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1 Introduction

The numerical solution of partial differential equations ˘PDEs¯ is often carried

out using discretization techniques, such as the finite element method ˘FEM¯, and

typically requires the solution of a nonlinear system of equations. These nonlinear

systems are often solved using some variant of the Newton method, which utilizes

a sequence of iterates generated by solving a linear system of equations. However,

for problems such as inverse problems, optimal control problems, or higher‚order

coupled PDEs, it can be computationally expensive, or even impossible to assemble

a Jacobian matrix.

The Jacobian‚free Newton Krylov ˘JFNK¯ methods exploit the finite difference

method to evaluate the action of a Jacobian on a vector, without requiring the

knowledge of the analytical form of the Jacobian and still retain local quadratic

convergence of the Newton method. Even though JFNK methods are quite effec‚

tive, the convergence properties of the Krylov subspace methods deteriorate with

increasing problem size. Hence, it is desirable to reduce the overall computational

cost by accelerating the convergence of the Krylov methods. To this end, many pre‚

conditioning strategies have been proposed in the literature, see e.g., [5]. We aim

to employ multigrid ˘MG¯ as a preconditioner to accelerate the convergence of the

Krylov subspace methods. Unfortunately, it is not straightforward to incorporate the

MG method into the JFNK framework, as the standard implementations of the MG
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method require either a matrix representation of the Jacobian or an analytical form

of the Jacobian.

In this work, we propose a matrix‚free geometric multigrid preconditioner for the

Krylov methods used within the JFNK framework. The proposed method exploits the

finite difference technique to evaluate the action of Jacobian on a vector on all levels

of multilevel hierarchy and does not require explicit knowledge of the Jacobian.

Additionally, we employ polynomial smoothers which can be naturally extended

to a matrix‚free framework. Compared to other matrix‚free MG preconditioners

proposed in the literature, e.g., [1, 2, 6, 7], our method does not require the knowledge

of the analytical form of the Jacobian, and no additional modifications are required

in the assembly routine to compute the action of a Jacobian on a vector.

Jacobian-free Newton-Krylov methods: The Newton method is the most frequently

used iterative scheme for solving nonlinear problems. Newton method is designed

to find a root 𝒙∗ ∈ R𝑛 of some nonlinear equation 𝐹 (𝒙∗) = 0. The iteration process

has the following formȷ

𝒙
(𝑘+1)

= 𝒙
(𝑘) + 𝛼𝛿𝒙 (𝑘) , for 𝑘 = 0, 1, 2, . . . ,

where 𝛼 > 0 denotes a line‚search parameter and 𝛿𝒙 (𝑘) denotes a Newton direc‚

tion. The correction 𝛿𝒙 (𝑘) is obtained by solving the following linear system of

equationsȷ 𝐽 (𝒙 (𝑘) )𝛿𝒙 (𝑘)
= −𝐹 (𝒙 (𝑘) ), where 𝐽 (𝒙 (𝑘) ) = ∇𝐹 (𝒙 (𝑘) ). In the context of

this work, we assume that the 𝐹 is obtained as a gradient of some energy func‚

tional Ψ, i.e., 𝐹 (𝒙 (𝑘) ) ≡ ∇Ψ(𝒙 (𝑘) ). In this way, the Jacobian 𝐽 will be a symmetric

matrix, which in turn allows us to use a multigrid preconditioner. In the JFNK

methods [5], the solution process is performed without explicit knowledge of the Ja‚

cobian 𝐽. Instead, the application of a Jacobian to a vector is approximated using the

finite difference scheme, given as 𝐽 (𝒙 (𝑘) )𝒖 ≈ 𝐹 (𝒙(𝑘)+𝜖𝒖)−𝐹 (𝒙(𝑘) )
𝜖

, where we choose

𝜖 =
1

𝑛∥𝒖∥2

∑𝑛
𝑖=1

√
𝜀𝑝 (1+ |𝑥 (𝑘)𝑖

|) and 𝜀𝑝 denotes the machine precision. The value of

the finite difference interval 𝜖 is chosen, such that the approximation of the Jacobian

is sufficiently accurate and is not spoiled by the roundoff errors.

2 Matrix-free Multigrid Preconditioner

The multigrid method is one of the most efficient techniques for solving linear

systems of equations stemming from the discretization of the PDEs. In the case

of geometric multigrid methods, we employ a hierarchy of nested meshes {Tℓ }𝐿ℓ=0
,

which encapsulate the computational domain Ω. Through the following, we use the

subscript ℓ = 0, . . . , 𝐿 to denote a level, where 𝐿 denotes the finest level and 0

denotes the coarsest level. We denote the number of unknowns on a given level as

{𝑛ℓ }𝐿ℓ=0
.
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The multigrid method relies on three main ingredients. Firstly, a set of trans‚

fer operators is required to pass the information between the subsequent levels

of the multilevel hierarchy. Secondly, suitable smoothers are needed to damp the

high‚frequency components of the error associated with a given level ℓ. Finally, an

appropriate coarse level solver is required to eliminate the low‚frequency compo‚

nents of the error. As the JFNK methods are inherently matrix‚free, these ingredients

have to be adapted, such that they give rise to a matrix‚free multigrid preconditioner.

Transfer Operators: In the standard multigrid method, the interpolation 𝑰
ℓ
ℓ−1

:

R
𝑛ℓ−1 → R

𝑛ℓ and restriction 𝑹
ℓ−1
ℓ

: R𝑛ℓ → R
𝑛ℓ−1 operators are employed to pro‚

longate the correction to a finer level and restrict the residual to a coarser level,

respectively. The presented multigrid method requires an evaluation of the action of

a Jacobian on a vector on all levels of the multilevel hierarchy. Therefore, the current

Newton iterate also has to be transferred to the coarser levels. To this aim, we employ

a projection operator 𝑷
ℓ−1
ℓ

: R𝑛ℓ → R
𝑛ℓ−1 . In our numerical experiments, we use

𝑹
ℓ−1
ℓ

:= (𝑰ℓ
ℓ−1

)⊤ and 𝑷
ℓ−1
ℓ

= 2−𝑑 (𝑰ℓ
ℓ−1

)⊤, where 𝑑 denotes the spatial dimension in

which the problem is defined. The scaling factor 2−𝑑 in the definition of the projec‚

tion operator 𝑷ℓ−1
ℓ

is added to ensure that the constant functions are preserved when

projecting them from a fine space to a coarse space.

Smoothers: We utilize the three‚level Chebyshev semi‚iterative method [2], as its

implementation does not require explicit matrix representation. This method is con‚

vergent if all eigenvalues of the Jacobian lie within a bounded interval. Our aim here

is to reduce only the high‚frequency components of the error associated with a given

level ℓ. Therefore, we focus on the interval [0.06𝜆ℓ , 1.2𝜆ℓ], where 𝜆ℓ is an estimated

largest eigenvalue of the Jacobian on the level ℓ. We estimate the eigenvalue 𝜆ℓ
at the beginning of each Newton iteration. More precisely, we employ the Power

method, which we terminate within 30 iterations or when the difference between the

subsequent estimates is lower than 10−2. As an initial guess for the Power method, a

random vector is provided at the first Netwon step. While for the subsequent Newton

steps, we utilize the eigenvector associated with the largest eigenvalue, obtained

during the previous eigenvalue estimation process, as an initial guess.

The coarse level solver: In the traditional multigrid method, a direct solver is used

to eliminate the remaining low‚frequency components of the error on the coarsest

level. In the Jacobian‚free framework, we replace the direct solver with a Krylov‚

subspace method, e.g., CG method. However, to obtain an accurate solution, a

large number of iterations may be required. To reduce the amount of work, we

employ a preconditioner based on the limited memory BFGS ˘L‚BFGS¯ quasi‚

Newton method [8]. The L‚BFGS preconditioner is created during the very first call

to the CG method by storing a few secant pairs. Following [8], we collect the secant

pairs using the uniform sampling method, which allows us to capture the whole

spectrum of the Jacobian.

By design, the CG method is suitable for solving the symmetric positive definite

systems. When solving the non‚convex problems, the arising linear systems might

be indefinite, which can render the CG method ineffective. To ensure the usability of
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Algorithm 1: Jacobian-free Multigrid - + (a1, a2)-cycle

1 Function: sℓ ← � MG(x
(:)

ℓ
, � (x

(:)

ℓ
) , bℓ , ℓ)

2 sℓ ← � 0 ; ⊲ Initialize correction

3 if ℓ ≠ 0 then

4 sℓ ← � Smoother(sℓ , x
(:)

ℓ
, � (x

(:)

ℓ
) , bℓ , a1) ; ⊲ Pre-smoothing

5 rℓ−1 ← � X
ℓ−1

ℓ
(bℓ − � (x

(:)

ℓ
)sℓ ) ; ⊲ Restrict the residual

6 x
(:)

ℓ−1
← � Vℓ−1

ℓ
x
(:)

ℓ
; ⊲ Restrict Newton iterate

7 cℓ−1 ← � MG(x
(:)

ℓ−1
, � (x

(:)

ℓ−1
) , rℓ−1, ℓ − 1) ; ⊲ Recursion

8 sℓ ← � sℓ + O
ℓ

ℓ−1
cℓ−1 ; ⊲ Update the correction

9 sℓ ← � Smoother(sℓ , x
(:)

ℓ
, � (x

(:)

ℓ
) , bℓ , a2) ; ⊲ Post-smoothing

10 else

11 _2+ ← � 0 ; ⊲ Initialize shifting parameter

12 s0, _2 ← � CG(s0, x
(:)

0
, � (x

(:)

0
) , r0, _2+, a∗) ; ⊲ Coarse level solver

13 while _2 < 0 do

14 _2+ ← � W min(_2 , _2+) ; ⊲ Update shifting parameter

15 s0, _2 ← � CG(s0, x
(:)

0
, � (x

(:)

0
) , r0, _2+, a∗) ; ⊲ Shifted CG solver

the CG method, we propose a few modifications. Firstly, we terminate the iteration

process, as soon as the negative curvature is encountered [9]. At this point, we also

compute the Rayleigh quotient, given as 𝜆𝑐 =

(

𝒑⊤𝑨𝒑

𝒑⊤𝒑

)

, which gives an estimate of the

eigenvalue encountered at the current iterate ˘that will be also negative¯. Secondly,

we shift the whole spectrum of the Jacobian by adding a multiple of identity, given

as 𝑨𝑠 = 𝑨 + (−𝜆𝑐)𝑰, where 𝑰 denotes an identity matrix. The shifting strategy is

applied recursively, until the modified 𝑨𝑠 becomes positive definite. Please note,

the application of the 𝑨𝑠 to a vector can be evaluated trivially in the Jacobian‚

free framework. The shifting parameter 𝛾 has to be chosen to be large enough that

we do not require many shifting iterations and it has to be small enough that the

𝜆min (𝑨𝑠) ≈ −𝜆min (𝑨).
The multigrid algorithm equipped with the shifting strategy is described in Al‚

gorithm 1.

3 Numerical Experiments

We investigate the performance of the proposed MG preconditioner through three

examples. We note, for these examples the analytical form of the Jacobian can be

computed, but following the JFNK methods, we restrict ourselves from using this

information or assembling the Jacobian on the coarsest level. We use discretize then

optimize approach, where the discretization is done with the first order FE method.
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Bratu: Let us consider a domain Ω := (0, 1)2. The solution of Bratu problem is

obtained by solving the following energy minimization problemȷ

min
𝑢∈𝐻1 (Ω)

Ψ𝐵 (𝑢) =
∫

Ω

1

2
∥∇𝑢∥2 − 𝜆 exp(𝑢) 𝑑𝒙,

such that 𝑢 = 0 on Γ,

˘1¯

where we choose 𝜆 = 5 and Γ = 𝜕Ω denotes the boundary. In our experiments, the

mesh T0 is triangular and consists of 25 elements in each direction.

Minimal Surface: We consider again a domain Ω := (0, 1)2. This experiment aims

to find the surface of minimal area described by the function 𝑢 by solving the

following convex minimization problemȷ

min
𝑢∈𝐻1 (Ω)

Ψ𝑀 (𝑢) =
∫

Ω

√︁

(1 + ∥∇𝑢∥2) 𝑑𝒙,

such that 𝑢 = 0 on Γ𝐷1
,

𝑢 = 𝑥(1 − 𝑥) on Γ𝐷2
,

˘2¯

where, Γ𝐷1
= {[0, 𝑦) ∪ [1, 𝑦)} and Γ𝐷2

= {(𝑥, 0] ∪ (𝑥, 1]}. We consider mesh T0 as

in the previous example.

Hyperelasticity: At the end, we investigate a finite strain deformation of a beam,

Ω = (0, 10)×(0, 1)×(0, 1), with the rotational deformation applied on the boundaries

Γ𝐷1
= {0} × [0, 1] × [0, 1], and Γ𝐷2

= {10} × [0, 1] × [0, 1]. We consider Neo‚

Hookean material model, and seek for the displacement field 𝒖 by solving the

following non‚convex minimization problemȷ

min
𝒖∈[𝐻1 (Ω) ]3

Ψ𝑁 (𝒖) =
∫

Ω

𝜇

2
(𝐼𝐶 − 3) − 𝜇(ln(𝐽)) + 𝜆

2
(ln(𝐽))2 𝑑𝒙,

such that 𝒖 = 0 on Γ𝐷1
,

𝒖 = 𝒖2 on Γ𝐷2
,

˘3¯

where 𝒖2 = (0, 0.5(0.5+ (𝑦−0.5) cos(𝜋/6) − (𝑧−0.5) sin(𝜋/6) − 𝑦), 0.5(0.5+ (𝑦−
0.5) sin(𝜋/6)+(𝑧−0.5) cos(𝜋/6)−𝑧)). Here, 𝐽 := det(𝑭) denotes the determinant of

the deformation gradient 𝑭 := 𝑰 + ∇𝒖. The first invariant of the right Cauchy‚Green

tensor is computed as 𝐼𝐶 := trace(𝑪), where 𝑪 = 𝑭
⊤
𝑭. For our experiment, the

Lamé parameters 𝜇 =
𝐸

2(1+𝜈) and 𝜆 =
𝐸𝜈

(1+𝜈) (1−2𝜈) are obtained by setting the value

of Young’s modulus 𝐸 = 10 and Poisson’s ratio 𝜈 = 0.3. On the coarse level, the

domain is discretized using hexahedral mesh, denoted as T0, with 10 elements in

𝑥‚directions and 1 elements in 𝑦 and 𝑧 directions.

Setup for the solution strategy: We solve the proposed numerical examples

using the inexact JFNK ˘IN¯ method with a cubic backtracking line‚search al‚

gorithm [3]. At each IN iteration, the search direction is required to satisfy
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∥𝐽 (𝒙 (𝑘) )𝛿𝒙 (𝑘)+𝐹 (𝒙 (𝑘) )∥ ≤ 𝜂 (𝑘) ∥𝐹 (𝒙 (𝑘) )∥, where 𝜂 (𝑘)
= min(0.5, ∥𝐹 (𝒙 (𝑘) )∥). The

algorithm terminates if ∥𝐹 (𝒙 (𝑘) )∥ < 10−6. We solve 𝐽 (𝒙 (𝑘) )𝛿𝒙 (𝑘)
= −𝐹 (𝒙 (𝑘) ), us‚

ing three different solution strategiesȷ the CG method without any preconditioner

˘CG¯, the CG method with L‚BFGS preconditioner ˘CG‚QN¯, and the CG method

with the multigrid preconditioner ˘CG‚MG¯. The L‚BFGS preconditioner is con‚

structed during the first inexact Newton iteration by storing 20 secant pairs. The

V‚cycle MG preconditioner performs 5 pre‚smoothing and 5 post‚smoothing steps.

On the coarse level, we use the CG‚QN method with the spectral shift, which is acti‚

vated only if the negative curvature is encountered. We employ a shifting parameter

𝛾 = 5, in Algorithm 1. The coarse level solver terminates if ∥𝒓0∥ ≤ 10−12, or if the

maximum number of iterations, given by the number of unknowns, is reached.

The performance of all solution strategies is evaluated for increasing problem

size on successively finer refinement levels. The refinement levels are denoted by

𝐿0, 𝐿1 . . . , 𝐿5, where 𝐿0 denotes the coarse level, equipped with mesh T0. The

number of levels in the multilevel hierarchy is increased with the refinement level,

e.g., MG employs 2 levels for the 𝐿1 refinement level and 6 levels for the 𝐿5

refinement level. We assess the performance of the methods by measuring the number

of required gradient evaluations ˘GE¯. In multilevel settings, the number of effective

gradient evaluations is computed as GE =
∑𝐿

ℓ=0 2−𝑑 (𝐿−ℓ)GEℓ , where GEℓ denotes

the number of gradient calls on a given level ℓ.

We note, the discretization of the minimization problem is performed using the

finite element framework libMesh [4], while the presented solution strategies are

implemented as a part of the open‚source library UTOPIA [10].

Influence of different preconditioners on the performance of the JFNK method:

Table 1 and 2 illustrate the performance of the IN method with different linear solvers.

As we can see, for the smaller problems ˘𝐿1, 𝐿2¯, the IN method with the CG and

the CG‚QN outperforms the IN method with the CG‚MG method. However, as the

problem size increases, the IN method with CG‚MG is significantly more efficient

than with CG or CG‚QN. For instance, for the Bratu example and 𝐿5 refinement

level, the CG‚MG method outperforms the other methods by an order of magnitude.

The nonlinearity of the Bratu problem is not affected by the problem size and

therefore the number of IN iterations remains constant for all refinement levels. We

can also observe that the behavior of the CG‚MG method is level‚independent. The

number of required gradient evaluations is therefore bounded after few refinements,

as the cost of the coarse level solver becomes negligible. The same behavior can not

be observed for the minimal surface problem, as this problem is strongly nonlinear

and the nonlinearity of the problem grows with increasing problem size. Due to this

reason, the number of IN iterations and the total gradient evaluations also increases

for the minimal surface problem. However, we note, that increase is more prevalent

for IN method equipped with the CG or the CG‚QN methods than with the CG‚MG

method.

For the hyperelasticity example, the stored energy functional is non‚convex hence

the negative curvature is quite often encountered on the coarse level. We notice that

with increasing problem size, the negative curvature is encountered fewer times. As
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Levels
Bratu Minimal surface Hyperelasticity

CG CG‚QN CG‚MG CG CG‚QN CG‚MG CG CG‚QN CG‚MG

𝐿1 176 107 264 360 229 596 467 546 868

𝐿2 367 233 253 835 501 567 626 655 372

𝐿3 767 476 244 2009 1170 662 1349 1464 426

𝐿4 1582 1097 239 3544 2201 782 1971 1954 733

𝐿5 3377 2345 238 6154 4316 931 – – –

Table 1: The number of total gradient evaluations required in inexact JFNK method.

Levels
Bratu Minimal surface Hyperelasticity

# IN # CG‚MG # AGE # IN # CG‚MG # AGE #IN # CG‚MG # AGE

𝐿1 3 7 39.32 6 13 45.85 9 28 34.66

𝐿2 3 9 28.25 7 18 31.51 5 15 25.12

𝐿3 3 9 27.10 8 25 26.50 5 20 20.95

𝐿4 3 9 26.61 9 32 24.45 5 39 18.76

𝐿5 3 9 26.53 9 41 22.79 – – –

Table 2: The total number of inexact JFNK iterations ˘# IN¯, the total number of CG‚MG iterations

˘# CG‚MG¯, and the average number of gradient evaluations per total linear iteration ˘# AGE¯.

Levels
CG CG‚QN Shifted CG‚QN

# IN # CG‚MG #GE # IN # CG‚MG #GE # IN # CG‚MG #GE

𝐿1 9 3010 51094 9 130 2057 9 28 868

𝐿2 5 16 44866 5 1017 14814 5 15 372

𝐿3 5 21 1265 5 26 512 5 20 426

𝐿4 6 39 733 6 39 733 5 39 733

Table 3: The total number of inexact JFNK iterations ˘# IN¯, the total number of CG‚MG iterations

˘# CG‚MG¯, and the total number of gradient evaluations ˘# GE¯ with CG, CG‚QN, and shifted

CG‚QN methods. The experiment was performed for the hyperelasticity example.

a consequence, a huge amount of coarse level gradient evaluations is required to shift

the spectrum of the Jacobian for smaller problems. Therefore, the average number of

gradient evaluations per CG‚MG decreases as the problem size increases, as we can

observe in Table 2. Nevertheless, IN method equipped with the CG‚MG outperforms

the CG and the CG‚QN methods, see Table 1. Interestingly, the use of the L‚BFGS

preconditioner is less effective, as in the first IN iteration, the CG method terminates

before the whole spectrum of the Jacobian can be captured.

Effect of the coarse level solver on the performance of the multigrid: Due to

the non‚convexity of the stored energy function, for the hyperelasticity problem, it

becomes essential to shift the spectrum of the Jacobian on the coarse level to retain

the performance of the multigrid preconditioner. If only CG or CG‚QN method

is used, the total number of effective gradient evaluations blows up, as we can

see in Table 3. This is due to the fact, that the coarse level solver ˘CG/CG‚QN

method¯ terminates as soon as the negative curvature is encountered. Therefore,

the low‚frequency components of the error are not eliminated and the multigrid

preconditioner becomes unstable. In contrast, if we employ the shifting strategy,
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the multigrid preconditioner becomes stable and the total number of the gradient

evaluations grows in proportion with the number of required linear iterations.

In conclusion, the performed experiments demonstrate that the proposed Jacobian‚

free multigrid is a robust and stable preconditioner when applied to problems of var‚

ious types. Additionally, we observe level‚independence behavior, if the nonlinearity

or non‚convexity of the problem is not influenced by the discretization parameter.
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