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1 Introduction

In [7, 8], we derived and studied an asymptotic model for Darcy flow in fractured

porous media, when the fracture aperture 𝛿 is approaching zero. We showed that

our new, general models coincide in special cases with common models from the

literature, as e.g. [11, 2, 10, 1]. Our general modeling approach leads to coupling

conditions, which are suitable for small fracture aperture and for a resolution of

low frequencies 𝑘 . It also permits several adaptations, one of which we explore

here, namely new coupling conditions with extended range of validity, obtained by

replacing the parameters in the asymptotic coupling conditions by new parameters,

which we then optimize w.r.t. the error for a given range of frequency components

𝑘 ∈ [𝑘min, 𝑘max] present in the numerical solution to be computed. Our results are

based on the explicit formula from [8] for the error for the solution of the asymptotic

model in Fourier space, which we adapt to generalized parameters. In order to

obtain explicit formulas for the optimized parameters, we make some simplifying

assumptions, and then solve the resulting optimization problem analytically using

asymptotic techniques for small fracture apertures. Our approach could also be

adapted to more general situations, and we could have chosen to use expansions for

𝛿 → 𝛿0 or 𝑘 → 𝑘∞, with 𝛿0 or 𝑘∞ a fixed constant, for example. In this sense,

we want to outline conceptually a technique to improve the model accuracy for the

model in [7], which can be adapted by the reader to the situation at hand. An ad hoc

generalisation to fracture networks would be to apply the matrix‚fracture coupling

conditions, as derived in our manuscript, to each of the fracture segments and to

Martin J. Gander

Université de Genève, e‚mailȷ martin.gander@unige.ch

Julian Hennicker

Université du Luxembourg, e‚mailȷ julian.hennicker@uni.lu

Roland Masson

Université Côte d’Azur, CNRS, Inria, LJAD, e‚mailȷ roland.masson@univ-cotedazur.fr

303



304 Martin J. Gander, Julian Hennicker, and Roland Masson

Fig. 1: Geometry of the do‚

main under consideration.
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impose pressure continuity and flux conservation at the fracture intersections ˘see

e.g. [9], or [3] for an alternative formulation in the case of highly contrasted fracture

permeabilities¯. A rigorous treatment of cross points in domain decomposition is a

topic of substantial interest for current research ˘cf. [6], and references therein¯, and

its application to fracture intersections is a project for future work.

2 Model problem

In the domains illustrated in Fig. 1, we consider the system of PDEs

−divq 𝑗 +
b 𝑗

2
· ∇𝑢 𝑗 + (𝜂 𝑗 − div

b 𝑗

2
)𝑢 𝑗 = ℎ 𝑗 in Ω 𝑗 , 𝑗 = 1, 2, 𝑓 , ˘1¯

q 𝑗 = (A 𝑗∇ −
b 𝑗

2
)𝑢 𝑗 in Ω 𝑗 , 𝑗 = 1, 2, 𝑓 , ˘2¯

connected at 𝑥 = ±𝛿 with the coupling conditions

𝑢 𝑗 = 𝑢 𝑓 on 𝜕Ω 𝑗 ∩ 𝜕Ω 𝑓 , 𝑗 = 1, 2, ˘3¯

q 𝑗 · n 𝑗 = q 𝑓 · n 𝑗 on 𝜕Ω 𝑗 ∩ 𝜕Ω 𝑓 , 𝑗 = 1, 2. ˘4¯

The model coefficients are 𝜂 𝑗 : Ω 𝑗 → R≥0, b 𝑗 : Ω 𝑗 → R2, such that 𝜂 𝑗 −divb 𝑗 ≥ 0,

and coercive matrices A 𝑗 : Ω 𝑗 → R
2×2. The model unknowns are q 𝑗 and 𝑢 𝑗 . For

this problem, we can eliminate the fracture unknowns in Fourier space, as described

in [8]ȷ applying a Fourier transform in the direction tangential to the fracture, the

fracture Fourier coefficients have to satisfy specific ODEs which can be solved using

two of the four coupling conditions at the interfaces. Then, the fracture solution is

substituted into the remaining two coupling conditions. The resulting equations at

𝑥 = ±𝛿 for the coupling between the matrix domains, when the fracture has been

eliminated, are

q̂2 · n2 + q̂1 · n1 = −𝑎11

√︂

𝑎22

𝑎11

𝑘2 tanh
(

𝛿

√︂

𝑎22

𝑎11

𝑘2
)

(𝑢̂1 + 𝑢̂2), ˘5¯
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q̂2 · n2 − q̂1 · n1 =

𝑎11

√︃

𝑎22

𝑎11
𝑘2

tanh
(

𝛿
√︃

𝑎22

𝑎11
𝑘2
) (𝑢̂2 − 𝑢̂1), ˘6¯

under the simplifying assumption that ℎ 𝑓 ≡ 0, b 𝑓 = 0, 𝜂 𝑓 = 0, and A 𝑓 being

diagonal.

Asymptotic coupling for small 𝛿. We recall first the asymptotic coupling conditions

for small 𝛿 presented in [8]. For 𝛿 → 0, we can expand

tanh
(

𝛿

√︂

𝑎22

𝑎11

𝑘2
)

= 𝛿

√︂

𝑎22

𝑎11

𝑘2 − 𝛿3 1

3

√︂

𝑎22

𝑎11

𝑘2

3

+ O(𝛿5). ˘7¯

Truncation after the next‚to‚leading‚order term yields at 𝑥 = ±𝛿 the reduced order

coupling conditions

q̂red
1 · n1 + q̂red

2 · n2 = −𝛿𝑎22𝑘
2 (𝑢̂red

1 + 𝑢̂red
2 ), ˘8¯

q̂red
1 · n1 − q̂red

2 · n1 =
𝑎11

𝛿
(𝑢̂red

2 − 𝑢̂red
1 ). ˘9¯

3 Generalized coupling conditions and their optimization

The coupling conditions ˘8¯ and ˘9¯ are by construction most suitable for small

values of 𝛿, and also for small values of 𝑘 , due to a symmetry between 𝛿 and 𝑘 . In

practical numerical computations, the solution sought has however a certain range

of frequencies, 𝑘 ∈ [𝑘min, 𝑘max], not only low ones. To treat such a wider range of

frequencies, we use now a common technique from Optimized Schwarz methods in

domain decomposition [4, 5], which consists in keeping the structure of the reduced

order coupling conditions, and introducing new parameters as d.o.f. for a subsequent

optimization. In our case, the coupling conditions are of Robin type, and we replace

the occurring parameters in ˘8¯ and ˘9¯, 𝛿𝑎22 and
𝑎11

𝛿
, by newly introduced parameters

𝑝 and 𝑞, which gives the optimizable reduced coupling conditions

q̂red
1 · n1 + q̂red

2 · n2 = −𝑝𝑘2 (𝑢̂red
1 + 𝑢̂red

2 ),
q̂red

1 · n1 − q̂red
2 · n1 = 𝑞(𝑢̂red

2 − 𝑢̂red
1 ).

In [8], the error at the interfaces of the 𝛿‚asymptotic reduced order solution in Fourier

space was derived, see the result after eq. ˘7.5¯ therein. The errors for our generalized

reduced order model can analogously be obtained, and we get for 𝑗 = 1, 2

𝑒 𝑗 := 𝑢̂ 𝑗 − 𝑢̂red
𝑗

= 𝜌(𝑘, 𝑝) (𝑢̂2 + 𝑢̂1) + (−1) 𝑗+1𝜏(𝑘, 𝑞) (𝑢̂2 − 𝑢̂1),
˘10¯

where
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Fig. 2: Illustration of how to

find a solution to ˘14¯ and

˘15¯.

𝜌(𝑘, 𝑝) = −1

2

√︁

𝑎11𝑎22𝑘2 tanh(𝛿
√︃

𝑎22

𝑎11
𝑘2) − 𝑝𝑘2

√
𝑘2 + 𝑝𝑘2

, ˘11¯

𝜏(𝑘, 𝑞) = 1

2

√
𝑎11𝑎22𝑘2

tanh(𝛿
√︃

𝑎22
𝑎11

𝑘2)
− 𝑞

√
𝑘2 + 𝑞

. ˘12¯

In order to minimize the error for a range of frequencies in a simulation, we need to

solve

min
𝑝,𝑞

max
𝑘∈(𝑘min ,𝑘max)

|𝑒 𝑗 (𝑘, 𝑝, 𝑞) |, ˘13¯

for small 𝛿 ≪ 𝑘−1
max. Since (𝑢̂2 + 𝑢̂1) and (𝑢̂2 − 𝑢̂1) are linearly independent, our

objective functions to be minimized are |𝜌 | and |𝜏 |. The following lemma will be

applied without proof.

Lemma 1 The solution (𝑘∗, 𝑝∗, 𝑞∗) to

𝜕𝑘𝜌(𝑘∗, 𝑝∗) = 0 ˘14¯

|𝜌(𝑘max, 𝑝
∗) | = |𝜌(𝑘∗, 𝑝∗) | ˘15¯

|𝜏(𝑘max, 𝑞
∗) | = |𝜏(𝑘min, 𝑞

∗) | ˘16¯

solves the relevant min-max problem ˘13¯.

We will first solve for the equation ˘16¯, and then for the independent problem ˘14¯

and ˘15¯, cf. Fig. 2. Since we are interested in the case of fracture apertures, which

are not resolved by the mesh, i.e. 𝛿 ≪ 𝑘−1
max, we will solve the problem asymptotically

in 𝛿, for the leading and next–to–leading order terms of the expansions.

First, using the asymptotic expansion ˘7¯ in ˘12¯ yields

𝜏(𝑘, 𝑞) = 1

2

𝑎11

𝛿
+ 𝑎22 𝛿𝑘

2

3
− 𝑞

|𝑘 | + 𝑞
+ O(𝛿3). ˘17¯

Inserting this into ˘16¯ implies
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𝑎11

𝛿
+ 𝑎22 𝛿𝑘

2
min

3
− 𝑞∗

|𝑘min | + 𝑞∗
+

𝑎11

𝛿
+ 𝑎22 𝛿𝑘

2
max

3
− 𝑞∗

|𝑘max | + 𝑞∗
= O(𝛿3). ˘18¯

Hence,

𝑞∗ =
𝑎11

2𝛿
+
𝑎22𝛿𝑘

2
max + 𝑘2

min

12
− 𝑘max + 𝑘min

4

+
[

( 𝑎11

2𝛿
)2 + 𝑎11 (𝑘min + 𝑘max)

4𝛿
+
( 𝑘min + 𝑘max

4

)2

+
𝑎11𝑎22 (𝑘2

min
+ 𝑘2

max)
12

+ 𝑎22𝛿

12

(1

2
(𝑘min + 𝑘max)3 − (𝑘3

min + 𝑘3
max)

)

+
( 𝑎22𝛿

12
(𝑘min + 𝑘max)

)2] 1
2

.

˘19¯

We can now derive an asymptotic formula for the optimized error in the jump of 𝑢

across the fracture by substituting the optimized parameter 𝑞∗ into 𝜏, at 𝑘 = 𝑘𝑚𝑎𝑥 or

equivalently at 𝑘 = 𝑘min, and obtain

min
𝑞

max
𝑘∈(𝑘min ,𝑘max)

|𝜏(𝑘, 𝑞) |

= |𝜏(𝑘max, 𝑞
∗) | = |𝜏(𝑘min, 𝑞

∗) | =
𝑎22 (𝑘2

max − 𝑘2
min

)
12𝑎11

𝛿2 + O(𝛿3).
˘20¯

This result can further be compared to the corresponding error of the original model,

max
𝑘∈(𝑘min ,𝑘max)

|𝜏(𝑘, 𝑎11

𝑑
) | = 𝑎22𝑘

2
max

6𝑎11

𝛿2 + O(𝑑3). ˘21¯

We observe that the asymptotic constant in ˘20¯ is approximately half the value

of the asymptotic constant in ˘21¯. For solving for ˘14¯ and ˘15¯, we can proceed

analogouslyȷ first, we use the expansion ˘7¯ in ˘11¯, and obtain

𝜌(𝑘, 𝑝) = −1

2

𝑎22𝛿 −
𝑎2

22
𝛿3𝑘2

3𝑎11
− 𝑝

(𝑝 + 1
|𝑘 | )

+ O(𝛿4). ˘22¯

Substituting ˘22¯ into ˘14¯ and ˘15¯ implies

−
−3𝑎11 (𝑎22𝑑 − 𝑝∗) + 2𝑎2

22
𝑑3𝑘∗2 (𝑘∗𝑝∗ + 1) + 𝑎2

22
𝑑3𝑘∗2

3𝑎11 (𝑘∗𝑝∗ + 1)2
= O(𝛿4), ˘23¯

𝑎22𝛿 −
𝑎2

22
𝛿3𝑘∗2

3𝑎11
− 𝑝∗

(𝑝∗ + 1
|𝑘∗ | )

+
𝑎22𝛿 −

𝑎2
22
𝛿3𝑘2

max

3𝑎11
− 𝑝∗

(𝑝∗ + 1
|𝑘max | )

= O(𝛿4). ˘24¯

Solving ˘23¯ and ˘24¯, we obtain the optimized parameters

𝑘∗ =
𝑘max

2
+ O(𝛿4) and 𝑝∗ = 𝑎22𝛿 −

𝑎2
22
𝛿3𝑘2

max

4𝑎11

+ O(𝛿4). ˘25¯
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Finally, we obtain an asymptotic formula for the optimized error in the averaged

traces of 𝑢 at the interface, by substituting the optimized parameters into 𝜌,

min
𝑝

max
𝑘∈(𝑘min ,𝑘max)

|𝜌(𝑘, 𝑝) | = |𝜌(𝑘max, 𝑝
∗) | = |𝜌(𝑘∗, 𝑞∗) | =

𝑎2
22
𝑘3

max

24𝑎11

𝛿3 + O(𝛿4).

˘26¯

We can again compare this to the error of the original model,

max
𝑘∈(𝑘min ,𝑘max)

|𝜌(𝑘, 𝑎22𝛿) | =
𝑎2

22
𝑘3

max

6𝑎11

𝛿3 + O(𝛿4), ˘27¯

and observe that the asymptotic constant in ˘26¯ is a fourth of the value of the

asymptotic constant in ˘27¯.

4 Numerical results

We will now illustrate our results numerically and compare the theoretical error of

the optimized problem with parameters 𝑝∗ and 𝑞∗, for which we have the expressions

˘25¯ and ˘19¯, with the theoretical error of the asymptotic model ˘8¯, ˘9¯ from [7, 8],

which employs the parameters

𝑞red
=

𝑎11

𝛿
and 𝑝red

= 𝑎22𝛿.

These parameters have been calculated analytically, for small fracture apertures. On

the other hand, we can solve the problem ˘13¯ numerically for any given data, and thus

obtain general optimized parameters, which will serve as reference parameters, and

which we will denote by 𝑝opt and 𝑞opt. We will also show plots of the corresponding

errors

max
𝑘∈(𝑘min ,𝑘max)

|𝜏(𝑘, 𝑞) | and max
𝑘∈(𝑘min ,𝑘max)

|𝜌(𝑘, 𝑝) |,

for 𝑞 ∈ {𝑞opt, 𝑞∗, 𝑞red} and 𝑝 ∈ {𝑝opt, 𝑝∗, 𝑝red}. When interpreting the results, the

reader is referred to ˘10¯. Please also note that the jump 𝑢̂2− 𝑢̂1 is of order 𝛿, as shown

in [8]. We present three different casesȷ homogeneous isotropic fractures, fracture

barriers, and fracture conduits. The fracture apertures are from 10−2 to 10−5 and the

frequency range is set to [𝑘min = 0, 𝑘max = 𝜋], on an infinite domain.

Homogeneous isotropic fracture. This is a fracture with the same properties as the

bulk domain, i.e. 𝑎11 = 𝑎22 = 1. The plots in Fig. 3 show the theoretical errors of

the reduced order solutions, and their convergence to the reference solution, with

𝛿 → 0. We observe that the error of the asymptotic optimized model is in very good

agreement with the error of the numerically optimized model for all 𝛿. The slight

difference in 𝜌 for 𝛿 = 10−5 is due to round‚off error, as we have reached machine

precision. The error plots also reveal an advantage of the optimized models over the
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Fig. 3: Isotropic fracture, fracture barrier and fracture conduit ˘from top to bottom¯. Exact errors

for the asymptotic, asymptotic optimized, and numerically optimized parameters.

asymptotic model from [7]. The gain in accuracy can be analytically quantified by

the ratios of asymptotic constants in ˘20¯ and ˘21¯ for 𝜏, and in ˘26¯ and ˘27¯ for 𝜌.

Fracture barrier. Let us consider anisotropic diffusion coefficients in the fractureȷ

a very low normal diffusion 𝑎11 = 10−3 and a homogeneous tangential diffusion

𝑎22 = 1. Similar to the isotropic test case, we observe from the plots in Fig. 3 an

advantage of the optimized models over the asymptotic model from [7], which can

be quantified by looking at the asymptotic coefficients in ˘20¯ and ˘21¯ for 𝜏, and in

˘26¯ and ˘27¯ for 𝜌. We observe that the error of the asymptotic optimized model is

in very good agreement with the error of the numerically optimized model for all

𝛿, except for 𝛿 = 10−2, where there is a small difference. This is due to the strong

heterogeneity and anisotropy of the fracture diffusion coefficients, which have not

been accounted for in the derivation of the optimized parameters.

Fracture conduit. Let us now consider a high tangential diffusion 𝑎22 = 103 and a

homogeneous normal diffusion 𝑎11 = 1. The results shown in Fig. 3 are comparable

to the results from the previous test case.
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5 Conclusion

We presented a new way to generalize the coupling conditions from [7, 8] for discrete

fracture matrix models to a wider range of frequencies arising in the numerical

solution. To do so, we conserved the structure of the original coupling conditions

obtained for small fracture apertures, but optimized the occurring parameters for

a given range of numerical frequencies, with the error as the objective function.

This led to the new optimized parameters given in ˘19¯ and ˘25¯, which minimize

the error committed by the reduced order model. We also quantified the error by

comparing the asymptotic coefficients in the equations ˘20¯ and ˘21¯ for the error

in the pressure jump across the fracture, and in ˘26¯ and ˘27¯ for the error in the

averaged pressure across the fracture. This comparison shows that the error using

the optimized coupling conditions is two to four times smaller than for the original

ones. We finally illustrated the theoretical results numerically for several test cases.
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