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1 Fast and Robust Overlapping Schwarz Preconditioners

The Fast and Robust Overlapping Schwarz framework [9, 8], which is part of the

Trilinos Software library [1], contains a parallel implementation of the generalized

Dryja-Smith-Widlund ˘GDSW¯ preconditioner. The GDSW preconditioner is a two‚

level overlapping Schwarz domain decomposition preconditioner [18] with an energy

minimizing coarse space [5, 4]. It is constructed based on a domain decomposition of

the computational domainΩ into � nonoverlapping subdomains {Ω�}�=1,...,� . These

are then extended by � layers of elements, resulting in a corresponding overlapping

domain decomposition
{

Ω
′
�

}

�=1,...,�
. The two‚level GDSW preconditioner can then

be written as

�−1
GDSW = Φ�−1

0 Φ
�
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coarse level

+
︁�

�=1
��� �
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︸              ︷︷              ︸

irst level

, ˘1¯

where Φ contains the coarse basis functions. Contrary to the classical approach,

where the coarse basis functions are chosen as nodal inite element functions on

a coarse triangulation, for the GDSW preconditioner, these are chosen as discrete

harmonic extensions of certain interface functions ΦΓ to the interior of each subdo‚

main. In particular, the functions ΦΓ are restrictions of the null space of the global

Neumann matrix to the vertices, edges, and faces, which form a nonoverlapping de‚
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composition of the domain decomposition interface. The matrix �0 = Φ
��Φ is the

coarse matrix and the matrices �� = ����
�
� , � = 1, . . . , � , correspond to the over‚

lapping subdomain problems on the irst level. The local subspaces corresponding to

the overlapping subdomains are denoted as�1, . . . , �� , and the GDSW coarse space

is denoted by �0. For scalar elliptic problems, the condition number is bounded by

�(�−1
GDSW�) ≤ �

(

1 +
�

�

) (

1 + log

(

�

ℎ

))2

, ˘2¯

where � is a constant independent of the inite element size ℎ, the size � of the non‚

overlapping subdomains, and the width of the overlap � = �ℎ; see [4]. The GDSW

coarse space can be constructed in an algebraic fashion, i.e., without geometric

information. For a further reduction of the coarse space, the FROSch framework

provides an implementation of a reduced dimensional coarse space ˘RGDSW¯ [12].

For the reduced dimensional GDSW coarse space, the basis functions are constructed

from nodal interface functions. Two options are currently available in FROSchȷ a fully

algebraic version (Option 1) [6, 12], where the interface values are deined through

the number of adjacent vertices, or the less algebraic version (Option 2.2) [6, 12],

where the interface values are deined through the distance to the adjacent vertices;

cf. [6, 12]. In general, the two options result in diferent partitions of unity. The

interior values of each subdomain are determined as in the classical GDSW approach.

2 Three-Level Extension

For a large number of subdomains, the coarse problem of the two‚level ˘R¯GDSW

preconditioners may become too large to be solved by a sparse direct solver. As in

the three‚level BDDC methods [19], we can resolve this by applying the GDSW

preconditioner recursively to the coarse problem [10, 11]. This technique can be ex‚

tended to a multi‚level version, as in multi‚level BDDC [2, 17] ˘which compete with

inexact FETI‚DP methods [14]¯, multilevel Schwarz methods [15, 16], or multigrid

methods. We only discuss the three‚level extension in this paper.

To apply the ˘R¯GDSW preconditioner to the coarse problem, we need to deine

an additional layer of decomposition. We therefore decompose the domain into

non‚overlapping subregions Ω�0 of diameter ��, whereas each subregion is a union

of subdomains. To obtain overlapping subregions Ω
′
�0

, we extend each subregion

by recursively adding layers of subdomains, as we do with inite elements on the

subdomain level; see Figure 1. We denote the subregion overlap by Δ. The notation

on the subdomain level is kept consistent with the two‚level method.

We deine the three‚level GDSW preconditioner [10, 11] by

�−1
GDSW−3L = Φ

(
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Fig. 1: Structured decomposition of an exemplary two‚dimensional computational domain Ω into

nonoverlapping subregions Ω�0˘left¯, a zoom into one overlapping subregion Ω
′
�0

consisting of

subdomains Ω� ˘middle¯, and a zoom into one overlapping subdomain Ω
′
�

˘right¯. Each level of

zoom corresponds to one level of the preconditioner; image from [10].

where the irst level and the matrices Φ are deined as in the two‚level method and

where �00 = Φ
�
0
�0Φ0 and ��0 = ��0�0�

�
�0
. The restriction operators, restricting

to the overlapping subregions Ω
′
�0

, are deined as ��0 : �0 → �0
�

:= �0 (Ω′
�0
) for

� = 1, ..., �0. The respective coarse space is denoted as�00 and spanned by the coarse

basis functions Φ0.

3 Implementation

The Fast and Robust Overlapping Schwarz ˘FROSch¯ framework [9, 8] is part of

the package ShyLU from the Trilinos software library [1]. It contains parallel im‚

plementations of the GDSW and RGDSW preconditioners based on the Trilinos

linear algebra interface Xpetra; it enables the use of both Trilinos linear packages

Epetra and Tpetra. To test the three‚level extension to the FROSch implementation,

we considered a linear elasticity model problem on the unit cube [0, 1]3 with ho‚

mogenous Dirichlet boundary condition on �Ω. We use piecewise trilinear inite

elements and a structured decomposition of the computational domain. To assemble

the stifness matrix we apply the Trilinos package Galeri. Here, each process owns

the same number of rows of stifness matrix resulting in diferent subdomain sizes.

We use a generic right‚hand side vector in which each entry is set to one. If the

coarse space is constructed as described in Section 1, the columns of the matrix Φ

will be a generating set of the coarse space. However, for our model problem, the

columns will not be linear independent and, hence, not form a basis of the coarse

space. This is because the restriction of the six‚dimensional null space, consisting

of translations and linearized rotations, to an interface component may yield linear

dependent vectors. For instance, the restriction of the null space to a single vertex

yields only a three dimensional space. In order to make sure that the coarse matrix

�0 is invertible, we have to deal with this in our implementation. In particular, before

building �0, we replace linear dependent coarse functions by null vectors until all

other basis functions are linear independent; in order to identify linear dependencies,
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we perform local orthonomalization using LAPACK’s SGEQRF routine for com‚

puting a QR factorization using Householder transformations. This procedure yields

zero rows and columns in �0. Therefore, in order to make �0 invertible, we inally

replace those rows and columns by the corresponding unit vectors, leaving a one on

the diagonal and zeros otherwise. This also has the nice side efect that the size of

the coarse matrix is always the number of interface components times the dimension

of the null space. The coarse level is decomposed into subregions in an unstructured

way using the Parallel Hypergraph and Graph Partitioning ˘PGH¯ from the Trilinos

package Zoltan2 [20]; see also [13]. As a Krylov iteration method, we apply the

preconditioned conjugate gradient method ˘PCG¯ provided by the Trilinos package

Belos ˘BelosPseudoBlockCG¯. The implementation ofers a condition number esti‚

mate using the tridiagonal matrix constructed in the Lanczos process. We use the

relative stopping criterion ∥�� ∥2/∥�
0∥2 ≤ 10−6, where �� is the residual in the �‚th

iteration step and �0 is the initial residual. For all tests, we chose 203 ∗ 3 rows of the

stifness matrix for each process and approximately 83 subdomains per nonoverlap‚

ping subregion. The overlap is obtained by extending each subdomain by one layer

of elements and by extending each subregion by one layer of subdomains. We per‚

formed all numerical tests on the GCS supercomputer SuperMUC‚NG. The INTEL

19.0 compiler is used. The sparse linear subproblems arising in the preconditioner

are solved using the sparse direct linear solver PardisoMKL [3].

4 Weak Parallel Scalability Results for the Three-Level Extension

In this section, we focus on weak parallel scalability results for the three‚level GDSW

preconditioner with a reduced dimensional coarse space. We always use Option 1

to construct the coarse basis functions. In Trilinos the data is distributed among the

processes via the map object. We use a repeatedly decomposed map to determine

the interface Γ. This map can be passed as an input to the FROSch framework.

For our weak parallel scalability tests, we consider three diferent setups to de‚

termine the interface Γ, which result in diferent sizes and sparsity patterns for the

coarse problem; see Figure 2. We either use the Geometric Map, which is constructed

from the structured non‚overlapping domain decomposition on the irst level, or the

Algebraic Map [7], which is built algebraically from the uniquely decomposed row

map of the input matrix. In particular, the interfaces and hence the vertices, edges,

and faces may difer slightly for the two diferent maps; this efect may be more

pronounced for unstructured domain decompositions. When using the Algebraic

Map, we also consider the case where the rotations are neglected ˘Algebr. w/o Ro-

tat.¯. In Figure 2, we only see minor diferences in the sparsity pattern of �0 using

the Geometric and the Algebraic Map. For a higher numbers of subdomains, the

diferences between these two approaches will be more visibleȷ for our largest test

case with 85 184 subdomains, we have 53ß 460 as a maximum nonzero entries per

core in �0 for the Geometric Map; this compares to 578 340 maximum nonzeros per

core for the Algebraic Map. For all input maps, the two‚ and the three‚level method
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Fig. 2: Sparsity of the coarse matrix �0 for our linear elasticity model problem in three dimensions

with 216 subdomains; using the Geometric Map ˘left¯ and the Algebraic Map, with rotations

˘middle¯ and without linearized rotations ˘right¯. The subdomain size is chosen such that each

process of the uniquely decomposed map owns 303 nodes.

Fig. 3: Weak numerical scalability for the three‚ and two‚level method with a reduced dimensional

coarse space; see Table 1 for the data; using the Geometric Map and the Algebraic Map with and

without rotations.

Fig. 4: Weak parallel scalability for the three‚ and two‚level method with a reduced dimensional

coarse space; see Table 1 for the data.

are numerically scalable, whereas the Algebraic Map without Rotations yields the

highest iteration counts and condition number estimates; cf. Figure 3 and Table 1.

Replacing the direct solver for the coarse problem ˘used in the two‚level method¯ by

the application of the RGDSW preconditioner for the three‚level method generally

results in higher condition number estimates and iteration counts.
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Two‚level Three‚level

# Subd. # Subr. # Dofs Map � (�−1�) Iter Solver Time � (�−1�) iter Solver Time

1 000 4 2.4 · 107
Geom. 51.45 57 15.11s 90.46 72 16.99s

Algebr. 50.73 49 14.54s 103.02 60 16.12s

Algebr. w/o Rotat. 166.68 70 15.48s 429.05 93 17.91s

13 824 27 3.3 · 108

Geom. 53.61 61 38.40s 116.19 90 24.89s

Algebr. 51.08 49 36.39s 127.91 72 23.38s

Algebr. w/o Rotat. 182.46 73 22.75s 594.97 101 21.58s

27 000 64 6.5 · 108

Geom. 53.77 62 87.28s 122.18 95 30.87s

Algebr. 51.12 50 82.01s 137.42 75 28.46s

Algebr. w/o Rotat. 191.12 73 33.17s 663.44 112 26.02s

39 304 125 ß.4 · 10
8

Geom. 53.82 62 153.88s 128.39 98 35.12s

Algebr. 51.12 50 144.01s 137.96 74 30.63s

Algebr. w/o Rotat. 198.05 74 47.48s 745.26 114 31.40s

64 000 216 1.5 · 10
ß

Geom. ‚ ‚ ‚ 135.58 98 37.29s

Algebr. ‚ ‚ ‚ 143.87 76 32.81s

Algebr. w/o Rotat. ‚ ‚ ‚ 717.06 110 38.24s

85 184 275 2.0 · 10
ß

Geom. ‚ ‚ ‚ 108.49 99 40.80s

Algebr. ‚ ‚ ‚ 150.37 77 39.87s

Algebr. w/o Rotat. ‚ ‚ ‚ 729.14 115 46.45s

Table 1: Data corresponding to Figure 3 and 4. By Iter, we denote number of PCG iterations,

and � is the condition number of the preconditioned operator. Solver Time is the time to build

the preconditioner and to perform the Krylov iterations; see also Figure 3 and 4.The subdomain

size is chosen such that each process of the uniquely decomposed map owns 20
3 nodes. We have

��/� ≈ 8. One layer of inite elements respectively one layer of subdomains is chosen as the

overlap for each level.

However, the three‚level extension of the FROSch framework shows a better

parallel weak scalability than the two‚level method; cf Figure 4 and Table 1. The

Solver Time is the time to build the preconditioner and to perform the Krylov

iterations. The time includes the factorization and forward backward substitution for

the sparse direct solvers. For the three‚level method the time for the unstructured

decomposition, of the coarse problem is also included. For all test settings, the

three‚level method is faster for 13 824 and more cores. Moreover, at 3ß 304 cores

the three‚level method is faster by more than a factor of fourȷ Using the three‚level

method, we obtain a Solver Time of 35.12 � using the Geometric Map and 30.63 �

using Algebraic Map. This compares to a Solver Time of 153.88 � for the Geometric

Map and 144.01 � for the Algebraic Map in the two‚level method. Using Algebraic

Map without Rotation results in a smaller coarse problem, making the two‚level

methods more competitive. Here, the three‚level method ˘Solver Time 31.40 �¯ is

still faster by a factor of 1.5 than the two‚level method ˘Solver Time 47.48 �¯. As the

results are clear, we did not perform tests beyond the 3ß 304 cores for the two‚level

method. To illustrate the strong inluence of the size of the coarse problem on the

preconditioner time, we consider the test case of 3ß 304 cores in Table 2. For this

test case, the solution of coarse problem �0 in Geometric Map setup takes 78%

˘120.1ß �¯ of the total Solver Time ˘153.88 �¯.

For this test case, the solution of coarse problem �0 in Geometric Map setup takes

78% ˘120.1ß �¯ of the total Solver Time ˘153.88 �¯. This time compares to less than
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Two‚level method Three‚level method

# Subd. # Subr. # Dofs Map Size �0 �0 Solve Time Size �00 �00 Solve Time

1 000 4 2.4 · 107
Geom. 4 374 0.24s 6 <1e‚5s

Algebr. 4 374 0.22s 6 <1e‚5s

Algebr. w/o Rotat. 2 184 0.08s 3 <1e‚5s

13 824 27 3.3 · 108

Geom. 73 002 12.03s 366 0.01s

Algebr. 73 002 12.04s 366 0.01s

Algebr. w/o Rotat. 36 501 2.02s 174 0.003s

27 000 64 6.5 · 108

Geom. 146 334 59.38s 1 056 0.08s

Algebr. 146 334 45.75s 1 116 0.08s

Algebr. w/o Rotat. 73 167 11.69s 546 0.04s

39 304 125 ß.4 · 10
8

Geom. 215 622 120.19s 2 508 0.29s

Algebr. 215 622 114.06s 2 556 0.25s

Algebr. w/o Rotat. 107 811 22.14s 1 290 0.11s

64 000 216 1.5 · 10
ß

Geom. 355 914 ‚ 4 980 0.81s

Algebr. 355 914 ‚ 4 938 0.63s

Algebr. w/o Rotat. 177 957 ‚ 2 319 0.21s

85 184 275 2.0 · 10
ß

Geom. 477 042 ‚ 6 432 0.63s

Algebr. 477 042 ‚ 6 660 0.72s

Algebr. w/o Rotat. 238 521 ‚ 3 222 0.16s

Table 2: Cost for solving the problem on the coarsest level. Solve Coarse Problem Time include

the time of the factorization of the problem as well as the forward and backward substitution in the

Krylov iterations.

a second ˘0.2ß �¯ to solve the coarse problem corresponding to �00 in the three‚level

method. Similar results are obtained for the Algebraic Map where 114.06 � for the

two‚level method compare with 0.25 � for the three‚level method. For the Algebraic

Map without Rotations the size of the coarse problem is reduced by a factor of two;

cf. Table 2. Therefore, the cost of the coarse problem reduces to 22.14 � for the two‚

level method, which compares to 0.11 � for the three‚level method. Although the

Algebraic Map has the largest coarse problem size ˘see Table 2¯ this is consistently

the fastest setup of the three‚level method. The stronger connectivity given by this

coarse problem improves the iteration count and therefore decreases the Solver Time.

Resulting in the higher number of iterations ˘cf. Table 1¯ the Algebraic Map without

rotations is the slowest test case.
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