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1 Introduction
Consider the nonlinear optimal control problem

min
𝑦,𝑢

𝐽 (𝑦, 𝑢) :=
1
2
∥𝑦 − 𝑦𝑑 ∥2𝐿2 +

𝜈

2
∥𝑢∥2

𝐿2 + 𝛽∥𝑢∥𝐿1 ,

s.t. − Δ𝑦 + 𝑐𝑦 + 𝑏𝜑(𝑦) = 𝑓 + 𝑢 in Ω, 𝑦 = 0 on 𝜕Ω,
𝑢 ∈ 𝑈ad := {𝑣 ∈ 𝐿2 (Ω) : |𝑣 | ≤ 𝑢̄ in Ω},

(1)

where ∥ · ∥𝐿𝑟 denotes the usual norm for 𝐿𝑟 (Ω) with 1 ≤ 𝑟 ≤ ∞, the functions
𝑦𝑑 , 𝑓 ∈ 𝐿2 (Ω) are given, and the scalar parameters 𝑏, 𝑐, 𝛽 ≥ 0 and 𝜈, 𝛽 ≥ 0
are known. Our model includes problems such as the simplified Ginzburg-Landau
superconductivity equation as well as inverse problems where 𝐿1-regularization
is used to enhance sparsity of the control function 𝑢. For simplicity, the domain
Ω ⊂ R2 is assumed to be a rectangle (0, 𝐿̃) × (0, 𝐿̂). The function 𝜑 : R → R
is assumed to be of class 𝐶2, with locally bounded and locally Lipschitz second
derivative and such that 𝜕𝑦𝜑(𝑦) ≥ 0. These assumptions guarantee that theNemytskii
operator 𝑦(·) ↦→ 𝜑(𝑦(·)) is twice continuously Fréchet differentiable in 𝐿∞ (Ω). In
this setting, the optimal control problem (1) is well posed in the sense that there
exists a minimizer (𝑦, 𝑢) ∈ 𝑋 × 𝐿2 (Ω), with 𝑋 := 𝐻1

0 (Ω) ∩ 𝐿∞ (Ω), cf. [7, 1]. Our
goal is to derive efficient nonlinear preconditioners for solving (1) using domain
decomposition techniques.
Let (𝑦, 𝑢) ∈ 𝑋 × 𝐿2 (Ω) be a solution to (1). Then there exists an adjoint variable

𝑝 ∈ 𝑋 such that (𝑦, 𝑢, 𝑝) satisfies the system [6, Theorem 2.3]
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−Δ𝑦 + 𝑐𝑦 + 𝑏𝜑(𝑦) = 𝑓 + 𝑢 in Ω with 𝑦 = 0 on 𝜕Ω,
−Δ𝑝 + 𝑐𝑝 + 𝑏𝜑′(𝑦)𝑝 = 𝑦 − 𝑦𝑑 in Ω with 𝑝 = 0 on 𝜕Ω,

𝑢 = 𝜇(𝑝),

where 𝜇 : 𝐿∞ (Ω) → 𝐿2 (Ω) is

𝜇(𝑝) =max(0, (−𝛽 − 𝑝)/𝜈) +min(0, (𝛽 − 𝑝)/𝜈)
−max(0,−𝑢̄ + (−𝑝 − 𝛽)/𝜈) −min(0, 𝑢̄ + (−𝑝 + 𝛽)/𝜈). (2)

We remark that for 𝛽 = 0, the previous formula becomes 𝜇(𝑝) = P𝑈ad (−𝑝/𝜈), which
is the usual projection formula that leads to the optimality condition 𝑢 = P𝑈ad (−𝑝/𝜈);
see [7]. Moreover, if 𝛽 = 0 with 𝑢̄ = ∞, one obtains that 𝜇(𝑝) = −𝑝/𝜈, which implies
the usual optimality condition 𝜈𝑢+ 𝑝 = 0, where 𝜈𝑢+ 𝑝 is the gradient of the reduced
cost functional 𝐽 (𝑢) = 𝐽 (𝑦(𝑢), 𝑢) [7].
Eliminating the control using 𝜇(𝑝), the first-order optimality system becomes

−Δ𝑦 + 𝑐𝑦 + 𝑏𝜑(𝑦) = 𝑓 + 𝜇(𝑝) in Ω with 𝑦 = 0 on 𝜕Ω,
−Δ𝑝 + 𝑐𝑝 + 𝑏𝜑′(𝑦) (𝑝) = 𝑦 − 𝑦𝑑 in Ω with 𝑝 = 0 on 𝜕Ω.

(3)

This nonlinear and nonsmooth system admits a solution (𝑦, 𝑝) ∈ 𝑋2 [1, 7].

2 Optimized Schwarz method and preconditioner
In this section, we introduce an optimized Schwarz method (OSM) for solving the
optimality system (3). We consider the non-overlapping decomposition of Ω shown

Ω1Γ0 Γ1 · · · Ω 𝑗Γ 𝑗−1 Γ 𝑗 · · · Ω𝑁Γ𝑁−1 Γ𝑁𝐿

𝐿 𝐿 𝐿

Fig. 1: Non-overlapping domain decomposition.

in Fig. 1 and given by disjoint subdomains Ω 𝑗 , 𝑗 = 1, . . . , 𝑁 such that Ω = ∪𝑁𝑗=1Ω 𝑗 .
The sets Γ 𝑗 := Ω 𝑗 ∩ Ω 𝑗+1, 𝑗 = 1, . . . , 𝑁 − 1 are the interfaces. Moreover, we define
Γext
𝑗 := 𝜕Ω 𝑗 ∩ 𝜕Ω, 𝑗 = 1, . . . , 𝑁 , which represent the external boundaries of the
subdomains. The optimality system (3) can be written as a coupled system of 𝑁
subproblems defined on the subdomains Ω 𝑗 , 𝑗 = 1, . . . , 𝑁 , of the form

−Δ𝑦 𝑗 + 𝑐𝑦 𝑗 + 𝑏𝜑(𝑦 𝑗 ) = 𝑓 𝑗 + 𝜇(𝑝 𝑗 ) in Ω 𝑗 , (4a)
−Δ𝑝 𝑗 + 𝑐𝑝 𝑗 + 𝑏𝜑′(𝑦 𝑗 ) (𝑝 𝑗 ) = 𝑦 𝑗 − 𝑦𝑑, 𝑗 in Ω 𝑗 (4b)
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𝑦 𝑗 = 0, 𝑝 𝑗 = 0 on Γext
𝑗 , (4c)

𝑞 𝑦 𝑗 + 𝜕𝑥𝑦 𝑗 = 𝑞 𝑦 𝑗+1 + 𝜕𝑥𝑦 𝑗+1 on Γ 𝑗 , (4d)
𝑞 𝑝 𝑗 + 𝜕𝑥 𝑝 𝑗 = 𝑞 𝑝 𝑗+1 + 𝜕𝑥 𝑝 𝑗+1 on Γ 𝑗 , (4e)
𝑞 𝑦 𝑗 − 𝜕𝑥𝑦 𝑗 = 𝑞 𝑦 𝑗−1 − 𝜕𝑥𝑦 𝑗−1 on Γ 𝑗−1, (4f)
𝑞 𝑝 𝑗 − 𝜕𝑥 𝑝 𝑗 = 𝑞 𝑝 𝑗−1 − 𝜕𝑥 𝑝 𝑗−1 on Γ 𝑗−1, (4g)

for 𝑗 = 1, . . . , 𝑁 , where for 𝑗 ∈ {1, 𝑁} the boundary conditions at Γ0 and Γ𝑁 ,
respectively, must be replaced with homogeneous Dirichlet conditions. Here, 𝑞 > 0
is a parameter that can be optimized to improve the convergence of the OSM; see,
e.g, [5, 2]. The system (4) leads to the OSM, which, for a given (𝑦0

𝑗 , 𝑝
0
𝑗 )𝑁𝑗=1, consists

of solving the subdomain problems below for y𝑘𝑗 := (𝑦𝑘𝑗 , 𝑝𝑘𝑗 ), 𝑘 = 1, 2, 3, . . . :

−Δ𝑦𝑘𝑗 + 𝑐𝑦𝑘𝑗 + 𝑏𝜑(𝑦𝑘𝑗 ) = 𝑓 𝑗 + 𝜇(𝑝𝑘𝑗 ) in Ω 𝑗 , (5a)

−Δ𝑝𝑘𝑗 + 𝑐𝑝𝑘𝑗 + 𝑏𝜑′(𝑦𝑘𝑗 ) (𝑝𝑘𝑗 ) = 𝑦𝑘𝑗 − 𝑦𝑑, 𝑗 in Ω 𝑗 (5b)

y𝑘𝑗 = 0, on Γext
𝑗 , (5c)

𝑞 y𝑘𝑗 + 𝜕𝑥y𝑘𝑗 = 𝑞 y𝑘−1
𝑗+1 + 𝜕𝑥y𝑘−1

𝑗+1 on Γ 𝑗 , (5d)

𝑞 y𝑘𝑗 − 𝜕𝑥y𝑘𝑗 = 𝑞 y𝑘−1
𝑗−1 − 𝜕𝑥y𝑘−1

𝑗−1 on Γ 𝑗−1, (5e)

Now, we use the OSM to introduce a nonlinear preconditioner by setting y 𝑗 :=
(𝑦 𝑗 , 𝑝 𝑗 ), 𝑗 = 1, . . . , 𝑁 , and defining the solution maps 𝑆 𝑗 as

𝑆1 (y2) = y1 solution to (4) with 𝑗 = 1 and y2 given,
𝑆 𝑗 (y 𝑗−1, y 𝑗+1) = y 𝑗 solution to (4) with 2 ≤ 𝑗 ≤ 𝑁 − 1 and y 𝑗±1 given,

𝑆𝑁 (y𝑁−1) = y𝑁 solution to (4) with 𝑗 = 𝑁 and y𝑁−1 given.

Hence, using the variable y = (y1, . . . , y𝑁 ), we can rewrite (4) as

FP (y) = 0, where FP (y) :=



y1 − 𝑆1 (y2)
y2 − 𝑆2 (y1, y3)

...
y𝑁−1 − 𝑆𝑁−1 (y𝑁−2, y𝑁 )

y𝑁 − 𝑆𝑁 (y𝑁−1)


. (6)

This is the nonlinearly preconditioned form of (3) induced by the OSM (4)-(5), to
which we can apply a generalized Newton method. For a given initialization y0, a
Newton method generates a sequence (y𝑘)𝑘∈N defined by

solve 𝐷FP (y𝑘) (d𝑘) = −FP (y𝑘) and update y𝑘+1 = y𝑘 + d𝑘 . (7)

Notice that at each iteration of (7) one needs to evaluate the residual function FP (y𝑘),
which requires the (parallel) solution of the 𝑁 subproblems (4). The computational
cost is therefore equivalent to one iteration of the OSM (5). As an inner solver for the
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subproblems, which involve the (mildly) non-differentiable function 𝜇, a semismooth
Newton can be employed.
We now discuss the problem of solving the Jacobian linear system in (7). Let

d = (d1, . . . , d𝑁 ), where d 𝑗 = (𝑑𝑦, 𝑗 , 𝑑𝑝, 𝑗 ), 𝑗 = 1, . . . , 𝑁 . Then a direct calculation
(omitted for brevity) shows that the action of the operator 𝐷FP (y) on the vector d is
given by 𝐷FP (y) (d) = d − ỹ(d), where ỹ := (ỹ1, . . . , ỹ𝑁 ), and each ỹ 𝑗 = ( 𝑦̃ 𝑗 , 𝑝 𝑗 )
satisfies the linearized subdomain problems

−Δ𝑦̃ 𝑗 + 𝑐𝑦̃ 𝑗 + 𝑏𝜑′(𝑦 𝑗 ) 𝑦̃ 𝑗 = 𝐷𝜇(𝑝 𝑗 ) (𝑝 𝑗 ) in Ω 𝑗 , (8a)
−Δ𝑝 𝑗 + 𝑐𝑝 𝑗 + 𝑏𝜑′′(𝑦 𝑗 ) [𝑝 𝑗 , 𝑦̃ 𝑗 ] = 𝑦̃ 𝑗 in Ω 𝑗 (8b)

ỹ 𝑗 = 0, on Γext
𝑗 , (8c)

𝑞 ỹ 𝑗 + 𝜕𝑥 ỹ 𝑗 = 𝑞 d 𝑗+1 + 𝜕𝑥d 𝑗+1 on Γ 𝑗 , (8d)
𝑞 ỹ 𝑗 − 𝜕𝑥 ỹ 𝑗 = 𝑞 d 𝑗−1 − 𝜕𝑥d 𝑗−1 on Γ 𝑗−1, (8e)

where

𝐷𝜇(𝑝) (𝑝) =1
𝜈

[
−Gmax (−𝛽 − 𝑝) − Gmin (𝛽 − 𝑝)

+ Gmax (−𝑝 − 𝛽 − 𝜈𝑢̄) + Gmin (−𝑝 + 𝛽 + 𝜈𝑢̄)
]
𝑝,

with Gmax (𝑣) (𝑥) =
{

1 if 𝑣(𝑥) > 0,
0 if 𝑣(𝑥) ≤ 0,

and Gmin (𝑣) (𝑥) =
{

1 if 𝑣(𝑥) ≤ 0,
0 if 𝑣(𝑥) > 0,

and where the boundary values for 𝑗 ∈ {1, 𝑁} have to be modified as in (4). Note that
this is the same linearized problem that must be solved repeatedly within the inner
iterations of semismooth Newton, so its solution cost is only a fraction of the cost
required to calculate FP (y). Our matrix-free preconditioned semismooth Newton
algorithm that corresponds to the Newton procedure (7) is summarized in Algorithm
1.

3 Numerical experiments
Webeginwith a two subdomain case forΩ = (0, 1)2, 𝑦𝑑 (𝑥, 𝑦) = 10 sin(4𝜋𝑥) sin(3𝜋𝑦),
𝑓 = 0, 𝑐 = 1 and 𝜑(𝑦) = 𝑦 + exp(𝑦). The domain Ω is discretized with a uniform
mesh of 51 interior points on each edge of the unit square. The discrete optimality
system is obtained by the finite difference method. Fig. 2 shows an example of the
solution computed for 𝑏 = 10, 𝜈 = 10−7, 𝑢̄ = 103 and 𝛽 = 10−2. Here, we can observe
how the computed optimal state (middle) has the same shape as the target 𝑦𝑑 (left),
but the control constraints and the 𝐿1-penalization prevent the control function from
making the state equal to the desired target.
To study the efficiency and the robustness of the proposed numerical framework,

we test the nonlinearly preconditioned Newton for several values of parameters 𝜈, 𝛽,
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Algorithm 1Matrix-free preconditioned generalized Newton method
Require: Initial guess y0, tolerance 𝜖 , maximum number of iterations 𝑘max.
1: Compute 𝑆1 (y0

2) , 𝑆 𝑗 (y0
𝑗−1, y0

𝑗+1) , 𝑗 = 2, . . . , 𝑁 − 1, and 𝑆𝑁 (y0
𝑁−1) .

2: Set 𝑘 = 0 and assemble FP (y0) using (6).
3: while ∥FP (y𝑘) ∥ ≥ 𝜖 and 𝑘 ≤ 𝑘max do
4: Compute d𝑘 by solving𝐷FP (y𝑘) (d𝑘) = −FP (y𝑘) using a matrix-free Krylov method, e.g.,

GMRES (together with a routine for solving (8) to compute the action of 𝐷FP (y𝑘) on a
vector d).

5: Update y𝑘+1 = y𝑘 + d𝑘 .
6: Set 𝑘 = 𝑘 + 1.
7: Compute 𝑆1 (y𝑘2 ) , 𝑆 𝑗 (y𝑘𝑗−1, y𝑘𝑗+1) , 𝑗 = 2, . . . , 𝑁 − 1, and 𝑆𝑁 (y𝑘𝑁−1) .
8: Assemble FP (y𝑘) using (6).
9: end while
10: Output: y𝑘 .

Fig. 2: Target 𝑦𝑑 (left), optimal state 𝑦 (middle), and optimal control 𝑢 (right) computed for 𝑏 = 10,
𝜈 = 10−7 and 𝛽 = 10−2.

but the control constraints and the 𝐿1-penalization prevent the control function from
making the state equal to the desired target.
To study the efficiency and the robustness of the proposed numerical framework,

we test the nonlinearly preconditioned Newton for several values of parameters 𝜈, 𝛽,
𝑢̄, 𝑏 and 𝑞, and compare the obtained number of iterations with the ones performed
by a (damped) semismooth Newton applied directly to (3). Moreover, to improve the
robustness of our preconditioned Newton method, we implemented the following
continuation procedure with respect to the regularization parameter 𝜈: for 𝑘 = 1, we
set 𝜈1 = 10−1 and solve the Jacobian system (7) once to obtain y2. Next, we decrease
𝜈 by a factor of 4 (𝜈2 = 𝜈1/4), do another solve and update step (7), and so on. When
we reach the true 𝜈 prescribed by the problem, we set 𝜈𝑘 = 𝜈 and repeat (7) until
convergence; see [3] for convergence results for similar continuation procedures. We
apply the same continuation procedure on semismooth Newton applied directly to
(3) for comparison. Note that because only one Jacobian solve is performed before
𝜈 is updated, there are cases where semismooth Newton with continuation diverges,
even when its counterpart without continuation converges, see Tab. 1. We initialize
the four methods by randomly chosen vectors. The number of iterations performed
by both methods to reach a tolerance of 10−8 are reported in Tab. 1, where the
symbol× indicates divergence. These results show that if the preconditioned Newton
converges, then it outperforms the semismooth Newton applied directly to the full

Fig. 2: Target 𝑦𝑑 (left), optimal state 𝑦 (middle), and optimal control 𝑢 (right) computed for 𝑏 = 10,
𝜈 = 10−7 and 𝛽 = 10−2.

𝑢̄, 𝑏 and 𝑞, and compare the obtained number of iterations with the ones performed
by a (damped) semismooth Newton applied directly to (3). Moreover, to improve the
robustness of our preconditioned Newton method, we implemented the following
continuation procedure with respect to the regularization parameter 𝜈: for 𝑘 = 1, we
set 𝜈1 = 10−1 and solve the Jacobian system (7) once to obtain y2. Next, we decrease
𝜈 by a factor of 4 (𝜈2 = 𝜈1/4), do another solve and update step (7), and so on. When
we reach the true 𝜈 prescribed by the problem, we set 𝜈𝑘 = 𝜈 and repeat (7) until
convergence; see [3] for convergence results for similar continuation procedures. We
apply the same continuation procedure on semismooth Newton applied directly to
(3) for comparison. Note that because only one Jacobian solve is performed before
𝜈 is updated, there are cases where semismooth Newton with continuation diverges,
even when its counterpart without continuation converges, see Tab. 1. We initialize
the four methods by randomly chosen vectors. The number of iterations performed
by both methods to reach a tolerance of 10−8 are reported in Tab. 1, where the
symbol× indicates divergence. These results show that if the preconditioned Newton
converges, then it outperforms the semismooth Newton applied directly to the full
system (3). However, the preconditioned Newton does not always converge due to
the lack of damping.With continuation, however, our method always converges, with
an iteration count comparable (for moderate values of 𝜈) or much lower (for small
𝜈) than for the semismooth Newton method.
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𝑢̄ = 103 𝑢̄ = ∞
𝑞 𝑏 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7

1 0 4 - 5 - 2 - 5 6- 9 -11-11 4 -11-41-12 3 - 5 - 2 - 5 3- 9 - 2 - 9 3-12-3-12
10 0 4 - 5 - 2 - 5 6- 9 -11-11 8 -11-41-12 3 - 5 - 2 - 5 3- 8 - 2 - 9 3-11-3-12

𝛽
=

0 100 0 3 - 5 - 2 - 5 6- 9 -11-11 × -11-41-12 3 - 5 - 2 - 5 3- 9 - 2 - 9 3-11-3-12
1 10 6 - 6 - 4 - 7 ×-10-12-12 × -12-38-16 6 - 6 - 4 - 7 ×-10-22-23 ×-15-×-15
10 10 5 - 6 - 4 - 7 7-10-12-12 × -12-38-16 5 - 6 - 4 - 7 ×-10-22-23 ×-14-×-15
100 10 4 - 6 - 4 - 7 6-10-12-12 × -13-38-16 4 - 6 - 4 - 7 6-10-22-23 ×-13-×-15
1 0 5 - 5 - 3 - 6 6- 9 - 8 -11 × -12-43-13 4 - 5 - 3 - 6 5- 9 - 6 -10 ×-12-8-15
10 0 4 - 5 - 3 - 6 6- 9 - 8 -11 × -11-43-13 4 - 5 - 3 - 6 4- 9 - 6 -10 ×-12-8-15

𝛽
=

10
−2

100 0 4 - 5 - 3 - 6 6-10- 8 -11 11-12-43-13 4 - 5 - 3 - 6 5- 9 - 6 -10 7-12-8-15
1 10 6 - 6 - 4 - 6 ×-11-10-12 × -12-× -17 6 - 6 - 4 - 6 ×-10-18-× ×-13-×-15
10 10 5 - 6 - 4 - 6 ×-11-10-12 × -13-× -17 5 - 6 - 4 - 6 ×-10-18-× ×-14-×-15
100 10 4 - 6 - 4 - 6 6-11-10-12 9 -13-× -17 4 - 6 - 4 - 6 6-10-18-× ×-13-×-15

Table 1: Two subdomains: outer iterations of preconditioned Newton (left value), preconditioned
Newton with continuation (middle-left value), semismooth Newton applied to the original problem
(middle-right value), and semismooth Newton with continuation applied to the original problem
(right value).

To better gauge the cost of the continuation strategy, we show the total number
of inner iterations required by ‘pure’ preconditioned Newton versus the one with
continuation in Tab. 2. The reported numbers are computed as

∑
𝑘 max 𝑗=1,2 it 𝑗 ,𝑘 ,

where 𝑘 is the iteration count and it 𝑗 ,𝑘 , 𝑗 = 1, 2, are the number of inner iterations
required by the two subdomain solves performed at the 𝑘th outer iteration. (The max
accounts for the fact that the two subdomain problems are supposed to be solved in
parallel.) The results show that the continuation procedure actually reduces the total
number of inner iterations for the most part, except for some very easy cases, such
as 𝛽 = 𝑏 = 0, 𝑢̄ = ∞ (where the problem is in fact linear).
Finally, Tab. 3 shows the total number of GMRES iterations required for solving

(7) (with or without continuation), together with the GMRES iteration count for
semismooth Newton (with or without continuation); the latter is preconditioned by
block Jacobi, using −Δ + 𝑐𝐼 as diagonal blocks. We see that for the “easy” case of
𝜈 = 10−3, semismooth Newton requires fewer GMRES steps than preconditioned
Newton, but the situation reverses for smaller 𝜈. In fact, for a well-chosen Robin
parameter such as 𝑞 = 10, the advantage of preconditionedNewtonwith continuation
can be quite significant in these harder cases. All these numerical observations show
clearly the efficiency of the proposed computational framework.
We now consider a multiple subdomain case. This time, the mesh is refined to

have 101 interior points on each edge of Ω. We then fix 𝑞 = 100 and repeat the
experiments above for 𝑁 = 4, 8, 16 subdomains. In Tab. 4, we compare the GMRES
iteration counts for preconditioned Newton (with and without continuation) to those
of semismooth Newton applied to (3). We see that preconditioned Newton with
continuation works well in all cases, and for smaller 𝜈 values, the iteration count is
much lower than for semismooth Newton. The outer iteration counts are omitted for
brevity, but we observed a behaviour similar to the two-subdomain case, and one
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𝑢̄ = 103 𝑢̄ = ∞
𝑞 𝑏 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7

1 0 6 - 5 31 - 12 × - 18 2 - 5 3 - 8 3 - 11
10 0 5 - 5 26 - 11 96 - 19 2 - 5 3 - 8 3 - 11

𝛽
=

0 100 0 2 - 5 18 - 13 × - 19 2 - 5 2 - 8 3 - 11
1 10 × - 17 × - 35 × - 47 27 - 17 × - 34 × - 60
10 10 21 - 14 × - 31 103 - 43 21 - 14 × - 32 × - 53
100 10 8 - 14 26 - 32 × - 43 8 - 14 45 - 30 × - 47
1 0 13 - 8 32 - 16 84 - 25 8 - 8 10 - 14 × - 25
10 0 10 - 8 22 - 17 33 - 23 7 - 8 11 - 15 × - 24

𝛽
=

10
−2

100 0 7 - 6 15 - 15 104 - 20 7 - 6 12 - 13 × - 22
1 10 × - 17 × - 33 × - 45 28 - 17 × - 32 × - 47
10 10 20 - 14 × - 33 × - 48 20 - 14 × - 30 × - 46
100 10 10 - 14 23 - 30 125 - 44 10 - 14 40 - 26 × - 44

Table 2: Two subdomains: total number of inner iterations of preconditioned Newton (left value)
and preconditioned Newton with continuation (right value).

𝑢̄ = 103 𝑢̄ = ∞
𝑞 𝑏 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7

1 0 143 - 128 - 26 - 17 279-163-303-123 139-175-1255-155 100 - 128 - 26 - 17 170-140- 69 - 46 × -149-371- 66
10 0 90 - 75 - 26 - 17 179-101-303-123 254-108-1255-155 64 - 75 - 26 - 17 114- 88 - 69 - 46 × - 92 -371- 66

𝛽
=

0 100 0 73 - 90 - 26 - 17 177-114-303-123 × -125-1255-155 73 - 90 - 26 - 17 60 - 88 - 69 - 46 54 - 93 -371- 66
1 10 266 - 204 - 49 - 66 × -251-397-255 × -268-1479-457 256 - 204 - 49 - 66 × -240-2000-1172 × -379- × -928
10 10 124 - 88 - 49 - 66 226-129-397-255 × -168-1479-457 117 - 88 - 49 - 66 × -152-2000-1172 × -190- × -928
100 10 122 - 155 - 49 - 66 139-239-397-255 × -274-1479-457 122 - 155 - 49 - 66 161-234-2000-1172 × -250- × -928
1 0 226 - 164 - 31 - 42 290-198-187-123 × -223-1065-168 188 - 164 - 31 - 42 246-168- 183 - 109 × -218-522-380
10 0 111 - 95 - 31 - 42 178-121-187-123 × -130-1065-168 115 - 95 - 31 - 42 143-124- 183 - 109 × -145-522-380

𝛽
=

10
−2

100 0 135 - 118 - 31 - 42 179-158-187-123 333-175-1065-168 135 - 118 - 31 - 42 145-147- 183 - 109 165-173-522-380
1 10 273 - 235 - 49 - 54 × -238-299-233 × -228- × -416 261 - 235 - 49 - 54 × -254-1362- × × -311- × -752
10 10 139 - 124 - 49 - 54 × -158-299-233 × -164- × -416 138 - 124 - 49 - 54 × -161-1362- × × -179- × -752
100 10 122 - 162 - 49 - 54 141-251-299-233 215-300- × -416 122 - 162 - 49 - 54 167-219-1362- × × -303- × -752

Table 3:Two subdomains:GMRES iterations of preconditionedNewton (left value), preconditioned
Newton with continuation (middle-left value), semismooth Newton applied to the original problem
(middle-right value), and semismooth Newton with continuation applied to the original problem
(right value).

𝑢̄ = 103 𝑢̄ = ∞
𝑁 𝑏 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7

4 0 94 - 116 - 131 - 157 × -185-541-329 × - 196 -1974- 436 92 - 112 - 131 - 157 64 -115- 151 -246 58 -128-513- 528
8 0 178 - 157 - 176 - 217 × -244-503-365 × - 259 -2261- 455 121 - 155 - 176 - 217 83 -180- 140 -322 59 -204-438- 537

𝛽
=

0 16 0 228 - 229 - 217 - 301 × -383-747-509 × - 384 -2915- 554 159 - 238 - 217 - 301 130-281- 195 -444 × -314-201- 569
4 10 145 - 184 - 202 - 234 218-287-447-517 × - 382 -1207- 910 143 - 186 - 202 - 234 171-276- 633 -506 × -296- × -1238
8 10 192 - 247 - 232 - 314 286-381-453-557 × - 498 -1475- 979 196 - 247 - 232 - 314 214-368- 621 -552 × -368- × -1217
16 10 272 - 346 - 364 - 425 × -625-648-777 × - 744 -1361-1180 280 - 345 - 364 - 425 327-549- 819 -765 × -510- × -1200
4 0 177 - 139 - 169 - 204 221-220-389-301 399- 255 -1745- 439 179 - 135 - 169 - 204 175-196- 340 -315 243-273-992- 649
8 0 231 - 191 - 266 - 277 × -291-448-383 × - 340 -1594- 487 231 - 199 - 266 - 277 275-264- 350 -385 300-360-983- 658

𝛽
=

10
−2

16 0 319 - 241 - 314 - 372 552-395-667-528 × - 452 -2244- 630 227 - 234 - 314 - 372 438-365- 517 -529 520-449-899-1714
4 10 145 - 201 - 209 - 248 230-312-369-500 380- 408 -1536- 851 147 - 201 - 209 - 248 193-312- 982 -492 × -392- × -1320
8 10 196 - 262 - 267 - 323 356-408-402-574 × - 641 -1625-1020 193 - 261 - 267 - 323 247-406-1041-568 × -488- × -1396
16 10 268 - 365 - 368 - 444 538-660-577-794 × -1017-2000-1312 260 - 365 - 368 - 444 432-599-1425-790 × -702- × -1686

Table 4:Multiple subdomains: GMRES iterations of preconditioned Newton (left value), precon-
ditioned Newton with continuation (middle-left value), semismooth Newton applied to the original
problem (middle-right value), and semismooth Newton with continuation applied to the original
problem (right value).
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which is robust for the mesh sizes ℎ = 1
26 ,

1
51 ,

1
101 ; see [2, 4] for related scalability

discussions.

4 Further discussion and conclusion
This short manuscript represents a proof of concept for using domain decomposition-
based nonlinear preconditioning to efficiently solve nonlinear, nonsmooth optimal
control problems governed by elliptic equations. However, several theoretical and
numerical issues must be addressed as part of a complete development of these tech-
niques. From a theoretical point of view, to establish concrete convergence results
based on classical semismooth Newton theory, it is crucial to study the (semismooth-
ness) properties of the subdomain solution maps S 𝑗 , which are implicit function
of semismooth maps. Another crucial point is the proof of well-posedness of the
(preconditioned) Newton linear system. From a domain decomposition perspective,
more general decompositions (including cross points) must be considered. Finally,
a detailed analysis of the scalability of the GMRES iterations is necessary.
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