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1 Model equation for a vibrating string

We consider an elastic string of length 𝐿, attached at its two end points, vibrating

in a plane due to an initial deformation corresponding to a pinch in the middle, see

Figure 1. Its deformation is represented by a scalar function 𝑢(𝑥, 𝑡), with 𝑥 ∈ [0, 𝐿],
𝑡 ∈ [0, 𝑇], and 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0. This simple configuration is the basis for

more complex problems that can model guitar and piano strings ˘see, e.g., [6, 2]¯, or

similar musical instruments.

Generally, such a problem is modeled using the wave equation, possibly adding a

first order damping term to produce the so called Telegrapher’s equation,

𝜕𝑡𝑡𝑢(𝑥, 𝑡) = 𝑐2 𝜕𝑥𝑥𝑢(𝑥, 𝑡) − 𝑅 𝜕𝑡𝑢(𝑥, 𝑡) , ˘1¯

with 𝑐 the wave velocity and 𝑅 a damping parameter; setting 𝑅 = 0 leads back to the

wave equation. The vibration period of the string is defined as

𝑇𝑊 := 2𝐿/𝑐 . ˘2¯

0 L

Fig. 1: Vibrating string attached at its two end points, with initial deformation after being plucked.
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Fig. 2: Solution of the wave equation ˘A¯, the Telegrapher’s equation with 𝑅 = 1 ˘B¯, and the wave

equation with viscoelastic damping 𝛾 = 0.03 ˘C¯. The dashed line is the initial condition, 𝑢0, of all

the equations for reference. Leftȷ 𝑡 = ß

8
𝑇𝑊 . Rightȷ 𝑡 = 𝑇𝑊 .

Equation ˘1¯ does however not model the physical behavior of the string in Figure 1

accurately. To illustrate this, we show the numerical solution of ˘1¯ in Figure 2, at

time 𝑡 = ß

8
𝑇𝑊 ˘left¯, and 𝑡 = 𝑇𝑊 ˘right¯. Curve A represents the wave equation

solution ˘𝑅 = 0¯ȷ the string forms a central, unphysical plateau during the oscillation

and comes back to the same plucked initial position after one oscillation ˘𝑡 = 𝑇𝑊 ¯.

Adding the damping term ˘𝑅 = 1, curve B¯ reduces the amplitude of the vibration, but

the shape still corresponds to the unphysical shape produced by the wave equation.

To correct this, we replace the damping term in ˘1¯ by a modified one,

𝜕𝑡𝑡𝑢(𝑥, 𝑡) = 𝑐2 𝜕𝑥𝑥𝑢(𝑥, 𝑡) + 𝛾 𝜕𝑡 𝑥𝑥𝑢(𝑥, 𝑡) , ˘3¯

where 𝛾 is a different damping parameter. We call this the wave equation with

viscoelastic damping. A numerical solution of ˘3¯ is shown in Figure 2, curve C,

which now looks closer to what we would expect from physics. The viscoelastic

damping term in ˘3¯ is of prime importance when modeling string vibration. As

shown in [5], 𝑢(𝑥, 𝑡) is a linear combination of string modes1,

𝜉𝑛 (𝑥) := sin

( 𝜅𝜋𝑥

𝐿

)

, 𝜅 ∈ N∗ , ˘4¯

with 𝜅 the mode number. In the physical world, when vibrating, each mode is damped

at a different rateȷ high frequency modes ˘large 𝜅¯ are damped quickly while low

frequency modes ˘small 𝜅¯ persist longer. The viscoelastic term can model this

behaviour while the damping term in ˘1¯, also called fluid term2, introduces the

same damping for all modes.

1 Those modes are also the eigenfunctions of the one dimensional Laplacian with Dirichlet boundary

conditions.

2 Actually, a more accurate model for a vibrating guitar string in [6] considers both fluid and

viscoelastic terms. But for simplicity, we will consider here only the viscoelastic term.
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To do Fourier analysis, we take the initial condition to be a string mode ˘4¯. This

leads to a closed form solution of ˘3¯,

𝑢(𝑥, 𝑡) = 𝑒−𝜇𝜅 𝑡

[

cos(𝜔̃𝜅 𝑡) +
𝜔2

𝜅

2
sin(𝜔̃𝜅 𝑡)

]

sin

( 𝜅𝜋𝑥

𝐿

)

, ˘5¯

with 𝜇𝜅 := 𝛾 𝜅2 𝜋2

2𝐿2
, 𝜔̃𝜅 := 𝜔𝜅

√︃

1 −
(

𝜅 𝜋
2

𝛾

𝑐𝐿

)2
and 𝜔𝜅 := 𝑐 𝜅 𝜋

𝐿
, provided the mode

number 𝜅 is low enough for the mode to still be oscillating. This is equivalent to the

discriminant when solving ˘3¯ being negative, which means

𝜔2

𝜅 <
4𝑐4

𝛾2
⇐⇒ 𝜅 <

2

𝜋

𝑐𝐿

𝛾
=

2

𝜋
W, ˘6¯

where we introduced W :=
𝑐𝐿
𝛾

, which is the equivalent of a Reynolds ˘or Peclet¯

number for advection. Indeed, equation ˘3¯ is purely hyperbolic when W → +∞
˘vibration with no damping¯ and purely parabolic when W → 0 ˘no vibration¯.

Furthermore, the number of vibrating modes is limited by the value of W ˘see ˘6¯¯.

For one given mode, W also defines, together with 𝑇𝑊 ˘see ˘2¯¯, the lifespan of the

vibration

𝜏𝜅 :=
1

𝜇𝜅
=

W
𝜅2𝜋2

𝑇𝑊 , ˘7¯

which represents the time for the mode amplitude to be reduced to 36.8% = 𝑒−1 of

its initial value. As W gets larger, 𝜏𝜅 increases, hence a numerical simulation may

require more time steps to keep a good accuracy ˘for a more complete investigation,

see Section 3¯. This can greatly increase computation time, so we now investigate

the possibility of using time parallelization to speedup computations.

2 The Parareal algorithm

Time parallel time integration received sustained attention over the last decades, for

a review, see [8]. Renewed interest in this area was sparked by the invention of the

Parareal algorithm [13] for solving initial value problems of the form

d𝒖

d𝑡
= L(𝒖(𝑡), 𝑡), 𝒖(0) = 𝒖0, 𝑡 ∈ [0, 𝑇] , ˘8¯

with L : R
𝑝 × R+ → R

𝑝 , 𝒖(𝑡) ∈ R𝑝 , 𝒖0 ∈ R𝑝 , 𝑝 being the total number of

degrees of freedom, and 𝑇 a positive real value. Problem ˘8¯ often arises from the

spatial discretization of a ˘non‚¯linear system of partial differential equations ˘PDEs¯

through the method‚of‚lines.

For Parareal, one decomposes the global time interval [0, 𝑇] into 𝑁 time

subintervals [𝑇𝑛−1, 𝑇𝑛] of size Δ𝑇 , 𝑛 = 1, . . . , 𝑁 , where 𝑁 is the number of processes

to be considered for the time parallelization. In the following, we denote by 𝑼𝑛 the
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approximation of 𝒖 at time 𝑇𝑛, i.e., 𝑼𝑛 ≈ 𝒖(𝑇𝑛). Let F 𝑛𝐹
𝑇𝑛−1→𝑇𝑛

(𝑼𝑛−1) denote the

result of approximately integrating ˘8¯ on the time subinterval [𝑇𝑛−1, 𝑇𝑛] from a

given starting value 𝑼𝑛−1 using a fine propagator F and 𝑛𝐹 time steps ˘with time

step Δ𝑡𝐹 := (𝑇𝑛−1 −𝑇𝑛)/𝑛𝐹¯. Similarly, Parareal also needs a coarse propagator G
˘using for example 𝑛𝐺 time steps¯, which has to be much cheaper than F resulting

in less accuracy ˘i.e. 𝑛𝐹 ≫ 𝑛𝐺¯.

The Parareal algorithm consists of a prediction step and a correction iteration.

In the prediction step, Parareal computes an initial guess for the starting values𝑼0
𝑛

at the beginning of each time subinterval using the coarse propagator,

𝑼
0

0
= 𝒖0, 𝑼

0

𝑛 = G𝑛𝐺
𝑇𝑛−1→𝑇𝑛

(𝑼0

𝑛−1
), 𝑛 = 1, . . . , 𝑁 . ˘9¯

A correction iteration is then applied in Parareal, using the fine propagator F on

each time subinterval concurrently,

𝑼
𝑘
𝑛 = F 𝑛𝐹

𝑇𝑛−1→𝑇𝑛
(𝑼𝑘−1

𝑛−1
) + G𝑛𝐺

𝑇𝑛−1→𝑇𝑛
(𝑼𝑘

𝑛−1
) − G𝑛𝐺

𝑇𝑛−1→𝑇𝑛
(𝑼𝑘−1

𝑛−1
) , ˘10¯

where 𝑼
𝑘
𝑛 denotes the approximation of 𝒖 at time 𝑇𝑛 at the 𝑘‚th iteration of Para-

real ˘𝑘 = 1, . . . , 𝐾 , 𝑛 = 1, . . . , 𝑁¯. While the application of F can be performed

independently for each time subinterval, Parareal remains limited by the sequential

nature of the coarse integration performed by G𝑛𝐺
𝑇𝑛−1→𝑇𝑛

in ˘10¯. Parareal will thus

reduce the total computational time compared to a direct time‚serial integration only

if the application of G is cheap enough and if the total number of Parareal iterations

𝐾 is small. A more complete description of parallel speedup for Parareal can be

found in [1].

While this algorithm works well for parabolic problems, it is known to struggle

when the problem of interest is close to hyperbolic ˘see, e.g., [16, 7, 15]¯. In our case,

this happens when W becomes large in ˘3¯, similarly to what one obtains for the

Navier‚Stokes equations, as W plays the same role as the Reynolds number. In the

latter case, keeping the same accuracy for the fine solver when the Reynolds number

increases is very important ˘c.f., [14, Sec. 3.5]¯, as the use of the fine solver with

incorrect mesh resolution can lead to a misinterpretation of Parareal convergence

results ˘see, e.g., [10, Sec. 4]¯. Hence in the next section, we investigate the accuracy

of our space time discretization and its link to W and other parameters.

3 Space mesh requirement for fixed error tolerance

We solve ˘3¯ numerically using a uniform spatial mesh with 𝑛𝑥 points ˘𝑥 𝑗 := 𝑗 Δ𝑥,

with Δ𝑥 :=
𝐿

𝑛𝑥+1
¯. Denoting by 𝑢 𝑗 (𝑡) ≈ 𝑢(𝑥 𝑗 , 𝑡) and ¤𝑢 𝑗 (𝑡) ≈ 𝜕𝑡𝑢(𝑥 𝑗 , 𝑡), we define

v(𝑡) := [𝑢1 (𝑡), ..., 𝑢𝑛𝑥
(𝑡), ¤𝑢1 (𝑡), ..., ¤𝑢𝑛𝑥

(𝑡)]⊤. ˘11¯

We use second‚order centered finite differences, which leads to a tridiagonal square

matrix 𝐴 of size 𝑛𝑥 . Applying the method‚of‚lines to ˘3¯ yields
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W 𝜅 = 1 𝜅 = 2 𝜅 = 4

𝑛𝑥 𝑛𝑡 𝜖 𝑛𝑥 𝑛𝑡 𝜖 𝑛𝑥 𝑛𝑡 𝜖

100 305 619 1.008% 432 219 1.007% 610 78 1.009%

1000 965 19555 1.012% 1365 6916 1.012% 1929 2444 1.014%

10000 3050 618060 1.015% 4314 218550 1.014% 6100 77258 1.014%

Table 1: Mesh resolution needed for one percent relative error when varying 𝑛𝑥 according to W
and 𝜅 , with 𝜎 = 10. The number of time steps 𝑛𝑡 is set to simulate [0, 𝑇 ] with 𝑇 ≈ 𝜏𝜅 .

𝑑v

𝑑𝑡
=

(

0 𝐼

𝑐2𝐴 𝛾𝐴

)

v = 𝐿v , ˘12¯

with 𝐼 the identity matrix of size 𝑛𝑥 . For the time integration, we use a second

order SDIRK2 scheme, integrating up to 𝑇 = 𝜏𝜅 with 𝑛𝑡 time steps ˘𝑡𝑖 := 𝑖Δ𝑡 with

Δ𝑡 := 𝑇/𝑛𝑡 ¯. We keep a constant CFL number,

𝜎 :=
𝑐 Δ𝑡

Δ𝑥
= 10 . ˘13¯

We define the relative numerical error as

𝜖 := max
𝑡 ∈{0,𝑡1 ,...,𝑡𝑛𝑡 }





u(𝑡) − utheory (𝑡)






2

∥u(0)∥2

, ˘14¯

with u(𝑡) the part of v(𝑡) containing only 𝑢 values, and utheory (𝑡) the analytic solution

from ˘5¯ evaluated at the grid points 𝑥 𝑗 .

Looking at similar problems ˘e.g. advection‚diffusion [9]¯, one can expect that

when we keep a fixed mesh resolution in space ˘and in time¯, the error increases

with 𝜅 and W. Hence, we assume that the minimal value of 𝑛𝑥 for which the error

𝜖 is lower than a given tolerance follows a law of the form

𝑛𝑥,min = 𝐶𝜅𝛼W𝛽 . ˘15¯

We compute 𝑛𝑥,min for different values of 𝜅 and W using a trial and error procedure,

and then the parameters 𝐶, 𝛼 and 𝛽 are determined by least square regression.

Setting 𝜖 ≤ 0.01 ˘i.e., less than 1% error¯ with 𝜎 = 10, we find for our space time

discretization

𝑛𝑥,min ≈ 30.5
√
𝜅W . ˘16¯

In Table 1, we use ˘16¯ to give the values (𝑛𝑥 , 𝜖) for several combinations of 𝜅 and

W, which confirms well our empirical law ˘16¯. Furthermore, we also indicate the

number of time steps 𝑛𝑡 required to compute the whole time interval [0, 𝜏𝜅 ] ˘i.e.,

the time period during which the mode vibrates, with 𝜏𝜅 defined in ˘7¯¯. This shows

an important increase in the problem size with W, since generally 𝑛𝑡 ≫ 𝑛𝑥 , which

motivates time parallelization for such problems.
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Fig. 3: Convergence of Parareal for the wave equation with viscoelastic damping, using 𝑁 = 32

and 𝑚 = 8. Leftȷ 𝜅 = 1, varying W. Rightȷ W = 1000, varying 𝜅 .

4 Numerical experiment with Parareal

We apply Parareal to the wave equation with viscoelastic damping ˘3¯, using 𝑁

processors. We use the same space‚time discretization as in Section 3, such that 𝑛𝑥
and the time step Δ𝑡𝐹 of the fine solver are fully determined by W and the mode

number 𝜅 of the initial condition ˘4¯ ˘see Table 1¯. We denote by 𝑚 the ratio between

the coarse and the fine time step, i.e. 𝑚 = Δ𝑡𝐺/Δ𝑡𝐹 , and we set the number of time‚

steps per time‚interval for the coarse and fine solver ˘𝑛𝐹 and 𝑛𝐺¯ such that 𝑛𝐺 ≥ 1

and that the final time of simulation 𝑇 is close to 𝜏𝜅 . Finally we compute the error of

Parareal for each iteration as

𝐸 𝑘
:= max

𝑛∈{1,...,𝑁 }





U
𝑘
𝑛 − U

𝐹
𝑛







∥U0∥
, ˘17¯

where U
𝐹
𝑛 is the solution at the end of each time sub‚interval obtained by the fine

solver run sequentially.

In Figure 3, we plot the Parareal error at each iteration for different values of

the parameters 𝜅 and W. We observe two convergence dynamicsȷ for the first few

iterations, the error decreases super‚linearly and rapidly goes below the fine solver

accuracy of 1%, in around five iterations. Then, after about 10 iterations, divergence

sets in and a bump forms until the last iteration when Parareal must converge to

the fine solution after 𝑘 = 𝑁 iterations [11]. This bump is due to the amplification

of higher frequency modes in the Parareal iteration, and if Parareal is initialized

with a random initial guess, we get the grey dashed convergence ˘or more divergence¯

curves in Figure 3, which shows how important the initialization here is and that

Parareal struggles to generically solve such close to being hyperbolic problems.

While this bump is not so much influenced by low initial modes 𝜅, it does increase

with W. Especially when 𝑁 gets large, this turns out to be problematic for larger

values of W, i.e., when the problem becomes more hyperbolic, even with a good

coarse initial approximation, see Figure 4.
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Fig. 4: Influence of 𝑁 and the coarse solver’s phase error on Parareal convergence. Leftȷ W =

1000, 𝑚 = 8, varying 𝑁 . Rightȷ 𝑁 = 32, 𝑛𝐹 = 𝑛𝐺 , and larger damping parameter for coarse

solver, results from Figure 3 ˘left¯ in dotted lines and W is indicated for the fine solver.

A similar bump has been observed in [10] for the advection equation, and it is due

to the amplification of high frequency error components in the Parareal iteration

[10], because of the hyperbolic nature of advectionȷ the Parareal correction step

amplifies these high frequencies, which are present even in a smooth low frequency

initial guess due to round‚off error. The more processors one uses, the more these

high frequency components are amplified, and the higher the bump becomes, even

with a smooth low frequency initial guess. A theoretical way to avoid this problem is

to impose very high regularity [3]. A more practical way is to reduce the number of

processors 𝑁 in order to limit the amplification induced by the Parareal iterations.

For our problem, we show in Figure 4 ˘left¯ the impact of reducing 𝑁 , and as

expected, the bump is reduced and even disappears for low values of 𝑁 . However,

this limits the number of processors that can be used, and is thus also less useful in

practice for parallel computations.

It has been shown for advection in [15] that removing the phase error of the

coarse solver greatly improves convergence of Parareal. In order to simulate a

coarse solver almost free of phase error, we consider using the same space‚time

discretization for both the coarse and fine solver, but with a larger damping parameter

for the coarse solver. This is not useful in practice either since it makes the coarse

solver as expensive as the fine solver ˘see [12] that can make using the same grids

practical¯, but gives us further theoretical insight. We set the ratio between the coarse

and fine damping parameter ˘around 5¯ such that the error between the two is equal to

the one obtained when Δ𝑡𝐺 = 𝑚 Δ𝑡𝐹 with 𝑚 = 8 ˘results in Figure 3 ˘left¯¯. We plot

the convergence of Parareal in Figure 4 ˘right¯, and see that now the convergence

for the first iterations is slightly slower than in Figure 3, but the bump is no longer

present in the later iterations.

To conclude, we have shown that under the condition that the fine solver has

a sufficient mesh accuracy for the problem considered ˘determined by 𝜅 and W¯,

Parareal with a smooth low frequency initial guess obtained from the coarse solver

converges for the first few iterations when applied to low frequency modes, which
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have the longest vibration time ˘see ˘7¯¯. However divergence occurs afterward, due to

the amplification of higher frequency modes by the Parareal iteration. We have then

shown that removing the phase error between the coarse and fine solver can improve

Parareal convergence. Designing inexpensive coarse solvers for hyperbolic‚type

problems that do not produce phase error with the fine solver may allow Parareal

to become more efficient for such problemsȷ for direct constructions using dispersion

correction for the advection equation in 1D, see [4], and for a rapid coarse solver

based on the same mesh as the fine solver but solved by diagonalization for general

hyperbolic problems, see [12].
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