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1 Introduction

Nonlinear FETI-DP (Finite Element Tearing and Interconnection - Dual Primal)
methods [10] are nonlinear generalizations of linear FETI-DP domain decomposition
methods [16, 5]. Nonlinear FETI-DP domain decomposition methods have shown
their robustness and scalability, e.g., for linear and nonlinear structural mechanics
problems [11], where results for up to 786 432 cores were presented. Related non-
linear domain decomposition methods (DDMs) are nonlinear BDDC methods [10]
(derived from linear Balancing Domain Decomposition by Constraints [4]), nonlin-
ear FETI-1methods [15] and theASPIN approach (Additive Schwarz Preconditioned
Inexact Newton) method [2, 9, 8].
The idea of nonlinear FETI-DP methods is to decompose the global problem

𝐾 (�̂�) = 𝑓 into local nonlinear problems 𝐾𝑖 (𝑢𝑖) = 𝑓𝑖 , 𝑖 = 1, . . . , 𝑁 , defined on
nonoverlapping subdomainsΩ𝑖 = 1, . . . , 𝑁 , and to enforce continuity on the interface
as Γ := ∪𝑁𝑖 𝜕Ω𝑖∩𝜕Ω using subassembly of primal variables andLagrangemultipliers
𝜆.
Nonlinear FETI-DP methods make use of nonlinear elimination, where different

methods result from different elimination sets. In [12], four different types of static
elimination sets were introduced, referred to as Nonlinear-FETI-DP-𝑥 (NL-𝑥), where
𝑥 = 1 (no elimination is applied), 𝑥 = 2 (primal, dual and inner variables are
eliminated), 𝑥 = 3 (dual and inner variables are eliminated) and 𝑥 = 4 (only the
inner variables are eliminated). Other choices of elimination sets include automatic
strategies to determine the elimination set [7, 18].
If a tangent is available, nonlinear problems are typically solved by Newton’s

method or related methods such as quasi-Newton, inexact Newton or Newton-like
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methods [14, 17]. However, without globalization Newton’s method may fail to
converge.
Common globalization methods are trust-region methods or line search methods.

In this paper,we study line searchmethods for the globalization of nonlinear FETI-DP
methods for nonlinear structural mechanics problems. We use an exact differentiable
penalty function [1] related to the augmented Lagrange approach, but we can use
the Hessian of the standard Lagrange function for a Newton-like descent method.

2 Nonlinear FETI-DP

Nonlinear FETI-DPmethods aremethods to solve the nonlinear saddle point problem

𝐾 (�̃�) + 𝐵𝑇𝜆 = 𝑓 ,
𝐵�̃� = 0, (1)

which directly corresponds to the linear FETI-DP saddle point problem [16].
Here, 𝐵 is the FETI-DP jump operator (as in linear FETI-DP methods), and
𝜆 is the vector of corresponding Lagrange multipliers. The nonlinear operator
𝐾 (�̃�) := 𝑅𝑇Π𝐾 (𝑅Π �̃�) is obtained from finite element subassembly of the block
operator 𝐾 (𝑢) = [𝐾1 (𝑢1), . . . , 𝐾𝑁 (𝑢𝑁 )]𝑇 in the primal variables using the opera-
tor 𝑅𝑇Π as in linear FETI-DP methods [16]. Here, this coupling provides a nonlinear
coarse problem for the method. Thus, 𝐾 represents a nonlinear coarse approximation
of the original problem.
Next, we perform the nonlinear elimination: we split the first row in (1) according

to disjoint index sets 𝐸, 𝐿 (eliminate or linearize) and solve in a first step

𝐾𝐸 (�̃�𝐸 , �̃�𝐿) − 𝑓𝐸 + 𝐵𝑇𝐸𝜆 = 0, (2)

for �̃�𝐸 , given �̃�𝐿 and 𝜆. Then, we can insert �̃�𝐸 into the remaining equations and
solve by linearization in �̃�𝐿 and 𝜆, and using the implicit function theorem. Let us
recall, that for NL-1 we have 𝐸 = ∅. For NL-2 the elimination set 𝐸 contains all
variables and 𝐿 = ∅, for NL-3 we eliminate the inner and dual variables [16], and
for NL-4 we eliminate only the inner variables. Automatic strategies to determine
the elimination set 𝐸 can also be considered but are not discussed here. Note that
the local nonlinear elimination uses an exact Newton method in the sense that we
perform a Newton iteration using a direct sparse solver for the Newton equation.
This can be afforded since this is an operation local to a subdomain. For NL-2 the
elimination involves also the (small) coarse space.
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3 Exact Differentiable Penalty Method with Nonlinear
Elimination

For∇𝐽 (�̃�) = 𝐾 (�̃�)− 𝑓 the equations in (1) are the first order optimality conditions for
the minimization of the energymin 𝐽 (�̃�) subject to the continuity constraint 𝐵�̃� = 0,
where 𝐽 (�̃�) := 𝐽 (𝑅Π �̃�) is obtained from the global energy 𝐽 (𝑢) =

∑𝑁
𝑖=1 𝐽

(𝑖) (𝑢𝑖).
Exact penalty method in nonlinear FETI-DP To be consistent with the vast
literature in optimization, we will now use the notation

min
𝑥∈R𝑛

𝐽 (𝑥) subject to (s.t.) 𝑐𝑖 (𝑥) = 0, 𝑖 = 1, . . . , 𝑝, (3)

where 𝐽, 𝑐𝑖 ∈ 𝐶3 (R𝑛), 𝑖 = 1, . . . , 𝑝. In the FETI-DP context, 𝑥 is �̃�, and 𝑐(𝑥) = 0 are
the continuity constraints 𝐵�̃� = 0.
Penalty methods replace the original constrained minimization problem by a

sequence of unconstrained minimization problems, where a penalty term, which
measures the constraint violation, is added to objective function. In [3] the exact
differentiable penalty function

𝑃(𝑥, 𝜆; 𝜇, 𝑀) = L(𝑥, 𝜆) + 𝜇
2
∥𝑐(𝑥)∥2 + 1

2
∥𝑀 (𝑥)∇𝑥L(𝑥, 𝜆)∥2, (4)

was introduced, where L is the Lagrange function, 𝜇 > 0 and 𝑀 : R𝑛 → R𝑚×𝑛,
𝑝 ≤ 𝑚 ≤ 𝑛. This penalty function is exact in the sense that for each local solution 𝑥 of
the original constrained minimization problem and the related Lagrange multipliers
�̂�, a finite penalty parameter 𝜇 exists such that for 𝜇 > 𝜇 the point 𝑥 is the first
component of a local minimum (𝑥, �̂�) of the penalty function 𝑃(𝑥, 𝜆). In this sense,
𝜇 → ∞ is not needed. The function 𝑃(· , · ; 𝜇, 𝑀) is closely related to augmented
Lagrange methods, but there are some differences. The most import advantage,
compared to standard augmented Lagrange, especially in the nonlinear FETI-DP
context, is the fact that we can use the standard Lagrange-Newton equation

[∇2
𝑥𝑥L(𝑥, 𝜆) ∇2

𝑥𝜆L(𝑥, 𝜆)
∇2
𝜆𝑥L(𝑥, 𝜆) 𝑂

] [
𝛿𝑥
𝛿𝜆

]
= −

[∇𝑥L(𝑥, 𝜆)
∇𝜆L(𝑥, 𝜆)

]
(5)

see, e.g. [1], to compute a Newton-like search direction. Therefore, we do not need
to modify the Hessian of L, as in the standard augmented Lagrange method.
A detailed analysis of 𝑃 can be found in [1, Chapter 4.3], including a proof of

the exactness of 𝑃 on 𝑋∗, where 𝑋∗ := {𝑥 ∈ R𝑛 | ∇𝑐(𝑥) has rank 𝑝}, under the
assumptions that 𝑀 ∈ 𝐶1 (𝑋∗) and 𝑀∇𝑐 is invertible on 𝑋∗.
We see that (5) is not affected by the penalty parameter 𝜇. Indeed, 𝜇 only affects

the acceptance criterion for this direction. Let us remark that in our context a good
choice for 𝑀 is 𝑀 (𝑥) = ∇𝑐(𝑥)𝑇 . Note that we assume that ∇𝑐 has full rank.
Let us remark that the standard method for the update of the penalty parameter

in [1] needs to compute (∇𝑐(𝑥)𝑇𝑀 (𝑥)𝑇 )−1𝑐(𝑥). In our context, this is computa-
tionally expensive. Instead, we consider an update strategy inspired by augmented
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Lagrange methods [6]: Set 𝜇𝑘+1 = 𝜀update 𝜇𝑘 whenever ∥𝑐(𝑥 (𝑘) )∥ ≥ 𝜌 ∥𝑐(𝑥 (𝑘+1) )∥
for 𝜀update > 1 and 𝜌 ∈ (0, 1). The drawback is that we cannot guarantee any
more that 𝜇 is increased only a finite number of times, which holds for the method
suggested in [1].
A standard convergence result (every limit point of a Newton-like algorithm is

a stationary point for 𝑃) can be obtained under standard assumptions, see e.g. [1],
quite similar to Assumption 3.1, which we use later on.
We recall that by nonlinear elimination of 𝑥𝐸 , we refer to solving

∇𝑥𝐸L(𝑥𝐸 , 𝑥𝐿 , 𝜆) = ∇𝑥𝐸 𝐽 (𝑥𝐸 , 𝑥𝐿) + ∇𝑥𝐸 𝑐(𝑥𝐸 , 𝑥𝐿)𝜆 = 0 (6)

for 𝑥𝐸 , given 𝑥𝐿 and 𝜆, which defines the implicit function 𝑔𝐸 (𝑥𝐿 , 𝜆). For simplicity,
we now write ∇𝐸 instead of ∇𝑥𝐸 and ∇𝐿 instead of ∇𝑥𝐿 . We allow 𝐸 = ∅ or 𝐿 = ∅,
then the related matrices or vectors are empty.
Combination with Nonlinear Elimination For the combination of𝑃(· , · ; 𝜇, 𝑀)
with nonlinear elimination, we replace 𝑥𝐸 by the elimination 𝑔𝐸 and define the
functions 𝔏(𝑥𝐿 , 𝜆) := L(𝑔𝐸 (𝑥𝐿 , 𝜆), 𝑥𝐿 , 𝜆), C(𝑥𝐿 , 𝜆) := 𝑐(𝑔𝐸 (𝑥𝐿 , 𝜆), 𝑥𝐿), and the
penalty function

P(𝑥𝐿 , 𝜆; 𝜇,M)

= 𝔏(𝑥𝐿 , 𝜆) + 𝜇2 ∥C(𝑥𝐿 , 𝜆)∥
2 + 1

2
∥M(𝑥𝐿 , 𝜆)∇𝐿𝔏(𝑥𝐿 , 𝜆)∥2,

(7)

where 𝜇 > 0 andM : R𝑛𝐿 × R𝑝 → R𝑝×𝑛𝐿 . According to the considerations above,
we defineM asM(𝑥𝐿 , 𝜆) := ∇𝐿𝑐

��𝑇
(𝑔𝐸 (𝑥𝐿 ,𝜆) ,𝑥𝐿 ) . By ∇𝐿𝑐

��
(𝑔𝐸 (𝑥𝐿 ,𝜆) ,𝑥𝐿 ) we mean the

evaluation of ∇𝐿𝑐 at the point (𝑔𝐸 (𝑥𝐿 , 𝜆), 𝑥𝐿). By our assumptions on 𝑐 it follows
thatM ∈ 𝐶1 (𝑋∗𝐿 × Λ∗), where 𝑋∗𝐿 × Λ∗ := {(𝑥𝐿 , 𝜆) | ∇𝑐

��
(𝑔𝐸 (𝑥𝐿 ,𝜆) ,𝑥𝐿 ) has rank 𝑝}.

The special choice of M has the advantage of being consistent with the case
𝐸 = ∅, 𝐿 = R𝑛. In this situation, we have P(· , · ; 𝜇,M) = 𝑃(· , · ; 𝜇, 𝑀). The
drawback is that for general selections of 𝐸, 𝐿 we cannot guarantee thatM has full
rank. In the context of four nonlinear FETI-DP NL-1, 2, 3, 4methods this means that
only for NL-4 (NL-1) the matrixM has full rank. In NL-3 the matrixM has only
zero entries and is empty in NL-2.
We cannot expect that all theoretical properties of 𝑃 are transferred toP. However,

the exactness remains valid as well as some other properties.

Theorem 1 ([13])
If (𝑥∗𝐸 , 𝑥∗𝐿 , 𝜆∗) is a KKT point of (3) and (𝑥∗𝐿 , 𝜆∗) ∈ 𝑋∗𝐿 × Λ∗, then (𝑥∗𝐿 , 𝜆∗) is a

stationary point of P(· , · ; 𝜇,M) and

P(𝑥∗𝐿 , 𝜆∗; 𝜇,M) = J (𝑥∗𝐿 , 𝜆∗) = 𝐽 (𝑔𝐸 (𝑥∗𝐸 , 𝜆∗), 𝑥∗𝐿) = 𝐽 (𝑥∗𝐸 , 𝑥∗𝐿).

Furthermore, if ∇2
𝑥𝑥L

��
(𝑥∗𝐸 ,𝑥∗𝐿 ,𝜆∗)

is positive definite on ker(∇𝑐
��𝑇
(𝑥∗𝐸 ,𝑥∗𝐿 )

), then there
exists a 𝜇 > 0 such that (𝑥∗𝐿 , 𝜆∗) is a local minimum of P(·, · ; 𝜇,M) for all 𝜇 > 𝜇.
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Init: (𝑥 (0)𝐿 , 𝜆(0) ) ∈ R𝑛𝐿× ∈ R𝑝 , 𝛽, 𝜂1 , 𝜌 ∈ (0, 1) , 𝜀update > 1, 𝜀tol , 𝜇0 , 𝜂2 , 𝜂3 , 𝑝 > 0.
for 𝑘 = 0, 1, . . . until convergence do
1. If ∥∇P (𝑘) ∥∞ ≤ 𝜀tol, STOP.
2. (a) Compute ∇𝔏 (𝑘) and ∇2𝔏 (𝑘) .

(b) Solve

[
∇2
𝐿𝐿𝔏

(𝑘) ∇2
𝐿𝜆𝔏

(𝑘)

∇2
𝜆𝐿𝔏

(𝑘) ∇2
𝜆𝜆𝔏

(𝑘)

] [
𝛿𝑥
(𝑘)
𝐿

𝛿𝜆(𝑘)

]
= −

[∇𝐿𝔏 (𝑘)
∇𝜆𝔏 (𝑘)

]
.

(c) Set 𝑑 (𝑘) :=

[
𝛿𝑥
(𝑘)
𝐿

𝛿𝜆(𝑘)

]
.

if ∇P (𝑘) 𝑇𝑑 (𝑘) ≤ −min{𝜂1 , 𝜂2 ∥𝑑 (𝑘) ∥𝑝 } ∥𝑑 (𝑘) ∥2. then

Set

[
𝛿𝑥
(𝑘)
𝐿

𝛿𝜆(𝑘)

]
:= −

[∇𝐿P (𝑘)
∇𝜆P (𝑘)

]
.

end
3. Compute the largest number 𝛼𝑘 ∈ {𝛽𝑙 | 𝑙 = 0, 1, 2, . . . } such that the Armijo ruleP(𝑥 (𝑘)𝐿 + 𝛼𝑘 𝛿𝑥 (𝑘)𝐿 , 𝜆(𝑘) + 𝛼𝑘 𝛿𝜆(𝑘) ; 𝜇𝑘 ,M) − P(𝑥 (𝑘)𝐿 , 𝜆(𝑘) ; 𝜇𝑘 ,M)

≤ 𝜂3 𝛼𝑘

(
∇𝐿P (𝑘) 𝑇 𝛿𝑥 (𝑘)𝐿 + ∇𝜆P (𝑘) 𝑇 𝛿𝜆(𝑘)

)
holds.

4. Set 𝑥 (𝑘+1)𝐿 = 𝑥 (𝑘)𝐿 + 𝛼𝑘 𝛿𝑥 (𝑘)𝐿 and 𝜆(𝑘+1) = 𝜆(𝑘) + 𝛼𝑘 𝛿𝜆(𝑘) .
5. if ∥ C(𝑥 (𝑘+1)𝐿 , 𝜆(𝑘+1) ) ∥ ≥ 𝜌 ∥ C(𝑥 (𝑘)𝐿 , 𝜆(𝑘) ) ∥ then

Set 𝜇𝑘+1 = 𝜀update 𝜇𝑘 .
else

Set 𝜇𝑘+1 = 𝜇𝑘 .
end

end

Fig. 1: Newton-like algorithm for the computation of stationary points of P.

Since P is an exact penalty function, we consider the unconstrained minimization
problem min𝑥𝐿 ,𝜆 P(𝑥𝐿 , 𝜆; 𝜇,M) to solve (3).
The same arguments, which show that (5) is a Newton-like direction for 𝑃, imply

that [
𝛿𝑥𝐿
𝛿𝜆

]
= −

[∇2
𝐿𝐿𝔏(𝑥𝐿 , 𝜆) ∇2

𝐿𝜆𝔏(𝑥𝐿 , 𝜆)
∇2
𝜆𝐿𝔏(𝑥𝐿 , 𝜆) ∇2

𝜆𝜆𝔏(𝑥𝐿 , 𝜆)
]−1 [∇𝐿𝔏(𝑥𝐿 , 𝜆)
∇𝜆𝔏(𝑥𝐿 , 𝜆)

]
(8)

is a Newton-like direction forP(· , · ; 𝜇,M) at (𝑥𝐿 , 𝜆). Let us remark that the solution
of (8) is equivalent to the solution of the standard Lagrange-Newton equation at the
point (𝑔𝐸 (𝑥𝐿 , 𝜆)), 𝑥𝐿 , 𝜆).
We outline a Newton-like minimization algorithm for P in Figure 1, where we de-

fine∇𝔏 (𝑘) := ∇𝔏(𝑥 (𝑘)𝐿 , 𝜆 (𝑘) ),∇2𝔏 (𝑘) := ∇2𝔏(𝑥 (𝑘)𝐿 , 𝜆 (𝑘) ),∇P (𝑘) := ∇P(𝑥 (𝑘)𝐿 , 𝜆 (𝑘) ; 𝜇𝑘 ,M)
and the blocks ∇2

𝐿𝐿𝔏
(𝑘) , etc.

For the main convergence result of the algorithm presented in Figure 1 we need
the following assumptions:

Assumption 3.1 The sequence
(
(𝑥 (𝑘)𝐿 , 𝜆 (𝑘) )

)
𝑘

generated by the Algorithm in Fig-
ure 1 is contained in a convex set Ω𝐿 × Λ and the following properties hold:

(a) The nonlinear elimination 𝑔𝐸 (𝑥𝐿 , 𝜆) exists for all (𝑥𝐿 , 𝜆) ∈ Ω𝐿 × Λ.
(b) The functions 𝐽 and 𝑐𝑖 , 𝑖 = 1, . . . , 𝑝 and their first, second and third derivatives

are bounded on 𝑔𝐸 (Ω𝐿 × Λ) ×Ω𝐿 .
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(c) The sequence (𝜇𝑘)𝑘 is bounded.

The boundedness assumption 3.1(b) is needed to ensure that 2.(c) in algorithm of
Figure 1 is a generalized angle condition. Furthermore, we need 3.1(c) to prove the
main convergence result.

Theorem 2 ([13])
Let Assumption 3.1 be fulfilled. Then every limit point of the sequence ((𝑥 (𝑘)𝐿 , 𝜆 (𝑘) ))𝑘

generated by the algorithm presented in Figure 1 is a stationary point of P.

4 Numerical Results

We consider a Neo-Hookean benchmark problem using stiff or almost incompress-
ible inclusions embedded in each subdomain. The strain energy density function for
the compressible part is given by 𝐽 (𝑥) = 𝜇

2 (tr(𝐹 (𝑥)𝑇𝐹 (𝑥)) − 2) − 𝜇 log(𝜓(𝑥)) +
𝜆
2 (log(𝜓(𝑥)))2, where 𝜓(𝑥) = det(𝐹 (𝑥)), 𝐹 (𝑥) = ∇𝜑(𝑥), 𝜑(𝑥) = 𝑥 + 𝑢(𝑥), 𝑢(𝑥)
denotes the displacement and 𝜇 and 𝜆 are the Lamé constants. The nearly incom-
pressible part is given by 𝐽 (𝑥) = 𝜇

2 (tr( 1
𝜓 (𝑥) 𝐹 (𝑥)𝑇𝐹 (𝑥)) − 2) + 𝜅2 (𝜓(𝑥) − 1)2, where

𝜅 = 𝜆(1+𝜇)
3𝜇 , see, e.g. [18]. As material parameters, we use 𝐸 = 210 and 𝜈 = 0.3 for

the matrix material, 𝐸 = 210 000 and 𝜈 = 0.3 for the stiff inclusions, and, finally,
𝐸 = 210 and 𝜈 = 0.499 for the (mildly) almost incompressible inclusions. For the
discretization, we use 𝑃 2 elements, which are not stable for the incompressible case.
As Krylov methods, we use GMRES or CG: During the factorizations, it is

detected whether 𝐷𝐾 is positive definite; in this case, we use CG, otherwise GMRES
is used. In Table 1 we see that Newton’s method, without globalization, will not
converge in the case without inclusions for the body force (0,−20)𝑇 , and in the cases
with inclusions even for the smaller body force (0,−10)𝑇 . In Table 2 we see that,
using the algorithm in Figure 1 using the four different nonlinear FETI-DP methods
NL-1, NL-2, NL-3, and NL-4, we have convergence even for the higher body force
(0,−60)𝑇 . The cases (0,−10)𝑇 and (0,−20)𝑇 converge as well, but are not presented
here. The failure of NL-1, 2 to converge despite globalization is due to the fact that
we reached the stopping criterion, max{ ∥𝑥 (𝑘+1)−𝑥 (𝑘) ∥∞ , ∥𝜆(𝑘+1)−𝜆(𝑘) ∥∞ }

max{ ∥𝑥 (𝑘) ∥∞ , ∥𝜆(𝑘) ∥∞ } < 10−8. This
indicates that no sufficient progress is reached, and we abort the simulation since
we are limited to machine precision. This example also illustrates that nonlinear
elimination can help to achieve convergence.
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Fig. 2:Model problem with 4 × 4 subdomains.
Left: Start configuration; blue: matrix material, red: inclusions.
Right: Deformed state

Table 1: Nonlinear FETI-DP-1 or 𝑁𝐿–1; 𝐻/ℎ ≈ 8, see Fig. 2; Newton’s method without global-
ization; the number of Newton iterations is shown; no conv.: ∥∇L (𝑘) ∥∞ ≥ 1𝑒5 ∥∇L (0) ∥∞

No Globalization

body force
𝑓=(0, −10)𝑇 𝑓=(0, −20)𝑇 𝑓=(0, −10)𝑇 𝑓=(0, −10)𝑇
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