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1 Introduction

This work is devoted to the eicient solution of variational‚monolithic luid‚structure

interaction ˘FSI¯ initial‚boundary value problems. Solvers for such monolithic sys‚

tems were developed, e.g., in [7, 3, 5, 15, 12, 11, 13, 9, 2]. Due to the interface

coupling conditions, the development of robust scalable parallel solvers remains a

challenging task, and to the best of our knowledge only semi‚cost optimal paral‚

lel approaches could be derived [4, 9]. The main purpose of this work consists in

further numerical studies of the solver, developed in [9], for a benchmark problem

that is motivated by hemodynamic applications. Speciically, we consider channel

low with elastic membranes and elastic solid walls. This situation is challenging

because of the thin elastic laps and was the motivation for luid‚structure interaction

models such as immersed methods [6, 14]. However, we use arbitrary Lagrangian‚

Eulerian coordinates ˘see e.g., [8]¯, because of its high accuracy of the coupling

conditions as the interface is tracked. For a careful evaluation of the performance of

our physics‚based block FSI preconditioner from [9], we use sparse direct solvers

for the mesh, solid, and luid subproblems. These sparse direct solvers should be

replaced by iterative solvers in the case of large‚scale problems with a high number

of degrees of freedom. Therein, the low part with well‚known saddle‚point structure

becomes very critical, which was not yet the case for our solver applied to the FSI

benchmarks in [11, 9]. The performance of our block FSI preconditioner and overall
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linear GMRES solver is evaluated in terms of iteration numbers as well as memory

storage. Moreover, iteration numbers of the nonlinear Newton solver are monitored.

Finally, a computational convergence analysis for lap tip displacements, drag and

lift for diferent spatial mesh levels is conducted.

2 FSI Model

Let the function spaces �̂ ˘including extensions of non‚homogeneous Dirichlet

conditions¯ and �̂0 ˘homogeneous Dirichlet conditions¯ be given. Our variational‚

monolithic arbitrary Lagrangian‚Eulerian FSI model from [17] ˘see also [9]¯ reads

in space‚time formulation as followsȷ Find a global vector‚valued velocity �̂, global

vector‚valued displacements �̂ = �̂� + �̂ � , and a scalar‚valued luid pressure �̂ � , i.e.,

�̂ := (�̂, �̂, �̂ � ) ∈ �̂ such that the luid/solid momentum equation

∫

�

(
(�̂ �̂ � �� �̂, �̂

�)
Ω̂ �

+ ( �̂ � �̂ (�̂
−1 (�̂ − �̂) · ∇̂)�̂), �̂�)

Ω̂ �
+ (�̂�̂ � �̂

−� , ∇̂�̂�)
Ω̂ �

+⟨�̂ � � � �̂ (�̂
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+ ( �̂��� �̂, �̂
�)

Ω̂�
+ (�̂Σ̂, ∇̂�̂�)

Ω̂�

)
��

+(�̂ (�̂(0) − �̂0), �̂
� (0))

Ω̂ �
+ (�̂(0) − �̂0, �̂
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Ω̂�

= 0,

the 2nd solid eq.

∫

�

(
�̂� (�� �̂� − �̂ |

Ω̂�
, �̂�

� )Ω̂�

)
�� + (�̂� (0) − �̂�,0, �̂

�
� (0)) = 0,

the mass conservation

∫

�

(
(�̂�� (�̂ �̂−1�̂), �̂

�

�
)
Ω̂ �

)
�� = 0,

and the mesh motion

∫

�

(�̂mesh, ∇̂�̂
�
� )Ω̂ �

�� = 0,

hold for all Ψ̂ = (�̂� , �̂�, �̂
�

�
) ∈ �̂0, with �̂�

= �̂�
�
+ �̂�

� . Furthermore, �̂ = �̂ +

∇̂�̂, �̂ = ��� (�̂), �̂ � = −�̂ � �̂+ �̂ � � � (∇̂�̂ � �̂
−1+ �̂−� ∇̂�̂ � ), Σ̂ = 2�� �̂+���� (�̂) �̂ , �̂ =

0.5(�̂� �̂ − �̂), �̂mesh = ��∇̂�̂ � , densities �̂� , �̂ � , kinematic viscosity � � , and the

Lamé parameters �� , �� [9]. In compact form, the above problem readsȷ Find �̂ ∈ �̂

such that �̂(�̂) (Ψ̂) = 0 ∀ Ψ̂ ∈ �̂0, where the FSI equations are combined in the

semi‚linear form �̂(�̂) (Ψ̂).

3 Numerical solution and physics-based preconditioners

3.1 Newton linearization

The previous FSI model is discretized in time by an � stable implicit inite diference

scheme and in space by Galerkin inite elements on quadrilaterals. The temporal and
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spatial discretization parameters are denoted by � and ℎ, respectively. At time step

��, we need to solve for ��+1
ℎ

at ��+1 for which we utilize Newton’s method. At each

Newton step ˘index �¯, we have to solve a linear variational problem of the form

�′(�
�, �

ℎ
) (��ℎ,Ψℎ)

︸                   ︷︷                   ︸
=���

= −�(�
�, �

ℎ
) (Ψℎ)

︸             ︷︷             ︸
=�

∀Ψℎ ∈ �̂0
ℎ ⊂ �̂0,

�
�, �+1

ℎ
= �

�, �

ℎ
+ ���ℎ, � ∈ (0, 1],

until |� � | ≤ 10−6 |�0 |. The linesearch parameter is � = 1 in our simulations. Thus,

we inally obtain the linear system of inite element equations

��� = �

for determining the Newton correction ��. We note that the inite element functions

and operators are identiied with the corresponding matrix and vector representations

via the inite element isomorphism. Up to 105 unknowns in 2�, respectively, 104

unknowns in 3D, sparse direct solvers work still ine in the context of FSI problems.

However, for large‚scale problems with considerable more unknowns, we should

use preconditioned iterative solvers in order to reduce the memory demand and the

computational costs in terms of arithmetical operations required.

3.2 Block structure of linear systems

Since the FSI problem is non‚symmetric, a GMRES scheme ˘generalized minimal

residual¯ is a classical choice for the overall solution of the linear system arising

at each Newton iteration. In order to reduce the number of GMRES iterations, one

needs a suitable preconditioner � for the system matrix �. In [9], we have constructed

a ˘left¯ preconditioner � such that

�−1��� = �−1�

with �−1 ≈ �−1 in the sense that �−1� is close to the identity matrix �. We refer the

reader to [16] for GMRES convergence results.

Observing the previous FSI model, we have three unknowns when global con‚

tinuity of the displacements �̂ � and �̂� and �̂ � and �̂� is realized, which is due to

the variational‚monolithic coupling scheme. Consequently, �̂, �̂, �̂ are obtained from

three principal problemsȷ (�) mesh motion, ( � ) luid, (�) solid. This results into the

following 3 × 3 block systemȷ

� :=



M C�� 0

C�� S C� �

C � � C � � F


.
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A brief analysis yields that the principal problems appear on the diagonal. The

coupling terms C∗∗ are on the of‚diagonals. In [7], details on the inluence of these

were studied on the overall solver behavior. Aiming for cost‚optimal parallel schemes,

the interface coupling terms play however a crucial rule [9].

3.3 Physics-based preconditioner

We now concentrate on the construction of the preconditioner �−1, which is based

on a simpliied LDU block factorization

� ≈



� 0 0

0 � 0

C � �M
−1 C̃ � �S

−1 �





M 0 0

0 S 0

0 0 F





� M−1C�� 0

0 � S−1C� �

0 0 �


= ��� = �,

where we neglect the coupling term C��. We have ˘see [11][Section 6.4.3]¯ C̃ � � =

C � � − C � �M
−1C�� . Having such a decomposition, it is easy to compute the action

of the inverse. We note that, in Krylov subspace methods, we only need the action

of �−1 on the residual � .

From linear algebra we know that �−1� = �−1�−1�−1� with � = ��� from

above. Consecutively solving with �, � and � yields the following resultȷ

Algorithm Evaluation of �−1� ˘matrix‚vector multiplications¯ȷ

1. Solve �� = M−1��
2. Solve �� = S−1��
3. Solve � � = F −1 (� � − C � ��� − C � ���)

4. Update �� = �� − S−1C� � � �

5. Update �� = �� −M−1C���� □

It remains to discuss the solutions of the subproblems with the system matricesM,

S and F . In our 2� numerical example presented in Sect. 4, we use the sparse direct

solver MUMPS1 that solves these smaller subproblems very eiciently. However, if

the subproblems are larger, we should replace the direct solvers for M−1, S−1 and

F −1 by preconditioned iterative solvers M̃−1, S̃−1 and F̃ −1; see [11, 9], where we

used AMG‚based solvers for the subproblems. The implementation is based on the

open‚source inite element package deal.II [1].

4 Flapping membranes with elastic solid walls

This example was originally inspired from [6], later extended by ourselves, and

the current coniguration was recently used in [18] for optimal control with luid‚

structure interaction. The geometry is shown in Figure 1 ˘left¯. It consists of the

1 httpȷ//mumps.enseeiht.fr/
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luid domain Ω̂Fluid := (0, 8) × (0.0, 1.61) \ Ω̂Flaps with inscribed laps Ω̂Flaps :=

(1.ß788, 2.0) × ((0, 0.7) ∪ (0.ß1, 1.61)). It is further surrounded by elastic arteries

Ω̂Artery := (0, 8) × ((−0.1, 0.0) ∪ (1.61, 1.71)) on the top and bottom of Ω̂.

Ω̂Fluid
Γ̂in Γ̂out 1.61 1.81

0.7

Ω̂Flaps

8

Ω̂Artery

1.9788 6

Ω̂Artery(0, 0)

Γ̂solid

Γ̂solid

Γ̂solid

Γ̂solid

Γ̂stress

0 0.5 1 1.5 2 2.5 3
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1.5
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Time [s]

Ve
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ty
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m
/s
]

vmean(t)

Fig. 1: Geometry with inlow proile ˘left¯ and mean inlow velocity ˘right¯.

On the inlow boundary, Γ̂in := {0} × (0, 1.61), we prescribe a parabolic inlow

proile �̂(0, �, �) := 6(1.61)−2�(1.61 − �)�mean (�) for � ∈ � := [0, 3.6], where

�mean (�) is given by the proile in Figure 1 ˘right¯. At the outlow boundary the

do‚nothing outlow condition Γ̂out is prescribed for �̂ and �̂. The elastic walls are

ixed at the left and right, i.e., on Γ̂solid, left := {0} × ((−0.1, 0.0) ∪ (1.61, 1.71)) and

Γ̂solid, right := {8} × ((−0.1, 0.0) ∪ (1.61, 1.71)), we prescribe �̂ = 0 and �̂ = 0.

The computations are performed on the time interval � = (0, 3.6s). The luid

parameters are given by the kinematic viscosity � � = 10−1cm2 s−1, and density

�̂ � = 102g cm−3. In the solid domains Ω̂Flaps and Ω̂Artery, we use a Poisson ratio

� = 0.4, and density �� = 102g cm−3. The Lamé parameters are given by �
laps
� =

2.0 · 107g cm−1 s−2 in Ω̂Flaps, and �walls
� = 1.0 · 10ßg cm−1 s−2 in Ω̂Artery.

We are interested in evaluating the number of GMRES iterations per linear solve in

each Newton step to achieve a reduction of 10−4. Moreover, we monitor the number of

nonlinear iterations, the position of the tip (2, 0.ß1) of the upper elastic lap, and the

drag and lift (�� , ��) =

∫
Γ̂stress

�̂
(
−�̂� + �̂ � �̂ � (∇̂�̂�̂

−1 + �̂−�∇�� )
)
�̂−� �̂ ��̂ with

Γ̂stress := (2, 8) × {1.61}.

Figure 2 shows that, during the whole simulation, we require an almost constant

number of 4 to 6 Newton iterations. Similarly, the average number of linear GMRES

iterations stays between 8 and 11 during reinement, although a slight increase

can be observed on the iner grids. The computational aspects of certain parts of

our simulation are summarized in Table 1. Our proposed iterative solver achieves

similar performance as the direct solver on the coarsest grid. On the inest grid,

with about 2 million dofs, the iterative variant is already about a factor of 2.3‚times

faster. Furthermore, the memory footprint of the iterative variant is roughly halved

compared to the sparse direct solver; see Table 2. We note that for 2� problems,

sparse direct solvers are hard to beat in terms of performance. For larger problems,

we can split the application of the direct solver to the respective subproblems. This

reduces the amount of memory and lops required to compute the factorization.
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The resulting drag and lift values are visualized in Figure 3, the elongation of the

tip is plotted in Figure 4. All these functional evaluations show surprisingly good

agreement throughout the various levels of reinement. Only small diferences are

visible at the tips. As expected due to the symmetry of the coniguration, evaluating

the displacement, drag, or lift in the lower or upper part does not make a diference.
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Fig. 2: Number of GMRES ˘higher values¯ and Newton iterations ˘lower values¯.

ℓ DoFs Assemble [s] Factorization [s] Application [s] Total [s]

2 8.7 · 103 1.6 · 10−1 3.2 · 10−1 6.7 · 10−3 3.3 · 10−1

3 3.4 · 104 6.2 · 10−1 1.7 · 100 2.8 · 10−2 1.7 · 100

4 1.3 · 105 2.5 · 100 ß.5 · 100 1.2 · 10−1 ß.6 · 100

5 5.4 · 105 1.0 · 101 5.7 · 101 5.4 · 10−1 5.7 · 101

6 2.1 · 106 4.1 · 101 4.2 · 102 2.3 · 100 4.2 · 102

ℓ DoFs Assemble [s] Factorization [s] Application [s] Total [s]

2 8.7 · 103 1.6 · 10−1 1.1 · 10−1 2.0 · 10−1 3.1 · 10−1

3 3.4 · 104 6.3 · 10−1 6.7 · 10−1 5.7 · 10−1 1.2 · 100

4 1.3 · 105 2.5 · 100 3.6 · 100 2.7 · 100 6.3 · 100

5 5.4 · 105 1.0 · 101 2.0 · 101 1.3 · 101 3.3 · 101

6 2.1 · 106 4.1 · 101 1.1 · 102 6.ß · 101 1.8 · 102

Table 1: Timings of a direct solver for the full FSI system ˘top¯ and our preconditioner with direct

solvers for the luid, solid, and mesh subproblems. Average time for the assembly, factorization,

application of the preconditioner, and the total time for the a single linear system are given.

5 Conclusions and Outlook

We presented a preconditioner based on a block‚LDU‚decomposition of the linear

systems for a challenging 2� FSI problem. For a small number of degrees of freedoms,
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ℓ DoFs Matrix[B] Fluid[B] Mesh[B] Solid[B] �−1 [B] Full[B]

2 8.7 · 103 6.3 · 106 4.0 · 106 4.0 · 106 3.0 · 106 1.1 · 107 2.1 · 107

3 3.4 · 104 2.5 · 107 1.8 · 107 1.6 · 107 1.4 · 107 4.8 · 107 ß.3 · 107

4 1.3 · 105 1.0 · 108 8.2 · 107 7.6 · 107 6.5 · 107 2.2 · 108 4.3 · 108

Table 2: Memory requirements using a direct solver ˘Full¯ for the whole system compared to our

preconditioner �−1, which uses direct solvers for luid, solid and mesh.
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Fig. 3: Drag ˘left¯ and lift ˘right¯ evaluated at the artery behind the top lap, i.e., (2.0, 8.0) × {1.61}.
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Fig. 4: Displacement of the top lap at (2.0, 0.ß1) in x‚direction ˘left¯ and y‚direction ˘right¯.

a sparse direct solver for the full problem is hard to beat. Nonetheless, the reduction of

the sparse direct solver to the separate subproblems already leads to an improvement

of a factor 2 in terms of memory requirements. For large systems, the storage cost

and computational complexity of sparse direct solvers becomes a prohibitive barrier.

Replacing the solvers for the luid, solid and mesh problems by iterative or matrix‚free

techniques may solve this issue. Implementing matrix‚free solvers for FSI is a very

challenging task, mainly caused by the diiculties to treat the luid subproblem. In

[10], we have applied the matrix‚free technique successfully to fracture propagation.
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