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1 Introduction

In modeling real physical phenomena, we quite often see a heterogeneity of coef‚

ficients, e.g., in some ground flow problems in heterogeneous media. After apply‚

ing a discretization method to the differential equations which model our physical

phenomenon, e.g., a finite element method, we obtain a discrete problem which is

usually very hard to solve by the standard preconditioned iterative methods, like, e.g.,

preconditioned CG ˘PCG¯ or preconditioned GMRES methods. A popular way of

constructing parallel preconditioners is to use the Domain Decomposition Methods

˘DDMs¯ approach, in particular Schwarz methods, cf. e.g., [14]. In DDMs, it is very

important to construct carefully coarse spaces. The overlapping and non‚overlapping

Schwarz methods were proposed over thirty years ago, and are extensively developed

and analyzed, cf. [14] for overviews. The average Schwarz method was proposed in

[2], cf. also [1, 12, 6, 10]. It is a non‚overlapping Schwarz method with a very simple

coarse space. This class of DDMs, along with other ’classical’ DDMs constructed

in the 1990s and 2000s, are well suited for the problems with coefficients that are

constant or slightly varying in subdomains. However, when the coefficients may

be highly varying and discontinuous almost everywhere, those ’classical’ methods

are not efficient. That’s why many researchers start to look for new adaptive coarse

spaces which are independent or robust for the jumps of the coefficients, i.e., the

convergence of the constructed DDM is independent of the distribution and the

magnitude of the coefficients of the original problem. We refer to [8], [13] and the

references therein for similar earlier works on domain decomposition methods that
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used adaptivity in the construction of the coarse spaces. In recent years there are

many novel works in this direction cf. e.g., [5, 7, 9, 8, 11, 4] and many others.

In our paper, we consider the nonconforming Crouzeix‚Raviart element dis‚

cretization, also called the nonconforming 𝑃1 element discretizationand then con‚

struct an average Schwarz method with an adaptive coarse space. We extend the

results from [10] when the conforming 𝑃1 element is considered to the case of the

average Schwarz method for CR non‚conforming discretization applied to highly

heterogeneous coefficients.

2 Discrete Problem

Let consider the following elliptic second order boundary value problem in 2Dȷ Find

𝑢∗ ∈ 𝐻1
0
(Ω)

∫

Ω

𝛼(𝑥)∇𝑢∗∇𝑣 𝑑𝑥 =

∫

Ω

𝑓 𝑣 𝑑𝑥, ∀𝑣 ∈ 𝐻1
0 (Ω), ˘1¯

where Ω is a polygonal domain in R2, 𝛼(𝑥) ≥ 𝛼0 > 0 is a coefficient, 𝛼0 is a positive

constant, and 𝑓 ∈ 𝐿2 (Ω).

We introduce Tℎ = {𝐾} as the quasi‚uniform triangulation of Ω consisting of

opened triangles such that Ω̄ =
⋃
𝐾 ∈Tℎ

𝐾 . Further, ℎ𝐾 denotes the diameter of 𝐾 ,

and let ℎ = max𝐾 ∈Tℎ ℎ𝐾 be the mesh parameter for the triangulation.

Let consider a coarse non‚overlapping partitioning of Ω into the open, connected

Lipschitz polygonal subdomains Ω𝑖 , called substructures or subdomains, such that

Ω =
⋃𝑁
𝑖=1 Ω𝑖 .

We also assume that those substructures are aligned with the fine triangulation,

i.e., any fine triangle 𝐾 of Tℎ is contained in one substructure. Thus each substructure

Ω

Ω

i

j

Γij

Fig. 1: An example of a coarse partition of Ω, where Γ𝑖 𝑗 is an interface.

Ω 𝑗 has its local triangulation 𝑇ℎ (Ω 𝑗 ) of triangles from 𝑇ℎ which are contained in

Ω 𝑗 . For the simplicity of presentation, we further assume that these substructures

form a coarse triangulation of the domain which is shape regular in the sense of [3]

and let 𝐻 = max 𝑗 diam(Ω 𝑗 ) be its coarse parameter.
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We denote Ω𝐶𝑅
ℎ

, 𝜕Ω𝐶𝑅
ℎ

, Ω𝐶𝑅
𝑖,ℎ

, 𝜕Ω𝐶𝑅
𝑖,ℎ

, and Γ𝐶𝑅
𝑖 𝑗,ℎ

the sets of midpoints of fine

edges of the elements of Tℎ, contained in Ω, 𝜕Ω, Ω𝑖 , 𝜕Ω𝑖 , and Γ𝑖 𝑗 ˘the interface

between Ω𝑖 and Ω 𝑗 , see e.g., Figure 1¯, respectively. We call those sets the CR

˘Crouzeix‚Raviart¯ nodal points of the respective sets.

Further, let us define the discrete space 𝑆ℎ = 𝑆ℎ (Ω) as the standard non‚

conforming Crouzeix‚Raviart linear finite element space defined on the triangulation

Tℎ,

𝑆ℎ (Ω) := {𝑢 ∈ 𝐿2 (Ω) : 𝑢 |𝐾 ∈ 𝑃1, 𝐾 ∈ Tℎ, 𝑢 − continuous

at CR nodal points and 𝑢(𝑥) = 0, 𝑥 ∈ 𝜕Ω𝐶𝑅ℎ }.

The degrees of freedom of a CR function on a fine triangle 𝐾 are the values at the

midpoints of its edges, cf. Figure 2.

Note that a function in 𝑆ℎ is multivalued on boundaries of all fine triangles of Tℎ
except the midpoints of the edges ˘CR nodal points¯. Thus 𝑆ℎ ⊄ 𝐻1

0
(Ω) as a space

of discontinuous functions. 𝑆ℎ is only a subspace of 𝐿2 (Ω).

Fig. 2: The CR nodal points, i.e., the degrees of freedom of the Crouzeix‚Raviart finite element

space on a fine triangle.

We also introduce the local discrete space 𝑆𝑖 as the subspace of 𝑆ℎ formed by

all functions of 𝑆ℎ which are zeros at all CR nodal points which are NOT in Ω𝐶𝑅
𝑖

,

or equivalently, formed by functions which are restricted to Ω𝑖 , are zero on 𝜕Ω𝐶𝑅
𝑖,ℎ

,

and extended by zero elsewhere. Naturally, formally 𝑆𝑖 is a subspace of 𝑆ℎ but in

practice, it is a local space of functions defined by the values at Ω𝐶𝑅
𝑖

.

We consider the following Crouzeix‚Raviart discrete problemsȷ We want to find

𝑢∗
ℎ
∈ 𝑆ℎȷ

𝑎ℎ (𝑢
∗
ℎ .𝑣) = 𝑓 (𝑣) ∀𝑣 ∈ 𝑆ℎ, ˘2¯

where 𝑎ℎ (𝑢, 𝑣) =
∑
𝐾 ∈𝑇ℎ

∫
𝐾
𝛼 |𝐾 (𝑥)∇𝑢∇𝑣 𝑑𝑥 is the so called broken bilinear form.

Note that ∇𝑢ℎ for 𝑢ℎ ∈ 𝑆ℎ is a piecewise constant over the fine triangles of 𝑇ℎ. We

further assume that 𝛼 is piecewise constant function over the elements of Tℎ since∫
𝐾
𝛼∇𝑢∇𝑣 𝑑𝑥 = (∇𝑢) |𝐾 (∇𝑣) |𝐾

∫
𝐾
𝛼(𝑥) 𝑑𝑥. Since the broken form is 𝑆ℎ‚elliptic, the

discrete problem has a unique solution.
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3 Additive Schwarz Method

In this section, we present our non‚overlapping average Schwarz method for solving

˘2¯. Our method is based on the abstract Additive Schwarz Method framework, cf.

e.g., [14].

Space 𝑆ℎ is decomposed into local sub‚spaces and a global average Schwarz

"spectrally enriched" coarse space. For the local spaces, we take {𝑆𝑖}𝑖 . We have that

𝑆ℎ =
∑𝑁
𝑖=1 𝑆𝑖 .

Coarse space

We introduce our spectrally enriched coarse space in this section.

First, we define the classical average Schwarz coarse space, see e.g. [2]. Let

𝐼𝐴𝑆 : 𝑆ℎ → 𝑆ℎ be the linear interpolating operator defined as followsȷ

𝐼𝐴𝑆𝑢(𝑥) =

{
𝑢(𝑥) 𝑥 ∈

⋃𝑁
𝑘=1 𝜕Ω

𝐶𝑅
𝑖,ℎ
,

𝑢𝑖 𝑥 ∈ Ω𝐶𝑅
𝑖,ℎ

𝑖 = 1, . . . , 𝑁,
˘3¯

where 𝑢𝑖 =
1
𝑀𝑖

∑
𝑥∈𝜕Ω𝐶𝑅

𝑖,ℎ
𝑢(𝑥) with 𝑀𝑖 = #𝜕Ω𝐶𝑅

𝑖,ℎ
, i.e., 𝑢𝑖 is the CR discrete average

of 𝑢 over 𝜕Ω𝑖 . The standard coarse space of the average Schwarz method is the image

of this interpolating operatorȷ

𝑉𝐴𝑆 = 𝐼𝐴𝑆𝑆ℎ . ˘4¯

We introduce two types of the local generalized eigenvalue problem, which is to

find the eigenvalue and its associated eigenfunctionȷ (𝜆
𝑗

𝑖
, 𝜓

𝑗

𝑖
) ∈ R+ × 𝑆 𝑗 such that

𝑎ℎ (𝜓
𝑗

𝑖
, 𝑣) = 𝜆

𝑗

𝑖
𝑏
𝑡 𝑦 𝑝𝑒

𝑗
(𝜓

𝑗

𝑖
, 𝑣), ∀𝑣 ∈ 𝑆 𝑗 , 𝑡𝑦𝑝𝑒 ∈ {I, II}, ˘5¯

where

𝑏
𝑡 𝑦 𝑝𝑒

𝑗
(𝑢, 𝑣) =





∑
𝐾 ∈𝑇ℎ (Ω 𝑗 )

∫
𝐾
𝛼 𝑗∇𝑢∇𝑣 𝑑𝑥 𝑡𝑦𝑝𝑒 = I

∑
𝐾⊂Ω𝛿

𝑗

∫
𝐾
𝛼 𝑗∇𝑢∇𝑣 𝑑𝑥+

+
∑
𝐾⊂Ω 𝑗\Ω

𝛿
𝑗

∫
𝐾
𝛼 𝑗∇𝑢∇𝑣 𝑑𝑥 𝑡𝑦𝑝𝑒 = II

where 𝛼 𝑗 := inf
𝑥∈Ω 𝑗

𝛼(𝑥) and Ω𝛿
𝑗

is the discrete boundary layer in Ω 𝑗 comprising

those fine triangles of the local triangulation of Ω 𝑗 which have a fine edge on 𝜕Ω 𝑗 .

Naturally, 𝜓
𝑗

𝑖
should be denoted 𝜓

𝑗 ,𝑡 𝑦 𝑝𝑒

𝑖
as it depends on the type of the RHS

form but we try to have the notation as simple as possible, and we keep in mind this

dependence.

Note that it follows from the definition 𝑎ℎ (𝑢, 𝑢) ≥ 𝑏
𝑡 𝑦 𝑝𝑒

𝑗
(𝑢, 𝑢) for any 𝑢 ∈ 𝑆 𝑗 ,

thus all eigenvalues 𝜆
𝑗

𝑖
≥ 1 for the both types of the form 𝑏 𝑗 (·, ·).

We order the eigenvalues in the decreasing way as follows
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𝜆
𝑗

1
≥ 𝜆

𝑗

2
≥ . . . ≥ 𝜆

𝑗

𝑀 𝑗
≥ 1

for 𝑀 𝑗 = dim(𝑆 𝑗 ). Next we introduce the local spectral component of the coarse

space for all Ω 𝑗 and further the enriched coarse space 𝑉0ȷ

𝑆
𝑒𝑖𝑔

𝑗
= Span(𝜓

𝑗

𝑖
)
𝑛 𝑗

𝑖=1
, ˘6¯

where 0 ≤ 𝑛 𝑗 ≤ 𝑀 𝑗 is the number of eigenfunctions 𝜓
𝑗

𝑖
selected by an user, e.g. in

such a way that the eigenvalue 𝜆
𝑗
𝑛 𝑗

≥ 𝜆, where 𝜆 ≥ 1 is a pre‚selected threshold.

Finally, the coarse space 𝑆0 is introduced asȷ

𝑆0 = 𝑉𝐴𝑆+

𝑁∑︁

𝑗=1

𝑆
𝑒𝑖𝑔

𝑗
. ˘7¯

There are two types of this coarse space but the difference is not significant, and

below 𝑆0 means one of the described coarse spaces.

Average Schwarz operator 𝑻

Next we define the projection operators 𝑇𝑖 : 𝑆ℎ → 𝑆𝑖 as

𝑎ℎ (𝑇𝑖𝑢, 𝑣) = 𝑎ℎ (𝑢, 𝑣), ∀𝑣 ∈ 𝑆𝑖 , 𝑖 = 0, . . . , 𝑁. ˘8¯

Note that to compute 𝑇𝑖𝑢, 𝑖 = 1, . . . , 𝑁 we have to solve 𝑁 independent local

problems.

Let 𝑇 :=
∑𝑁
𝑖=0 𝑇𝑖 , be the average Schwarz operator. We further replace ˘2¯ by the

following equivalent problemȷ Find 𝑢∗
ℎ
∈ 𝑆ℎ such that

𝑇𝑢∗ℎ = 𝑔, ˘9¯

where 𝑔 =
∑𝑁
𝑖=0 𝑔𝑖 and 𝑔𝑖 = 𝑇𝑖𝑢

∗
ℎ
. The functions 𝑔𝑖 may be computed without

knowing the solution 𝑢∗
ℎ

of ˘2¯, cf. e.g., [14].

The following theoretical estimated of the condition number can be obtainedȷ

Theorem 1 For all 𝑢 ∈ 𝑆ℎ, the following holds,

𝑐

(
1 + max

𝑗
𝜆
𝑗

𝑛 𝑗+1

)−1
ℎ

𝐻
𝑎ℎ (𝑢, 𝑢) ≤ 𝑎ℎ (𝑇𝑢, 𝑢) ≤ 𝐶 𝑎ℎ (𝑢, 𝑢),

where 𝐶 and 𝑐 are positive constants independent of the coefficient 𝛼, the mesh

parameter ℎ and the subdomain size 𝐻, and 𝜆
𝑗

𝑛 𝑗+1
is defined in (5) for both types of

the coarse space.

The proof is based on the standard abstract ASM Method framework, cf. e.g. [14].

We have to prove three key assumptions, the most technical is the stable splitting
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ass., namely we can show that for any 𝑢 ∈ 𝑆ℎ there existsȷ 𝑢 𝑗 ∈ 𝑆 𝑗 𝑗 = 0, . . . , 𝑁 such

that
∑𝑁
𝑗=0 𝑎ℎ (𝑢 𝑗 , 𝑢 𝑗 ) ≤ 𝑐−1

(
1 + max 𝑗 𝜆

𝑗

𝑛 𝑗+1

)
𝑎(𝑢, 𝑢). The two others assumptions

are easy to verify. Namely, the stability constant is equal to one since the broken form

is used as local forms. The third ass., the bound of the spectral radius of the matrix of

the constants of the strengthened Cauchy‚Schwarz inequalities is also equal to one,

since the local subspaces are 𝑎ℎ orthogonal subspaces to each other.

4 Numerical tests

Fig. 3: The location of all jumps in 𝛼(𝑥) , where Ω = [0, 1] × [0, 1] is partitioned into 5 × 5

subdomains. The values of jumps on the white and green triangles are 1 and 1.0e4, respectively. To

get numerical results, we use these green channels as the periodic patterns for different number of

subdomains.

In this section, we consider the right‚hand side function

𝑓 (𝑥, 𝑦) = 2𝜋2 sin(𝜋𝑥) sin(𝜋𝑦),

where (𝑥, 𝑦) ∈ Ω = [0, 1] × [0, 1]. To confirm the validity of the theoretical result

numerically, we also divide all jumps in 𝛼(𝑥) into 𝛼𝑏 = 1 and 𝛼𝑖 = 1.0e4 correspond‚

ing to the coefficients defined on the background and green channels, respectively,

cf. Figure 3.

ℎ 𝐻 = 1/3 𝐻 = 1/6 𝐻 = 1/ß

1/18 7.2601e6 7.528ße6 1.38ß5e7

1/36 3.03ß4e7 2.8114e7 2.8563e7

1/54 7.4566e7 6.2314e7 5.85ß6e7

Table 1: The condition numbers of the non‚preconditioned system for different values of 𝐻 and ℎ.
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ℎ 𝐻 = 1/3 𝐻 = 1/6 𝐻 = 1/ß

1/18 57.2051 (47) 33.ß312 (42) 20.7272 (38)

1/36 120.7130 (67) 54.8475 (62) 40.6837 (55)

1/54 177.225ß (85) 83.2ß81 (77) 56.8240 (65)

Table 2: The condition numbers of the additive average Schwarz preconditioner 𝑡 𝑦 𝑝𝑒 = I, and the

number of iterations of preconditioned CG method ˘in parentheses¯. Further, the given threshold to

construct the enrichment coarse space is 100.

ℎ 𝐻 = 1/3 𝐻 = 1/6 𝐻 = 1/ß

1/18 57.2051 (44) 33.ß312 (42) 20.7272 (38)

1/36 120.7130 (70) 54.8474 (60) 40.6747 (52)

1/54 177.225ß (ß3) 83.2881 (74) 56.824ß (67)

Table 3: The condition numbers of the additive average Schwarz preconditioner 𝑡 𝑦 𝑝𝑒 = II, and the

number of iterations of preconditioned CG method ˘in parentheses¯. Further, the given threshold to

construct the enrichment coarse space is 100.

𝑡 𝑦 𝑝𝑒 = I 𝑡 𝑦 𝑝𝑒 = II

ℎ 𝐻 = 1/3 𝐻 = 1/6 𝐻 = 1/ß 𝐻 = 1/3 𝐻 = 1/6 𝐻 = 1/ß

1/18 53 148 165 11 ß2 147

1/36 188 442 60ß 1ß ß3 255

1/54 440 ß47 1317 26 122 2ß8

Table 4: The number of eigenfunctions associated with the eigenvalues greater than 100 used in the

construction of the enrichment part of the coarse space, where 𝑡 𝑦 𝑝𝑒 ∈ {I, II},𝐻 ∈ {1/3, 1/6, 1/ß}

and ℎ ∈ {1/18, 1/36, 1/54}.

Table 1 presents the condition number of the non‚preconditioned system. To see

the efficiency of the enriched additive average Schwarz preconditioners for both

types I and II, we refer to Tables 2 and 3. Those tables also present the numbers of

iteration of the preconditioned CG method with the tolerance 1e − 6. For different

values of 𝐻 and ℎ, the first observation is that there is a slight difference between the

two types of enrichment in terms of the condition numbers and iteration numbers.

The second observation is that the ratio of the condition numbers is proportional

to the ratio of 𝐻/ℎ, for instance, the condition numbers represented by purple

color are very close together, where the ratio of 𝐻/ℎ is identical. This means that

the validity of Theorem 1 is confirmed numerically. Finally, Table 4 includes the

number of eigenfunctions used in the construction of the enriched coarse space and

shows that the second type of enrichment has a good performance throughout the

implementation in comparison to the first type.
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