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1 Introduction

There have been various studies on algebraic domain decomposition methods, see

e.g. [1], [2], [6], [7], [8] and references therein. Algebraic Optimized Schwarz Meth‚

ods ˘AOSMs¯ were introduced in [4] to solve block banded linear systems arising

from the discretization of PDEs on irregular domains. AOSMs mimic Optimized

Schwarz Methods ˘OSMs¯ [5] algebraically by optimizing transmission blocks be‚

tween subdomains. We propose here a new approach for obtaining transmission

blocks using SParse Approximate Inverse ˘SPAI¯ techniques [9]. SPAI permits the

approximation of the required parts of an inverse needed in the optimal transmis‚

sion blocks, without knowing the entire inverse that would be infeasible in practice,

and is naturally parallel, like the domain decomposition iteration itself. Using SPAI

with different numbers of diagonals in a predefined sparsity pattern gives rise to

approximations in the transmission blocks which can be interpreted as differential

transmission operators at the continuous level of various degrees, and this can be

used to compute a theoretical convergence factor of the resulting AOSM. We can

therefore compare the performance of the SPAI AOSM also theoretically, and show

that a direct SPAI application without taking into account the entire non‚linear struc‚

ture of the convergence estimate of AOSM leads to suboptimal performance. We thus

propose also a modified SPAI‚like technique that minimizes the entire convergence

estimate and restores the expected performance.
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2 Algebraic Optimized Schwarz Methods

We are interested in solving linear systems of the form

𝐴𝑢 = 𝑓 ,

where the 𝑛×𝑛matrix 𝐴 arises from a finite element or finite difference discretization

of a partial differential equation, and has a block banded structure of the form

𝐴 =



𝐴11 𝐴12

𝐴21 𝐴22 𝐴23

𝐴32 𝐴33 𝐴34

𝐴43 𝐴44



, ˘1¯

where 𝐴𝑖 𝑗 are blocks of size 𝑛𝑖 × 𝑛 𝑗 , 𝑖, 𝑗 = 1, . . . , 4, and 𝑛 =
∑

𝑖 𝑛𝑖 . We suppose

that 𝑛1 ≫ 𝑛2 and 𝑛4 ≫ 𝑛3, representing two large subdomains; for generalizations

to more subdomains, see [4, Section 6]. We consider Algebraic Optimized Schwarz

methods of additive and multiplicative type, whose iteration operators are based on

the following modifications inspired by OSM,

𝑇𝑂𝑅𝐴𝑆 = 𝐼 −

2∑︁

𝑖=1

𝑅̃𝑇
𝑖 𝐴̃

−1

𝑖 𝑅𝑖𝐴, and 𝑇𝑂𝑅𝑀𝑆 =

1∏

𝑖=2

(𝐼 − 𝑅̃𝑇
𝑖 𝐴̃

−1

𝑖 𝑅𝑖𝐴), ˘2¯

where

𝐴̃1 =



𝐴11 𝐴12

𝐴21 𝐴22 𝐴23

𝐴32 𝑆1


, 𝐴̃2 =



𝑆2 𝐴23

𝐴32 𝐴33 𝐴34

𝐴43 𝐴44


, ˘3¯

with 𝑆1 = 𝐴33 + 𝐷1 and 𝑆2 = 𝐴22 + 𝐷2. Here 𝐷1 and 𝐷2 are transmission matrices

to be chosen for fast convergence. The asymptotic convergence factor of AOSM

depends on the product of the following two norms ˘see [4, Theorem 3.2]¯,

∥ (𝐼 + 𝐷1𝐵33)
−1 [𝐷1𝐵12 − 𝐴34𝐵13] ∥, ∥ (𝐼 + 𝐷2𝐵11)

−1 [𝐷2𝐵32 − 𝐴21𝐵31] ∥, ˘4¯

where the 𝐵matrices involve certain columns of inverses of submatrices of 𝐴, namely



𝐵31

𝐵32

𝐵33


:=



𝐴11 𝐴12

𝐴21 𝐴22 𝐴23

𝐴32 𝐴33



−1 

0

0

𝐼


,



𝐵11

𝐵12

𝐵13


:=



𝐴22 𝐴23

𝐴32 𝐴33 𝐴34

𝐴43 𝐴44



−1 

𝐼

0

0


. ˘5¯

We can easily derive the optimal choice for the transmission matrices, see [4],

𝐷1,opt = −𝐴34𝐴
−1

44
𝐴43 and 𝐷2,opt = −𝐴21𝐴

−1

11
𝐴12, ˘6¯

which make ˘4¯ zero. The corresponding AOSM then converges in two iterations for

ORAS, so one can not do better than this. Computing these optimal blocks 𝐷1,opt

and 𝐷2,opt is however equivalent to computing the Schur complements
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𝑆1,opt = 𝐴33 − 𝐴34𝐴
−1

44
𝐴43 and 𝑆2,opt = 𝐴22 − 𝐴21𝐴

−1

11
𝐴12 ˘7¯

corresponding to the submatrices

[
𝐴33 𝐴34

𝐴43 𝐴44

]
and

[
𝐴11 𝐴12

𝐴21 𝐴22

]
, ˘8¯

and is thus very expensive, due to the large inverses 𝐴−1

44
and 𝐴−1

11
. In the next

section we propose sparse approximations of the optimal transmission blocks using

predefined sparsity patterns.

3 Sparse approximations of optimal transmission blocks

The new idea to determine approximations 𝐷1,app and 𝐷2,app that make the norms in

˘4¯ small and are cheap to compute is to use a SParse Approximate Inverse ˘SPAI¯

technique to make the differences

∥𝐷1𝐵12 − 𝐴34𝐵13∥ and ∥𝐷2𝐵32 − 𝐴21𝐵31∥ ˘9¯

small by approximating the inverse blocks 𝐴−1

11
and 𝐴−1

44
in ˘6¯. Due to the sparsity

of 𝐴34, 𝐴43, 𝐴21, and 𝐴12, we need only to approximate small subblocks of 𝐴−1

11
and

𝐴−1

44
using SPAI.

To gain insight into the quality and performance of such SPAI approximations of

𝐷1,opt and 𝐷2,opt, we consider the model problem Δ𝑢 = 𝑓 in Ω = (0, 1)2, discretized

by a standard five point finite difference stencil, which leads to a system matrix of

the form ˘1¯ with, e.g.,

𝐴11 =
1

ℎ2



𝑇 𝐼

𝐼
. . .

. . .

. . .
. . . 𝐼

𝐼 𝑇



, 𝐴12 =
1

ℎ2



0 0 0

...
...

0 0 0

𝐼 0 0



, 𝐴21 =
1

ℎ2



0 . . . 0 𝐼

0 . . . 0 0

0 . . . 0 0


, ˘10¯

where 𝑇 = spdiag( [1,−4, 1]). To approximate the block inverse 𝐴−1

11
in 𝐷2,opt =

−𝐴21𝐴
−1

11
𝐴12 with matrices from ˘10¯ using SPAI naively, we would solve for a matrix

𝑀 of the same large size as 𝐴11 the minimization problem | |𝐴11𝑀 − 𝐼 | |𝐹 −→ min,

which requires solving a least squares problem for each column, and where one

specifies a sparsity pattern for 𝑀 . Because of the sparsity structure of 𝐴12 and 𝐴21

however in ˘10¯, we see that we need the SPAI approximation only of the last diagonal

block ˘bottom right¯ of M, which we denote by 𝑀𝑏𝑟 . Thus, it is not necessary to

compute the entire SPAI approximation 𝑀 , it is sufficient to just solve the least

squares problems corresponding to the last few columns in 𝑀 which contain 𝑀𝑏𝑟 ,

and furthermore these least squares problems are also small due to the sparsity of

𝐴11. Doing this for our model problem using a diagonal sparsity pattern for 𝑀 leads
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to

𝐷𝑏𝑟
2,app := 𝑀𝑏𝑟

= −ℎ2



0.2222

0.2015

. . .

0.2015

0.2222



. ˘11¯

In order to understand to what type of transmission conditions this approximation

leads, it is best to look at the corresponding Schur complement approximation 𝑆2,app

of 𝑆2,opt from ˘7¯, see also [3, Section 4.1], which is also modified only at the bottom

right,

𝑆𝑏𝑟
2,app = 𝐴𝑏𝑟

22
− [𝐴21𝑀𝐴12]

𝑏𝑟
=

1

ℎ2
𝑇 −

1

ℎ2
𝐷𝑏𝑟

2,app

1

ℎ2
. ˘12¯

Rearranging this expression into

𝑆𝑏𝑟
2,app

=
1

ℎ2



−2 1/2

1/2 −2 1/2

. . .
. . .

. . .

1/2 −2 1/2

1/2 −2



+
1

2ℎ2



−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2



−
1

ℎ2



0.7778

0.78ß5

. . .

0.78ß5

0.7778


˘13¯

and neglecting the fact that the first and last entry from the diagonal SPAI approxi‚

mation are slightly different from the others, we can interpret this as a second order

transmission operator at the continuous level, see [3, Section 4.1],

B1 = −
𝜕𝑢

𝜕𝑛
+
ℎ

2

𝜕2𝑢

𝜕𝑦2
−

1

ℎ
0.78ß5𝑢. ˘14¯

With the analogous result approximating the Schur complement 𝑆1,opt by SPAI, the

corresponding OSM at the continuous level with overlap of one mesh size ℎ would

then have in Fourier space the convergence factor ˘see [3, Section 4.1]¯

𝜌1 (𝑘, ℎ) =

�������

|𝑘 | − 0.78ß5
1

ℎ
−

ℎ

2
𝑘2

|𝑘 | + 0.78ß5
1

ℎ
+
ℎ

2
𝑘2

�������
𝑒−𝑘ℎ, ˘15¯

where 𝑘 > 0 corresponds to the frequency in Fourier space, which allows us to asses

the quality of this approximation theoretically for our model Poisson equation.

Using a tridiagonal SPAI approximation of the term 𝐴−1

11
leads to

𝐷𝑏𝑟
2,app = −ℎ2



0.2446 0.0504

0.0552 0.2557 0.0521

0.0516 0.2540 0.0516

0.0516 0.2540 0.0516

. . .
. . .

. . .



. ˘16¯
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Fig. 1: Comparison of the convergence factors as function of the Fourier frequency 𝑘 for the

classical Schwarz method, algebraic SPAI transmission conditions ˘left¯ and the modified SPAI

transmission conditions ˘right¯.

As observed for the Schur complement in ˘12¯, the changes occur only in the bottom

right block, which we can rewrite in the form ˘where we did not specify the slightly

different boundary terms for simplicity in the last matrix¯

𝑆𝑏𝑟
2,app

=
1

ℎ2



−2 1/2

1/2 −2 1/2

. . .
. . .

. . .

1/2 −2 1/2

1/2 −2



+
0.0516

ℎ2



−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2



−
1

ℎ2



. . .

. . .

0.6428

. . .

. . .



.

˘17¯

This can again be interpreted as a second order transmission operator, namely

B3 = −
𝜕𝑢

𝜕𝑛
+ 0.0516 ℎ

𝜕2𝑢

𝜕𝑦2
−

1

ℎ
0.6428𝑢, ˘18¯

and the corresponding convergence factor in Fourier space with overlap ℎ is

𝜌3 (𝑘, ℎ) =

�������

|𝑘 | −
1

ℎ
0.6428 − 0.0516ℎ𝑘2

|𝑘 | +
1

ℎ
0.6428 + 0.0516ℎ𝑘2

�������
𝑒−𝑘ℎ . ˘19¯

The two convergence factors 𝜌1 from the diagonal SPAI approximation and 𝜌3 from

the tridiagonal SPAI approximation are very similar, there is no apparent benefit

one would expect when going from a diagonal to a tridiagonal approximation, like

when going from a zeroth order optimized ˘OO0¯ to a second order optimized

˘OO2¯ transmission condition [5, Theorem 4.5 and 4.8]. This is also clearly visible

in Figure 1 on the leftȷ SPAI˘1¯ and SPAI˘3¯ have a comparable and much larger low

frequency ˘𝑘 small¯ contraction factor than OO0 and OO2.
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We thus add further diagonals in the SPAI approximation, and obtain with five

diagonals

𝐷𝑏𝑟
2,app = −ℎ2



0.2302 0.0478 0.0084 0.001

0.0521 0.255ß 0.0570 0.0113 0.0017

0.0106 0.0573 0.2577 0.0573 0.0106

. . .
. . .

. . .
. . .

. . .



. ˘20¯

Proceeding as before, and using the matrix spdiag( [1,−4, 6,−4, 1]) which corre‚

sponds to a fourth‚order derivative, we can show that the resulting transmission

operator in Fourier space is a fourth‚order operator given by

B5 = −
𝜕𝑢

𝜕𝑛
+ 𝑞 ℎ

𝜕2𝑢

𝜕𝑦2
−

𝑝

ℎ
𝑢 + ℎ3

0.0106
𝜕4𝑢

𝜕𝑦4
, ˘21¯

where 𝑞 = 0.0573 + 4 × 0.0106, 𝑟 = 0.2577 − 6 × 0.0106, and 𝑝 = 1 − 𝑟 − 2𝑞. The

corresponding convergence factor in Fourier is

𝜌5 (𝑘, ℎ) =

�������

|𝑘 | −
1

ℎ
𝑝 − 𝑞ℎ𝑘2 − ℎ3

0.0106𝑘4

|𝑘 | −
1

ℎ
𝑝 − 𝑞ℎ𝑘2 − ℎ30.0106𝑘4

�������
𝑒−𝑘ℎ . ˘22¯

We see in Figure 1 on the left that this approximation now manages to put a zero

into the convergence factor, like the OO0 does already with the diagonal approx‚

imation, but still the low frequency behavior of the SPAI transmission conditions

is much worse than the low frequency behavior of the OO0 and OO2 transmission

conditions. It seems that it is not sufficient to just minimize the norms ˘9¯ using SPAI

approximations to obtain a transmission condition similar in the quality of the OO0

and OO2 transmission conditions.

We therefore now minimize instead the entire norms in ˘4¯ using a generic op‚

timization algorithm, namely Nelder Mead, which leads to algebraic transmission

conditions and associated AOSMs we call ModSPAI˘1¯, ModSPAI˘3¯, and Mod‚

SPAI˘5¯, see Figure 1, right. More specifically, ModSPAI˘1¯ is obtained by mini‚

mizing the norms in ˘4¯ with respect to the vectors 𝑑𝑖
0

where 𝐷𝑖 = −spdiags(𝑑𝑖
0
, 0),

𝑖 = 1, 2. ModSPAI˘3¯ is obtained by minimizing the corresponding norms w.r.t to

the vectors 𝑑𝑖
−1

, 𝑑𝑖
0
, and 𝑑𝑖

1
such that 𝐷𝑖 = −spdiags( [𝑑𝑖

−1
, 𝑑𝑖

0
, 𝑑𝑖

1
],−1 : 1), 𝑖 = 1, 2.

Similarly, ModSPAI˘5¯ depends on the vectors 𝑑𝑖
−2

, 𝑑𝑖
−1

, 𝑑𝑖
0
, 𝑑𝑖

1
, and 𝑑𝑖

2
where

𝐷𝑖 = −spdiags( [𝑑𝑖
−2
, 𝑑𝑖

−1
, 𝑑𝑖

0
, 𝑑𝑖

1
, 𝑑𝑖

2
],−2 : 2), 𝑖 = 1, 2. By introducing these quanti‚

ties we expect to decrease significantly the corresponding convergence factors. We

clearly see that the minimization of the entire product in ˘4¯ is essential to obtain

AOSMs which have similar performance as OO0 and OO2. It is therefore impor‚

tant to develop an adapted nonlinear SPAI technique to make the norms ˘4¯ small,

since the generic optimization we used here is too costly in practice, requiring the

knowledge of the entire Schur complements to be performed.
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Fig. 2: Convergence history of SPAI based AOSMs compared to the optimal choice of transmis‚

sion blocks and OO0 and OO2. Leftȷ iterative methods; Rightȷ GMRES. Topȷ additive; Bottomȷ

multiplicative.

4 Numerical experiments

To illustrate the performance of the new SPAI AOSMs we consider the advection‚

reaction‚diffusion equation, 𝜂𝑢 − ∇ · (𝑎∇𝑢) + 𝑏 · ∇𝑢 = 𝑓 , where 𝑎 = 𝑎(𝑥, 𝑦) > 0,

𝑏 = [𝑏1 (𝑥, 𝑦), 𝑏2 (𝑥, 𝑦)]
𝑇 , 𝜂 = 𝜂(𝑥, 𝑦) ≥ 0, with 𝑏1 = 𝑦 − 1

2
, 𝑏2 = −𝑥 + 1

2
,

𝜂 = 𝑥2
cos(𝑥 + 𝑦)2, and 𝑎 = 1 + (𝑥 + 𝑦)2𝑒𝑥−𝑦 . We perform the experiments on the

unit square domain Ω = (0, 1) × (0, 1), which we decompose into two subdomains

Ω1 = (0, 𝛽) × (0, 1) and Ω2 = (𝛼, 1) × (0, 1), where 0 < 𝛼 ≤ 𝛽 < 1. After

discretization with a finite difference method, the corresponding matrix 𝐴 is of size

1024× 1024, with a decomposition into two subdomains where the blocks 𝐴11, 𝐴12,

𝐴21, and 𝐴22 are of size 480×480, 480×32, 32×480, and 32×32 respectively. The

parameter of OO0 is evaluated numerically and is given by 𝑝 = 51.72. Similarly, the

parameters of OO2 are given numerically by 𝑝 = 7.ß515 and 𝑞 = 0.3786. In Figure

2, we present the evolution of the 2‚norm of the error as a function of the number

of iterations for our methods used as iterative solvers ˘left¯ and as preconditioners

˘right¯. Since our SPAI and ModSPAI AOSMs are purely algebraic, they can be

applied to many different types of equations and discretizations.
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Concluding Remarks

We proposed a new SPAI approach which permits the inexpensive computation of

transmission conditions in algebraic optimized Schwarz methods. Our analysis for a

model Poisson problem showed that in order to completely capture optimized trans‚

mission conditions, it is either necessary to increase the bandwidth in the new SPAI

approach, or to also include a second term in the optimization, for which a new non‚

linear SPAI technique would need to be developed. For data‚sparse approximations

of transmission operators using H‚matrix techniques, see [10].
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