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1 Introduction

Reduced basis ˘RB¯ methods [9, 6] are a family of model order reduction schemes

for parameterized PDEs, which can speed up the repeated solution of such equations

by orders of magnitude. In the so‚called oline phase, RB methods construct a

problem‚adapted low‚dimensional approximation space by computing solutions of

the PDE for selected snapshot parameters using a given high‚idelity discretization

of the PDE. In the following online phase, the PDE is solved for arbitrary new

parameters by computing the ˘Petrov‚¯Galerkin projection of its solution onto the

precomputed reduced approximation space. While RB methods have been proven

successful in various applications, for very large problems the computation of the

solution snapshots in the oline phase may still be prohibitively expensive. To

mitigate this issue, localized RB methods [7, 4] have been developed which construct

the global approximation space from spatially localized less expensive problems.

These local problems largely fall into two classesȷ

Training procedures construct local approximation spaces without knowledge of

the global problem by, e.g., solving the equation on an enlarged subdomain with

arbitrary boundary values and then restricting the solution to the domain of interest,

or by solving related eigenvalue problems. As such, these training approaches have

a strong connecting with numerical multiscale methods and the construction of

spectral coarse spaces in domain decomposition methods.

In this contribution, however, we will focus on the construction of local RB spaces

via online enrichment, where these spaces are iteratively built by solving localized
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corrector problems for the residual of the current reduced solution. In particular we

mention the use of online enrichment in context of the LRBMS [8], GMsFEM [5]

and ArbiLoMod [3] methods. These enrichment schemes share strong similarities

with Schwarz methods, and it is the main goal of this contribution to shed some

light on the connections between these methods. We will do so by introducing a

simple localized RB additive Schwarz ˘LRBAS¯ method which is phrased in the

language of the abstract Schwarz framework but incorporates the central ingredients

of online adaptive localized RB methods. In particular, we hope that LRBAS will

help the analysis of localized RB methods from the perspective of Schwarz methods.

Following [3], we will consider arbitrary but localized changes of the problem

instead of parametric variations. In Section 2.1 we will see that LRBAS can indeed

be interpreted as a locally adaptive version of a multi‚preconditioned CG method.

Compared to Schwarz methods, a distinctive feature of LRBAS is that updates

are only computed in high‚residual regions, which can lead to a signiicant reduction

of the number of local updates and a concentration of the updates to a few regions

afected by the localized changes ˘cf. Section 3¯. This property might be exploited

for the reduction of the overall power consumption and to balance the computational

load among a smaller amount of compute nodes, in particular in cloud environments,

where additional computational resources can be easily allocated and deallocated

again.

2 A Localized Reduced Basis Additive Schwarz Method

Our goal is to eiciently solve a sequence, indexed by � , of linear systems

�(�)� (�) = � ˘1¯

with �(�) ∈ R�×� symmetric, positive deinite and � (�) , � ∈ R�, up to some ixed

error tolerance �. To this end, let �×�� matrices ��
� of rank �� be given for 1 ≤ � ≤ �

and �×�
(�)

0
matrices �

(�)�

0
of rank �

(�)

0
. Typically, �1, . . . , �� will be the restriction

matrices corresponding to a inite element basis associated with an overlapping

domain decomposition Ω� of the computational domain Ω, and the columns of

�
(�)�

0
contain a basis of a suitable coarse space for �(�) . In particular we assume

that each �� is non‚orthogonal to only a few neighboring spaces, i.e., there are a

small constant � and index sets O� ⊂ {1, . . . , �} with #O� ≤ � · � such that

� � · �
�
� = 0� �×�� whenever � ∉ O� . ˘2¯

As usual, we deine the local matrices

�
(�)

0
:= �

(�)

0
�(�)�

(�)�

0
and �

(�)
�

:= ���
(�)��

� .

We are interested in the case where �(�+1) is obtained from �(�) by an arbitrary but

local modiication in the sense that
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�
(�+1)
�

= �
(�)
�

for � ∉ C (�+1) , ˘3¯

where the sets C (�) contain the indices of the spaces afected by the change, generally

assuming that #C (�) ≪ �.

Over the course of the computation of the solutions � (�) we will build local low‚

dimensional reduced bases �̃
(�,�)�
�

∈ R��×�
(�,�)
� for � ≥ 1 such that there are local

coeicients �̃
(�,�)
�

∈ R�
(�,�)
� and �̃

(�,�)

0
∈ R�

(�)

0 such that

�̃ (�,�) := �
(�)�

0
�̃
(�,�)

0
+

�︁

�=1

��
� �̃

(�,�)�
�

�̃
(�,�)
�

˘4¯

is a good approximation of �� for suiciently large �. We obtain such an approximation

via Galerkin projection onto the global reduced basis space spanned by the images

of �
(�)�

0
and all ��

� �̃
(�,�)�
�

, i.e., �̃ (�,�) is determined by the (�
(�)

0
+
∑�

�=1 �
(�,�)
�

)‚

dimensional linear system

�
(�)

0
�(�) �̃ (�,�) = �

(�)

0
� ,

�̃
(�,�)
�

���
(�) �̃ (�,�) = �̃

(�,�)
�

�� � , 1 ≤ � ≤ � .
˘5¯

Thanks to the locality ˘2¯ of the space decomposition, the matrix of the system ˘5¯

has a block structure allowing us to eiciently assemble and solve it.

To build the local reduced bases �̃
(�,�)�
�

we use an iterative enrichment procedure

where the basis is extended with local Schwarz corrections �
(�,�)
�

∈ R�� for the

current residual,

�
(�)
�

�
(�,�)
�

= �
(�,�)
�

:= �� ( � − �(�) �̃ (�) ). ˘6¯

In view of ˘3¯, the corrections are only computed in subdomains � with large residual

norm ∥�
(�,�)
�

∥. In particular, for inite‚element discretizations of elliptic PDEs without

high‚conductivity channels, we expect that with increasing � the number of enriched

bases will be of the same order as the cardinality of C�+1. The exact deinition of

the enrichment scheme is given in Algorithm 1. There are various possibilities to

choose the criterion for the localized enrichment in line 9 of Algorithm 1. In this

work we simply select those reduced spaces for enrichment for which the quotient

between the norm of the local residual and the norm of the global residual is larger

than a ixed constant that scales with the number of the subdomains.

Note that an important property of localized enrichment is that after an enrichment

step only those blocks (�, �) of the matrix corresponding to ˘5¯ have to be updated for

which either �̃
(�,�)
�

or �̃
(�,�)
�

have been enriched. Using reduced basis techniques [2]

it is further possible to evaluate the residual norms ∥���
(�,�) ∥ and ∥� (�,�) ∥ using

only reduced quantities, which again only have to be updated for local bases �̃
(�,�)�
�

afected by the enrichment. Thus, in a distributed computing environment only the

main compute node solving ˘5¯ and those nodes associated with the enriched bases

have to perform any operations, while the other compute node lay at rest.
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Algorithm 1 Localized Reduced Basis Additive Schwarz method (LRBAS)

1: procedure LRBAS(A(k), f , RT

0
, RT

i
, ε, εloc)

2: R̃
(1,1)T

i
← 0ni×0, 1 ≤ i ≤ I ⊲ initialize local bases

3: for k ← 1, . . . ,∞ do

4: x̃(k ,1), x̃
(k ,1)

i
← solutions of (4), (5) ⊲ initial solution

5: r (k ,1) ← f − A(k) x̃(k ,1) ⊲ initial residual

6: l ← 1

7: while ‖r (k ,l) ‖ / ‖ f ‖ > ε do ⊲ loop until converged

8: for i ← 1, . . . I do ⊲ enrichment procedure

9: if ‖Rir
(k ,l) ‖2 > εloc · I

−1 · ‖r (k ,l) ‖2 then

10: y
(k ,l)

i
← solution of (6)

11: R̃
(k ,l+1)T

i
←

[

R̃
(k ,l)T

i
y
(k ,l)

i

]

12: else

13: R̃
(k ,l+1)

i
← R̃

(k ,l)

i

14: end if

15: end for

16: x̃(k ,l+1)
, x̃
(k ,l+1)

i
← solutions of (4), (5) ⊲ update solution

17: r (k ,l+1) ← f − A(k) x̃(k ,l+1)
⊲ update residual

18: l ← l + 1

19: end while

20: for i ← 1, . . . I do ⊲ update bases for next problem

21: if R̃
(k ,l)T

i
, R̃

(k ,1)T

i
then ⊲ basis enriched at least once?

22: R̃
(k+1,1)T

i
←

[

R̃
(k ,1)T

i
R̃
(k ,l)T

i
x̃
(k ,l)

i

]

⊲ only keep local solution in basis

23: else

24: R̃
(k+1,1)T

i
← R̃

(k ,1)T

i

25: end if

26: end for

27: end for

28: end procedure

We remark that several extensions to the LRBAS method are possible. In partic‚

ular, we assumed for simplicity that all matrices �(�) are of the same dimension.

This, for instance, is the case when coeicient functions of the PDE underlying ˘1¯

are modiied, but the computational mesh remains unchanged. However, also local

geometry changes that lead to remeshing can be handled by resetting all local bases

that are supported on the changed geometry. In this context we note that, as another

simpliication, in the deinition of LRBAS we have chosen to keep all basis vec‚

tors when transitioning from �(�) to �(�+1) , including bases �̃
(�,�)�
�

afected by the

change, even though these retained bases will generally not contribute to the con‚

vergence of the scheme. Finally, in many applications, a local or global parametric

variation of �(�) , e.g. the change of some material parameters, in addition to the

considered non‚parametric modiications may be of interest. In such cases, paramet‚

ric model order reduction techniques such as greedy basis generation algorithms or

oline/online decomposition of the reduced order system ˘5¯ can be incorporated

into the scheme. In particular we refer to [3] where both additional parameterization

of �(�) as well as the reinitialization of the local bases after non‚parametric changes

from �(�) to �(�+1) are discussed.
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2.1 LRBAS as an additive-Schwarz multi-preconditioned CG method

Consider the solution of the systems ˘1¯ with the preconditioned conjugate gradient

˘PCG¯ algorithm, where we choose as preconditioner the additive Schwarz operator
(

� (�)
)−1

:= �
(�)�

0

(

�
(�)

0

)−1
�
(�)

0
+
∑�

�=1 �
�
�

(

�
(�)
�

)−1
�� . Let �

(�,�)
pcg denote the �‚th

iterate of the PCG algorithm, starting with � (�,0) = 0 as the initial guess. Then it

is well known that �
(�,�)
pcg lies in the search space S

(�,�)
pcg given by the Krylov space

K �
(

(

� (�)
)−1

�(�) ,
(

� (�)
)−1

�
)

and that the error � (�) − �
(�,�)
pcg is �(�) ‚orthogonal to

this space. Denoting by �
(�,�)
pcg := � − �(�)�

(�,�)
pcg the �‚th residual, one readily checks

that S
(�,�)
pcg is equivalently given by

S
(�,�)
pcg := span

{

(

� (�)
)−1

�
(�,0)
pcg , . . . ,

(

� (�)
)−1

�
(�,�−1)
pcg

}

,

i.e., in each iteration the search space is extended by the vector obtained from

the application of the preconditioner to the current residual. The idea of multi‚

preconditioning [1] is to enlarge this search space by including each local precondi‚

tioner
(

�
(�)
�

)−1
application into the search space individually, leading to

S
(�,�)
mpcg := span

( {

�
(�)�

0

(

�
(�)

0

)−1
�
(�)

0
�
(�,�)
mpcg

�

�

� 0 ≤ � ≤ � − 1
}

∪
{

��
�

(

�
(�)
�

)−1
���

(�,�)
mpcg

�

�

� 1 ≤ � ≤ �, 0 ≤ � ≤ � − 1
} )

,

with �
(�,�)
mpcg denoting the multi‚preconditioned CG residuals. Conversely, we easily

see from ˘5¯ and ˘6¯ that for �loc = 0 the LRBAS iterates �̃ (�,�) lie within the search

space

S
(�,�)

lrbas,0
:= Im

( [

�
(�)�

0
��

1 �̃
(�,1)

1
. . . ��

� �̃
(�,1)

�

] )

+ span
{

��
�

(

�
(�)
�

)−1
���

(�,�)
�

�

� 1 ≤ � ≤ �, 1 ≤ � ≤ � − 1
}

,

and that the error � (�) − �̃ (�,�) is �(�) ‚orthogonal to this space. Hence, LRBAS with

�loc = 0 can be seen as a projected multi‚preconditioned CG method for solving ˘5¯,

where the projection space is given by the span of the coarse space and the initial

local reduced bases and where the new solution iterate �̃ (�,�) is obtained by direct

solution of the reduced system ˘5¯ instead of an incremental update in order to

preserve the locality of the reduced bases.

For �loc > 0 we arrive at an adaptive version of multi‚preconditioning similar

to [10]. However, in contrast to [10] where either all local search directions or their

global sum are added to the search space, LRBAS is locally adaptive in the sense

that only those local search directions are computed and included where a large local

residual has to be corrected.
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3 Numerical Experiment

We consider the test case from [3] and solve a sequence of ive elliptic problems

∇ ·
(

− � (�) (�, �)∇� (�) (�, �)
)

= 0, �, � ∈ (0, 1),

� (�) (0, �) = 1, � ∈ (0, 1),

� (�) (1, �) = −1, � ∈ (0, 1),

−� (�) (�, �)∇� (�) (�, �) · n(�, �) = 0, � ∈ (0, 1), � ∈ {0, 1},

˘7¯

where the coeicient � (�) (�) is given as in Fig. 1. The problem is discretized using

bilinear inite elements over a uniform 200 × 200 mesh. The resulting solutions are

visualized in Fig. 2. We decompose the computational domain uniformly into 10×10

subdomains with an overlap of 4 mesh elements. For �
(�)

0
we choose GenEO [11]

basis functions with eigenvalues below 0.5, yielding between two and ive functions

per subdomain. When connecting or disconnecting the high‚conductivity channels,

we expect enrichment to be required along the subdomains adjacent to the channels,

whereas the other subdomains should be largely unafected by the local change.

In Table 1 we compare the total number of iterations for all ive problems and the

total number of Schwarz corrections ˘6¯ required to reach a relative error tolerance of

� = 10−6 for the following solution strategiesȷ 1. the additive Schwarz preconditioned

CG method with zero initial guess or with a localized RB solution as initial guess,

where the localized basis is obtained from the linear span of previous solutions � (�)

decomposed using the GenEO partition of unity; 2. LRBAS with and without local

adaptivity ˘�loc = 0.25 or 0¯; 3. a version of LRBAS where the entire bases �̃
(�,�)�
�

are

preserved when transitioning to � + 1 instead of only the inal solution �̃
(�,�)�
�

�̃
(�,�)
�

.

As we see, LRBAS with locally adaptive enrichment signiicantly outperforms the

PCG method with or without initial guess, both regarding the number of required

iterations as well as the number of Schwarz corrections. Compared to non‚adaptive
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Fig. 1: Deinition of the coeicient functions � (�) for the numerical test case ˘7¯; leftȷ function

� (0) , taking the values 105 + 1 inside the high‚conductivity regions and 1 elsewhere; rightȷ � (�)

is obtained from � (0) by connecting the three channels to the boundary regions at the marked

locations.
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Fig. 2: Solutions of the test problem ˘7¯ for � = 1, 2, 3 ˘top row¯ and � = 4, 5 ˘bottom row¯.

iterations local enrichments ˘6¯

PCG 107 10700

PCG + LRB solution as initial value 63 6300

LRBAS ˘�loc = 0¯ 33 3300

LRBAS ˘�loc = 0.25¯ 39 1386

LRBAS ˘�loc = 0, �̃
(�+1,1)
�

:= �̃
(�,�)
�

¯ 28 2800

LRBAS ˘�loc = 0.25, �̃
(�+1,1)
�

:= �̃
(�,�)
�

¯ 34 1335

Table 1: Total number of iterations and local Schwarz corrections ˘6¯ required to reach a relative

error tolerance � = 10
−6 for the test problem ˘7¯.

multi‚preconditioning, i.e. LRBAS with �loc = 0, the number of local corrections is

more than halved at the expense of a slightly increased number of iterations. Keeping

all of �̃
(�,�)
�

improves the convergence of the method only slightly. Finally, in Fig. 3

we depict the number of required Schwarz corrections per subdomain for each � .

We observe a good localization of the computational work among the subdomains

most afected by the local changes.
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Fig. 3: Number of local Schwarz corrections ˘6¯ required by the LRBAS method with �loc = 0.25

to solve the ive test problems ˘7¯ up to a relative error tolerance of � = 10
−6.
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