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1 Introduction

Due to the large number of layers in deep neural networks ˘DNNs¯ [11, 12], DNN

training is time‚consuming and there are demands to reduce training time these

days. Recently, multi‚GPU parallel computing has become an important topic for

accelerating DNN training [2, 6]. In particular, Günther et al. [6] considered the layer

structure of ResNet [8] as the forward Euler discretization of a speciic ODE and

applied a nonlinear in‚time multigrid method [3] by regarding the learning process

of the network as an optimal control problem.

In this work, we propose a novel paradigm of multi‚GPU parallel computing

for DNNs, called parareal neural network. In general, DNN has a feed‚forward

architecture. That is, the output of DNN is obtained from the input by sequential

compositions of functions representing layers. We observe that sequential computa‚

tions can be interpreted as time steps of a time‚dependent problem. In the ield of

numerical analysis, after a pioneering work of Lions et al. [14], there have been nu‚

merous researches on parallel‚in‚time algorithms to solve time‚dependent problems

in parallel; see, e.g., [5, 15, 16]. Motivated by these works, we present a methodology

to transform a given feed‚forward neural network to another neural network called

parareal neural network which naturally adopts parallel computing. The parareal

neural network consists of ine structures which can be processed in parallel and
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a coarse structure which approximates the ine structures by emulating one of the

parallel‚in‚time algorithms called parareal [14].

Note that both the proposed parareal neural network and the work of Günther

et al. [6] seem to be very closely related in that they parallelize and accelerate the

training of neural networks using a parallel time integration approach. However,

unlike the work of Günther et al., the proposed network has the advantage of being

more general by focusing on layer propagation in an arbitrary feed‚forward network.

The parareal neural network can signiicantly reduce the time for inter‚GPU

communication because the ine structures do not communicate with each other but

communicate only with the coarse structure. Therefore, the proposed methodology

is efective in reducing the elapsed time for dealing with very deep neural networks.

Numerical results conirm that the parareal neural network gives similar or better

performance to the original network even with less training time.

2 The parareal algorithm

The parareal algorithm proposed by Lions et al. [14] is a parallel‚in‚time algorithm

to solve time‚dependent diferential equations. For the purpose of description, the

following system of ordinary diferential equations is consideredȷ

¤u(�) = �u(�) in [0, �], u(0) = u0, ˘1¯

where �ȷ R� → R� is an operator, � > 0, and u0 ∈ R
�. The time interval [0, �] is

decomposed into � subintervals 0 = �0 < �1 < · · · < �� = � . First, an approximated

solution {�1
� }

�
�=0

on the coarse grid {�� }
�
�=0

is obtained by the backward Euler

method. The key step of the parareal algorithm is to correct residuals {��
�
}�−1
�=1

occurring in each interface. It is well‚known that the algorithm converges to the

exact solution uniformly [1, 4]. We briely summarize the parareal in Algorithm 1.

3 Parareal neural networks

In this section, we propose a methodology to design a parareal neural network by

emulating the parareal algorithm introduced in Section 2 from a given feed‚forward

neural network. The resulting parareal neural network has an intrinsic parallel struc‚

ture and is suitable for parallel computation using multiple GPUs with distributed

memory simultaneously.

Let �� ȷ � → � be a feed‚forward neural network, where � and � are the spaces

of inputs and outputs, respectively, and � is a vector consisting of parameters. Since

many modern neural networks such as [9, 10, 17] have block‚repetitive substructures,

we may assume that �� can be written as the composition of three functions�� ȷ � →

�0, ��ȷ �0 → �1, and ℎ�ȷ �1 → � , i.e.,
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Algorithm 1: The parareal algorithm for (1)

Let ∆Tj = Tj+1 −Tj and 0 = T0 < T1 < · · · < TN = T .

for j ← 0 to N − 1 do

Solve
U1

j+1
− U1

j

∆Tj

= AU1
j+1, U1

0 = u0

end

for k ← 1, 2, . . . do

for j ← 0 to N − 1 in parallel do

Solve Ûuk
j (t) = Auk

j (t) in [Tj ,Tj+1], uk
j (Tj ) = Uk

j .

end

for j ← 0 to N − 1 do

Sk
j+1 = uk

j (Tj+1) − Uk
j+1, Sk

0
= 0.

Solve
δ
k
j+1
− δk

j

∆Tj

= Aδk
j+1 + Sk

j , δ
k
0 = 0.

Uk+1
j+1 = Uk

j+1 + δ
k
j+1.

end

end

�� = ℎ� ◦ �� ◦ �� , � = � ⊕ � ⊕ �,

where �0 and �1 are vector spaces, �� is a block‚repetitive substructure of ��
with parameters �, �� is a preprocessing operator with parameters �, and ℎ� is a

postprocessing operator with parameters �. Note that ⊕ represents a concatenation.

For appropriate vector spaces �0, �1, . . . , �� , we further assume that �� can be

partitioned into � subnetworks {�
�
� �

ȷ � �−1 → � � }
�
�=1

which satisfy the followingsȷ

• �0 = �0 and �� = �1,

• � =

⊕�

�=1 � � ,

• �� = ��
��
◦ ��−1

��−1
◦ · · · ◦ �1

�1
.

In forward and backward propagations through �� , propagations are done sequen‚

tially through the subnetworks {�
�
� �
}�
�=1

. Regarding the subnetworks as subintervals

of a time‚dependent problem and adopting the idea of the parareal algorithm intro‚

duced in Section 2, we construct a new neural network �̄ �̄ ȷ � → � which contains

{�
�
� �
}�
�=1

as parallel subnetworks; the precise deinition for parameters �̄ will be

given in ˘4¯.

Since the dimensions of the spaces {� � }
�−1
�=0

are diferent for each � in general, we

introduce preprocessing operators �
�

� �
ȷ � → � �−1 such that �1

�1
= �� and �

�

� �
for

� = 2, . . . , � play similar roles to�� ; particular examples will be given in Section 4.

We write x � ∈ � �−1 and y � ∈ � � as followsȷ

x � = �
�

� �
(x) for x ∈ �, y � = �

�
� �
(x � ). ˘2¯
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Then, we consider neural networks �
�
� �

ȷ � � → � �+1 with parameters � � for

� ≥ 1 such that it approximates �
�+1
� �+1

well while it has a cheaper computational cost

than �
�+1
� �+1

, i.e., �
�
� �
≈ �

�+1
� �+1

and dim(� � ) ≪ dim(� �+1). Emulating the coarse grid

correction of the parareal algorithm, we assemble a network called coarse network

with building blocks �
�
� �

. With inputs x �+1, y � , and an output y ∈ � , the coarse

network is described as followsȷ

r� = 0, r � = y � − x �+1 for � = 1, . . . , � − 1, ˘3a¯

r̃1 = r1, r̃ �+1 = r �+1 + �
�
� �
(r̃ � ) for � = 1, . . . , � − 1, ˘3b¯

ỹ = y� + r̃� . ˘3c¯

That is, in the coarse network, the residual r � at the interface between layers �
�
� �

and �
�+1
� �+1

propagates through shallow neural networks �1
�1

, . . . , ��−1
��−1

. Then the

propagated residual is added to the output.

Finally, the parareal neural network �̄ �̄ corresponding to the original network ��
is deined as

�̄ �̄ (x) = ℎ� (ỹ), �̄ =

©«
�⊕
�=1

(� � ⊕ � � )
ª®¬
⊕
©«
�−1⊕
�=1

� �
ª®¬
⊕ �. ˘4¯

That is, �̄ �̄ is composed of the preprocessing operators {�
�

� �
}, parallel subnetworks

{�
�
� �
}, the coarse network {�

�
� �
}, and the postprocessing operator ℎ� . Figure 1˘b¯

illustrates �̄ �̄ .

Since each �
�
� �
◦�

�

� �
lies in parallel, all computations related to �

�
� �
◦�

�

� �
can be

done independently. Therefore, multiple GPUs can be utilized to process {�
�
� �
◦�

�

� �
}

simultaneously for each � . In this case, one may expect signiicant decrease of the

elapsed time for training �̄ �̄ compared to the original network �� . On the other hand,

the coarse network cannot be parallelized since {�
�
� �
} is computed in the sequential

manner. One should choose �
�
� �

whose computational cost is as cheap as possible in

order to reduce the bottleneck efect of the coarse network.

Now, we want show that the proposed parareal neural network �̄ �̄ is consistently

constructed in the sense that it recovers the original neural network �� in the setting

where nonlinearity is removed. By collecting all the residuals in each interface and

dealing with them sequentially, the following proposition is obtained.

Proposition 1 (Consistency)

Assume that the original network �� is linear and �
�
� �

= �
�+1
� �+1

for � = 1, . . . , �−1.

Then we have �̄ �̄ (x) = �� (x) for all x ∈ � .

Proposition 1 presents a guideline on how to design the coarse network of �̄ �̄ .

Under the assumption that �� is linear, a suicient condition to ensure that �̄ �̄ = ��
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Fig. 1: A feed‚forward neural network and its corresponding parareal neural networkȷ (a) Feed‚

forward neural network �� , (b) Parareal neural network �̄ �̄ with � parallel subnetworks ˘� = 3¯.

is �
�
� �

= �
�+1
� �+1

for all � . Therefore, we can say that it is essential to design the coarse

network with �
�
� �
≈ �

�+1
� �+1

to ensure that the performance of �̄ �̄ is as good as that of

�� . Detailed examples will be given in Section 4.

4 Application to ResNet-1001

The proposed parareal neural network can be applied to a general feed‚forward

neural network. However, since most of the current very deep neural networks have

residual structures, we applied it to ResNet‚1001 [9], which is one of the typical very

deep convolutional neural network for classiication problems. First, we describe the

structure of ResNet‚1001 with the terminology introduced in Section 3. Inputs for

ResNet‚1001 are 3‚channel images with 32×32 pixels, i.e., � = R
3×32×32. The output

space � is given by � = R
�, where � is the number of classes of images. ResNet‚

1001 has a block‚repetitive substructure consisting of 333 residual units ˘RUs¯, so

that we may set ��ȷ�0 → �1 as the composition of those RUs with�0 = R
16×32×32

and �1 = R
256×8×8. Then the preprocessing operator �� ȷ � → �0 is a single 3 × 3

convolution layer and the postprocessing operator ℎ�ȷ �1 → � consists of global

average pooling and fully connected layers.

The design of a parareal neural network with � parallel subnetworks for ResNet‚

1001, denoted as Parareal ResNet-� , can be completed by specifying the structures

�
�
� �

, �
�

� �
, and �

�
� �

. For convenience, the original neural network ResNet‚1001 is

called Parareal ResNet‚1. We assume that � = 3�0 for some positive integer �0.

We note that �� can be decomposed as
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�� = ��
��
◦ · · · ◦ �

2�0+1
�2�0+1

◦ �
2�0
�2�0
◦ · · · ◦ �

�0+1
��0+1

◦ �
�0
��0
◦ · · · ◦ �1

�1
,

where each of �
�
� �

ȷ � �−1 → � � consists of ⌈333/�⌉ RUs with

� � =



R

64×32×32 for � = 1, . . . , �0,

R
128×16×16 for � = �0 + 1, . . . , 2�0,

R
256×8×8 for � = 2�0 + 1, . . . , �,

� =

�⊕
�=1

� � .

The main role of the preprocessing operator �
�

� �
ȷ � → � �−1 is to transform an

input x ∈ � to it in the space � �−1. In this perspective, we simply set �1
�1

= �� and

�
�

� �
for � > 1 consists of a 1 × 1 convolution to match the number of channels after

appropriate number of 3 × 3 max pooling layers with stride 2 to match the image

size. For the coarse network, we irst deine a coarse RU consisting of two 3 × 3

convolutions and skip‚connection. If the downsampling is needed, then the stride of

irst convolution in coarse RU is set to 2. We want to deine �
�
� �

ȷ � � → � �+1 having

smaller number of ˘coarse¯ RUs than �
�+1
� �+1

but a similar coverage to �
�+1
� �+1

. Let �� be

the number of coarse RUs in �
�
� �

of the coarse network. Note that the receptive ield

of �
�
� �

covers the input size 32 × 32. In the case of � = 3, even if we construct �
�
� �

with �� = 4 coarse RUs, it can cover 31 × 31 pixels which are similar coverage to

the parallel subnetwork �
�
� �

. Generally, if we use � parallel subnetworks (� ≥ 3),

each 333/� RUs in �
�
� �

can be approximated by the �� RUs in �
�
� �

whenever we

select �� = ⌈12/�⌉.

5 Numerical results

In this section, we present numerical results of the Parareal ResNet‚� with various � .

First, we present details on the datasets we used. The CIFAR‚� ˘� = 10, 100¯ dataset

consists of 32 × 32 colored natural images and includes 50,000 training and 10,000

test samples with � classes. The SVHN dataset is composed of 32×32 colored digit

images; there are 73,257 and 26,032 samples for training and test, respectively, with

additional 531,131 training samples. However, we did not use the additional ones for

training. MNIST is a classic dataset which contains handwritten digits encoded in

28 × 28 grayscale images. It includes 55,000 training, 5,000 validation, and 10,000

test samples. In our experiments, the training and validation samples are used as

training data and the test samples as test data. We adopted a data augmentation

technique in [13] for CIFAR datasets; four pixels are padded on each side of images,

and 32×32 crops are randomly sampled from the padded images and their horizontal

lips.

All neural networks in this section were trained using the stochastic gradient

descent with the batch size 128, weight decay 0.0005, momentum 0.ß, and weights

initialized as in [7]. The initial learning rate is set to 0.1, and is reduced by a factor
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Table 1: Error rates ˘%¯ on the CIFAR‚10, CIFAR‚100, MNIST, and SVHN datasets of

Parareal ResNet‚� ˘� = 1, 3, 6, 12, 18¯ with �� = ⌈12/� ⌉.

�
Parameters

per subnetwork

Parameters of

coarse network

Total

Parameters
CIFAR‚10 CIFAR‚100 MNIST SVHN

1 ‚ ‚ 10.3M 4.96 21.13 0.34 3.17

3 3.4M 5.6M 15.9M 4.61 21.14 0.31 3.11

6 1.7M 5.7M 16.1M 4.20 20.87 0.31 3.21

12 0.9M 5.8M 16.2M 4.37 20.42 0.28 3.25

18 0.6M 8.9M 19.4M 4.02 20.40 0.33 3.29

Table 2: Forward/backward computation time for Parareal ResNet‚� ˘� = 1, 3, 6, 12, 18¯. The

time is measured in one iteration for CIFAR‚100 dataset input x ∈ R3×32×32 with batch size 128.

Virtual wall‚clock time ˘ms¯

� Preprocessing
Parallel

subnetworks

Coarse

network
Postprocessing Total

1 0.25/6.46 443.81/1387.62 ‚ 0.06/3.18 444.12/1397.26

3 0.25/6.45 131.92/458.87 10.01/97.60 0.06/3.71 142.24/566.63

6 0.27/6.42 67.59/219.72 14.68/137.08 0.06/3.33 82.60/366.55

12 0.28/6.59 48.47/113.33 17.97/149.52 0.06/3.63 66.78/273.07

18 0.29/6.17 30.40/77.84 27.87/163.25 0.06/3.64 58.62/250.90

24 0.29/6.58 22.71/58.04 41.03/242.87 0.06/3.54 64.09/311.03

of 10 in the 80th and 120th epochs. All networks were implemented in Python with

PyTorch and all computations were performed on a cluster equipped with Intel Xeon

Gold 5515 ˘2.4GHz, 20C¯, NVIDIA Titan RTX and the operating system Ubuntu

18.04 64bit.

With ixed �� = ⌈12/�⌉, we report the classiication results of Parareal ResNet

with respect to various � on datasets CIFAR‚10, CIFAR‚100, SVHN, and MNIST.

Table 1 shows that the error rates of Parareal ResNet‚� are usually smaller than

ResNet‚1001.

Next, we investigate the elapsed time for forward and backward propagations

of parareal neural networks. Table 2 shows the virtual wall‚clock time for forward

and backward computation of Parareal ResNet‚� with various � for the input x ∈

R
3×32×32. As shown in Table 2, the larger � , the shorter the computing time of the

parallel subnetworks �
�
� �

, while the longer the computing time of the coarse network.

This is because as � increases, the depth of each parallel subnetwork �
�
� �

becomes

shallower while the number of �
�
� �

in the coarse network increases. On the other

hand, each preprocessing operator �
�

� �
is designed to be the same as or similar to

the preprocessing operator �� of the original neural network and the postprocessing

operator ℎ� is the same as the original one. Therefore, the computation time for the

pre‚ and postprocessing operators does not increase even as � increases.
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Table 3: The wall‚clock time and relative speedup on the CIFAR‚100 dataset. The wall‚clock time

is the total time taken to train a given network by 200 epochs.

Network Parameters Wall‚clock time ˘hȷmȷs¯ Relative speedup ˘%¯

ResNet‚1001 10.3M 22ȷ44ȷ53 0.0

Parareal ResNet‚3 15.9M 16ȷ28ȷ38 27.6

Parareal ResNet‚6 16.1M 11ȷ48ȷ13 48.1

Finally, we meausure the wall‚clock time of the Parareal ResNet with the CIFAR‚

100 dataset. Table 3 shows that Parareal ResNet’s wall clock time is reduced by about

half as � increases to 6.

In conclusion, despite the large number of layers, the parareal neural network can

accelerate the training of the very deep CNN using multiple‚GPU. To the best of our

knowledge, the proposed methodology is a new kind of multi‚GPU parallelism in

the ield of deep learning.
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