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1 Introduction

Adaptive Dirichlet‚Neumann and Robin‚Neumann algorithms for singularly‚

perturbed advection‚difusion equations were introduced in [2], accounting for trans‚

port along characteristics, see also [6] for the discrete setting and damped versions

using a modiied quadrature rule to recover the hyperbolic limit. Non‚overlapping

Schwarz DDMs with Robin transmission conditions ˘TCs¯ applied to advection‚

difusion equations were analyzed in [10, 1] and a stabilized inite‚element method

for singularly perturbed problems was discussed in [9], see also [3, 4] and references

therein for heterogeneous couplings. However, the behavior of these DDMs in the

limit of vanishing difusion has not been addressed.

Our goal is to develop inite volume Robin TCs such that the associated non‚

overlapping DDM is consistent and asymptotic‚preserving ˘AP¯. Consistent here

means that, for ixed mesh size, the discrete DDM iterates converge to the discrete

solution on the entire domain, and AP means that the singular limit in the DDM

yields a convergent limit DDM ˘for more on AP, see e.g. [7]¯. We irst show that the

continuous DDM is only AP under a strict condition on the Robin transmission pa‚

rameter, see Theorem 1. In contrast, our new discrete DDM is AP without restriction

on this parameter, see Theorem 3, and fast convergence is automatically recovered

in the hyperbolic limit. While our analysis is in 1D, we show numerical experiments

also in 2D; for the nonlinear space‚time case with triangular meshes, see [5].
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2 The continuous problem and non-overlapping DDM

We consider for � ≥ 0, � > 0 and � ∈ �2 (−1, 1) the stationary advection‚difusion

equation with homogeneous Dirichlet boundary conditions, i.e.,

L(�) := ����� − ���� = � in Ω := (−1, 1), �(−1) = 0 , ��(1) = 0 . ˘1¯

In the singular limit � = 0, the PDE in ˘1¯ becomes ˘trivially¯ advective, and the

boundary condition collapses into the inlow condition �(−1) = 0 only. It is easy to

see that there exists a unique weak solution � ∈ �1 (−1, 1) of ˘1¯ for � ≥ 0.

We apply a non‚overlapping DDM with two sub‚domains Ω1 = (−1, 0) and

Ω2 = (0, 1) to ˘1¯. The problem ˘1¯ is then rewritten using at � = 0 the Robin TCs

B1 (�) = ���� − �� + �� , B2 (�) = −���� + �� + �� , � > 0 . ˘2¯

Definition 1 (Continuous DDM) Let �0
2
∈ �1 (Ω2). For � ∈ IN, the �‚th ˘continu‚

ous¯ DDM‚iterate (��
1
, ��

2
) ∈ �1 (Ω1) × �1 (Ω2) is given as solution of

�����
�
� − ����

�
� = � in Ω � , � = 1, 2 , ˘3¯

��1 (−1) = 0 , ���2 (1) = 0 , ˘4¯

�B1 (�
�
1 ) = �B1 (�

�−1
2 ) , B2 (�

�
2 ) = B2 (�

�
1 ) at � = 0 . ˘5¯

Note that ˘3¯‚˘5¯ is equivalent to ˘1¯ in the limit � → ∞. In the limit when � → 0,

we get the stationary advection equation, and the two Robin TCs ˘5¯ degenerate into

one Dirichlet TC. Note that the multiplication of B1 by � is necessary to remove the

TC in the limit � → 0. The errors ��
�

:= � |Ω �
− ��

�
satisfy ˘3¯‚˘5¯ with � ≡ 0 due to

linearity. Therefore, we have by direct solution

��1 (�) = ��
1 (e

��/� − e−�/�) , ��2 (�) = ��
2 (1 − e� (�−1)/�) if � > 0 ,

��1 ≡ 0 , ��2 ≡ 0 if � = 0 ,

where ��
1
, ��

2
∈ IR satisfy the recurrence relations

��
1 =

−�+�(1−e−�/�)

�e−�/�+�(1−e−�/�)
��−1

2 , ��
2 =

−�e−�/�+�(1−e−�/�)

�+�(1−e−�/�)
��

1 .

This yields the following convergence result.

Theorem 1 (Convergence and AP property of the continuous DDM)

The sequence of continuous DDM-iterates {(��
1
, ��

2
)}

�∈IN
converges pointwise to

(� |Ω1
, � |Ω2

). For � > 0, the convergence is linear with convergence factor

� =

�

�

�

�

(� − �) + �e−�/�

(� + �) − �e−�/�

�

�

�

�

�

�

�

�

� − (� + �)e−�/�

� + (� − �)e−�/�

�

�

�

�

< 1 . ˘6¯

Convergence in one iteration is achieved if � =
�

1−e−�/�
or in the case � = 0.

The continuous DDM ˘3¯-˘5¯ is AP if � = �(�) satisies |� − � | = �(1) as � → 0.
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3 Cell-centered finite volume discretization

We discretize ˘1¯ and ˘3¯‚˘5¯ by a cell‚centered inite volume method. For given

� ∈ IN, let the step‚width be ℎ := 1/� and the volumes �� := [�ℎ, (� + 1)ℎ] for

−� ≤ � < � be given. Furthermore, deine �� :=
∫

��
� (�) ��. We denote the constant,

cell‚centered approximation of � in �� by �� , and encapsulate these for all �� in the

vector � := (��)
�−1
�=−�

∈ IR2� . Using centered diferences for the difusion and upwind

luxes for the advection, the discrete version of problem ˘1¯ reads

�
ℎ
(��−1 − 2�� + ��+1) + �(��−1 − ��) = �� for −� < � < � − 1, ˘7¯

�
ℎ
(−3�−� + �−�+1) − 2��−� = �−� , ˘8¯

�
ℎ
(��−2 − 3��−1) + �(��−2 − ��−1) = ��−1 . ˘9¯

Here, we eliminated the ghost values �−�−1 and �� using a linear interpolation of the

boundary conditions. Analogously, one obtains the discrete version of ˘3¯ and ˘4¯,

while ˘5¯ becomes

�1 (�
�
1 ) = �1 (�

�−1
2 ) , �2 (�

�
2 ) = �2 (�

�
1 ) . ˘10¯

It remains to discretize the TC ˘2¯ to obtain �1, �2, and then to eliminate the ghost

values �1,0 and �2,−1. For this, we use centered diferences for the difusion and

linear combinations of the values in �−1 and �0 for the other terms to obtain

�1 (�) =
�
ℎ
(�0 − �−1) − �((1 − �1)�−1 + �1�0) + �((1 − �1)�−1 + �1�0) , ˘11¯

�2 (�) = − �
ℎ
(�0 − �−1) + �((1 − �2)�−1 + �2�0) + �((1 − �2)�−1 + �2�0) , ˘12¯

for some �1, �2, �1, �2 ∈ [0, 1]. Note that � � = � � = 0, � = 1, 2, is an upwind

discretization, while the centered choice � � = � � = 1/2, � = 1, 2, is typically used

in the difusion‚dominated case � ≫ � to obtain second‚order convergence in ℎ.

To eliminate the ghost values �1,0 and �2,−1 in ˘7¯, we solve ˘11¯ for �0 and ˘12¯

for �−1. To eliminate �2,−1 in ˘11¯ and �1,0 in ˘12¯, we solve ˘7¯ for �1,0 and �2,−1.

Inserting the resulting expressions and using ˘10¯, we obtain the following discrete

DDM iteration.

Definition 2 (Discrete DDM)

For given �0
2
∈ IR� , let �̃1 (�

0
2
) :=

��1 (�0
2
)

�−�ℎ�1+�ℎ�1
. For � ∈ IN, the �‚th discrete

DDM‚iterate (��
1
, ��

2
) ∈ (IR� )

2
satisies

�
ℎ
(���,�−1 − 2���,� + ���,�+1) + �(���,�−1 − ���,�) = �� , ˘13¯

for � = 1, −� < � < −1 and for � = 2, 0 < � < � − 1,

�
ℎ
(−3��1,−� + ��1,−�+1) − 2���1,−� = �−� , ˘14¯

�
ℎ
(��2,�−2 − 3��2,�−1) + �(��2,�−2 − ��2,�−1) = ��−1 , ˘15¯
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�
ℎ

(

��1,−2 − 2��1,−1

)

+ �(��1,−2 − ��1,−1) +
�
ℎ
�1�

�
1,−1 = �−1 − �̃1 (�

�−1
2 ) , ˘16¯

�
ℎ

(

− 2��2,0 + ��2,1
)

− ���2,0 +
(

�
ℎ
+ �

)

�2�
�
2,0 = �0 − �̃2 (�

�
1 ) , ˘17¯

where

�̃1 (�
�
2 ) =

�
ℎ
��2,0 −

�
�+�ℎ

�1

(

�0 −
�
ℎ
(−2��2,0 + ��2,1) + ���2,0

)

, ˘18¯

�̃2 (�
�
1 ) =

(

�
ℎ
+�

)

��1,−1 −
�+�ℎ
�

�2

(

�−1 −
�
ℎ
(��1,−2−2��1,−1) − �(��1,−2−�

�
1,−1)

)

, ˘19¯

�1 =

�
ℎ
+� (1−�1)−�(1−�1)

�
ℎ
−��1+��1

, �2 =

�
ℎ
−��2−��2

�
ℎ
+� (1−�2)+�(1−�2)

. ˘20¯

Note that ˘13¯‚˘19¯ is uniquely solvable for all � ≥ 0 if �1 = O(1/�) and �2 = O(�)

as � → 0. The resulting system matrix for ��
2

is weakly chained diagonally dominant,

and thus non‚singular. The same holds for ��
1

if �1 ≤ 1. Further note that �̃1 and �̃2 in

˘16¯‚˘19¯ are discrete Robin‚to‚Dirichlet operators, so that �1 = �2 = 0 corresponds

to Dirichlet TCs, which do not lead to convergence without overlap.

We next investigate how the coeicients � � , � � , � = 1, 2, must be chosen to obtain

a discrete DDM that is consistent with ˘7¯‚˘9¯. Since the discretization ˘13¯‚˘15¯ is

the same as ˘7¯‚˘9¯, consistency follows if the solution to ˘16¯‚˘19¯ in the limit when

� → ∞ satisies ˘7¯ and vice versa. The solution � of ˘7¯‚˘9¯ solves ˘16¯‚˘19¯, as can

be directly seen when inserting it into ˘16¯‚˘19¯ using ˘7¯ for � = −1, 0. This only

requires that ��1 and �2/� are well‚deined for all � ≥ 0 and all � > 0. On the other

hand, combining ˘16¯ and ˘18¯ as well as ˘17¯ and ˘19¯ yields

�
ℎ
(�1,−2 − 2�1,−1 + �2,0) + �(�1,−2 − �1,−1)

= �−1 +
�

�+�ℎ
�1

(

�0 −
�
ℎ
(�1,−1 − 2�2,0 + �2,1) − �(�1,−1 − �2,0)

)

,
�
ℎ
(�1,−1 − 2�2,0 + �2,1) + �(�1,−1 − �2,0)

= �0 +
�+�ℎ
�

�2

(

�−1 −
�
ℎ
(�1,−2 − 2�1,−1 + �2,0) − �(�1,−2 − �1,−1)

)

.

We obtain equivalence with ˘7¯ if 1 ≠ �1�2. Hence, we have proved the following

theorem which provides choices for the TC parameters �1, �2, �1, �2 that ensure

consistency for all � > 0 and � ≥ 0.

Theorem 2 (Consistency of the discrete DDM)

The limit of the discrete DDM iterates ˘13¯-˘19¯ as � → ∞ is equal to the solution

of ˘7¯-˘9¯ for all � > 0 if the following conditions hold:

˘A1¯ �1 < �
�ℎ

(or equal if �1 > 0), and

˘A2¯ ��1 = O(1) as � → 0 , i.e. by ˘A1¯, � = O(� − �ℎ�1 + �ℎ�1) , and

˘A3¯ �2 = O(�) as � → 0 , i.e., �2 + �2 = O(�) , and

˘A4¯ �1�2 ≠ 1, i.e.,

0 ≠ �2 (�2 − �1) + �
(

2�
ℎ
+ �(�1 + �2 − �1 − �2)

)

+ �2 (�1 − �2) .

Remark 1 Note that the simplest choice of the coeicients, which satisies Theorem 2

is �1 = �2 = �2 = 0 and �1 = 1/2. As shown below, this also yields convergence
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for any positive discrete Peclet number Pe := �ℎ/� > 0. Furthermore, this choice

ensures that the discrete DDM is AP as � → 0 for any � > 0, as we show next.

We split the convergence analysis of the discrete DDM into two regimes due to

the diferent types of solutionsȷ the elliptic case � > 0 and the singular limit � = 0.

For this, let �� := � − (��
1
, ��

2
) be the error of the discrete DDM at iteration �. By

linearity, �� satisies the discrete DDM ˘13¯‚˘19¯ with � = 0.

The elliptic case � > 0 : Then, ˘13¯‚˘15¯ for �� yield the solution

�� =

(

��
1

(

� (�+1)ℎ −
(

1 + Pe
2

)

�−1
)−1

�=−�
, ��

2

(

1 + Pe
2
− � (�+1)ℎ−1

) �−1

�=0

)

,

where we deined � := (1 + Pe)� . The constants ��
1
, ��

2
∈ IR are determined by

˘16¯‚˘19¯, which yield the recurrence relations

��
1 = −

�−�+
(

��1−�(Pe−1+�1)
)

2Pe
2+Pe

�−1

(

��1−�(Pe−1+�1)
)

2Pe
2+Pe

+(�−�) �−1
��−1

2 , ��
2 =

��2+�(Pe−1+�2)−(�+�)
2+Pe
2Pe

�−1

(�+�)
2+Pe
2Pe

−
(

��2+�(Pe−1+�2)
)

�−1
��

1 .

Therefore, the iteration is linearly convergent if

� =

�

�

�

�

�

� − � +
(

��1 − �(Pe−1 + �1)
)

2Pe
2+Pe

�−1

� + � −
(

��2 + �(Pe−1 + �2)
)

2Pe
2+Pe

�−1

�

�

�

�

�

�

�

�

�

�

��2 + �(Pe−1 + �2) − (� + �) 2+Pe
2Pe

�−1

��1 − �(Pe−1 + �1) + (� − �) 2+Pe
2Pe

�−1

�

�

�

�

�

< 1 . ˘21¯

Note that convergence in one iteration is possible for the choice

� = �opt :=
2� + �ℎ − 2�1�ℎ�

−1

2� + �ℎ − 2 (� + �1�ℎ) �−1
�

ℎ→0
−→

�

1 − �−�/�
, ˘22¯

which is almost mesh independent when �1 = 0 and �1 = 1/2. This is consistent

with the continuous DDM and also yields �opt → � as � → 0.

Furthermore, note that ˘21¯ for �1 = �2 = 0 and �1 = �2 = 1/2 is satisied for

all � > 0. But �2 = 1/2 does not satisfy ˘A3¯ of Theorem 2, so that �̃2 ˘and thus

�¯ degenerate when � → 0. However, choosing �1 = �2 = �2 = 0 and �1 = 1/2,

Theorem 2 is satisied for all � > 0, and ˘21¯ is satisied for all � > 0 due to Pe > 0.

The singular limit � = 0 : Then, ˘13¯‚˘15¯ for �� yields

�� =

(

(0)−2
�=−� , �

�
1 , (�

�
2 )

�−1
�=0

)

,

with ��
1
, ��

2
∈ IR determined by ˘16¯‚˘19¯. To obtain �1

1
= 0, i.e., the correct solution

in Ω1, this requires by ˘16¯

0 = �1
1 =

−�̃1 (�0)
�
ℎ
�1−�

, �̃1 (�
0) =

��1 (�0)
�−�ℎ�1+�ℎ�1

.

Since ��1 = O(1) as � → 0 by ˘A2¯, this holds if lim�→0 ��1 ≠ �ℎ and

lim�→0 �/(� − �ℎ�1 + �ℎ�1) = 0. Using ˘A1¯ of Theorem 2, this simpliies to

�/�1 = �(1) as � → 0 and implies �1 = �(1). For �1
2
, we then obtain by ˘17¯‚˘19¯
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and ˘A3¯ that �1
2
= 0, i.e., convergence in one iteration. Then, ��

1
= ��

2
= 0 for all

� > 2 follows by induction using ˘16¯‚˘19¯.

Summarizing the above analysis, we obtain the following result.

Theorem 3 (Convergence and AP property of the discrete DDM)

Let ˘A1¯-˘A4¯ from Theorem 2 be satisied. The sequence of discrete DDM iterates

{(��
1
, ��

2
)}

�∈IN
from ˘13¯-˘19¯ converges linearly to the solution of ˘7¯-˘9¯ for � > 0

if ˘21¯ is satisied.

Convergence in one iteration is achieved if � satisies ˘22¯ or for � = 0 if the limit

discrete DDM for �/�1 = �(1) as � → 0 is used.

The discrete DDM ˘13¯-˘19¯ is AP if |� − � | = �(1) or �/�1 = �(1) as � → 0.

Note that as shown above, the choice �1 = �2 = 0 and �1 = �2 = 1/2 yields linear

convergence for � > 0, but the convergence rate degenerates for � → 0. The choice

�1 = �2 = �2 = 0 and �1 = 1/2 leads to linear convergence for � > 0 uniformly in �

with 1‚step convergence for � = 0, and thus is AP.

Remark 2 (Convergence order and mass conservation) As the iterates of the discrete

DDM converge to the solution of ˘7¯‚˘9¯, which is a irst‚order convergent inite

volume method ˘uniform in � and �¯, the same holds for the discrete DDM at con‚

vergence ˘and before as soon as �� = O(ℎ)¯. Furthermore, the inite volume method

is locally mass conservative, such that mass conservation holds in each subdomain

of the discrete DDM. At the interface between the subdomains, mass conservation

is ensured at convergence, since the discrete DDM recovers the ˘implicit¯ mono‚

domain inite volume formulation. In contrast, methods based on an explicit splitting

at the interface ˘see e.g. [11, 8]¯ directly ensure mass conservation, but require the

usual time‚step restriction of CFL‚type when the difusion vanishes ˘� → 0¯.

4 Numerical examples

We now study numerically the convergence properties of the discrete DDM as � → 0

for various choices of the parameters in the discrete Robin TCs. Since � � = O(�),

� = 1, 2, is required for convergence, we restrict our study to �1 = �2 = 0 and vary

only �1, �2 and �. We consider ˘1¯ for � (�) = −�(��)2 sin(���) − ��� cos(���),

which leads to the exact solution �(�) = sin(���). We ix � = 1, � = 3, �1 (�
0
2
) = 1

and � = 100, and study the number of iterations required to reach an error of

∥��∥∞ < 10−12, see Fig. 1, both for experiments in 1D and 2D. As discussed

above, the choice �1 = �2 = 1/2 leads to a degeneration as � → 0, while the choice

�1 = �2 = min(1/2, �/(�ℎ)) yields linear convergence, but is only AP for � → �. As

predicted by Theorem 3, the convergence improves for all choices such that �/�1 =

�(1) and �2 = O(�) as � → 0. In particular, the number of iterations decreases

faster when �1 is large, which illustrates well the convergence factor � in ˘21¯, which

satisies � =
|�−� |
�+�

O
(

�
�+�1

)

+ O
(

��−1
)

. Note that the inite volume method permits

a straightforward extension of the discrete DDM to higher dimensions. For our 2D
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Fig. 1: Number of iterations for various �1 and �2 in 1D ˘top 6 panels¯ and 2D ˘bottom 6 panels¯.

example with equidistant rectangular mesh, the two‚point luxes across the edges on

the interface between the subdomains can be constructed exactly as in 1D based on

the TCs and ghost values. This leads to the 2D results in Fig. 1 for �Δ�−∇ · � = � in

(−1, 1) × (0, 1), �(−1, �) = �(�, 0) = 0, ��(1, �) = ��(�, 1) = 0 for � chosen such

that the exact solution is �(�, �) = sin(3��) sin(3��). The technique developped here

also works for non‚linear time dependent advection‚difusion problems on triangular

meshes, see [5].
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5 Conclusion

The continuous non‚overlapping DDM with Robin TCs applied to singularly‚

perturbed advection‚difusion problems is AP only when the transmission parameter

� tends to the advection speed as � → 0. We showed that a much better result can

be obtained for a discrete DDM based on a cell‚centered inite volume methodȷ in

contrast to the continuous algorithm, a proper, but asymmetric choice of the discrete

parameters ˘� � , � � , � = 1, 2¯ in the Robin TCs yields the AP property without any

restriction on the transmission parameter �. We illustrated the theoretical results by

numerical examples in one and two spatial dimensions, see also the forthcoming

work [5] where we show how the present techniques can be used for robust DDMs

for nonlinear advection‚difusion equations in space‚time on triangular meshes.
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