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1 Introduction

This work is concerned with the numerical solution of so‚called economic op‚

timal control problems of the parabolic type. Let Ω = (−1, 1), 𝑇 > 0 and

U := 𝐿2 (0, 𝑇 ; 𝐿2 (Ω)) endowed with its norm ∥ · ∥U . We want to solve

min
U×U

J (𝑢, 𝑤) :=
1

2
∥𝑢∥2

U +
1

2
∥𝑤∥2

U , ˘1a¯

subject to the PDE‚constraint

𝑦𝑡 (𝑡, 𝑥) − Δ𝑦(𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) + 𝑢(𝑡, 𝑥), in (0, 𝑇) ×Ω,

𝑦(𝑡,−1) = 𝑦(𝑡, 1) = 0, in (0, 𝑇),

𝑦(0, 𝑥) = 𝑦◦ (𝑥), in Ω,

˘1b¯

with 𝑦◦ ∈ 𝐿2 (Ω) and 𝑓 ∈ U, and to mixed control‚state constraints

|𝑢(𝑡, 𝑥) | ≤ 𝑐𝑢, |𝑦(𝑡, 𝑥) + 𝜀𝑤(𝑡, 𝑥) | ≤ 𝑐𝑦 (𝑡), in (0, 𝑇) ×Ω, ˘1c¯

where 𝑐𝑢, 𝜀 > 0 and 𝑐𝑦 ∈ 𝐿2 (0, 𝑇) with 𝑐𝑦 (𝑡) > 0 for 𝑡 ∈ (0, 𝑇). Problem ˘1¯ is

related to the virtual control approach [6, 8, 9], which is a regularization technique

for pointwise state‚constrained problems. Under further assumptions on 𝑤, in fact,

one can show that, as 𝜀 → 0, the solution to ˘1¯ converges to the one of the same

optimal control problem with ˘1c¯ replaced by |𝑢(𝑡, 𝑥) | ≤ 𝑐𝑢 and |𝑦(𝑡, 𝑥) | ≤ 𝑐𝑦 (𝑡)

in (0, 𝑇) × Ω; see, e.g., [8]. Note that there are no weights in front of the control

norms in ˘1a¯. This is because of the regularization parameter 𝜀, which is also used
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to tune the magnitude of the controls 𝑢 and 𝑤. For example, the smaller is 𝜀, the

larger is ∥𝑤∥U . In contrast to classical optimal control problems, where the goal is

to reach a precise target configuration, the focus of ˘1¯ is to find minimum‚energy

feasible controls such that the state solution to ˘1b¯ satisfies the bounds ˘1c¯. This

difference is particularly evident in the cost functional J in ˘1a¯, where only the

norm squared of the controls are considered, instead of typical tracking‚type terms.

For these reasons, problems of the type ˘1¯ are called economic optimal control

problems. A typical example is the optimal heating and cooling of residual buildings

[8]. Note that, for any given 𝑢 ∈ U, the state equation ˘1b¯ admits a unique ˘weak¯

solution 𝑦 = 𝑦(𝑢) ∈ 𝑊 (0, 𝑇) :=
{
𝜑 ∈ 𝐿2 (0, 𝑇 ;𝐻1 (Ω))

��𝜑𝑡 ∈ 𝐿2 (0, 𝑇 ;𝐻−1 (Ω))
}
;

see, e.g., [10, 9]. We assume that the admissible set U 𝜀
ad

has non‚empty interior,

where U 𝜀
ad

:=
{
(𝑢, 𝑤) ∈ U ×U

��𝑢 and 𝑦(𝑢) + 𝜀𝑤 satisfies ˘1c¯
}
⊂ U × U. This

guarantees that ˘1¯ admits a unique solution (�̄�, �̄�) ∈ U 𝜀
ad

[10]. The first‚order

necessary and sufficient optimality system [9, 10] of problem ˘1¯ is

𝑦𝑡 (𝑡, 𝑥) − Δ𝑦(𝑡, 𝑥) = P(𝑞(𝑡, 𝑥)) + 𝑓 (𝑡, 𝑥), in (0, 𝑇) ×Ω,

𝑦(𝑡,−1) = 𝑦(𝑡, 1) = 0, in (0, 𝑇),

𝑦(0, 𝑥) = 𝑦◦ (𝑥), in Ω,

𝑞𝑡 (𝑡, 𝑥) + Δ𝑞(𝑡, 𝑥) = Q 𝜀 (𝑦(𝑡, 𝑥)), in (0, 𝑇) ×Ω,

𝑞(𝑡,−1) = 𝑞(𝑡, 1) = 0, in (0, 𝑇),

𝑞(𝑇, 𝑥) = 0, in Ω,

˘2¯

where Q 𝜀 (𝑦(𝑡, 𝑥)) := 1

𝜀2 (max{𝑦(𝑡, 𝑥) − 𝑐𝑦 (𝑡), 0} + min{𝑦(𝑡, 𝑥) + 𝑐𝑦 (𝑡), 0}) and

P(𝑞(𝑡, 𝑥)) := max{−𝑐𝑢,min{𝑐𝑢, 𝑞(𝑡, 𝑥)}}, for all (𝑡, 𝑥) ∈ (0, 𝑇) × Ω, with 𝑞 the

so‚called adjoint variable. The pair ( �̄�, 𝑞) is the solution to ˘2¯ if and only if

(�̄�(𝑡, 𝑥), �̄�(𝑡, 𝑥)) = (P(𝑞(𝑡, 𝑥)),−𝜀Q 𝜀 ( �̄�(𝑡, 𝑥))), for (𝑡, 𝑥) ∈ (0, 𝑇) × Ω, is the opti‚

mal solution to ˘1¯. System ˘2¯ can be rewritten in the form

F (𝑦, 𝑞) = 0 ˘3¯

and thus solved by using a semismooth Newton method; see, e.g., [9, 5].

As shown in [8], the semismooth Newton method lacks of convergence if the

parameter 𝜀 is not sufficiently large. This is, however, in contrast with typical ap‚

plications, where a sufficiently small 𝜀 is required [8, 6]. The goal of this paper is

to tackle this problem by using a nonlinear preconditioning technique based on an

overlapping optimized waveform‚relaxation method ˘WRM¯ characterized by Robin

transmission conditions [2, 3]. To the best of our knowledge, nonlinear precondi‚

tioning techniques have never been used for economic control problems. Therefore,

this work aims to provide a first concrete study in order to show the applicability of

WRM‚based nonlinear preconditioners for this class of optimization problems. In

particular, our goal is to assess the convergence behavior of the WRM nonlinear pre‚

conditioned Newton and its robustness against the regularization parameter 𝜀. Our

studies show that appropriate choices of the overlap 𝐿 and of the Robin parameter

𝑝 lead to a preconditioned Newton method with a robust convergence with respect
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to 𝜀. Let us also mention that for elliptic optimal control problems, it is possible to

consider different transmission conditions; see, e.g., [1, 4].

The paper is organized as follows. In Section 2, we introduce the WRM and

present the algorithm for the proposed preconditioned generalized Newton. In Sec‚

tion 3, we report two numerical experiments that show the convergence behavior of

the proposed computational framework in relation of the parameters characterizing

problem ˘1¯ and the optimized WRM.

2 The waveform-relation and the preconditioned generalized

Newton methods

Let Ω be decomposed into two overlapping subdomains Ω1 = (−1, 𝐿) and Ω2 =

(−𝐿, 1), where 2𝐿 ∈ (0, 1) is the size of the overlap. Moreover, let 𝑝 > 0 and

consider the operator R 𝑗 defined as R 𝑗 (𝑦) := 𝑦𝑥 + (−1)3− 𝑗 𝑝𝑦 for 𝑗 = 1, 2. The

WRM consists in iteratively solving, for 𝑛 ∈ N, 𝑛 ≥ 1, the system

𝑦
𝑗 ,𝑛
𝑡 (𝑡, 𝑥) − Δ𝑦 𝑗 ,𝑛 (𝑡, 𝑥) = P(𝑞 𝑗 ,𝑛 (𝑡, 𝑥)) + 𝑓 (𝑡, 𝑥), in (0, 𝑇) ×Ω 𝑗 , ˘4a¯

𝑦 𝑗 ,𝑛 (𝑡, (−1) 𝑗 ) = 0, in (0, 𝑇), ˘4b¯

R 𝑗 (𝑦
𝑗 ,𝑛) (𝑡, (−1)3− 𝑗𝐿) = R 𝑗 (𝑦

3− 𝑗 ,𝑛−1) (𝑡, (−1)3− 𝑗𝐿), in (0, 𝑇), ˘4c¯

𝑦 𝑗 ,𝑛 (0, 𝑥) = 𝑦◦ (𝑥), in Ω 𝑗 , ˘4d¯

𝑞
𝑗 ,𝑛
𝑡 (𝑡, 𝑥) + Δ𝑞 𝑗 ,𝑛 (𝑡, 𝑥) = Q 𝜀 (𝑦 𝑗 ,𝑛 (𝑡, 𝑥)), in (0, 𝑇) ×Ω 𝑗 , ˘4e¯

𝑞 𝑗 ,𝑛 (𝑡, (−1) 𝑗 ) = 0, in (0, 𝑇), ˘4f¯

R 𝑗 (𝑞
𝑗 ,𝑛) (𝑡, (−1)3− 𝑗𝐿) = R 𝑗 (𝑞

3− 𝑗 ,𝑛−1) (𝑡, (−1)3− 𝑗𝐿), in (0, 𝑇), ˘4g¯

𝑞 𝑗 ,𝑛 (𝑇, 𝑥) = 0, in Ω 𝑗 , ˘4h¯

for 𝑗 = 1, 2. We show first the well‚posedness of the method.

Theorem 1 Let 𝑔1
𝑦 , 𝑔

2
𝑦 , 𝑔

1
𝑞 , 𝑔

2
𝑞 ∈ 𝐻1/4 (0, 𝑇) be initialization functions for the WRM,

i.e., R 𝑗 (𝑦
𝑗 ,1) (𝑡, (−1)3− 𝑗𝐿) = 𝑔

𝑗
𝑦 (𝑡) and R 𝑗 (𝑞

𝑗 ,1) (𝑡, (−1)3− 𝑗𝐿) = 𝑔
𝑗
𝑞 (𝑡) for 𝑡 ∈

(0, 𝑇), with compatibility conditions 𝑔
𝑗
𝑦 (0) = R 𝑗 (𝑦◦) (𝑡, (−1)3− 𝑗𝐿) and 𝑔

𝑗
𝑞 (0) = 0

for 𝑗 = 1, 2. Then the WRM ˘4¯ is well-posed.

Proof For 𝑗 = 1, 2, we define 𝐻
2,1
𝑗

:= 𝐿2 (0, 𝑇 ;𝐻2 (Ω 𝑗 )) × 𝐻1 (0, 𝑇 ; 𝐿2 (Ω 𝑗 )) and

U 𝑗 = 𝐿2 (0, 𝑇 ; 𝐿2 (Ω 𝑗 )). For given 𝑔
𝑗
𝑦 , 𝑔

𝑗
𝑞 ∈ 𝐻1/4 (0, 𝑇), system ˘4¯ is the optimality

system of an optimal control problem, which seeks to minimize Jaux (𝑢
𝑗 , 𝑤 𝑗 ) =

1
2
∥𝑢 𝑗 ∥2

U 𝑗
+ 1

2
∥𝑤 𝑗 ∥2

U 𝑗
+
∫ 𝑇

0
𝑔
𝑗
𝑞 (𝑡)𝑦

𝑗 (𝑡, (−1)3− 𝑗𝐿)d𝑡, subject to the state equation

˘4a¯‚˘4d¯. These auxiliary optimal control problems admit a unique optimal solution

(�̄� 𝑗 , �̄� 𝑗 ) ∈ U 𝑗 ×U 𝑗 for 𝑗 = 1, 2 and their optimality systems are uniquely solvable

by ( �̄� 𝑗 , 𝑞 𝑗 ) ∈ 𝐻
2,1
𝑗

× 𝐻
2,1
𝑗

such that
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(�̄� 𝑗 (𝑡, 𝑥), �̄� 𝑗 (𝑡, 𝑥)) = (P(𝑞 𝑗 (𝑡, 𝑥)),−𝜀Q 𝜀 ( �̄� 𝑗 (𝑡, 𝑥))), in (0, 𝑇) ×Ω 𝑗 .

For more details see [10, 7, 3]. This proves well‚posedness of the WRM for 𝑛 = 1 and

𝑗 = 1, 2. By iteratively applying the previous arguments is then easy to show that the

WRM is well‚posed for 𝑛 > 1, because 𝑦 𝑗 ,1 ((−1) 𝑗𝐿), 𝑦
𝑗 ,1
𝑥 ((−1) 𝑗𝐿), 𝑞 𝑗 ,1 ((−1) 𝑗𝐿),

𝑞
𝑗 ,1
𝑥 ((−1) 𝑗𝐿) ∈ 𝐿2 (0, 𝑇). □

Theorem 1 implies that ˘4¯ admits a unique solution (𝑦 𝑗 ,𝑛, 𝑝 𝑗 ,𝑛) ∈ 𝐻
2,1
𝑗

× 𝐻
2,1
𝑗

for

𝑗 = 1, 2 and 𝑛 ≥ 1. Note that, at each iteration of the WRM, the solution at iteration 𝑛

depends on the one at iteration 𝑛−1. Therefore, we can define the solution mappings

S 𝑗 : 𝐻
2,1

3− 𝑗
× 𝐻

2,1

3− 𝑗
→ 𝐻

2,1
𝑗

× 𝐻
2,1
𝑗

for 𝑗 = 1, 2 as

(𝑦1, 𝑞1) = S1 (𝑦
2, 𝑞2) solves ˘4¯ for 𝑗 = 1, 𝑦2,𝑛−1

= 𝑦2 and 𝑞2,𝑛−1
= 𝑞2,

(𝑦2, 𝑞2) = S2 (𝑦
1, 𝑞1) solves ˘4¯ for 𝑗 = 2, 𝑦1,𝑛−1

= 𝑦1 and 𝑞1,𝑛−1
= 𝑞1,

˘5¯

and the preconditioned form of ˘3¯ as

F𝑃 (𝑦
1, 𝑞1, 𝑦2, 𝑞2) = (F1 (𝑦

1, 𝑞1, 𝑦2, 𝑞2), F2 (𝑦
1, 𝑞1, 𝑦2, 𝑞2)) = 0, ˘6¯

where F𝑗 (𝑦
1, 𝑞1, 𝑦2, 𝑞2) = (𝑦 𝑗 , 𝑞 𝑗 ) − S 𝑗 (𝑦

3− 𝑗 , 𝑞3− 𝑗 ), for 𝑗 = 1, 2. To solve ˘6¯, we

apply a generalized Newton method. To do so, we assume that the maps S 𝑗 , 𝑗 = 1, 2,

admit derivative1 𝐷S 𝑗 . This allows us to characterize the derivative 𝐷F𝑃 and its

application to a direction d
3− 𝑗

= (𝑑
3− 𝑗
𝑦 , 𝑑

3− 𝑗
𝑞 ) ∈ 𝐻

2,1

3− 𝑗
× 𝐻

2,1

3− 𝑗
, which is needed for

the generalized Newton method. Let 𝑧 𝑗 := (𝑦 𝑗 , 𝑞 𝑗 ) ∈ 𝐻
2,1
𝑗

×𝐻
2,1
𝑗

for 𝑗 = 1, 2. Thus,

we have that 𝑧 𝑗 = S 𝑗 (𝑧
3− 𝑗 ), according to the definition of the mapping S 𝑗 in ˘5¯.

Moreover, we have that F𝑗 (S 𝑗 (𝑧
3− 𝑗 ), 𝑧3− 𝑗 ) = 0. From this we formally obtain

𝐷1F𝑗 (S 𝑗 (𝑧
3− 𝑗 ), 𝑧3− 𝑗 )𝐷S 𝑗 (𝑧

3− 𝑗 ) (d3− 𝑗 ) + 𝐷2F𝑗 (S 𝑗 (𝑧
3− 𝑗 ), 𝑧3− 𝑗 ) (d3− 𝑗 ) = 0,

which leads to 𝐷S 𝑗 (𝑦
3− 𝑗 , 𝑞3− 𝑗 ) (d3− 𝑗 ) = ( �̃� 𝑗 , 𝑞 𝑗 ) where ( �̃� 𝑗 , 𝑞 𝑗 ) solves

�̃�
𝑗
𝑡 (𝑡, 𝑥) − Δ�̃� 𝑗 (𝑡, 𝑥) = 𝑞 𝑗 (𝑡, 𝑥)𝜒I(𝑞 𝑗 ) (𝑡, 𝑥), in (0, 𝑇) ×Ω 𝑗 ,

�̃� 𝑗 (𝑡, (−1) 𝑗 ) = 0, in (0, 𝑇),

R 𝑗 ( �̃�
𝑗 ) (𝑡, (−1)3− 𝑗𝐿) = R 𝑗 (𝑑

3− 𝑗
𝑦 ) (𝑡, (−1)3− 𝑗𝐿), in (0, 𝑇),

�̃� 𝑗 (0, 𝑥) = 0, in Ω 𝑗 ,

˘7a¯

1 Since the functions S 𝑗 are implicit functions of semismooth functions, one cannot directly invoke

the implicit function theorem to obtain the desired regularity. Hence, investigating the existence

and regularity of 𝐷S 𝑗 requires a detailed theoretical analysis, which is beyond the scope of this

short manuscript.
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𝑞
𝑗
𝑡 (𝑡, 𝑥) + Δ𝑞 𝑗 (𝑡, 𝑥) =

�̃� 𝑗 (𝑡, 𝑥)

𝜀2
𝜒A(𝑦 𝑗 ) (𝑡, 𝑥), in (0, 𝑇) ×Ω 𝑗 ,

𝑞 𝑗 (𝑡, (−1) 𝑗 ) = 0, in (0, 𝑇),

R 𝑗 (𝑞
𝑗 ) (𝑡, (−1)3− 𝑗𝐿) = R 𝑗 (𝑑

3− 𝑗
𝑞 ) (𝑡, (−1)3− 𝑗𝐿), in (0, 𝑇),

𝑞 𝑗 ,𝑛 (𝑇, 𝑥) = 0, in Ω 𝑗 ,

˘7b¯

for 𝑗 = 1, 2, with 𝜒I(𝑞 𝑗 ) and 𝜒A(𝑦 𝑗 ) the characteristic functions of the sets

I(𝑞 𝑗 ) := {(𝑡, 𝑥) ∈ (0, 𝑇) ×Ω 𝑗

�� ��𝑞 𝑗 (𝑡, 𝑥)
�� ≤ 𝑐𝑢},

A(𝑦 𝑗 ) := {(𝑡, 𝑥) ∈ (0, 𝑇) ×Ω 𝑗

�� ��𝑦 𝑗 (𝑡, 𝑥)
�� > 𝑐𝑦 (𝑡)}.

Note that ˘7¯ is a linearization of the WRM subproblems ˘4¯. Now, we can resume

our preconditioned generalized Newton method in Algorithm 1.

Algorithm 1 WRM‚preconditioned generalized Newton method

1ȷ Data: Initial guess 𝑦 𝑗,0 and 𝑞 𝑗,0 for 𝑗 = 1, 2, tolerance 𝜏.

2ȷ Perform one WRM step to compute S 𝑗 (𝑦
3− 𝑗,0, 𝑞3− 𝑗,0);

«ȷ Assemble F𝑃 (𝑦1,0, 𝑞1,0, 𝑦2,0, 𝑞2,0) and set 𝑘 = 0;

»ȷ while ∥F𝑃 (𝑦1,𝑘 , 𝑞1,𝑘 , 𝑦2,𝑘 , 𝑞2,𝑘) ∥ ≥ 𝜏 do

5ȷ Compute d
1, d

2 solving 𝐷F𝑃 (𝑦1, 𝑞1, 𝑦2, 𝑞2) (d1, d
2) = −F𝑃 (𝑦1, 𝑞1, 𝑦2, 𝑞2)

by using a matrix‚free Krylov method, e.g., GMRES, and considering that

𝐷F𝑃 (𝑦1, 𝑞1, 𝑦2, 𝑞2) (d1, d
2) = (d1 − ( �̃�1, 𝑞1) , d

2 − ( �̃�2, 𝑞2)) , with ( �̃� 𝑗 , 𝑞 𝑗 ) solution

to the linearized subproblems (7) for 𝑗 = 1, 2;

6ȷ Update (𝑦 𝑗,𝑘+1, 𝑞 𝑗,𝑘+1) = (𝑦 𝑗,𝑘 , 𝑞 𝑗,𝑘) + d
𝑗 and set 𝑘 = 𝑘 + 1;

7ȷ Perform one WRM step to compute S 𝑗 (𝑦
3− 𝑗,𝑘 , 𝑞3− 𝑗,𝑘);

8ȷ Assemble F𝑃 (𝑦1,𝑘 , 𝑞1,𝑘 , 𝑦2,𝑘 , 𝑞2,𝑘);

9ȷ end while

3 Numerical experiments

In this section, we study the behavior of the preconditioned generalized Newton

method ˘Algorithm 1¯ and its robustness against the Robin parameter 𝑝, the regular‚

ization 𝜀 and the overlap 𝐿. It is well known that the convergence of the semismooth

Newton method applied to ˘3¯ deteriorates fast for decreasing values of 𝜀, since the

solution approaches the one of a pure pointwise state‚constrained problem, whose

adjoint variable 𝑞 lacks of 𝐿2‚regularity; cf. [10, 8]. The focus is on understanding

if the WRM can be a valid ˘nonlinear¯ preconditioner and in which cases. We will

perform two numerical experiments. In both tests we discretize the domain Ω with

𝑛𝑥 = 161 points and we apply a centered finite‚difference scheme. Furthermore, we

consider 𝑛𝑡 = 21 time discretization points and apply the implicit Euler method.

The initial guesses 𝑦 𝑗 ,0 and 𝑞 𝑗 ,0 are chosen randomly but feasible, i.e. such that(
P(𝑞 𝑗 ,0 (𝑡, 𝑥)),−𝜀Q 𝜀 (𝑦 𝑗 ,0 (𝑡, 𝑥))

)
∈ U 𝜀

ad
, since we noticed that choosing feasible

initial guesses improves the convergence of the method. We set the stopping tol‚
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Fig. 1: Test1ȷ Optimal state with bound 𝑐𝑦 ˘left¯ and control ˘right¯ for 𝜀 = 5 × 10−4.

𝐿
𝑝

𝜀
10−1 5 × 10−2 10−2 5 × 10−3 10−3 5 × 10−4

Δ𝑥 10−6 4(5–2) 4(6–2) 5(12–2) 6(13–2) 7(35–2) 8(45–2)

Δ𝑥 10−4 4(5–2) 4(6–2) 5(13–2) 6(13–2) 7(34–2) 8(45–2)

Δ𝑥 10−2 4(6–2) 4(6–2) 5(11–2) 6(13–2) 7(30–2) 8(43–2)

Δ𝑥 100 5(4–2) 5(5–2) 5(ß–2) 6(12–2) max(112–2) max(123–3)

Δ𝑥 102 6(4–2) 6(5–2) 8(8–2) ß(ß–2) 6(22–2) ß(37–2)

Δ𝑥 104 6(5–2) 6(5–2) ß(7–2) ß(10–2) 8(23–2) max(65–4)

Δ𝑥 106 6(5–2) 6(5–2) ß(7–2) ß(10–2) max(33–2) max(ß2–3)

2Δ𝑥 10−6 4(5–2) 4(7–2) 5(11–2) 6(13–2) 7(3ß–2) 6(51–2)

2Δ𝑥 10−4 4(5–2) 4(7–2) 5(11–2) 6(13–2) 7(41–2) 6(48–2)

2Δ𝑥 10−2 4(6–2) 4(7–2) 5(12–2) 5(13–2) 7(23–2) 6(54–2)

2Δ𝑥 100 5(4–2) 5(6–2) 5(ß–2) 6(11–2) 7(27–2) max(107–3)

2Δ𝑥 102 6(4–2) 6(5–2) 8(8–2) 8(10–2) 8(26–2) ß(37–2)

2Δ𝑥 104 6(5–2) 6(5–2) 8(8–2) ß(10–2) 8(1ß–2) ß(41–2)

2Δ𝑥 106 6(5–2) 6(5–2) 8(8–2) ß(ß–2) 8(1ß–2) ß(41–2)

4Δ𝑥 10−6 4(5–2) 4(7–2) 5(11–2) 6(13–2) 6(30–2) max(126–6)

4Δ𝑥 10−4 4(5–2) 4(7–2) 5(11–2) 6(13–2) 6(30–2) max(ß8–4)

4Δ𝑥 10−2 4(5–2) 4(7–2) 5(12–2) 6(13–2) 6(30–2) 11(124–2)

4Δ𝑥 100 4(5–2) 4(6–2) 5(ß–2) 6(11–2) 6(27–2) max(152 − 5)

4Δ𝑥 102 6(4–2) 6(5–2) 8(8–2) 8(10–2) 10(23–2) 15(40 − 2)

4Δ𝑥 104 6(4–2) 6(5–2) 8(8–2) 8(10–2) ß(26–2) max(183–3)

4Δ𝑥 106 6(4–2) 6(5–2) 8(8–2) 8(10–2) ß(26–2) max(45–2)

Sem. New. 4 5 10 13 30 44

Table 1: Test1ȷ Number of outer iterations ˘maximum number ‚ minimum number of inner itera‚

tions¯ for preconditioned generalized Newton varying 𝐿, 𝑝 and 𝜀 and number of iterations for the

semismooth Newton applied to ˘3¯ ˘last row¯.

erance 𝜏 = 10−10 for the norm of the Newton residual ˘see Algorithm 1¯ and the

maximum number of outer ˘inner¯ iterations to 200 ˘500¯. For the first test we choose

𝑇 = 1, 𝑦◦ (𝑥) = 5 sin(𝜋𝑥), 𝑓 (𝑡, 𝑥) = 20, 𝑐𝑢 = 30 and 𝑐𝑦 (𝑡) = 10(1 − 𝑡) + 3 for all

(𝑡, 𝑥) ∈ (0, 1) × Ω. As one can see from Table 1, for a decreasing 𝜀 the number of

iterations of the semismooth Newton method applied to ˘3¯ increases and its conver‚

gence deteriorates fast. On the contrary, the number of iterations of Algorithm 1is
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Fig. 2: Test2ȷ Optimal state with bound 𝑐𝑦 ˘left¯ and control ˘right¯ for 𝜀 = 5 × 10−4.

𝐿
𝑝

𝜀
10−1 5 × 10−2 10−2 5 × 10−3 10−3 5 × 10−4

Δ𝑥 10−6 5(5–2) 6(7–2) 10(10–2) max(61–2) max(102–2) max(2ß7–4)

Δ𝑥 10−4 5(5–2) 6(7–2) 10(10–2) max(32–2) max(246–2) max(145–2)

Δ𝑥 10−2 5(5–2) 6(7–2) 8(10–2) max(25–2) max(max–2) max(max–4)

Δ𝑥 100 5(5–2) 6(6–2) 6(10–2) ß(11–2) max(122–4) max(1ß3–2)

Δ𝑥 102 6(4–2) 7(5–2) ß(8–2) ß(10–2) ß(20–2) 10(25–2)

Δ𝑥 104 6(4–2) 7(5–2) ß(8–2) ß(11–2) 11(20–2) max(32–2)

Δ𝑥 106 6(4–2) 7(5–2) ß(8–2) ß(11–2) 11(20–2) max(67–4)

2Δ𝑥 10−6 5(6–2) 6(7–2) 12(11–2) max(2ß–2) max(123–2) max(206–3)

2Δ𝑥 10−4 5(6–2) 6(7–2) 12(11–2) max(28–2) max(ß1–2) max(1ß6–3)

2Δ𝑥 10−2 5(6–2) 6(7–2) 11(11–2) max(25–2) max(max–4) max(max–4)

2Δ𝑥 100 5(5–2) 6(6–2) 6(ß–2) 7(10–2) max(166–5) max(183–2)

2Δ𝑥 102 6(4–2) 7(5–2) 8(8–2) ß(11–2) ß(20–2) 10(2ß–2)

2Δ𝑥 104 6(4–2) 7(5–2) ß(7–2) ß(11–2) 10(20–2) ß(26–2)

2Δ𝑥 106 6(4–2) 7(5–2) ß(7–2) ß(11–2) 10(1ß–2) 10(26–2)

4Δ𝑥 10−6 5(5–2) 6(7–2) 10(11–2) max(32–2) max(313–4) max(187–4)

4Δ𝑥 10−4 5(5–2) 6(7–2) 10(11–2) max(27–2) max(145–4) max(148–4)

4Δ𝑥 10−2 6(5–2) 6(7–2) ß(11–2) max(35–3) max(2ß6 − 4) max(max − 4)

4Δ𝑥 100 5(5–2) 5(6–2) 6(8–2) 8(11–2) max(136 − 3) max(max − 3)

4Δ𝑥 102 6(4–2) 7(5–2) 6(8–2) 8(11–2) 11(20–2) 14(44–2)

4Δ𝑥 104 6(4–2) 7(5–2) 8(8–2) 8(11–2) 10(20–2) 12(26–2)

4Δ𝑥 106 6(4–2) 7(5–2) 8(8–2) 8(11–2) 10(20–2) 13(25–2)

Sem. New. 4 6 10 12 23 30

Table 2: Test2ȷ Number of outer iterations ˘maximum number ‚ minimum number of inner itera‚

tions¯ for preconditioned generalized Newton varying 𝐿, 𝑝 and 𝜀 and number of iterations for the

semismooth Newton applied to ˘3¯ ˘last row¯.

almost constant as 𝜀 varies ˘when it converges¯. Choosing 𝑝 = 102 guarantees that

the method is convergent for any choice of 𝜀 and 𝐿. In particular, for small 𝜀, such as

10−3 and 5 × 10−4, the speed‚up in terms of number of iterations is also significant.

According to Table 1, there are some combinations for which Algorithm 1reaches a

maximum number of iterations ˘indicated in the tables with max¯. This issue can be

related to the fact that 𝑦 𝑗 ,𝑘 and 𝑞 𝑗 ,𝑘 might become unfeasible during Algorithm 1and

when traced to the interface of the other subdomain might cause oscillations. For

the second test we choose 𝑇 = 1, 𝑦◦ (𝑥) = 5 sin(𝜋𝑥), 𝑓 (𝑡, 𝑥) = 18, 𝑐𝑢 = 15 and
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𝑐𝑦 (𝑡) = 2(1 − 𝑡) + 3 for (𝑡, 𝑥) ∈ (0, 1) × Ω. In this case, there are more points in

the space‚time domain for which both bounds become active ˘cf. Figures 1‚2¯. This

makes the problem even more difficult to be solved by the WRM, since its nonlinear‚

ities are more strongly activated. In Table 2, in fact, the number of cases for which

Algorithm 1does not converge increases with respect to the first numerical experi‚

ment, particularly for 𝜀 small. We observe that transmission conditions of Dirichlet

type and large‚enough overlap 𝐿 guarantee that the number of unfeasible points at the

interface is significantly reduced, so that Algorithm 1converges. This confirms the

previous remark on the importance of having feasible iterations. As a rule of thumb,

if the regularization 𝜀 is small, we suggest to choose a sufficienly large parameter 𝑝

˘e.g., 𝑝 ≥ 102¯ so that the Dirichlet part of the transmission conditions of the WRM

dominates the Neumann part. Note that, also in the second test, there always exists a

combination of 𝑝 and 𝐿 for which Algorithm 1is faster than the semismooth Newton

method, in particular for a small 𝜀.

In conclusion, the WRM is a valid preconditioner for solving ˘3¯, although there

are combinations of 𝑝 and 𝐿 for which the method may not converge. As observed,

a crucial point for the convergence is to keep the iteration feasible. Preserving

such a feasibility, together with other important aspects ˘e.g., multiple subdomains

decomposition and the study of an optimal parameter 𝑝¯ will be the focus of a future

work.
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