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1 Introduction

This work is concerned with the numerical solution of so-called economic op-
timal control problems of the parabolic type. Let Q = (-1,1), T > 0 and
U = L*(0,T; L*(Q)) endowed with its norm || - ||¢;. We want to solve
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(zrpxl%j(u’w) = Ellull(u + EIIWIIW, (1a)

subject to the PDE-constraint

ve(t,x) — Ay(t,x) = f(t,x) +u(t,x), in(0,7) X Q,
y(t7_])=y(t’])=05 in (O’T)’ (lb)
¥(0,x) = yo(x), in Q,

with y, € L?(Q) and f € U, and to mixed control-state constraints
lu(t,x)| < cur  |y(t,x) +ew(t,x)| < cy(t), in(0,T)xQ, (1c)

where ¢,,& > 0 and ¢, € L*(0,T) with ¢,(¢) > 0 for t € (0,T). Problem (1) is
related to the virtual control approach [6, 8, 9], which is a regularization technique
for pointwise state-constrained problems. Under further assumptions on w, in fact,
one can show that, as € — 0, the solution to (1) converges to the one of the same
optimal control problem with (1c) replaced by |u(t,x)| < ¢, and |y(z,x)| < ¢y(2)
in (0,7) x Q; see, e.g., [8]. Note that there are no weights in front of the control
norms in (1a). This is because of the regularization parameter &, which is also used
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to tune the magnitude of the controls u and w. For example, the smaller is &, the
larger is ||w||¢. In contrast to classical optimal control problems, where the goal is
to reach a precise target configuration, the focus of (1) is to find minimum-energy
feasible controls such that the state solution to (1b) satisfies the bounds (1c). This
difference is particularly evident in the cost functional J in (la), where only the
norm squared of the controls are considered, instead of typical tracking-type terms.
For these reasons, problems of the type (1) are called economic optimal control
problems. A typical example is the optimal heating and cooling of residual buildings
[8]. Note that, for any given u € U, the state equation (1b) admits a unique (weak)
solution y = y(u) € W(0,T) := {¢ € L*(0,T; H'(Q))|¢, € L*(0,T; H(Q)) };
see, €.g., [10, 9]. We assume that the admissible set U, has non-empty interior,
where UZ, = {(u w) € U x ’Lliu and y(u) + ew satisfies (lc)} C U x U. This
guarantees that (1) admits a unique solution (i, w) € UZ, [10]. The first-order
necessary and sufficient optimality system [9, 10] of problem (1) is

yi(t,x) = Ay(t,x) = P(q(2,x)) + f(1.x), in(0,T) xQ,

y(t,=1) =y(t,1) =0, in (0,7),

¥(0,x) = yo(x), in Q, )
q:(t,x) + Aq(t,x) = Q% (y(t,x)), in (0,T) x Q,
q(t,—1)=¢q(t,1) =0, in (0,7),

q(T,x) =0, in Q,

where Q¢ (y(t,x)) := é(max{y(i,x) — ¢y(1),0} + min{y(¢,x) + c,(¢),0}) and
P(q(t,x)) := max{—cy, min{c,, q(t,x)}}, for all (z,x) € (0,T) X Q, with ¢ the
so-called adjoint variable. The pair (7, g) is the solution to (2) if and only if
(a(t,x),w(t,x)) = (P(g(t,x)), —eQ?(y(t,x))), for (t,x) € (0,T) x Q, is the opti-
mal solution to (1). System (2) can be rewritten in the form

F(y.9)=0 3

and thus solved by using a semismooth Newton method; see, e.g., [9, 5].

As shown in [8], the semismooth Newton method lacks of convergence if the
parameter € is not sufficiently large. This is, however, in contrast with typical ap-
plications, where a sufficiently small ¢ is required [8, 6]. The goal of this paper is
to tackle this problem by using a nonlinear preconditioning technique based on an
overlapping optimized waveform-relaxation method (WRM) characterized by Robin
transmission conditions [2, 3]. To the best of our knowledge, nonlinear precondi-
tioning techniques have never been used for economic control problems. Therefore,
this work aims to provide a first concrete study in order to show the applicability of
WRM-based nonlinear preconditioners for this class of optimization problems. In
particular, our goal is to assess the convergence behavior of the WRM nonlinear pre-
conditioned Newton and its robustness against the regularization parameter . Our
studies show that appropriate choices of the overlap L and of the Robin parameter
p lead to a preconditioned Newton method with a robust convergence with respect
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to €. Let us also mention that for elliptic optimal control problems, it is possible to
consider different transmission conditions; see, e.g., [1, 4].

The paper is organized as follows. In Section 2, we introduce the WRM and
present the algorithm for the proposed preconditioned generalized Newton. In Sec-
tion 3, we report two numerical experiments that show the convergence behavior of
the proposed computational framework in relation of the parameters characterizing
problem (1) and the optimized WRM.

2 The waveform-relation and the preconditioned generalized
Newton methods

Let Q be decomposed into two overlapping subdomains Q; = (-1,L) and Q; =
(=L, 1), where 2L € (0,1) is the size of the overlap. Moreover, let p > 0 and
consider the operator R; defined as R;(y) := y. + (=1)37py for j = 1,2. The
WRM consists in iteratively solving, for n € N, n > 1, the system

Y (8, x) = AyP (1,x) = P (g7 (1, x)) + (1, %), in (0,T)xQ;, (4a)
yn (e, (-1)7) =0, in (0,7), (4b)
Ryt (~1)* L) = R; (> ") (t, (-1)*L), in(0,7), (4c)
(0, x) = yo(x), in Q;, (4d)

gl (1,%) + Ag7" (1,x) = Q% (Y " (1, x)), in(0,T)xQ,, (4e)
g7 (1, (1)) =0, in (0,7), (4f)
Ri(g”™)(t, (-1)* L) = R;(¢* /"N (t,(-1)* L), in(0,T), (4g)
g”"(T,x) =0, in Q;, (4h)

for j = 1,2. We show first the well-posedness of the method.

Theorem 1 Let g;, g%, g}[, gfi € H'*(0,T) be initialization functions for the WRM,
ie, Ri(I D (=)L) = gy (1) and R;(g™)(t, (=1)* L) = g4(t) for t €
(0,T), with compatibility conditions g3,(0) = R;(y.)(t, (-D377L) and g,(0) =0
for j =1,2. Then the WRM (4) is well-posed.

Proof For j = 1,2, we define sz.’l = Lz(O, T, Hz(Qj)) x H! (O,T;Lz(Qj)) and
Uj = L*(0,T; L*(R;)). For given g}, g; € H'*(0,T), system (4) is the optimality
system of an optimal control problem, which seeks to minimize Joux(v/,w’/) =
SNl + 3w, + /OT gy (1)’ (1, (~=1)>7/L)dt, subject to the state equation

J J

(4a)-(4d). These auxiliary optimal control problems admit a unique optimal solution
(@/,w') € U; x U; for j = 1,2 and their optimality systems are uniquely solvable
by (3/,3/) € szfl X Hj2.’1 such that
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(@ (1,x), W/ (1,x)) = (P(¢’ (1.x)),—eQ®(3/ (t,x))), in (0,T) x Q;.

For more details see [10, 7, 3]. This proves well-posedness of the WRM forn = 1 and
J = 1,2. By iteratively applying the previous arguments is then easy to show that the
WRM is well-posed for n > 1, because yIL((=1)7L), yfc’l (-D7L), g1 ((-1)7 L),
%' ((=1)/L) € L*(0,T). o
Theorem 1 implies that (4) admits a unique solution (y/*", p/>") € H?’l X Hi’l for

Jj =1,2andn > 1. Note that, at each iteration of the WRM, the solution at iteration n
depends on the one at iteration n — 1. Therefore, we can define the solution mappings

S;: Hg’_lj X Hg’_lj — sz.’l ><H]2.’1 for j=1,2as
(v'.q") = 8137, ¢%) solves (4) for j =1, y>"~! = y* and ¢>"~! = ¢*,
(2.4 = Sy 4") solves () for j =2, Y41 =y and g™ = g,
and the preconditioned form of (3) as
Fr(y'.q'. v ") = (FiG 4.5 6. (' g Y g) =0, (6)

where F;(y', ¢',y%, %) = (¥, ¢7) = S; (>, ¢>77), for j = 1,2. To solve (6), we
apply a generalized Newton method. To do so, we assume that the maps S;, j = 1,2,
admit derivative! DS;. This allows us to characterize the derivative D¥p and its
application to a direction d*>/ = (di_j , dz_j ) € Hg’_lj X Hg’_lj, which is needed for
the generalized Newton method. Let z/ := (y/, ¢/) € sz.’l X HJQ.’1 for j = 1,2. Thus,
we have that z/ = S j(z3‘j ), according to the definition of the mapping S; in (5).
Moreover, we have that 7;(S; (z377),z%77) = 0. From this we formally obtain

D1 F5(S;(27), &) DS; () (@) + DaF(S; (), &) (@) =0,

which leads to DS (37,37 (@>7) = (37,¢7) where (3, g7) solves

5/ (t,%) = AV (1,%) = @ (1. ) x 1 (i) (%), in (0,T) X Q;,

¥ (1, (-1)7) =0, in (0,7), -
. a
R; (7)1, (1) L) = R;(dy /) (1, (=1)> L), in (0, ),
3/ (0,x) =0, inQ;,

! Since the functions S; are implicit functions of semismooth functions, one cannot directly invoke
the implicit function theorem to obtain the desired regularity. Hence, investigating the existence
and regularity of D S; requires a detailed theoretical analysis, which is beyond the scope of this
short manuscript.
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c?{(t,x) +AG7 (1,x) = @Xﬂ()}j) (¢,x), in (0,7) x Q;,
aj(t7 (_1)]) = 07 in (0, T)7 (7b)
R, (@)(1. (-1 L) = R;(d} ) (1. (<1 L), in (0.T),
g>"(T,x) =0, in Qj,

for j = 1,2, with y7(4/) and x #(y) the characteristic functions of the sets
I(q7) = {(t.2) € (0.7) x Q;||¢’ (1.%)| < eu},
A ={(t,x) € (0,T) x Q| [y/ (1,x)| > ¢, (1)}.

Note that (7) is a linearization of the WRM subproblems (4). Now, we can resume
our preconditioned generalized Newton method in Algorithm 1.

Algorithm 1 WRM-preconditioned generalized Newton method

1: Data: Initial guess y/-° and g7 for j = 1, 2, tolerance 7.

2: Perform one WRM step to compute S; (y39:0, g3770);

: Assemble Fp (y'0, ¢"0, y20, g%0) and set k = 0;

: while || Fp (y''*, g%, y2K, g>K) || > 7 do

Compute d',d> solving DFp(y'.q'.y%¢*)@".d%) = -Fp('.q'.y%4q?)
by wusing a matrix-free Krylov method, e.g., GMRES, and considering that
DTP (yl s ql ’ yz’ qZ) (dl s dz) = (dl - (yl > FqVI)s dz - (}Qs 6’2))’ with (yj’ aj) solution
to the linearized subproblems (7) for j =1, 2;

6 Update (y/-%+1, gl-k+ly = (yJk 7Ky 4 d7 and set k = k + 1;

7: Perform one WRM step to compute S; (y*>~/-, g3=/-k);

8:  Assemble Fp (y"5, gk, y>*, g>F);

9: end while

oW

3 Numerical experiments

In this section, we study the behavior of the preconditioned generalized Newton
method (Algorithm 1) and its robustness against the Robin parameter p, the regular-
ization & and the overlap L. It is well known that the convergence of the semismooth
Newton method applied to (3) deteriorates fast for decreasing values of &, since the
solution approaches the one of a pure pointwise state-constrained problem, whose
adjoint variable ¢ lacks of L?-regularity; cf. [10, 8]. The focus is on understanding
if the WRM can be a valid (nonlinear) preconditioner and in which cases. We will
perform two numerical experiments. In both tests we discretize the domain Q with
n, = 161 points and we apply a centered finite-difference scheme. Furthermore, we
consider n, = 21 time discretization points and apply the implicit Euler method.
The initial guesses y/>* and ¢/° are chosen randomly but feasible, i.e. such that
(P(g°(t, %)), —eQ% (37 0(t,x))) € UZ,, since we noticed that choosing feasible
initial guesses improves the convergence of the method. We set the stopping tol-
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Fig. 1: Test1: Optimal state with bound c,, (left) and control (right) for &£ = 5 x 1074

L 107" [5x1072| 1072 [5x 1073 1073 5% 107

Ax | 10° [4(5-2)] 4(6-2) [5(12-2)[6(13-2)] 7(35-2) 8(45-2)
Ax | 10% [4(5-2)] 4(6-2) [5(13-2)[6(13-2)| 7(34-2) 8(45-2)
Ax | 1072 [4(6-2)] 4(6-2) |5(11-2)[6(13-2)| 7(30-2) 8(432)
Ax | 107 |5(4-2)] 5(5-2) [5(9-2) [6(12—2) [max(112—2) | max(123-3)
Ax | 107 |6(42)] 6(5-2) [8(8-2) | 9(92) | 6(22-2) 9(37-2)
Ax | 10° [6(5-2)] 6(5-2) |9(7-2) [9(102)| 8(23—2) | max(654)
Ax | 10° [6(5-2)] 6(5-2) | 9(7-2) [9(10-2)| max(33—2) | max(92-3)

2Ax| 10° [4(5-2)] 4(7-2) [5(11-2)[6(13-2)] 7(39-2) 6(51-2)
2Ax| 10% [4(5-2)| 4(7-2) [5(11-2)[6(13—2)| 7(41-2) 6(48-2)
2Ax| 102 [4(6-2)| 4(7-2) [5(12-2)[5(13-2)| 7(23-2) 6(54-2)
2Ax| 10° [5(4-2)] 5(6-2) [5(9-2) [6(11-2)| 7(27-2) | max(107-3)
2Ax| 107 |6(42)] 6(5-2) | 8(8-2) [8(10-2)| 8(26-2) 9(37-2)
2Ax| 10% [6(5-2)] 6(5-2) | 8(8-2) [9(10-2)| 8(19-2) 9(41-2)
2Ax| 10° [6(5-2)] 6(5-2) | 8(8-2) | 9(9-2) | 8(19-2) 9(41-2)

4Ax] 10° [4(5-2)[ 4(7-2) [5(11-2)[6(13-2)] 6(30-2) | max(126-6)
4Ax| 107 [4(5-2)[ 4(7-2) [5(11-2)[6(13-2)| 6(30-2) | max(98—4)
4Ax| 102 [4(5-2)[ 4(7-2) [5(12-2)[6(13-2)| 6(30-2) | 11(124-2)
4Ax| 107 [4(5-2)[ 4(6-2) [5(92) [6(11-2)[ 6(27-2) |max(152-5)
4Ax| 107 [6(4-2)] 6(5-2) | 8(8-2) [8(10-2)| 10(23-2) | 15(40—-2)
4Ax| 107 [6(4-2)[ 6(5-2) | 8(8-2) |[8(10-2)| 9(26-2) | max(183-3)
4Ax| 10° [6(4-2)[ 6(5-2) | 8(8-2) [8(10-2)| 9(26-2) | max(45-2)

[ SemNew. [ 4 [ 5 [ 10 | 13 | 30 | 44 |

Table 1: Testl: Number of outer iterations (maximum number - minimum number of inner itera-
tions) for preconditioned generalized Newton varying L, p and £ and number of iterations for the
semismooth Newton applied to (3) (last row).

erance T = 107!0 for the norm of the Newton residual (see Algorithm 1) and the
maximum number of outer (inner) iterations to 200 (500). For the first test we choose
T =1, yo(x) = 5sin(nx), f(¢t,x) =20, ¢, = 30 and ¢, (¢) = 10(1 — 1) + 3 for all
(¢,x) € (0,1) x Q. As one can see from Table 1, for a decreasing & the number of
iterations of the semismooth Newton method applied to (3) increases and its conver-
gence deteriorates fast. On the contrary, the number of iterations of Algorithm 1is
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Fig. 2: Test2: Optimal state with bound c,, (left) and control (right) for &£ = 5 x 1074

L » 107" [5x1072| 1072 | 5x 107 1073 5% 1074
Ax| 107® [5(5-2)] 6(7-2) [10(10-2) [max(61-2)| max(102-2) | max(297—4)
Ax | 107* [5(5-2)| 6(7-2) [10(10-2) [max(32-2) | max(246-2) | max(145-2)
Ax | 1072 [5(5-2)] 6(7-2) | 8(10-2) [max(25-2)| max(max—2) | max(max—4)
Ax 10° [5(5-2)| 6(6-2) | 6(10-2) | 9(11-2) | max(122—4) | max(193-2)
Ax 10> [6(4-2)] 7(5-2) | 9(8-2) | 9(10-2) 9(20-2) 10(25-2)
Ax 10*  [6(4-2)| 7(5-2) | 9(8-2) | 9(11-2) 11(20-2) max(32-2)
Ax 10° [6(4-2)| 7(5-2) | 9(8-2) | 9(11-2) 11(20-2) max(67-4)
2Ax]| 1070 [5(6-2)] 6(7-2) [12(11-2)|max(29-2)] max(123-2) | max(206-3)
2Ax| 107* [5(6-2)] 6(7-2) [12(11-2)[max(28-2)] max(91-2) | max(196-3)
2Ax| 1072 [5(6-2)] 6(7-2) [11(11-2) [max(25-2) | max(max—4) | max(max—4)
2Ax| 10°  [5(5-2)] 6(6-2) | 6(9-2) | 7(10-2) | max(166-5) | max(183-2)
2Ax| 107 [6(4-2)] 7(5-2) | 8(8-2) | 9(11-2) 9(20-2) 10(29-2)
2Ax|  10* [6(4-2)[ 7(5-2) | 9(7-2) | 9(11-2) 10(20-2) 9(26-2)
2Ax| 10°  [6(4-2)[ 7(5-2) | 9(7-2) | 9(11-2) 10(19-2) 10(26-2)
4Ax| 107% [5(5-2)[ 6(7-2) [10(11-2) [max(32-2) | max(313—4) | max(187-4)
4Ax| 107* [5(5-2)] 6(7-2) [10(11-2)[max(27-2)| max(145-4) | max(148-4)
4Ax| 1072 [6(5-2)| 6(7-2) | 9(11-2) [max(35-3) [max(296 — 4) [max(max — 4)
4Ax] 100 [5(5-2)[ 5(6-2) | 6(8-2) | 8(11=2) [max(136 — 3)|max(max — 3)
4Ax| 107 [6(42)| 7(5-2) | 6(8-2) | 8(11-2) 11(20-2) 14(44-2)
4Ax| 10 [6(42)| 7(5-2) | 8(8-2) | 8(11-2) 10(20-2) 12(26-2)
4Ax| 10°  [6(42)| 7(5-2) | 8(8-2) | 8(11-2) 10(20-2) 13(25-2)
[ SemNew. [ 4 [ 6 [ 10 | 12 ] 23 | 30 |

Table 2: Test2: Number of outer iterations (maximum number - minimum number of inner itera-
tions) for preconditioned generalized Newton varying L, p and £ and number of iterations for the
semismooth Newton applied to (3) (last row).

almost constant as & varies (when it converges). Choosing p = 10% guarantees that
the method is convergent for any choice of € and L. In particular, for small g, such as
1073 and 5 x 1074, the speed-up in terms of number of iterations is also significant.
According to Table 1, there are some combinations for which Algorithm lreaches a
maximum number of iterations (indicated in the tables with max). This issue can be
related to the fact that y/-* and ¢/** might become unfeasible during Algorithm land
when traced to the interface of the other subdomain might cause oscillations. For
the second test we choose T = 1, y.(x) = 5sin(nx), f(t,x) = 18, ¢, = 15 and
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cy(t) =2(1 —t) +3 for (¢t,x) € (0,1) x Q. In this case, there are more points in
the space-time domain for which both bounds become active (cf. Figures 1-2). This
makes the problem even more difficult to be solved by the WRM, since its nonlinear-
ities are more strongly activated. In Table 2, in fact, the number of cases for which
Algorithm ldoes not converge increases with respect to the first numerical experi-
ment, particularly for & small. We observe that transmission conditions of Dirichlet
type and large-enough overlap L guarantee that the number of unfeasible points at the
interface is significantly reduced, so that Algorithm lconverges. This confirms the
previous remark on the importance of having feasible iterations. As a rule of thumb,
if the regularization ¢ is small, we suggest to choose a sufficienly large parameter p
(e.g., p > 10%) so that the Dirichlet part of the transmission conditions of the WRM
dominates the Neumann part. Note that, also in the second test, there always exists a
combination of p and L for which Algorithm lis faster than the semismooth Newton
method, in particular for a small €.

In conclusion, the WRM is a valid preconditioner for solving (3), although there
are combinations of p and L for which the method may not converge. As observed,
a crucial point for the convergence is to keep the iteration feasible. Preserving
such a feasibility, together with other important aspects (e.g., multiple subdomains
decomposition and the study of an optimal parameter p) will be the focus of a future
work.

References

1. J.-D. Benamou. A domain decomposition method with coupled transmission conditions for the
optimal control of systems governed by elliptic partial differential equations. SIAM J. Numer.
Anal., 33(6):2401-2416, 1996.

2. V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Masson. Nonlinear preconditioning:
How to use a nonlinear Schwarz method to precondition Newton’s method. SIAM J. Sci.
Comput., 38(6):A3357-A3380, 2016.

3. M. J. Gander and L. Halpern. Optimized Schwarz waveform relaxation methods for advection
reaction diffusion problems. SIAM J. Numer. Anal., 45(2):666—-697, 2007.

4. M. Heinkenschloss and H. Nguyen. Neumann—Neumann domain decomposition precondition-
ers for linear-quadratic elliptic optimal control problems. SIAM J. Sci. Comput., 28(3):1001-
1028, 2006.

5. M. Hintermiiller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth
Newton method. SIAM J. Optim., 13(3):865-888, 2002.

6. K. Krumbiegel and A. Rosch. A virtual control concept for state constrained optimal control
problems. Comput. Optim. Appl., 43:213-233, 2009.

7. J.L.Lions and E. Magenes. Non-homogeneous boundary value problems and applications (Vol
11). Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg,
1972.

8. L. Mechelli. POD-based state-constrained economic Model Predictive Control of convection-
diffusion phenomena. PhD thesis, University of Konstanz, 2019.

9. L. Mechelli and S. Volkwein. POD-based economic optimal control of heat-convection phe-
nomena. In M. Falcone, R. Ferretti, L. Griine, and W. M. McEneaney, editors, Numerical
Methods for Optimal Control Problems, pages 63—-87, Cham, 2018. Springer International
Publishing.

10. F. Troltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Appli-
cations. American Mathematical Society, 2010.



