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1 Introduction

Adaptive mesh refinement ˘AMR¯ is a popular tool in numerical simulations as it

is able to resolve singularity from nonsmooth data and irregular space domains.

A building block of AMR is a posteriori error estimation, see, e.g., [10] for a

classical introduction. On the other hand, preconditioners are discrete operators used

to accelerate Krylov subspace methods for solving sparse linear systems ˘cf. [11]¯.

Recently, [7, 6] introduced a novel framework linking posteriori error estimation and

preconditioning in the Hilbert space. Such an approach yields many old and new

error estimators for boundary value problems posed on de Rham complexes.

In particular, for the positive‚definite H˘curl¯ problem, [6] presents a new residual

estimator robust w.r.t. high‚contrast constant coefficients. In this paper, we extend the

idea in [6] to the H˘curl¯ interface problem and derive new a posteriori error estimates

robust w.r.t. both extreme coefficient magnitude as well as large coefficient jump.

The analysis avoids regularity assumptions used in existing works. We numerically

compare the performance of the estimator in [6] with the one analyzed in [9].

1.1 H(curl)-Elliptic Problems

Let Ω ⊂ R𝑑 with 𝑑 ∈ {2, 3} be a bounded Lipschitz domain, and 𝑛 be a unit vector

normal to 𝜕Ω. Let ∇× be the usual curl in R3, ∇× = (𝜕𝑥2
,−𝜕𝑥1

)· in R2. We define

𝑉 =

{
𝑣 ∈ [𝐿2 (Ω)]𝑑 : ∇ × 𝑣 ∈ [𝐿2 (Ω)]

𝑑 (𝑑−1)
2 , 𝑣 ∧ 𝑛 = 0 on 𝜕Ω

}
,
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where 𝑣 ∧ 𝑛 = 𝑣 × 𝑛 in R3, 𝑣 ∧ 𝑛 = 𝑣 · 𝑛⊥ in R2 with 𝑛⊥ the counter‚clockwise

rotation of 𝑛 by 𝜋
2

, and [𝑋]𝑑 the Cartesian product of 𝑑 copies of 𝑋 . Let (·, ·)Ω0

denote the 𝐿2 (Ω0) inner product and (·, ·) = (·, ·)Ω. Given 𝑓 ∈ 𝐿2 (Ω) and positive

𝜀, 𝜅 ∈ 𝐿∞ (Ω), the H˘curl¯‚elliptic boundary value problem seeks 𝑢 ∈ 𝑉 s.t.

(𝜀∇ × 𝑢,∇ × 𝑣) + (𝜅𝑢, 𝑣) = ( 𝑓 , 𝑣), ∀𝑣 ∈ 𝑉. ˘1¯

The space 𝑉 is equipped with the 𝑉‚norm and energy inner product based on

(𝑣, 𝑤)𝑉 = (𝜀∇ × 𝑣,∇ × 𝑤) + (𝜅𝑣, 𝑤), ∀𝑣, 𝑤 ∈ 𝑉.

Let Tℎ be a conforming tetrahedral or hexahedral partition of Ω. Problem ˘1¯

is often discretized using the Nédélec edge element space 𝑉ℎ ⊂ 𝑉 . The discrete

problem is to find 𝑢ℎ ∈ 𝑉ℎ s.t.

(𝜀∇ × 𝑢ℎ,∇ × 𝑣) + (𝜅𝑢ℎ, 𝑣) = ( 𝑓 , 𝑣), ∀𝑣 ∈ 𝑉ℎ . ˘2¯

The semi‚discrete Maxwell equation is an important example of ˘1¯. In this case,

𝜀 is the reciprocal of the magnetic permeability and 𝜅 is proportional to 1/𝜏2,

where 𝜏 is the time stepsize. Therefore, we are interested in 𝜀 with large jump and

potentially huge 𝜅. In particular, we assume 𝜅 > 0 is a constant, Ω1 ⊂ Ω, Ω2 ⊂ Ω are

non‚overlapping and simply‚connected polyhedrons aligned with Tℎ, Ω̄ = Ω̄1 ∪ Ω̄2,

and

𝜀 |Ω1
= 𝜀1, 𝜀 |Ω2

= 𝜀2, ˘3¯

where 𝜀1 ≥ 𝜀2 > 0 are constants. The interface is Γ := Ω̄1 ∩ Ω̄2. A posteriori error

analysis for more general 𝜀, 𝜅 is beyond the scope of this work but is possible by

making monotonicity‚type assumptions on distributions of 𝜀 and 𝜅, cf. [2, 3].

Throughout the rest of this paper, we say 𝛼 ≼ 𝛽 provided 𝛼 ≤ 𝐶𝛽, where 𝐶 is an

absolute constant depending solely on Ω, the aspect ratio of elements in Tℎ, and the

polynomial degree used in 𝑉ℎ . We say 𝛼 ≃ 𝛽 if 𝛼 ≼ 𝛽 and 𝛽 ≼ 𝛼. Given a Lipschitz

manifold Σ ⊂ Ω, by ∥ · ∥Σ we denote the 𝐿2 (Σ) norm.

2 Nodal Auxiliary Space Preconditioning

The key idea in [6] is nodal auxiliary space preconditioning, originally proposed in

[4] for solving discrete H˘curl¯ and H˘div¯ problems. The auxiliary 𝐻1 space here is

𝑊 =
{
𝑤 ∈ 𝐿2 (Ω) : ∇𝑤 ∈ [𝐿2 (Ω)]𝑑 , 𝑤 |𝜕Ω = 0

}
,

endowed with the inner product

(𝑤1, 𝑤2)𝑊 = (𝜀∇𝑤1,∇𝑤2) + (𝜅𝑤1, 𝑤2)
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and the induced 𝑊‚norm. The next regular decomposition ˘with mixed boundary

condition, cf. [6, 4]¯ is widely used in the analysis of H˘curl¯ problems.

Theorem 1 Given 𝑣 ∈ 𝑉 |Ω1
, there exist 𝜑 ∈ 𝑊 |Ω1

, 𝑧 ∈ [𝑊 |Ω1
]𝑑 , s.t. 𝑣 = ∇𝜑 + 𝑧,

∥𝑧∥𝐻1 (Ω1) ≤ 𝐶0∥∇ × 𝑣∥,
∥𝜑∥𝐻1 (Ω1) ≤ 𝐶0 (∥𝑣∥ + ∥∇ × 𝑣∥),

where 𝐶0 is a constant depending only on Ω1.

To derive a posteriori error bounds for ˘2¯ uniform w.r.t. constant 𝜀 ≪ 𝜅, the work

[6] utilizes the following modified regular decomposition.

Theorem 2 Given 𝑣 ∈ 𝑉 |Ω1
, there exist 𝜑 ∈ 𝑊 |Ω1

, 𝑧 ∈ [𝑊 |Ω1
]𝑑 , s.t. 𝑣 = ∇𝜑 + 𝑧 and

∥𝜑∥𝐻1 (Ω1) + ∥𝑧∥ ≤ 𝐶1∥𝑣∥,
|𝑧 |𝐻1 (Ω1) ≤ 𝐶1 (∥𝑣∥ + ∥∇ × 𝑣∥),

where 𝐶1 is a constant depending only on Ω1.

In the following, we give a new regular decomposition robust w.r.t. constant 𝜅

and piecewise constant 𝜀. See also [5] for a weighted Helmholtz decomposition.

Theorem 3 Given 𝑣 ∈ 𝑉 , there exist 𝜑 ∈ 𝑊 and 𝑧 ∈ [𝑊]𝑑 , s.t. 𝑣 = ∇𝜑 + 𝑧 and

∥𝜅 1
2 𝜑∥𝐻1 (Ω) + ∥𝑧∥𝑊 ≤ 𝐶2∥𝑣∥𝑉 ,

where 𝐶2 is a constant depending solely on Ω, Ω1, Ω2.

Proof The proof is divided into two cases. When 𝜀1 ≥ 𝜅, we use Theorem 1 on Ω1

to obtain 𝜑1 ∈ 𝐻1 (Ω1), 𝑧1 ∈ [𝐻1 (Ω1)]𝑑 both vanishing on 𝜕Ω1\Γ s.t.

𝑣 |Ω1
= ∇𝜑1 + 𝑧1,

∥𝑧1∥𝐻1 (Ω1) ≼ ∥∇ × 𝑣∥Ω1
,

∥𝜑1∥𝐻1 (Ω1) ≼ ∥𝑣∥Ω1
+ ∥∇ × 𝑣∥Ω1

.

˘4¯

When 𝜀1 < 𝜅, applying Theorem 2 to 𝑣 |Ω1
yields 𝜑1 ∈ 𝐻1 (Ω1), 𝑧1 ∈ [𝐻1 (Ω1)]𝑑 s.t.

𝑣 |Ω1
= ∇𝜑1 + 𝑧1, 𝜑1 |𝜕Ω1\Γ = 0, 𝑧1 |𝜕Ω1\Γ = 0,

∥𝜑1∥𝐻1 (Ω1) + ∥𝑧1∥Ω1
≼ ∥𝑣∥Ω1

,

|𝑧1 |𝐻1 (Ω1) ≼ ∥𝑣∥Ω1
+ ∥∇ × 𝑣∥Ω1

,

˘5¯

In either case, it holds that

∥𝜅 1
2 𝜑1∥𝐻1 (Ω1) + ∥𝑧1∥𝑊 |Ω1

≼ ∥𝑣∥𝑉 |Ω1
. ˘6¯

First let 𝜑̂1 ∈ 𝐻1 (R𝑑\Ω2) and 𝑧1 ∈ [𝐻1 (R𝑑\Ω2)]𝑑 be zero extensions of 𝜑1 and

𝑧1 to R𝑑\Ω2, respectively. Then we take 𝜑̃1 ∈ 𝐻1 (Ω), 𝑧1 ∈ 𝐻1 (Ω) to be the Stein

universal extensions of 𝜑̂1, 𝑧1 to R𝑑 satisfying
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∥𝜑̃1∥Ω2
≼ ∥𝜑1∥Ω1

, ∥𝜑̃1∥𝐻1 (Ω2) ≼ ∥𝜑1∥𝐻1 (Ω1) ,

∥𝑧1∥Ω2
≼ ∥𝑧1∥Ω1

, ∥𝑧1∥𝐻1 (Ω2) ≼ ∥𝑧1∥𝐻1 (Ω1) .
˘7¯

On Ω2, applying Theorem 1 ˘if 𝜀2 ≥ 𝜅¯ or Theorem 2 ˘if 𝜀2 < 𝜅¯ to 𝑤 = 𝑣 |Ω2
−

∇𝜑̃1 |Ω2
− 𝑧1 |Ω2

˘𝑤 ∧ 𝑛 = 0 on 𝜕Ω2¯, we have 𝜑2 ∈ 𝐻1
0
(Ω2), 𝑧2 ∈ [𝐻1

0
(Ω2)]𝑑 s.t.

𝑣 |Ω2
− ∇𝜑̃1 |Ω2

− 𝑧1 |Ω2
= ∇𝜑2 + 𝑧2, ˘8a¯

∥𝜅 1
2 𝜑2∥𝐻1 (Ω2) + ∥𝑧2∥𝑊 |Ω2

≼ ∥𝑣∥𝑉 |Ω2
+ ∥𝜅 1

2 ∇𝜑̃1∥Ω2
+ ∥𝑧1∥𝑉 |Ω2

. ˘8b¯

Here ˘8b¯ follows from similar reasons for ˘6¯. Define 𝜑 ∈ 𝐻1
0
(Ω), 𝑧 ∈ [𝐻1

0
(Ω)]𝑑 as

𝜑 :=

{
𝜑1 on Ω1

𝜑̃1 + 𝜑2 on Ω2

, 𝑧 :=

{
𝑧1 on Ω1

𝑧1 + 𝑧2 on Ω2

,

and obtain 𝑣 = ∇𝜑 + 𝑧 on Ω. If 𝜀1 ≥ 𝜅, it follows from ˘8b¯, ˘7¯, ˘4¯, 𝜀2 ≤ 𝜀1 that

∥𝜅 1
2 𝜑∥𝐻1 (Ω2) + ∥𝑧∥𝑊 |Ω2

≼ ∥𝑣∥𝑉 |Ω2
+ 𝜅

1
2 ∥𝜑1∥𝐻1 (Ω1) + (𝜅 1

2 + 𝜀
1
2

2
)∥𝑧1∥Ω1

+ 𝜀
1
2

2
|𝑧1 |𝐻1 (Ω1)

≼ ∥𝑣∥𝑉 |Ω2
+ 𝜅

1
2 ∥𝑣∥ + 𝜀

1
2

1
∥∇ × 𝑣∥Ω1

.

˘9¯

Similarly when 𝜀1 < 𝜅, it follows from ˘8b¯, ˘7¯, ˘5¯, 𝜀2 ≤ 𝜀1 < 𝜅 that

∥𝜅 1
2 𝜑∥𝐻1 (Ω2) + ∥𝑧∥𝑊 |Ω2

≼ ∥𝑣∥𝑉 |Ω2
+ 𝜅

1
2 ∥𝑣∥Ω1

. ˘10¯

Combining ˘6¯, ˘9¯, ˘10¯ completes the proof. □

Remark 1 The work [12] gives a robust regular decomposition for the H˘curl¯ inter‚

face problem with 𝜅 = 𝑠𝜀, 𝑠 ∈ (0, 1]. In contrast, Theorem 3 is able to deal with

large jump of 𝜀 as well as large 𝜅 ≫ 𝜀.

Given a Hilbert space 𝑋 , let 𝑋 ′ denote its dual space, and ⟨·, ·⟩ the action of 𝑋 ′

on 𝑋 . We introduce bounded linear operators 𝐴 : 𝑉 → 𝑉 ′, 𝐴Δ : 𝐻1
0
(Ω) → 𝐻−1 (Ω),

𝐴𝑊 : 𝑊𝑑 → ([𝑊]𝑑) ′ as

⟨𝐴𝑣, 𝑤⟩ = (𝜀∇ × 𝑣,∇ × 𝑤) + (𝜅𝑣, 𝑤), 𝑣, 𝑤 ∈ 𝑉,

⟨𝐴Δ𝑣, 𝑤⟩ = (∇𝑣,∇𝑤) + (𝑣, 𝑤), 𝑣, 𝑤 ∈ 𝐻1
0 (Ω),

⟨𝐴𝑊𝑣, 𝑤⟩ = (𝜀∇𝑣,∇𝑤) + (𝜅𝑣, 𝑤), 𝑣, 𝑤 ∈ [𝑊]𝑑 .

Let 𝑟 ∈ 𝑉 ′ be the residual given by

⟨𝑟, 𝑣⟩ = ( 𝑓 , 𝑣) − (𝜀∇ × 𝑢ℎ,∇ × 𝑣) − (𝜅𝑢ℎ, 𝑣), 𝑣 ∈ 𝑉. ˘11¯

Clearly the inclusion 𝐼 : [𝑊]𝑑 ↩→ 𝑉 and the gradient operator ∇ : 𝑊 → 𝑉 are

uniformly bounded w.r.t. 𝜀 and 𝜅. Then using such boundedness, Theorem 3, and
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the fictitious space lemma ˘cf. [8, 4] and Corollary 5.1 in [6]¯, we obtain the uniform

spectral equivalence of two continuous operators

𝐴−1 ≃ 𝐵 := ∇(𝜅𝐴Δ)−1∇′ + 𝐼 𝐴−1
𝑊 𝐼 ′, ˘12¯

where 𝐼 ′ : 𝑉 ′ → ([𝑊]𝑑) ′ and ∇′ : 𝑉 ′ → 𝑊 ′ are adjoint operators. By 𝐴−1 ≃ 𝐵

from 𝑉 ′ to 𝑉 in ˘12¯ we mean ⟨𝑅, 𝐴−1𝑅⟩ ≃ ⟨𝑅, 𝐵𝑅⟩, ∀𝑅 ∈ 𝑉 ′. It is noted that

𝐴(𝑢 − 𝑢ℎ) = 𝑟 ∈ 𝑉 ′. Therefore a direct consequence of ˘12¯ is

∥𝑢 − 𝑢ℎ∥2
𝑉 = ⟨𝐴(𝑢 − 𝑢ℎ), 𝑢 − 𝑢ℎ⟩ = ⟨𝑟, 𝐴−1𝑟⟩ ≃ ⟨𝑟, 𝐵𝑟⟩

= ⟨∇′𝑟, (𝜅𝐴Δ)−1∇′𝑟⟩ + ⟨𝐼 ′𝑟, 𝐴−1
𝑊 𝐼 ′𝑟⟩ = 𝜅−1∥∇′𝑟 ∥2

𝐻−1 (Ω) + ∥𝐼 ′𝑟 ∥2
( [𝑊 ]𝑑)′ .

˘13¯

3 A Posteriori Error Estimates

The goal of this paper is to derive a robust two‚sided bound ∥𝑢 − 𝑢ℎ∥𝑉 ≃ 𝜂ℎ . The

quantity 𝜂ℎ is computed from 𝑢ℎ and split into element‚wise error indicators for

AMR. Such local error indicators are used to predict element errors in the current

grid and mark those tetrahedra/hexahedra with large errors for subdivision.

When deriving the error estimator, we assume that the source 𝑓 is piecewise

𝐻1‚regular w.r.t. Tℎ. By Sℎ we denote the collection of (𝑑 − 1)‚simplexes in Tℎ
that are not contained in 𝜕Ω. Each 𝑆 ∈ Sℎ shared by 𝑇 +

𝑆
, 𝑇−

𝑆
∈ Tℎ is assigned with

a unit normal 𝑛𝑆 pointing from 𝑇 +
𝑆

to 𝑇−
𝑆

. Let ℎ, ℎ𝑠 be the mesh size functions

s.t. ℎ |𝑇 = ℎ𝑇 := diam(𝑇) ∀𝑇 ∈ Tℎ, ℎ𝑠 |𝑆 = ℎ𝑆 := diam(𝑆) ∀𝑆 ∈ Sℎ. The weighted

mesh size functions are

ℎ̄ := min

{
ℎ√
𝜀
,

1√
𝜅

}
, ℎ̄𝑠 := min

{
ℎ𝑠√
𝜀𝑠

,
1√
𝜅

}
,

where 𝜀𝑠 |𝑆 = max{𝜀𝑇 +
𝑆
, 𝜀𝑇−

𝑆
} ∀𝑆 ∈ Sℎ. For each 𝑇 ∈ Tℎ, 𝑆 ∈ Sℎ, let Ω𝑇 denote the

union of elements in Tℎ sharing an edge with 𝑇 , and Ω𝑆 = ∪𝑆∈Sℎ ,𝑆⊂𝜕𝑇Ω𝑇 . For each

𝑆 ∈ Sℎ, let ⟦𝜔⟧𝑆 = 𝜔 |𝑇 +
𝑆

− 𝜔 |𝑇−
𝑆

be the jump of 𝜔 across 𝑆. We define

𝑅1 |𝑇 = −∇ · ( 𝑓 − 𝜅𝑢ℎ) |𝑇 , 𝐽1 |𝑆 = ⟦ 𝑓 − 𝜅𝑢ℎ⟧𝑆 · 𝑛𝑆 ,
𝑅2 |𝑇 = ( 𝑓 − (∇×)∗ (𝜀∇ × 𝑢ℎ) − 𝜅𝑢ℎ) |𝑇 , 𝐽2 |𝑆 = −⟦𝜀∇ × 𝑢ℎ⟧𝑆 ∧ 𝑛𝑆 ,

where (∇×)∗ = ∇× in R3 and (∇×)∗ = (−𝜕𝑥2
, 𝜕𝑥1

) in R2. By the element‚wise

Stokes’ ˘in R3¯ or Green’s ˘in R2¯ formula, we have

⟨∇′𝑟, 𝜓⟩ = ⟨𝑟,∇𝜓⟩ =
∑︁

𝑇 ∈Tℎ
(𝑅1, 𝜓)𝑇 +

∑︁

𝑆∈Sℎ

(𝐽1, 𝜓)𝑆 , 𝜓 ∈ 𝐻1
0 (Ω), ˘14¯

⟨𝐼 ′𝑟, 𝜑⟩ = ⟨𝑟, 𝜑⟩ =
∑︁

𝑇 ∈Tℎ
(𝑅2, 𝜑)𝑇 +

∑︁

𝑆∈Sℎ

(𝐽2, 𝜑)𝑆 , 𝜑 ∈ [𝑊]𝑑 . ˘15¯
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In view of ˘13¯, it remains to estimate ∥∇′𝑟 ∥𝐻−1 (Ω) and ∥𝐼 ′𝑟 ∥ ( [𝑊 ]𝑑)′ . Let (·, ·)Sℎ

denote the inner product
∑

𝑆∈Sℎ
(·, ·)𝑆 and ∥ · ∥Sℎ

the corresponding norm. Let

𝑄ℎ ˘resp. 𝑄𝑠
ℎ
¯ be the 𝐿2 projection onto the space of discontinuous and piecewise

polynomials of fixed degrees on Tℎ ˘resp. 𝑆ℎ¯. The estimation of ∥∇′𝑟 ∥𝐻−1 (Ω) is

standard ˘cf. [6]¯ and given as

∥ℎ𝑅1∥ + ∥ℎ
1
2
𝑠 𝐽1∥Sℎ

− oscℎ,1 ≼ ∥∇′𝑟 ∥𝐻−1 (Ω) ≼ ∥ℎ𝑅1∥ + ∥ℎ
1
2
𝑠 𝐽1∥Sℎ

, ˘16¯

where oscℎ,1 := ∥ℎ(𝑅1 − 𝑄ℎ𝑅1)∥ + ∥ℎ
1
2
𝑠 (𝐽1 − 𝑄𝑠

ℎ
𝐽1)∥Sℎ

is the data oscillation.

We also need the second data oscillation oscℎ,2 := ∥ ℎ̄(𝑅2 − 𝑄ℎ𝑅2)∥ + ∥ ℎ̄
1
2
𝑠 (𝐽2 −

𝑄𝑠
ℎ
𝐽2)∥Sℎ

. In the next lemma, we derive two‚sided bounds for ∥𝐼 ′𝑟 ∥ ( [𝑊 ]𝑑)′ .

Lemma 1 It holds that

∥ ℎ̄𝑅2∥ + ∥𝜀− 1
4 ℎ̄

1
2
𝑠 𝐽2∥Sℎ

− oscℎ,2 ≼ ∥𝐼 ′𝑟 ∥ ( [𝑊 ]𝑑)′ ≼ ∥ ℎ̄𝑅2∥ + ∥𝜀− 1
4 ℎ̄

1
2
𝑠 𝐽2∥Sℎ

.

Proof The proof is similar to Lemma 4.4 of [6] except the use of the modified

Clément‚type interpolation Π̃ℎ : [𝐿2 (Ω)]𝑑 → 𝑉0
ℎ

proposed in [3] for dealing with

huge jump of 𝜀. Here 𝑉0
ℎ
⊆ 𝑉ℎ is the lowest order edge element space. For any

𝑣 ∈ [𝑊]𝑑 and 𝑇 ∈ Tℎ, the analysis in Theorem 4.6 of [3] implies that

∥𝑣 − Π̃ℎ𝑣∥𝑇 ≼ ℎ𝑇𝜀 |−
1
2

𝑇
∥𝜀 1

2 ∇𝑣∥Ω𝑇
≤ ℎ𝑇𝜀 |−

1
2

𝑇
∥𝑣∥𝑊 |Ω𝑇 , ˘17¯

∥∇(𝑣 − Π̃ℎ𝑣)∥𝑇 ≼ 𝜀 |−
1
2

𝑇
∥𝜀 1

2 ∇𝑣∥Ω𝑇
≤ 𝜀 |−

1
2

𝑇
∥𝑣∥𝑊 |Ω𝑇 . ˘18¯

The 𝐿2‚boundedness of Π̃ℎ implies that

∥𝑣 − Π̃ℎ𝑣∥𝑇 ≼ ∥𝑣∥Ω𝑇
≤ 𝜅−

1
2 ∥𝑣∥𝑊 |Ω𝑇 . ˘19¯

A direct consequence of ˘17¯ and ˘19¯ is

∥𝑣 − Π̃ℎ𝑣∥𝑇 ≼ ℎ̄𝑇 ∥𝑣∥𝑊 |Ω𝑇 . ˘20¯

Given a face/edge 𝑆 ∈ Sℎ, let𝑇 be the element containing 𝑆 over which 𝜀 is maximal.

Using a trace inequality, ˘20¯, ℎ−1
𝑆

≤ ℎ̄−1
𝑆
𝜀
− 1

2

𝑆
, ˘18¯, ℎ̄𝑆 ≃ ℎ̄𝑇 , we have

∥𝑣 − Π̃ℎ𝑣∥2
𝑆 ≼ ℎ−1

𝑆 ∥𝑣 − Π̃ℎ𝑣∥2
𝑇 + ∥𝑣 − Π̃ℎ𝑣∥𝑇 ∥∇(𝑣 − Π̃ℎ𝑣)∥𝑇

≼ ℎ−1
𝑆 ℎ̄2

𝑇 ∥𝑣∥2
𝑊 |Ω𝑇

+ ℎ̄𝑇𝜀 |−
1
2

𝑇
∥𝑣∥2

𝑊 |Ω𝑇
≼ 𝜀 |−

1
2

𝑇
ℎ̄𝑆 ∥𝑣∥2

𝑊 |Ω𝑇
.

˘21¯

It follows from 𝑟 |𝑉ℎ
= 0, ˘15¯, the Cauchy–Schwarz inequality that

∥𝐼 ′𝑟 ∥ ( [𝑊 ]𝑑)′ = sup
𝑣∈[𝑊 ]𝑑 , ∥𝑣 ∥𝑊=1

⟨𝑟, 𝑣⟩ = sup
𝑣∈[𝑊 ]𝑑 , ∥𝑣 ∥𝑊=1

⟨𝑟, 𝑣 − Π̃ℎ𝑣⟩
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≼
(
∥ ℎ̄𝑅2∥ + ∥𝜀−

1
4

𝑠 ℎ̄
1
2
𝑠 𝐽2∥Sℎ

)
sup

𝑣∈[𝑊 ]𝑑
∥𝑣 ∥𝑊=1

(
∥ ℎ̄−1 (𝑣 − Π̃ℎ𝑣)∥ + ∥𝜀

1
4
𝑠 ℎ̄

− 1
2

𝑠 (𝑣 − Π̃ℎ𝑣)∥Sℎ

)
.

Then the upper bound of ∥𝐼 ′𝑟 ∥ ( [𝑊 ]𝑑)′ is a consequence of the above inequality and

˘20¯, ˘21¯. The uniform lower bound of ∥𝐼 ′𝑟 ∥ ( [𝑊 ]𝑑)′ w.r.t. 𝜀, 𝜅 follows from the

bubble function technique explained in [10] and extremal definitions of ℎ̄, ℎ̄𝑠 , 𝜀𝑠 . □

For each 𝑇 ∈ Tℎ, we define the error indicator

𝜂ℎ (𝑇) = 𝜅−1ℎ2
𝑇 ∥𝑅1∥2

𝑇 + ℎ̄ |2𝑇 ∥𝑅2∥2
𝑇 +

∑︁

𝑆∈Sℎ ,𝑆⊂𝜕𝑇

{
𝜅−1ℎ𝑆 ∥𝐽1∥2

𝑆 + ℎ̄𝑠 |𝑆 ∥𝜀−
1
4 𝐽2∥2

𝑆

}
.

Combining ˘13¯, ˘16¯ and Lemma 1 leads to the robust a posteriori error estimate

∑︁

𝑇 ∈Tℎ
𝜂ℎ (𝑇) − oscℎ,1 − oscℎ,2 ≼ ∥𝑢 − 𝑢ℎ∥2

𝑉 ≼

∑︁

𝑇 ∈Tℎ
𝜂ℎ (𝑇). ˘22¯

Remark 2 Our analysis for ˘22¯ is based on regular decomposition and minimal

regularity while the theoretical analysis of recovery estimators in [3] hinges on

Helmholtz decomposition and full elliptic regularity of the underlying domain. Our

estimator 𝜂ℎ (𝑇) is robust w.r.t. both large jump of 𝜀 and extreme magnitude of 𝜀, 𝜅.

4 Numerical Demonstration of Robustness

In the end, we focus on ˘1¯ with constant and positive 𝜀 and 𝜅, which is a special case

of the interface problem considered before. In this case, the error indicator 𝜂ℎ (𝑇)
reduces to the one derived in [6]. For constant 𝜀 and 𝜅, the classical a posteriori error

estimator for ˘2¯ ˘cf. [1, 9]¯ reads

𝜂ℎ (𝑇) = 𝜅−1ℎ2
𝑇 ∥𝑅1∥2

𝑇 + 𝜀−1ℎ2
𝑇 ∥𝑅2∥2

𝑇 +
∑︁

𝑆∈Sℎ ,𝑆⊂𝜕𝑇

{
𝜅−1ℎ𝑆 ∥𝐽1∥2

𝑆 + 𝜀−1ℎ𝑆 ∥𝐽2∥2
𝑆

}
.

Although weighted with 𝜀, 𝜅, this estimator is not fully robust w.r.t. 𝜀 and 𝜅. In fact,

the ratio ∥𝑢 − 𝑢ℎ∥𝑉/(
∑

𝑇 ∈Tℎ 𝜂ℎ (𝑇))
1
2 may tend to zero as 𝜀 ≪ 𝜅, i.e., the constant 𝐶

in the lower bound 𝐶 (∑𝑇 ∈Tℎ 𝜂ℎ (𝑇))
1
2 ≤ ∥𝑢 − 𝑢ℎ∥𝑉 + h.o.t. is not uniform.

To validate the result, we test 𝜂ℎ (𝑇) and 𝜂ℎ (𝑇) by the lowest order edge element

discretization of ˘1¯ defined on Ω = [0, 1]2 with the exact solution 𝑢(𝑥1, 𝑥2) =(
cos(𝜋𝑥1) sin(𝜋𝑥2), sin(𝜋𝑥1) cos(𝜋𝑥2)

)
. The initial partition of Ω is a 4× 4 uniform

triangular mesh. A sequence of nested grids is computed by uniform quad‚refinement.

Let 𝑒 = ∥𝑢−𝑢ℎ∥𝑉 , 𝜂 = (∑𝑇 ∈Tℎ 𝜂ℎ (𝑇))
1
2 and 𝜂 = (∑𝑇 ∈Tℎ 𝜂ℎ (𝑇))

1
2 . Numerical results

are shown in Table 1. In its last row, we compute effectivity index “eff” of 𝜂 ˘resp. 𝜂¯,

which is the algorithmic mean of 𝑒/𝜂 ˘resp. 𝑒/𝜂¯ over all grid levels. It is observed

that the performance of 𝜂 is uniformly effective for all 𝜀, 𝜅, while the efficiency of 𝜂

deteriorates for small 𝜀 and large 𝜅.
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Table 1: Convergence history of the lowest order edge element and error estimators

number 𝑒 𝜂 𝜂̃ 𝑒 𝜂 𝜂̃ 𝑒 𝜂 𝜂̃

of 𝜀 = 0.1 𝜀 = 0.1 𝜀 = 0.1 𝜀 = 10−3 𝜀 = 10−3 𝜀 = 10−3 𝜀 = 10−5 𝜀 = 10−5 𝜀 = 10−5

elements 𝜅 = 10 𝜅 = 10 𝜅 = 10 𝜅 = 103 𝜅 = 103 𝜅 = 103 𝜅 = 105 𝜅 = 105 𝜅 = 105

32 8.42e‚1 3.72 3.94 8.24 3.72e+1 1.46e+3 8.24e+1 3.72e+2 1.46e+6

128 4.35e‚1 2.04 2.04 4.30 2.04e+1 3.80e+2 4.30e+1 2.04e+2 3.80e+5

512 2.19e‚1 1.04 1.04 2.18 1.06e+1 9.70e+1 2.18e+1 1.06e+2 9.64e+4

2048 1.10e‚1 5.26e‚1 5.26e‚1 1.10 5.36 2.48e+1 1.10e+1 5.36e+1 2.42e+4

8192 5.49e‚2 2.64e‚1 2.64e‚1 5.49e‚1 2.69 6.61 5.49 2.69e+1 6.06e+3

eff N/A 2.13e‚1 2.11e‚1 N/A 2.09e‚1 3.33e‚2 N/A 2.09e‚1 3.51e‚4
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