Nonlinear Optimized Schwarz Preconditioner for Elliptic Optimal Control Problems

Gabriele Ciaramella, Felix Kwok, and Georg Müller

1 Introduction

Consider the nonlinear optimal control problem

\[
\begin{aligned}
\min_{y, u} & \quad \frac{1}{2} \| y - y_d \|_{L^2}^2 + \frac{\nu}{2} \| u \|_{L^2}^2 + \beta \| u \|_{L^1}, \\
\text{s.t.} & \quad -\Delta y + c y + b \varphi (y) = f + u \quad \text{in } \Omega, \quad y = 0 \quad \text{on } \partial \Omega,
\end{aligned}
\]

where \(\| \cdot \|_{L^r} \) denotes the usual norm for \(L^r (\Omega) \) with \(1 \leq r \leq \infty \), the functions \(y_d, f \in L^2 (\Omega) \) are given, and the scalar parameters \(b, c, \beta \geq 0 \) and \(\nu, \beta \geq 0 \) are known. Our model includes problems such as the simplified Ginzburg-Landau superconductivity equation as well as inverse problems where \(L^1 \)-regularization is used to enhance sparsity of the control function \(u \). For simplicity, the domain \(\Omega \subset \mathbb{R}^2 \) is assumed to be a rectangle \((0, L) \times (0, L) \). The function \(\varphi : \mathbb{R} \to \mathbb{R} \) is assumed to be of class \(C^2 \), with locally bounded and locally Lipschitz second derivative and such that \(\partial_y \varphi (y) \geq 0 \). These assumptions guarantee that the Nemytskii operator \(y(\cdot) \mapsto \varphi (y(\cdot)) \) is twice continuously Fréchet differentiable in \(L^\infty (\Omega) \). In this setting, the optimal control problem (1) is well posed in the sense that there exists a minimizer \((y, u) \in X \times L^2 (\Omega)\), with \(X := H^1_0 (\Omega) \cap L^\infty (\Omega) \), cf. [7, 1]. Our goal is to derive efficient nonlinear preconditioners for solving (1) using domain decomposition techniques.

Let \((y, u) \in X \times L^2 (\Omega)\) be a solution to (1). Then there exists an adjoint variable \(p \in X \) such that \((y, u, p)\) satisfies the system [6, Theorem 2.3]
\[-\Delta y + cy + b\varphi(y) = f + u \quad \text{in } \Omega \text{ with } y = 0 \text{ on } \partial \Omega,\]
\[-\Delta p + cp + b\varphi'(y)p = y - y_d \quad \text{in } \Omega \text{ with } p = 0 \text{ on } \partial \Omega,\]
\[u = \mu(p),\]

where $\mu : L^\infty(\Omega) \to L^2(\Omega)$ is
\[
\mu(p) = \max(0, (-\beta - p)/\nu) + \min(0, (\beta - p)/\nu) - \max(0, \bar{u} + (-p - \beta)/\nu) - \min(0, \bar{u} + (-p + \beta)/\nu). \tag{2}
\]

We remark that for $\beta = 0$, the previous formula becomes $\mu(p) = \mathbb{P}_{Uad}(-p/\nu)$, which is the usual projection formula that leads to the optimality condition $u = \mathbb{P}_{Uad}(-p/\nu)$; see [7]. Moreover, if $\beta = 0$ with $\bar{u} = \infty$, one obtains that $\mu(p) = -p/\nu$, which implies the usual optimality condition $\nu u + p = 0$, where $\nu u + p$ is the gradient of the reduced cost functional $J(u) = J(y(u), u)$ [7].

Eliminating the control using $\mu(p)$, the first-order optimality system becomes
\[-\Delta y + cy + b\varphi(y) = f + \mu(p) \quad \text{in } \Omega \text{ with } y = 0 \text{ on } \partial \Omega,\]
\[-\Delta p + cp + b\varphi'(y)(p) = y - y_d \quad \text{in } \Omega \text{ with } p = 0 \text{ on } \partial \Omega. \tag{3}\]

This nonlinear and nonsmooth system admits a solution $(y, p) \in X^2$ [1, 7].

2 Optimized Schwarz method and preconditioner

In this section, we introduce an optimized Schwarz method (OSM) for solving the optimality system (3). We consider the non-overlapping decomposition of Ω shown in Fig. 1 and given by disjoint subdomains Ω_j, $j = 1, \ldots, N$ such that $\overline{\Omega} = \bigcup_{j=1}^N \overline{\Omega}_j$. The sets $\Gamma_j := \Omega_j \cap \Omega_{j+1}$, $j = 1, \ldots, N - 1$ are the interfaces. Moreover, we define $\Gamma_{\text{ext}} := \partial \Omega_j \cap \partial \Omega_{j+1}$, $j = 1, \ldots, N$, which represent the external boundaries of the subdomains. The optimality system (3) can be written as a coupled system of N subproblems defined on the subdomains Ω_j, $j = 1, \ldots, N$, of the form
\[-\Delta y_j + cy_j + b\varphi(y_j) = f_j + \mu(p_j) \quad \text{in } \Omega_j, \tag{4a}\]
\[-\Delta p_j + cp_j + b\varphi'(y_j)(p_j) = y_j - y_{d,j} \quad \text{in } \Omega_j \tag{4b}\]
Newton method generates a sequence which we can apply a generalized Newton method. For a given initialization this is the nonlinearly preconditioned form of (3) induced by the OSM (4)-(5), to cost is therefore equivalent to one iteration of the OSM (5). As an inner solver for the

for \(j = 1, \ldots, N \), where for \(j \in \{1, N\} \) the boundary conditions at \(\Gamma_0 \) and \(\Gamma_N \), respectively, must be replaced with homogeneous Dirichlet conditions. Here, \(q > 0 \) is a parameter that can be optimized to improve the convergence of the OSM; see, e.g., \([5, 2]\). The system (4) leads to the OSM, which, for a given \((y_j^0, p_j^0)_{j=1}^N\), consists of solving the subdomain problems below for \(y_j^k := (y_j^k, p_j^k) \), \(k = 1, 2, 3, \ldots : \)

\[
-\Delta y_j^k + c y_j^k + b \varphi(y_j^k) = f_j + \mu(p_j^k) & \quad \text{in } \Omega_j, \tag{5a} \\
-\Delta p_j^k + c p_j^k + b \varphi'(y_j^k)(p_j^k) = y_j^k - y_{d,j} & \quad \text{in } \Omega_j, \tag{5b} \\
y_j^k = 0, & \quad \text{on } \Gamma_j, \tag{5c} \\
q y_j^k + \partial_s y_j^k = q y_{j+1}^{k-1} + \partial_s y_{j+1}^{k-1} & \quad \text{on } \Gamma_j, \tag{5d} \\
q y_j^k - \partial_s y_j^k = q y_{j-1}^{k-1} - \partial_s y_{j-1}^{k-1} & \quad \text{on } \Gamma_{j-1}, \tag{5e}
\]

Now, we use the OSM to introduce a nonlinear preconditioner by setting \(y_j := (y_j, p_j), j = 1, \ldots, N \), and defining the solution maps \(S_j \) as

\[
S_1(y_2) = y_1 \quad \text{solution to (4) with } j = 1 \text{ and } y_2 \text{ given}, \\
S_j(y_{j-1}, y_{j+1}) = y_j \quad \text{solution to (4) with } 2 \leq j \leq N-1 \text{ and } y_{j+1} \text{ given}, \\
S_N(y_{N-1}) = y_N \quad \text{solution to (4) with } j = N \text{ and } y_{N-1} \text{ given}.
\]

Hence, using the variable \(y = (y_1, \ldots, y_N) \), we can rewrite (4) as

\[
\mathcal{F}(y) = 0, \quad \text{where } \mathcal{F}(y) := \begin{bmatrix} y_1 - S_1(y_2) \\ y_2 - S_2(y_1, y_3) \\ \vdots \\ y_{N-1} - S_{N-1}(y_{N-2}, y_N) \\ y_N - S_N(y_{N-1}) \end{bmatrix}. \tag{6}
\]

This is the nonlinearly preconditioned form of (3) induced by the OSM (4)-(5), to which we can apply a generalized Newton method. For a given initialization \(y^0 \), a Newton method generates a sequence \((y^k)_{k \in \mathbb{N}}\) defined by

\[
\text{solve } \quad D \mathcal{F}(y^k)(d^k) = -\mathcal{F}(y^k) \quad \text{and update } \quad y^{k+1} = y^k + d^k. \tag{7}
\]

Notice that at each iteration of (7) one needs to evaluate the residual function \(\mathcal{F}(y^k) \), which requires the (parallel) solution of the \(N \) subproblems (4). The computational cost is therefore equivalent to one iteration of the OSM (5). As an inner solver for the
subproblems, which involve the (mildly) non-differentiable function μ, a semismooth Newton can be employed.

We now discuss the problem of solving the Jacobian linear system in (7). Let $\mathbf{d} = (d_1, \ldots, d_N)$, where $d_j = (d_{x,j}, d_{y,j})$, $j = 1, \ldots, N$. Then a direct calculation (omitted for brevity) shows that the action of the operator $D\mathcal{F}_p(y)$ on the vector \mathbf{d} is given by $D\mathcal{F}_p(y)(\mathbf{d}) = \mathbf{d} - \mathbf{y}(\mathbf{d})$, where $\mathbf{y} := (\mathbf{y}_1, \ldots, \mathbf{y}_N)$, and each $\mathbf{y}_j = (\mathbf{y}_j, \mathbf{\bar{p}}_j)$ satisfies the linearized subdomain problems

\begin{align}
-\Delta \mathbf{y}_j + c \mathbf{y}_j + b \varphi'(y_j)\mathbf{\bar{y}}_j &= \mu(p_j)(\bar{\mathbf{p}}_j) \quad \text{in} \; \Omega_j, \quad (8a) \\
-\Delta \bar{\mathbf{p}}_j + c \mathbf{\bar{p}}_j + b \varphi''(y_j)[p_j, \mathbf{\bar{y}}_j] &= \mathbf{\bar{y}}_j \quad \text{in} \; \Omega_j, \quad (8b) \\
\mathbf{\bar{y}}_j &= \mathbf{0}, \quad \text{on} \; \Gamma_{\text{ext}}, \quad (8c) \\
q \mathbf{\bar{y}}_j + \partial_x \mathbf{\bar{y}}_j &= q'd_{j+1} + \partial_x d_{j+1} \quad \text{on} \; \Gamma_j, \quad (8d) \\
q \mathbf{\bar{y}}_j - \partial_x \mathbf{\bar{y}}_j &= q'd_{j-1} - \partial_x d_{j-1} \quad \text{on} \; \Gamma_{j-1}, \quad (8e)
\end{align}

where

\[
D\mu(p)(\mathbf{\bar{p}}) = \frac{1}{v} \left[-\mathcal{G}_{\text{max}}(-\beta - p) - \mathcal{G}_{\text{min}}(\beta - p) \right. \\
\left. + \mathcal{G}_{\text{max}}(-p - \beta - v\bar{u}) + \mathcal{G}_{\text{min}}(-p + \beta + v\bar{u}) \right] \mathbf{\bar{p}},
\]

with $\mathcal{G}_{\text{max}}(v)(x) = \begin{cases} 1 & \text{if } v(x) > 0, \\ 0 & \text{if } v(x) \leq 0, \end{cases}$ and $\mathcal{G}_{\text{min}}(v)(x) = \begin{cases} 1 & \text{if } v(x) \leq 0, \\ 0 & \text{if } v(x) > 0, \end{cases}$

and where the boundary values for $j \in \{1, N\}$ have to be modified as in (4). Note that this is the same linearized problem that must be solved repeatedly within the inner iterations of semismooth Newton, so its solution cost is only a fraction of the cost required to calculate $\mathcal{F}_p(y)$. Our matrix-free preconditioned semismooth Newton algorithm that corresponds to the Newton procedure (7) is summarized in Algorithm 1.

3 Numerical experiments

We begin with a two subdomain case for $\Omega = (0, 1)^2$, $y_d(x, y) = 10 \sin(4\pi x) \sin(3\pi y)$, $f = 0$, $c = 1$ and $\varphi(y) = y + \exp(y)$. The domain Ω is discretized with a uniform mesh of 51 interior points on each edge of the unit square. The discrete optimality system is obtained by the finite difference method. Fig.

To study the efficiency and the robustness of the proposed numerical framework, we test the nonlinearly preconditioned Newton for several values of parameters v, β, and β. Here, we can observe how the computed optimal state (middle) has the same shape as the target y_d (left), but the control constraints and the L^1-penalization prevent the control function from making the state equal to the desired target.
continuation procedure with respect to the regularization parameter.

To study the efficiency and the robustness of the proposed numerical framework, we implemented the following:

- A (damped) semismooth Newton applied directly to (3).
- Moreover, to improve the convergence; see [3] for convergence results for similar continuation procedures. We apply the same continuation procedure on semismooth Newton applied directly to (3) for comparison. Note that because only one Jacobian solve is performed before (8) to compute the action of \(D\mathbf{F}_\mathbf{y}(\mathbf{y}^k) \) on a vector \(d \).

Algorithm 1 Matrix-free preconditioned generalized Newton method

Require: Initial guess \(\mathbf{y}^0 \), tolerance \(\varepsilon \), maximum number of iterations \(k_{\text{max}} \).

1. Compute \(S_1(\mathbf{y}^0_j), S_j(\mathbf{y}_{j-1}^k, \mathbf{y}_j^k), j = 2, \ldots, N - 1 \), and \(S_N(\mathbf{y}_{N-1}^k) \).
2. Set \(k = 0 \) and assemble \(\mathbf{F}_\mathbf{y}(\mathbf{y}^0) \) using (6).
3. While \(\| \mathbf{F}_\mathbf{y}(\mathbf{y}^k) \| \geq \varepsilon \) and \(k \leq k_{\text{max}} \) do
 4. Compute \(\mathbf{d}^k \) by solving \(\mathbf{d}^k = \mathbf{F}_\mathbf{y}(\mathbf{y}^k) \) using a matrix-free Krylov method, e.g., GMRES (together with a routine for solving (8) to compute the action of \(D\mathbf{F}_\mathbf{y}(\mathbf{y}^k) \) on a vector \(d \)).
 5. Update \(\mathbf{y}^{k+1} = \mathbf{y}^k + \mathbf{d}^k \).
 6. Set \(k = k + 1 \).
 7. Compute \(S_1(\mathbf{y}_j^k), S_j(\mathbf{y}_{j-1}^k, \mathbf{y}_j^k), j = 2, \ldots, N - 1 \), and \(S_N(\mathbf{y}_{N-1}^k) \).
 8. Assemble \(\mathbf{F}_\mathbf{y}(\mathbf{y}^k) \) using (6).
4. end while
5. Output: \(\mathbf{y}^k \).

\[\bar{u}, \beta, q, \] and compare the obtained number of iterations with the ones performed by a (damped) semismooth Newton applied directly to (3). Moreover, to improve the robustness of our preconditioned Newton method, we implemented the following continuation procedure with respect to the regularization parameter \(\nu \): for \(k = 1 \), we set \(\nu_1 = 10^{-1} \) and solve the Jacobian system (7) *once* to obtain \(\mathbf{y}^2 \). Next, we decrease \(\nu \) by a factor of 4 (\(\nu_2 = \nu_1/4 \)), do another solve and update step (7), and so on. When we reach the true \(\nu \) prescribed by the problem, we set \(\nu_k = \nu \) and repeat (7) until convergence; see [3] for convergence results for similar continuation procedures. We apply the same continuation procedure on semismooth Newton applied directly to (3) for comparison. Note that because only one Jacobian solve is performed before \(\nu \) is updated, there are cases where semismooth Newton with continuation diverges, *even when its counterpart without continuation converges*, see Tab. 1. We initialize the four methods by randomly chosen vectors. The number of iterations performed by both methods to reach a tolerance of \(10^{-8} \) are reported in Tab. 1, where the symbol \(\times \) indicates divergence. These results show that if the preconditioned Newton converges, then it outperforms the semismooth Newton applied directly to the full system (3). However, the preconditioned Newton does not always converge due to the lack of damping. With continuation, however, our method always converges, with an iteration count comparable (for moderate values of \(\nu \)) or much lower (for small \(\nu \)) than for the semismooth Newton method.

Fig. 2: Target \(y_d \) (left), optimal state \(y \) (middle), and optimal control \(u \) (right) computed for \(b = 10 \), \(\nu = 10^{-1} \) and \(\beta = 10^{-2} \).
continuation works well in all cases, and for smaller of semismooth Newton applied to (3). We see that preconditioned Newton with iteration counts for preconditioned Newton (with and without continuation) to those

\[N \]

experiments above for brevity, but we observed a behaviour similar to the two-subdomain case, and one much lower than for semismooth Newton. The outer iteration counts are omitted for 101 have clearly the efficiency of the proposed computational framework.

We now consider a multiple subdomain case. This time, the mesh is refined to

\[\Omega \]

interior points on each edge of \(\Omega \). We then fix \(\nu = 10^{-3} \), semismooth Newton requires fewer GMRES steps than preconditioned Newton, but the situation reverses for smaller \(\nu \). In fact, for a well-chosen Robin parameter such as \(q = 10 \), the advantage of preconditioned Newton with continuation can be quite significant in these harder cases. All these numerical observations show clearly the efficiency of the proposed computational framework.

To better gauge the cost of the continuation strategy, we show the total number of inner iterations required by ‘pure’ preconditioned Newton versus the one with continuation in Tab. 2. The reported numbers are computed as \(\sum_{k} \max_{j=1,2} \nu_{j,k} \), where \(k \) is the iteration count and \(\nu_{j,k}, j = 1, 2 \), are the number of inner iterations required by the two subdomain solves performed at the \(k \)th outer iteration. (The max accounts for the fact that the two subdomain problems are supposed to be solved in parallel.) The results show that the continuation procedure actually reduces the total number of inner iterations for the most part, except for some very easy cases, such as \(\beta = b = 0, \bar{u} = \infty \) (where the problem is in fact linear).

Finally, Tab. 3 shows the total number of GMRES iterations required for solving (7) (with or without continuation), together with the GMRES iteration count for semismooth Newton (with or without continuation); the latter is preconditioned by block Jacobi, using \(-\Delta + cI\) as diagonal blocks. We see that for the “easy” case of \(\nu = 10^{-3} \), semismooth Newton requires fewer GMRES steps than preconditioned Newton, but the situation reverses for smaller \(\nu \). In fact, for a well-chosen Robin parameter such as \(q = 10 \), the advantage of preconditioned Newton with continuation can be quite significant in these harder cases. All these numerical observations show clearly the efficiency of the proposed computational framework.

We now consider a multiple subdomain case. This time, the mesh is refined to have 101 interior points on each edge of \(\Omega \). We then fix \(q = 100 \) and repeat the experiments above for \(N = 4, 8, 16 \) subdomains. In Tab. 4, we compare the GMRES iteration counts for preconditioned Newton (with and without continuation) to those of semismooth Newton applied to (3). We see that preconditioned Newton with continuation works well in all cases, and for smaller \(\nu \) values, the iteration count is much lower than for semismooth Newton. The outer iteration counts are omitted for brevity, but we observed a behaviour similar to the two-subdomain case, and one

<table>
<thead>
<tr>
<th>(q)</th>
<th>(b)</th>
<th>(\bar{u} = 10^3)</th>
<th>(\bar{u} = 10^2)</th>
<th>(\bar{u} = 10^1)</th>
<th>(\bar{u} = \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.4</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 1: Two subdomains: outer iterations of preconditioned Newton (left value), preconditioned Newton with continuation (middle-left value), semismooth Newton applied to the original problem (middle-right value), and semismooth Newton with continuation applied to the original problem (right value).
Table 2: Two subdomains: total number of inner iterations of preconditioned Newton (left value) and preconditioned Newton with continuation (right value).

<table>
<thead>
<tr>
<th>q</th>
<th>b</th>
<th>$\tilde{u} = 0^3$</th>
<th>$\tilde{u} = 10^{-5}$</th>
<th>$\tilde{u} = 10^{-3}$</th>
<th>$\tilde{u} = 10^{-2}$</th>
<th>$\tilde{u} = 10^{-1}$</th>
<th>$\tilde{u} = 10^0$</th>
<th>$\tilde{u} = 10^1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 3: Two subdomains: GMRES iterations of preconditioned Newton (left value), preconditioned Newton with continuation (middle-left value), semismooth Newton applied to the original problem (middle-right value), and semismooth Newton with continuation applied to the original problem (right value).

<table>
<thead>
<tr>
<th>q</th>
<th>b</th>
<th>$\tilde{u} = 0^3$</th>
<th>$\tilde{u} = 10^{-5}$</th>
<th>$\tilde{u} = 10^{-3}$</th>
<th>$\tilde{u} = 10^{-2}$</th>
<th>$\tilde{u} = 10^{-1}$</th>
<th>$\tilde{u} = 10^0$</th>
<th>$\tilde{u} = 10^1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>50</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>100</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 4: Multiple subdomains: GMRES iterations of preconditioned Newton (left value), preconditioned Newton with continuation (middle-left value), semismooth Newton applied to the original problem (middle-right value), and semismooth Newton with continuation applied to the original problem (right value).
which is robust for the mesh sizes $h = \frac{1}{26}, \frac{1}{51}, \frac{1}{101}$; see [2, 4] for related scalability discussions.

4 Further discussion and conclusion

This short manuscript represents a proof of concept for using domain decomposition-based nonlinear preconditioning to efficiently solve nonlinear, nonsmooth optimal control problems governed by elliptic equations. However, several theoretical and numerical issues must be addressed as part of a complete development of these techniques. From a theoretical point of view, to establish concrete convergence results based on classical semismooth Newton theory, it is crucial to study the (semismoothness) properties of the subdomain solution maps S_j, which are implicit function of semismooth maps. Another crucial point is the proof of well-posedness of the (preconditioned) Newton linear system. From a domain decomposition perspective, more general decompositions (including cross points) must be considered. Finally, a detailed analysis of the scalability of the GMRES iterations is necessary.

Acknowledgements G. Ciaramella is a member of INdAM GNCS. F. Kwok gratefully acknowledges support from the National Science and Engineering Research Council of Canada (RGPIN-2021-02595). The work described in this paper is partially supported by a grant from the ANR/RGC joint research scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region, China and the French National Research Agency (Project no. A-HKBU203/19).

References