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1 Introduction

We consider adaptive finite elements, using the open source finite element library
deal.II [1], and an implementation [11] of the FETI‚DP ˘Finite Element Tearing
and Interconnecting Dual–Primal¯ method based on PETSc, for the solution of
problems from dislocation micromechanics. The library deal.II is well known for
its adaptive finite element approach based on hanging node constraints. The parallel
data structures in deal.II are meant to be used with global parallel matrices, which
are assembled across the interface. However, in FETI‚DP [6] or BDDC [4] methods,
access to the Neumann matrices for each subdomain is needed. Here, we show
that the deal.II infrastructure can still be used to efficiently construct the FETI‚DP
preconditioner. We have reported on first computational results of our approach
in [9]; different improvements, including the construction of the coarse space, have
been made since. A related implementation of a BDDC method, using adaptive mesh
refinement not based on deal.II, has obtained good scalability to up to 2048 cores
in [10].
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2 Micromechanical Model Problem

To compute the stresses associated with dislocations within a specimen for the
characterization of the microstructure [12, 13], we start by considering a linear
elastic model described by

div𝜎 = 0, 𝜎 = 𝜎
𝑇
, 𝜎 = 𝐶 : 𝜀el

, and 𝜀
el
=

1

2

(

∇𝑢 + (∇𝑢)𝑇
)

to be solved for the displacements 𝑢. Here, 𝜎 is the stress tensor, 𝜀el the elastic
strain tensor, and 𝐶 the stiffness tensor. Dislocations are one‚dimensional defects
present in crystalline materials. They are the boundary of a planar area over which
two subdomains of a crystal have been displaced relative to each other with the
directions given by the Burgers vector 𝒃.

In the linear elastic context, dislocations may be modeled using an eigenstrain
approach [5] by expressing the total strain by 𝜀tot

= 𝜀el + 𝜀eig, where 𝜀eig is the
eigenstrain contribution caused by the dislocation microstructure. The area enclosed
by a dislocation is described by an orthogonal vector 𝑨. The eigenstrain contributions
d𝜀eig

=
1
2
(𝒃 ⊗ d𝑨 + d𝑨 ⊗ 𝒃), where ⊗ denotes the outer product, are regularized

using the non‚singular formulation proposed in [3], similarly to [7]. The eigenstrain
of a dislocation is a contribution to the body force term occurring in the elasticity
problem.

As a benchmark problem, we chose an artificial dislocation structure which,
however, reflects already many details of realistic microstructures that can be found
in dislocation simulations. First of all, the considered sample is a cubic box with edge
lengths of 1 µm; see also section 5. Single crystalline copper was used as a material,
which has the anisotropic elastic constants 𝐶11 = 168.4 GPa, 𝐶12 = 121.4 GPa, and
𝐶44 = 75.4 GPa. Copper is a material that has a “face centered cubic” crystallographic
structure with 12 possible slip systems on which dislocations can nucleate and move.
In this artificial dislocation microstructure, all 28 dislocations are considered to be
closed, circular loops; their center points and radii have been chosen randomly.

3 Parallel mesh handling in deal.II

For simplicity, let us first consider a domain Ω ⊂ R2 decomposed into two subdo‚
mainsΩ1 ⊂ Ω andΩ2 ⊂ Ω; see Figure 1. In deal.II, each cell is owned by exactly one
MPI rank, the locally owned cells. Each MPI rank has information about its locally
owned cells and one additional layer of ghost cells of the neighboring subdomains;
see Figure 2.

The degrees of freedom ˘dofs¯ have a global numbering. Each dof belongs to
exactly one MPI rank; all dofs belonging to an MPI rank form the locally owned dofs

of this rank. Each locally owned dof belongs to a locally owned cell, but some dofs
of a locally owned cell may belong to the locally owned dofs of a different rank; see
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Figure 3. The union of all dofs of all locally owned cells is called locally active dofs.
The union of the locally active dofs and the degrees of freedom of the cells of the
ghost layer is called locally relevant dofs; for details, see, e.g., [2] and Figure 3.

4 Subdomain Neumann matrices in deal.II

In deal.II, the global stiffness matrix 𝐾 can be assembled by an instance of the
class AffineConstraints, which also handles the hanging node constraints and
the Dirichlet boundary values.

For nonoverlapping domain decomposition methods, such as FETI‚DP and BDDC
methods, we have to assemble the local subdomain stiffness matrices 𝐾 (𝑖) for each
subdomain Ω𝑖 , 𝑖 = 1, . . . , 𝑁 . These local subdomain matrices are not assembled
across the interface. There is currently no built‚in support in the deal.II library for
this operation. We have therefore added a layer on top of deal.II to implement the
necessary functionality.

Computing the local subdomain Neumann matrices

To assemble a local stiffness matrix, 𝐾 (𝑖) , we need a local sparsity pattern, the
local constraints and a local numbering 1, . . . , 𝑛𝑖 of all locally relevant dofs of this
subdomain. We construct a local sparsity pattern and the local constraints from the
global ones by copying the entries and the values with respect to the local numbering.
The Dirichlet boundary needs some special care; see section 4.

Computing the interface, and faces, edges, and vertices

In FETI‚DP and related methods, the interface and its decomposition into faces,
edges, and vertices are needed. The dofs of the interface can be computed as the
intersection of the locally active dofs and the locally relevant dofs. But, due to the
hanging node constraints, such an index set is not always appropriate for FETI‚DP
methods, where we need to introduce Lagrange multipliers on the interface. For
hanging nodes, we therefore replace the hanging node dofs by those non‚hanging
node dofs which constrain them; see, e.g., Figure 4.

We denote the interface dofs, as outlined above, of Ω𝑖 by Γ𝑖 and name them as
locally active interface dofs. Let us remark that not all dofs on the geometric interface
belong to Γ𝑖 and, vice versa, see, e.g., Figure 5.

Ω Ω1 Ω2

Fig. 1: Left: Domain Ω. Right: Decomposition into Ω1 and Ω2; | Interface.
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Ω1 Ω2 Ω1 Ω2

Fig. 2: Left: Locally owned cells of Ω1, Ω2. Right: Locally owned cells; ‚ ‚ ghost cells.

Ω1 Ω2 Ω1 Ω2

Fig. 3: An example of the classification of the degrees of freedom with 𝑄1 elements. Left:

Subdomain Ω1ȷ • locally owned dofs; ◦ locally active dofs. Subdomain Ω2ȷ • locally owned dofs; ◦
locally active dofs. Right: SubdomainΩ1ȷ • locally relevant dofs; SubdomainΩ2ȷ ◦ locally relevant
dofs.

Ω1 Ω2 Ω1 Ω2

Fig. 4: Partition into locally inner and locally active interface dofs. Left: Subdomain Ω1ȷ • locally
inner dofs. Subdomain Ω2ȷ • locally inner dofs. Right: Subdomain Ω1ȷ • locally active interface
dofs. Subdomain Ω2ȷ • locally active interface dofs.

For Ω ⊂ R3, we compute vertices, edges, and faces as followsȷ The basic idea is to
compute the faces of all subdomains, after that, we build edges as intersection of faces
and vertices as intersection of edges. Let us remark that, although the computation
of faces is completely local to all MPI ranks, and, therefore, also the computation
of edges and vertices, we need to communicate all computed edges and vertices to
the neighboring subdomains, see, Figure 5; here, “neighboring” means subdomains
which have a non‚empty intersection of the locally relevant dofs; due to hanging
node constraints, the result can be counterintuitive; see Figure 5 for the case of two
dimensions.

The use of p4est ˘based on space filling curves¯, which is standard in deal.II’s
parallel distributed mesh class, does not guarantee that a subdomain is connected,
and it may only be connected through vertices or edges of cells. This can be dealt
with but it will typically increase the coarse problem size.
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Ω Ω1 Ω2 Ω3

Fig. 5: Domain Ω partitioned into Ω1, Ω2 and Ω3 with edge dofs between the subdomains. Only
subdomain Ω2 computes the vertices as intersection of the edges. These vertices are not seen by Ω1

and Ω3. Left: Domain Ω | interface. Right: • edge dofs between Ω1 and Ω2. ♦ edge dofs between
Ω2 and Ω3.

Denote the locally active interface of Ω𝑖 by Γ𝑖 and the locally owned dofs by 𝐼𝑜
𝑖

.

1. Decompose Γ𝑖 into Γ
𝑜
𝑖
= Γ𝑖 ∩ 𝐼𝑜

𝑖
and Γ

𝑜,𝐶
𝑖

2. Determine the number of rows 𝑚 of 𝐵𝑖 ȷ

˘a¯ Compute the number 𝑠 (𝑖)
𝜆

of all multipliers related to Γ
𝑜
𝑖

.

˘b¯ Compute 𝑚 =
∑𝑁

𝑖 𝑠
(𝑖)
𝜆

.

3. Send the index set Γ𝑜,𝐶
𝑖

to all neighboring subdomains.

4. For each received set Γ𝑜,𝐶
𝑗

from a neighboring subdomain Ω 𝑗 compute Γ
𝑜
𝑖, 𝑗

= Γ
𝑜
𝑖
∩ Γ

𝑜,𝐶
𝑗

. Send to

subdomain Ω 𝑗 the information for which multipliers, associated with the dofs in Γ
𝑜
𝑖, 𝑗

, a +1 or −1 has to be

inserted into 𝐵 𝑗 .

Fig. 6: Construction of the local jump operators 𝐵𝑖 .

Furthermore, a subdomain may not have enough vertices or edges to ensure the
invertibility of certain subdomain matrices in FETI‚DP methods. Here, we some‚
times need to introduce additional primal constraints by subdivision of faces or edges
to constrain the low energy modes of all components of a subdomain. Let us remark
that our method can still lead to faces or edges that are not connected.

As mentioned in section 4, we have to take care of the Dirichlet boundary con‚
dition. These are also handled by the AffineConstraints class, as the hanging
node constraints. Therefore, for the computation of the interface, we need to extract
the information about the hanging nodes dofs from an instance where the Dirichlet
boundary condition have not been set.

Construction of the FETI-DP jump operator

A crucial element of FETI‚DP methods is the jump operator 𝐵 which imposes
the continuity of the solution. This operator has a row for each Lagrange multiplier
and each row consists of exact two entries, a +1 and a −1.

The Lagrange multipliers are related to the locally active interface dofs. Hence,
we partition them, and manage the computation of the local parts of 𝐵, by the locally
owned part of the interface, see, Figure 6.
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5 Numerical Results

We use Q1 finite elements. The deal.II library uses the p4est library to compute the
domain decomposition, as in [10]. Our FETI‚DP implementation is based on [11, 8].
Our coarse space uses vertices, edges, and, certain additional point constraints on
faces. We perform 5 mesh refinement steps, using the Kelly error estimator. We use
GMRES.

In Figure 7 ˘left¯ we show the eigenstrain distributions that are non‚zero inside the
loops and zero outside. This quick transition of the eigenstrain value is responsible for
very high ˘for non‚regularized problemsȷ diverging¯ stresses that require a sufficiently
fine mesh for obtaining an accurate solution.

In Tables 1 and 2, we report on the global problem size ˘“Global”¯ the size of the
coarse problem ˘“Coarse”¯, the number of Krylov iterations ˘“it.”¯, the solver and
assembly time ˘“solve” and “ass.”¯. We also report timings to build the interface Γ,
to build faces, edges, and vertices ˘denoted “f/e/v”¯, and to build the FETI‚DP jump
operator 𝐵.

First, we observe that the deal.II infrastructure can provide, within a fraction of
a second ˘for the smaller problems¯ to a few seconds ˘for the larger problems¯, the
necessary connectivity information to construct the FETI‚DP preconditioner, i.e.,
the interface, the face, edges, and vertices, and the information to build the 𝐵‚matrix.

We also observe that the number of iterations increases slightly when refining the
mesh. Note that the problem is anisotropic ˘see section 2¯ which results in higher
iteration counts compared to standard benchmark problems.

For the same refinement cycle, the problem sizes for 512 cores are larger by
a factor between 7 and 8 compared with 64 cores. Since the number of cores is
larger by a factor of 8, we can roughly compare the timings for 512 cores and 64
cores in the sense of weak scaling. In this sense, when comparing refinement step
5, we observe acceptable parallel scalability for the solver time ˘2ß.8s vs. 18.8s¯
and the total time ˘203s vs. 174s¯. This is also the case when summing the total
time over all refinement steps, i.e., we have 305s ˘512 cores¯ and 237s ˘64 cores¯.
Since this is not weak scalability in the strict sense, we refrain from providing
parallel efficiency numbers. Note that the assembly does not scale perfectly since a
certain load imbalance is introduced by the additional computations involved with
the dislocations.

Performing the same computations using a larger number of cores, i.e., 216 and
1728 cores, we see that the solver time starts to be dominated by the coarse solver,
since the coarse problem is quite large, i.e., > 70 000 dof for the last two refinement
cycles. This is also a result of our attempts to create a robust coarse space. As a
result of the deteriorating solver scalability, the total time to solution, summed over
all refinement steps, is 510s ˘1728 cores¯ to be compared with 277s ˘216 cores¯. This
indicates that we need to reduce the coarse problem size by modifying our coarse
space. Alternatively, we can move to a three‚ or multi‚level method as in [10].
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Fig. 7: Left: eigenstrain resulting from 28 dislocation loops ˘red color denotes a non‚zero eigen‚
strain¯. Middle: Solution. Right: Solution and adaptive mesh for the fifth refinement cycle; problem
sizeȷ 10.4 million dofs using 512 MPI ranks.

Table 1: Results for 5 refinement cycles on 64 cores and 512 cores.

d.o.f. Time in 𝑠

#Cores Refinem. Global Coarse it. solve ass. build Γ f/e/v build 𝐵 total time
64 1 14 73ß 405 23 0.16 ß.41 < 0.01 0.01 < 0.01 10.0

2 4ß 173 1 56ß 3ß 0.54 12.6 0.06 0.03 0.02 13.3
3 153 420 1 680 46 1.23 20.3 0.24 0.03 0.01 22.1
4 476 502 1 785 58 4.1ß 47.6 1.06 0.06 0.03 53.6
5 1 475 034 1 8ß6 55 18.8 150 3.80 0.1ß 0.06 174

sum 24.ß 240 5.17 0.32 0.13 273

512 1 107 811 4 557 22 1.3ß 5.07 0.02 0.01 0.02 6.ß4
2 34ß 404 16 842 4ß 4.84 ß.25 0.10 0.04 0.03 14.6
3 1 087 68ß 1ß 275 51 6.57 15.3 0.23 0.05 0.06 22.8
4 3 353 052 20 604 56 10.6 45.2 0.ß4 0.11 0.12 58.0
5 10 358 751 22 254 53 2ß.8 165 4.5ß 0.22 0.23 203

sum 53.2 240 5.88 0.86 0.46 305

Table 2: Results for 5 refinement cycles on 216 cores and 1728 cores.

d.o.f. Time in 𝑠

#Cores Refinem. Global Coarse it. solve ass. build Γ f/e/v build 𝐵 total time
216 1 46 875 1 725 23 0.38 7.53 0.01 0.01 0.01 8.12

2 153 801 6 4ß2 43 3.07 10.1 0.07 0.03 0.02 13.5
3 47ß 475 7 701 44 3.63 16.ß 0.27 0.05 0.03 21.3
4 1 477 617 7 83ß 52 7.2ß 41.6 0.ß1 0.08 0.06 50.7
5 4 570 413 8 13ß 54 23.ß 152 4.ß0 0.17 0.11 183

sum 46 223 6.16 0.33 0.22 277

1728 1 352 ß47 17 061 22 6.56 4.3ß 0.02 0.02 0.07 11.8
2 1 133 ß4ß 61 266 50 32.1 8.05 0.10 0.05 0.11 41.6
3 3 50ß 34ß 67 716 4ß 35.ß 14.1 0.25 0.07 0.18 52.0
4 10 820 382 71 811 63 47.1 61.4 0.7ß 0.11 0.34 112
5 33 427 005 76 125 60 76.ß 207 3.78 0.22 0.68 2ß2

sum 1ßß 2ß5 4.ß4 0.47 1.34 510
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