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1 Introduction

Finite element tearing and interconnecting ˘FETI¯ domain decomposition methods

[4] are well‚established techniques for the parallel solution of elliptic problems. This

is mainly due to their simple implementation and the availability of eicient and

robust preconditioning strategies. Among other variants to deal with loating sub‚

domains, total FETI [2] or all‚loating FETI [8] methods handle all subdomains as

loating, incorporating also Dirichlet boundary conditions via Lagrange multipliers.

This can simplify the implementation, in particular when considering systems of

partial diferential equations. While the original derivation of the FETI method was

based on a constrained minimization problem, related methods can be formulated

for the Helmholtz [12] and Maxwell [13] equations as well, using tearing and inter‚

connecting on the discrete level only. Nonetheless, domain decomposition and FETI

methods have been so far mainly restricted to elliptic problems, or to time‚dependent

problems which are discretized through tensor‚product ansatz spaces. Parallelization

in time is in most cases based on the parareal algorithm [7] combing coarse and ine

temporal grids.

In recent years, space‚time discretization methods have become very popular,

see, e.g., the review article [14] and the references given therein. These methods

consider time as just another spatial coordinate, using a inite element discretization

in the whole space‚time domain [10]. As this allows an adaptive resolution in space

and time simultaneously, solving the resulting algebraic system requires eicient

solution strategies in parallel. Domain decomposition methods are a natural choice to

provide eicient, robust preconditioning and allow parallelization when considering

one subdomain per processor.
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While the work presented in Ref. [11] considers standard domain decomposition

methods [1, 5] for the heat equation, the focus of the present contribution is on FETI

methods applied to the Stokes system and the heat equation. In Section 2 we describe

the space‚time inite element discretization of the related model problems. For the

solution of the resulting linear systems we present in Section 3 a FETI method,

including a discussion on loating subdomains. When considering all subdomains

as loating, we end up with an all‚loating FETI method. First numerical results in

Section 4 indicate the great potential of space‚time FETI domain decomposition

methods, including parallel‚in‚time algorithms.

2 Space-time finite element methods

We start with the homogeneous Dirichlet problem for the transient heat equationȷ

��� − Δ�� = � in �,

� = 0 on Σ ∪ Σ0,
˘1¯

where for a bounded domain Ω ⊂ R� , � = 1, 2 or 3, and a inite time horizon �

we have the space‚time domain � := Ω × (0, �) ⊂ R�+1 with lateral and bottom

boundaries Σ := �Ω× (0, �) and Σ0 := Ω×{0}, respectively. For simplicity, we only

consider homogeneous boundary and initial conditions, but inhomogeneous data and

other types of boundary conditions can be handled as well. The space‚time variational

formulation of ˘1¯ reads to ind � ∈ � := �2 (0, � ;�1
0
(Ω)) ∩�1

0,
(0, � ;�−1 (Ω)) such

that ∫ �

0

∫
Ω

[
���� + ∇�� · ∇��

]
�� �� =

∫ �

0

∫
Ω

� � �� �� ˘2¯

is satisied for all � ∈ � := �2 (0, � ;�1
0
(Ω)). Note that the ansatz space � covers zero

boundary and initial conditions. For a space‚time inite element discretization of ˘2¯,

we introduce conforming inite element spaces �ℎ ⊂ � and �ℎ ⊂ � , assuming �ℎ ⊂

�ℎ. In particular, we use the inite element spaces �ℎ = �ℎ of continuous, piecewise

linear basis functions, deined with respect to some admissible decomposition of

the space‚time domain � into shape‚regular simplicial inite elements. Detailed

stability and error analysis of this space‚time inite element method can be found

in Refs. [10, 11]. The space‚time inite element discretization of ˘2¯ results in a

large linear system of algebraic equations which we shall solve using an appropriate

tearing and interconnecting domain decomposition method.

As a second model problem, we consider the time‚dependent Stokes system

��� − �Δ�� + ∇� � = � in �,

∇� · � = 0 in �,

� = 0 on Σ ∪ Σ0,

˘3¯
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once again assuming homogeneous boundary and initial conditions, for simplicity.

The variational formulation of ˘3¯ seeks � ∈ �� and � ∈ �2 (�) such that

∫ �

0

∫
Ω

[
��� · � + � ∇�� : ∇�� − � ∇� · �

]
�� �� =

∫ �

0

∫
Ω

� · � �� ��, ˘4¯

∫ �

0

∫
Ω

� ∇� · � �� �� +

∫ �

0

(∫
Ω

� ��

∫
Ω

� ��

)
�� = 0 ˘5¯

is satisied for all � ∈ � � and � ∈ �2 (�). Note that the additional term in ˘5¯ ensures

the scaling condition � ∈ �2
0
(Ω) for all � ∈ (0, �). The space‚time variational

formulation ˘4¯–˘5¯ can be analyzed similarly to what was done in Ref. [10] in the

case of the heat equation, extending to the space‚time setting the spatial inf‚sup

stability condition for the divergence. Note that inhomogeneous essential boundary

and initial conditions � and �0 can be handled through homogenization by using

suitable extensions of such data into the space‚time domain. For the space‚time

inite element discretization of ˘4¯ and ˘5¯ we use inf‚sup stable pairs to approximate

�ℎ and �ℎ. In particular, we extend the well established Taylor–Hood elements to

the space‚time setting using simplicial inite elements. As an alternative we may

also use prismatic space‚time Taylor–Hood elements, see Ref. [9] for irst numerical

results. A more detailed stability and error analysis will be published elsewhere.

3 Tearing and interconnecting domain decomposition methods

The space‚time inite element discretization of the heat equation ˘1¯ and of the

Stokes system ˘3¯ results in very large systems of algebraic equations which must be

solved in parallel and, if possible, simultaneously in space and time. One possible

approach is to use space‚time inite element tearing and interconnecting methods,

which are well established for elliptic problems. Here we generalize this approach

to parabolic time‚dependent problems. The space‚time domain � = Ω × (0, �) is

decomposed into � non‚overlapping space‚time subdomains �� which can be rather

general, see Fig. 1 for a selection of possible simple decompositions. With respect

to this space‚time domain decomposition we consider the localized problems, where

the continuity of the primal unknowns along the interface is enforced via discrete

Lagrange multipliers. This results in the global linear system

©­­­­«

�1 �⊤
1

. . .
...

�� �
⊤
�

�1 · · · ��

ª®®®®¬

©­­­­«

�1
...

�
�

�

ª®®®®¬
=

©­­­­­«

�
1
...

�
�

0

ª®®®®®¬
, ˘6¯

where the �� are the local space‚time inite element stifness matrices and the �� are

Boolean matrices. While ˘6¯ corresponds directly to the heat equation ˘1¯, it formally
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also includes the Stokes problem ˘3¯ with all quantities deined accordingly. Although

we have chosen to enforce the interface continuity of the pressure ield, this is in

principle not necessary since the variational problem allows � ∈ �2 (�).

At this time, we assume that all local matrices �� are invertible, so that when

using direct solvers locally we end up with the Schur complement system

�︁

�=1

���
−1
� �⊤

� � =

�︁

�=1

���
−1
� �

�
. ˘7¯

The heat equation can be seen as a difusion equation with convection in the temporal

direction. Since there is no diference between the spatial and temporal mesh size

ℎ, we conclude a spectral condition number of O(ℎ−2) for ˘6¯, and of O(ℎ−1) for

the Schur complement system ˘7¯. The global linear system ˘7¯ is solved here by a

GMRES method, either without preconditioning or with a simple diagonal precon‚

ditioner. More advanced preconditioning strategies also including some coarse grid

contributions seem to be mandatory for more complex problems, being a topic of

further research.

Fig. 1: Diferent decompositions for the space‚time domain � = Ω × (0, �) ⊂ R3.

In what follows, we discuss the more general situation in which a local matrix ��

is not invertible, i.e., when the subdomain �� is loating. Using a pseudo‚inverse �+
�

of �� , we can describe the solutions of the local subproblems as

�
�
= �+

� ( � �
− �⊤

� �) + ���� , ˘8¯

where the local matrices �� describe the kernels N(��) of �� , and �
�

are coei‚

cients to be determined. The application of the pseudo‚inverse �+
� also requires the

solvability condition �
�
− �⊤

� � ∈ R(��), which is equivalent to

�̃⊤
� ( � �

− �⊤
� �) = 0 ,
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where the local matrices �̃� describe the kernels N(�⊤
� ). In the case of loating

subdomains we therefore end up with the Schur complement system(
� −�

�̃⊤ 0

) (
�

�

)
=

(
�

�

)
, ˘9¯

where

� =

�︁

�=1

���
+
� �

⊤
� , � =

(
�1�1, · · · , ����

)
, �̃ =

(
�1 �̃1, · · · , �� �̃�

)
,

� =

�︁

�=1

���
+
� � �

, � =

©­­­«

�̃⊤
1
�

1
...

�̃⊤
� � �

ª®®®¬
.

Similarly as in FETI methods for elliptic problems, we introduce a projection

� := � − � (�̃⊤�)−1�̃⊤,

and it remains to solve the constrained linear system

��� = ��, �̃⊤� = � , ˘10¯

which can be done via a GMRES method [6]. Afterwards we can compute

� = (�̃⊤�)−1�̃⊤ (�� − �) .

Notice that the square matrix �̃⊤� is small, since it does not depend on the inite

element mesh but only on the number � of subdomains. In fact, its dimension is

simply � for the heat equation, or �� for the Stokes problem. Therefore, the inverse

(�̃⊤�)−1 can be computed directly and works as a coarse‚grid solver.

It remains to characterize the kernels N(��) and N(�⊤
� ) of the local stifness

matrices �� and their transposed matrices, respectively. For this we consider the heat

equation in�� = Ω�×(��−1, ��), where�� corresponds to the space‚time discretization

with zero Neumann boundary conditions and without initial or terminal conditions

at ��−1 or �� , respectively. In the continuous case, the solution in �� is given by

�� (�, �) =

∞︁

�=0

��,��
−��,� ���,� (�) for (�, �) ∈ �� , ˘11¯

where ��,� are the eigenfunctions of the Neumann eigenvalue problem for the spatial

Laplacian in Ω� , with eigenvalues ��,� ≥ 0. For the space‚time inite element dis‚

cretization we use continuous, piecewise linear basis functions as partition of unity

in �� , i.e., ��,0 ∈ �ℎ |��
for ��,0 = 0. Due to the exponential decay in the solution

˘11¯ for � ≥ 1, no more eigenfunctions are represented in the local inite element

space �ℎ |��
, and hence we conclude N(��) =

{
1
}

in the case of the heat equation
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˘1¯. Similarly, for the Stokes problem ˘3¯ we have � constant eigenfunctions for the

velocity, and additionally null pressure [15]. In both cases, the constant eigenfunc‚

tions remain true for general space‚time subdomains �� . While the kernel N(��) is

trivially constructed, the basis for N(�⊤
� ) is in general mesh‚dependent. Such bases

are however easily obtained as subproducts of numerical techniques for computing

pseudo‚inverses �+
� , see Ref. [3].

To simplify the implementation and to include all subdomains in the coarse‚grid

matrix �̃⊤�, we may consider all subdomains as loating, incorporating Dirichlet

boundary conditions via Lagrange multipliers as well. This results in the all‚loating

[8] or total [2] FETI approach.

4 Numerical results

As a irst numerical example we consider the Stokes system ˘3¯ in the spatial domain

Ω = (0, 1)2 for � = 1, i.e., � = (0, 1)3. To check the expected order of convergence

we consider for � = 1 the manufactured solution

�1 (�, �) = 2(1 − �−� ) (�2 − 3�2
2 + 2�3

2) [�1 (1 − �1)]
2,

�2 (�, �) = 2(1 − �−� ) (3�2
1 − �1 − 2�3

1) [�2 (1 − �2)]
2,

�(�, �) = (1 + �1 − �
−�1�2� )�2,

with the right‚hand side � computed accordingly. In this irst example we consider

decompositions of the space‚time domain � into only a few subdomains, see Fig. 1.

Our particular interest is in the efect of the interface orientation on the number of

required GMRES iterations to reach a given relative accuracy of � = 10−6, see also

the discussion in Ref. [11] in the case of a standard domain decomposition approach

for the heat equation. We solve the global Schur complement system without any

preconditioning ˘I¯, or with a simple diagonal preconditioner ˘D¯. In all cases we

observe a signiicant reduction in the number of iterations, with the best results

appearing when considering a decomposition in time ˘a¯ or space ˘b¯ only, and for

the diagonal decomposition ˘c¯. The results are not as good when considering the

decomposition ˘d¯ and the inclusion ˘e¯. In general, some coarse‚grid preconditioner

should be used to further reduce the number of iterations.

In the second example we have the heat equation ˘1¯ in the spatially one‚

dimensional domain Ω = (0, 1) and with the inal time � = 1, i.e., � = (0, 1)2.

As solution we have chosen �(�, �) = sin 1
2
�� sin ��. Here we consider a decom‚

position of the space‚time domain � into up to 64 time slabs, applying both the

space‚time FETI approach and the all‚loating ˘AF¯ formulation. The results are

given in Table 2, where we observe a reasonable number of iterations in all cases.

Note that the number of degrees of freedom is signiicantly larger when using the

all‚loating approach instead of the standard FETI method. Although the latter re‚

quires fewer iterations in most examples, this is not always the case ˘cf. Table 2¯.

Based on previous experiences [2, 8], we expect that this behaviour can be further
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Table 1: Space‚time FETI domain decomposition method for the time‚dependent Stokes system in

� = (0, 1)3. Number of GMRES iterations for the Schur complement system without ˘I¯ and with

diagonal ˘D¯ preconditioning, for diferent numbers �� of elements.

Domain decomposition

a¯ b¯ c¯ d¯ e¯

�� ∥∇� (� − �ℎ) ∥�2 (�) ∥� − �ℎ ∥�2 (�) I D I D I D I D I D

192 6.86e‚3 2.63e‚2 15 11 26 13 31 15 36 19

1536 2.19e‚3 1.64 6.53e‚3 2.01 25 13 54 17 57 20 79 29 72 28

12288 5.82e‚4 1.92 1.57e‚3 2.05 36 17 94 22 105 27 165 44 181 50

98304 1.47e‚4 1.98 3.81e‚4 2.04 55 22 180 34 206 39 374 66 325 83

improved by using appropriate preconditioners for the all‚loating scheme. Also note

that this approach is strongly related to the parareal algorithm [7] where the coarse

grid corresponds to the time slabs of the domain decomposition, see also the results

in Ref. [11].

Table 2: Classical and all‚loating ˘AF¯ space‚time FETI methods for the heat equation. Number

of GMRES iterations for a sequence of time slabs and meshes.

� = 2 � = 4 � = 8 � = 16 � = 32 � = 64

�� FETI AF FETI AF FETI AF FETI AF FETI AF FETI AF

128 5 12 7 12 9 12

512 7 12 8 14 12 18 17 17

2048 8 13 10 15 14 21 23 29 34 27

8192 9 15 11 18 16 24 26 36 40 53 69 49

32768 9 18 12 23 17 29 28 44 47 68 79 104

5 Conclusions

In this contribution, we have presented and described irst results for space‚time inite

element tearing and interconnecting domain decomposition methods, including also

the all‚loating approach. Model problems include the heat equation and the Stokes

system, but more complex partial diferential equations can be considered as well.

The space‚time inite element discretization and the tearing and interconnecting ap‚

proach follow the lines of the FETI method for elliptic problems, considering time

as just an additional spatial coordinate. The main distinction here stems from the

asymmetry of the space‚time stifness matrix, which requires a modiied projection

operator and also a numerical procedure to construct local kernels. First numerical

results show the potential of the proposed method, in particular when using state‚of‚

the‚art parallel computing facilities for time‚dependent problems. It is clear that a

more detailed numerical analysis, in particular with respect to suitable precondition‚
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ing strategies for general space‚time domain decompositions, is required. Related

results will be investigated and published elsewhere.
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