = 𝑝𝑛+1 −

𝑝𝑛 + 𝜈∇ · 𝒖𝑛+1. In order to compute the velocity and pressure fields (𝒖𝑛+1, 𝑝𝑛+1) at
time 𝑡𝑛+1, three subproblems are subsequently solved.

1. The velocity field 𝒖
𝑛+1 is obtained by solving the convection‚diffusion problem

for each component of velocity

1

Δ𝑡
𝒖
𝑛+1 + (𝒖𝑛 · ∇)𝒖𝑛+1 − 𝜈Δ𝒖𝑛+1

=
1

Δ𝑡
𝒖
𝑛 − ∇(𝑝𝑛 + 𝜓𝑛) in Ω ˘2¯

for 𝒖𝑛+1 = 𝒖∞ on Γ∞, 𝒖𝑛+1 = 0 on Γ𝑆 , and 𝜈(∇𝒖𝑛+1)𝒏 = 𝑝𝑛𝒏 on Γ𝑂.
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2. Next, the pressure corrector 𝜓𝑛+1 is obtained by solving the Poisson problem

−Δ𝜓𝑛+1
= −

1

Δ𝑡
∇ · 𝒖𝑛+1 in Ω ˘3¯

for 𝜕𝜓𝑛+1

𝜕𝒏
= 0 on Γ∞ ∪ Γ𝑆 and 𝜓𝑛+1 = 0 on Γ𝑂.

3. Finally, the pressure field 𝑝𝑛+1 is updated with

𝑝𝑛+1
= 𝑝𝑛 + 𝜓𝑛+1 − 𝜈∇ · 𝒖𝑛+1. ˘4¯

Problems ˘2¯, ˘3¯, and ˘4¯ are solved by the finite element method ˘FEM¯ using
Taylor‚Hood 𝑄2 − 𝑄1 hexahedral elements. In the resulting finite element mesh,
there are 𝑛𝒖 nodes with velocity unknowns and 𝑛𝑝 nodes with pressure unknowns,
with the ratio 𝑛𝒖/𝑛𝑝 being approximately 8.

For solving the algebraic problems arising from ˘2¯ and ˘4¯, we use the methods
identified as optimal by [10]. In particular, the Generalized Minimal Residual method
˘GMRES¯ is used for solving problem ˘2¯, and the Conjugate Gradient ˘CG¯ method
is used for problem ˘4¯. Block Jacobi preconditioner using ILU˘0¯ on subdomains is
used for both problems.

The main focus of this study is a scalable solution of the Poisson problem for
pressure corrector ˘3¯. We apply different one‚level domain decomposition precon‚
ditioners from the PETSc1 library and compare them with several settings of the
BDDC method from the BDDCML2 library. Each preconditioner is combined with the
CG method.

Problem ˘3¯ translates to an algebraic system with a discrete Laplacian matrix of
size 𝑛𝑝 × 𝑛𝑝 which is symmetric and positive definite for Γ𝑂 ≠ ∅, i.e. a nonempty
part with ‘do‚nothing’ boundary condition. This is a well‚studied case from the point
of view of DD methods, which are very suitable solvers for this task.

For a fixed mesh, only the right‚hand side of ˘3¯ differs in the sequence for the
subsequent time steps. Hence, this problem offers large room for reusing information
across all time steps. For example, one may afford a preconditioner with a more
expensive setup if this leads to a lower number of iterations as long as each iteration
does not get much more expensive. This is our motivation for experimenting also
with the adaptive selection of constraints for BDDC.

3 Numerical results

We evaluate the strategies for solving ˘3¯ on the case of the flow past a sphere at
Reynolds number 300. In our simulations, we consider two sizes of the problem
mesh with the same geometry ˘see Fig. 1¯. The sphere diameter is 1 m, and the
solution domain is a cylinder with the radius of 6 m and the length of 25 m. The

1 https://www.mcs.anl.gov/petsc ˘version 3.10.4¯

2 https://users.math.cas.cz/~sistek/software/bddcml.html ˘version 2.6¯
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centre of the sphere lies on the cylinder axis and 5 m from the front wall of the
cylinder. Far‚field velocity of the fluid is 𝒖∞ = (1, 0, 0)T m s−1, and the kinematic
viscosity is 𝜈 = 0.00333 m2s−1, so that the Reynolds number defined as Re =

|𝒖∞ | 𝑑
𝜈

is equal to 300. The external boundary of the cylinder is considered as Γ∞ except the
rear face, which represents Γ𝑂 with ‘do‚nothing’ boundary condition. Zero Dirichlet
boundary condition is prescribed on the surface of the sphere Γ𝑆 .

Fig. 1: Computational domain with meshing corresponding to Mesh 1, Reynolds number 300.
Velocity magnitude ˘left¯ and vortical structures illustrated by isosurfaces of the average corotation
˘[6]¯ coloured by the magnitude of vorticity ˘right¯.

The computational Mesh 1 consists of 1.8 million unknowns for velocity in each
component and 225 thousands for pressure, and it corresponds to the mesh used in
[9]. Mesh 2 is obtained by doubling the number of elements in each direction. Hence,
it has approx. 15 million unknowns for each velocity component and 1.9 millions
for pressure. The meshes were created in the Gmsh3 generator and divided into 16
and 128 subdomains, respectively, by the METIS4 graph partitioner to maintain ap‚
proximately the same size of subdomain problems ˘approx. 15 thousand unknowns
per subdomain¯. The problems on Mesh 1 and Mesh 2 were solved using 16 and 128
CPU cores of the Salomon supercomputer at the IT4Innovations National Supercom‚
puting Center in Ostrava, Czech Republic. The computational nodes of Salomon are
equipped with two 12‚core Intel Xeon E5‚2680v3 2.5 GHz processors and 128 GB
RAM.

This kind of simulations is usually performed for thousands of time steps. We
formally employ the non‚dimensional time 𝑡 ′ =

𝑡 |𝒖∞ |
𝑑

, although for our setting of
|𝒖∞ | = 1 and 𝑑 = 1, the values are the same as for the physical time 𝑡.

In particular, the simulation of 200 s on Mesh 1 performed with time‚step size
Δ𝑡 = 0.05 results in 4000 time steps, while the simulation on Mesh 2 with time‚step
size Δ𝑡 = 0.025 results in 8000 time steps. The different values of the time steps are
motivated by an approximate preservation of the Courant number |𝒖∞ | Δ𝑡

ℎ
coupling

the resolution in time and space.
Since our aim is to test the behaviour for different preconditioners, we compute

only 30 time steps, and we report and compare the numbers of linear iterations and

3 https://gmsh.info/

4 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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Fig. 2: Number of linear iterations in each time step ˘left¯, and values of drag ˘𝐶𝐷¯ and lift ˘𝐶𝐿¯
force coefficients during the whole simulation ˘right¯. Results for Mesh 1 are by [9] and for Mesh
2 from current simulations.

times for all time steps excluding the first time step. As you can see in the left part
of Fig. 2, the number of iterations stays almost constant during the whole simulation
for the BDDC method and within the same range for the block Jacobi method. This
justifies using the first 30 iterations for our comparisons. We also compare the drag
and lift force coefficients acting on the sphere with the results from [9] in Fig. 2. We
have got a good agreement for the two resolutions.

In the first iteration, the setup of the preconditioner and the factorization of
interior blocks of subdomain matrices are included. These operations are performed
just once for all time steps. Hence, the number of linear iterations and the time of
the whole solve ˘setup and iterations¯ is reported separately.

method #its. min–max˘avg.¯ t./step [s] #its. step 1 t. step 1 [s] est. sim. [s]
block Jacobi + ILU˘0¯ 63‚169˘108.3¯ 0.16 167 0.25 640

block Jacobi + ILU˘1¯ 46‚131˘82.7¯ 0.25 130 0.37 1000
block Jacobi + ILU˘2¯ 44‚119˘76.0¯ 0.46 118 0.61 1840

ASM–1 + ILU˘0¯ 102‚216˘170.2¯ 0.36 209 0.43 1440
ASM–1 + ILU˘1¯ 81‚146˘120.5¯ 0.48 140 0.54 1920
ASM–2 + ILU˘0¯ 103‚237˘184.4¯ 0.48 230 0.57 1920
ASM–2 + ILU˘1¯ 63‚156˘122.4¯ 0.60 148 0.67 2400

3‚l. ad. BDDC + diag. 8‚10˘9.6¯ 0.32 14 75.74 1355
3‚l. BDDC + diag. 10‚12˘11.5¯ 0.34 21 1.51 1361

Table 1: Mesh 1ȷ Comparison of the number of linear iterations ˘minimum–maximum˘average¯
across all time steps¯, average time for solving one time step, values for the first step, and estimated
time of all time steps computed as the average time per step × 4000 + time for step 1. Here ‘diag.’
means scaling by diagonal entries of subdomain matrices, ‘2‚l.’ and ‘3‚l.’ stand for 2‚level and 3‚
level variants of the BDDC method, respectively, and ‘ad.’ denotes the adaptive version of BDDC.

The results of our simulations are summarized in Tables 1 and 2. The tested
preconditioners include block Jacobi and Additive Schwarz methods ˘ASM¯ from
PETSc. For ASM, we compare one and two layers of overlap ˘ASM–1 and ASM–2¯.
On subdomains, the incomplete LU factorization with different levels of allowed
fill‚in ˘ILU˘0¯, ILU˘1¯, and ILU˘2¯¯ is considered. As for the BDDC options, we use
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method #its. min–max˘avg.¯ t./step [s] #its. step 1 t. step 1 [s] est. sim. [s]
block Jacobi + ILU˘0¯ 461‚623˘498.6¯ 1.15 611 1.41 9201
block Jacobi + ILU˘1¯ 115‚260˘185.9¯ 0.71 258 0.98 5580
block Jacobi + ILU˘2¯ 107‚238˘175.1¯ 1.08 236 1.39 8641

ASM–1 + ILU˘0¯ 401‚569˘433.9¯ 1.60 557 2.05 12802
ASM–1 + ILU˘1¯ 216‚309˘241.6¯ 1.36 300 1.64 10881
ASM–2 + ILU˘0¯ 385‚575˘428.3¯ 1.95 550 2.43 15602
ASM–2 + ILU˘1¯ 218‚301˘240.5¯ 1.79 294 2.14 14322

3‚l. ad. BDDC + diag., 𝑟 = 0 14‚19˘15.6¯ 0.62 19 157.77 5118
3‚l. ad. BDDC + diag., 𝑟 = 50 11‚13˘12.3¯ 0.44 19 132.88 3652

3‚l. ad. BDDC + diag., 𝑟 = 100 11‚13˘11.9¯ 0.54 19 159.48 4479
3‚l. ad. BDDC + diag., 𝑟 = 200 7‚12˘9.9¯ 0.51 19 160.92 4241

3‚l. BDDC + diag., 𝑟 = 0 29‚42˘32.8¯ 1.18 42 2.86 9443
3‚l. BDDC + diag., 𝑟 = 50 17‚23˘20.4¯ 0.89 40 3.14 7123
3‚l. BDDC + diag., 𝑟 = 100 17‚20˘18.7¯ 0.75 40 2.83 6003
3‚l. BDDC + diag., 𝑟 = 200 14‚19˘15.6¯ 0.81 40 2.92 6483
3‚l. BDDC + arith., 𝑟 = 0 14‚19˘17.1¯ 0.59 30 4.87 4724
3‚l. BDDC + arith., 𝑟 = 50 14‚18˘17¯ 0.55 29 4.07 4404
3‚l. BDDC + arith., 𝑟 = 100 14‚17˘15.9¯ 0.55 30 5.00 4405
3‚l. BDDC + arith., 𝑟 = 200 14‚17˘15.7¯ 0.55 30 5.04 4405
3‚l. BDDC + diag., 𝑟 = 50 17‚25˘22.6¯ 0.71 40 5.31 5685

2‚l. ad. BDDC + diag., 𝑟 = 0 14‚19˘15.2¯ 0.81 19 157.72 6638
2‚l. ad. BDDC + diag., 𝑟 = 50 11‚13˘12.5¯ 0.68 19 158.83 5599

2‚l. BDDC + arith., 𝑟 = 50 13‚18˘16.5¯ 0.80 27 4.27 6404
2‚l. BDDC + diag., 𝑟 = 50 17‚13˘20.6¯ 1.01 38 4.80 8085

Table 2: Mesh 2ȷ Comparison of the number of linear iterations ˘minimum–maximum˘average¯
across all time steps¯, average time for solving one time step, values for the first step, and estimated
time of all time steps computed as the average time per step × 8000 + time for step 1. Here ‘diag.’
means scaling by diagonal entries of subdomain matrices, ‘arith.’ means scaling by arithmetic
averaging, ‘2‚l.’ and ‘3‚l.’ stand for 2‚level and 3‚level variants of the BDDC method, respectively,
and ‘ad.’ denotes the adaptive version of BDDC. Parameter 𝑟 represents the maximum number of
the stored Krylov basis vectors in recycling the Krylov subspaces.

several settings of the BDDCML library. Namely, we consider the 2‚ and 3‚level BDDC
methods, potentially with the adaptive selection of constraints for the coarse problem
as in [11]. Two sequential instances of the MUMPS sparse direct solver ˘version
5.1.2, [1]¯ are used for each subdomain, namely a Cholesky 𝐿𝐿𝑇 decomposition
of the block of unknows interior to the subdomain, and an 𝐿𝐷𝐿𝑇 factorization of
the saddle‚point problems of BDDC ˘see [2] for details¯. In addition, a distributed
memory instance of MUMPS is used for the final coarse problem.

The following coarse spaces are considered in the BDDC method. For the non‚
adaptive version, values at corners and arithmetic averages on each subdomain edge
and face are taken as the continuous coarse degrees of freedom. In the adaptive case,
a maximum of ten adaptive constraints is also considered on the faces.

We also compare results for two types of interface scaling, the standard one based
on arithmetic averages ˘arith¯ and the one based on diagonal entries of the subdomain
matrices ˘diag¯. In our computations, only the diagonal scaling is compatible with
the adaptive BDDC method, while the arithmetic scaling gives better results for the
non‚adaptive version.
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We also test several values of the number of stored Krylov basis vectors 𝑟 in
the approach to recycling the Krylov subspace by [3]. However, we observe little
difference among the values of 𝑟 = 0, 𝑟 = 50, 𝑟 = 100, and 𝑟 = 200. We have chosen
𝑟 = 50 for the other simulations with the BDDC method, which is the default for
BDDCML. We have observed a larger improvement for reusing the solution from one
time step as the starting approximation for the subsequent problem. This effect can
be observed from the difference between the number of iterations in the first time
step and their average number. The iterations are terminated when the relative norm
of the residual gets below 10

−6.
An estimated cost of solving the pressure problem for all time steps ˘est. sim.¯ is

also included in Tables 1 and 2. It is obtained as the time for the first step added to
the average time per other steps multiplied by the number of time steps.

We can see that for the smaller problem, the most efficient method is the block
Jacobi preconditioner with ILU˘0¯ on subdomains, followed by the same precon‚
ditioner with ILU˘1¯. The two configurations of the BDDC preconditioner are less
efficient than these options.

However, for the larger problem, the most efficient method becomes BDDC
with adaptive constraints, and also the non‚adaptive 3‚level BDDC method is more
efficient than the one‚level DD preconditioners, out of which the block Jacobi with
ILU˘1¯ requires the least time.

4 Conclusions

We have applied several variants of the BDDC method and one‚level DD methods to
the Poisson problem of pressure corrector within a solution of an unsteady problem
of incompressible flow with two different meshes.

We have seen that while for a smaller problem, a simple one‚level DD method
˘block Jacobi¯ provides the fastest solution, the adaptive BDDC method becomes
advantageous for larger problems divided into more subdomains. Although the setup
of the preconditioner is significantly more expensive, its price gets outweighed by
the lower number of CG iterations required in each time step. In addition, recycling
the Krylov subspace basis is also slightly beneficial for a reasonable size of the stored
basis ˘50 vectors in our experiments¯.

The results are encouraging, and we can expect that for even larger problems
divided into more subdomains, the adaptive‚multilevel BDDC method will be even
more beneficial. Confirming this expectation will be a subject of a future study as
well as other selection strategies for a suitable recycling basis.
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