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1 Introduction

Isogeometric Analysis ˘IgA¯, see [7], is a method for discretizing partial diferential

equations ˘PDEs¯. The goal of its development has been to enhance the interface be‚

tween computer‚aided design ˘CAD¯ and simulation. Current state‚of‚the‚art CAD

tools use B‚splines and NURBS for the representation of the computational domain.

In IgA, the same kind of bases is also utilized to discretize the PDEs. Complex do‚

mains for real‚world applications are usually the union of many patches, parametrized

with individual geometry functions ˘multi‚patch IgA¯. We focus on non‚overlapping

patches.

If the grids are not conforming and/or the interfaces between the patches do not

consist of whole edges then discontinuous Galerkin ˘dG¯ methods are the discretiza‚

tion techniques of choice. A well studied representative is the symmetric interior

discontinuous Galerkin ˘SIPG¯ method, cf. [1]. It has already been adapted and

analyzed in IgA, cf. [9, 10, 15] and others. An obvious choice to solve discretized

PDEs on domains with many non‚overlapping patches are tearing and interconnect‚

ing methods. The variant we are interested in is the dual‚primal approach, see [4]

for FETI‚DP and [8, 5, 6] for its extension to IgA, which is called accordingly dual‚

primal isogeometric tearing and interconnecting method ˘IETI‚DP¯. This method

is similar to Balancing Domain Decomposition with Constraints ˘BDDC¯ methods,

that have also been adapted to IgA, see [2, 17] and references therein. In [14, 15],

the authors have presented a �‚ and ℎ‚robust convergence analysis for IETI‚DP. The
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authors have assumed that the interfaces consist of whole edges. If the vertices are

chosen as primal degrees of freedom, it was shown that the condition number of the

preconditioned Schur complement system is, under proper assumptions, bounded by

� �

(
1 + log � + max

�=1,...,�
log

��

ℎ�

)2

, ˘1¯

where � is the spline degree, ℎ� is the grid size on patch Ω(�) and �� is the diameter

of Ω(�) and � > 0 is a constant independent of these quantities. In this paper, we

construct a new IETI‚DP method that can deal with interfaces that do not consist of

whole edges. This means that the patches can meet in T‚junctions, which increases

the lexibility of the geometric model signiicantly. In this IETI‚DP variant, the

construction of the coarse space is based on the idea of “fat vertices”ȷ We consider

every basis function that is supported on a vertex or T‚junction as primal degree of

freedom. The numerical experiments indicate that a similar condition number bound

to ˘1¯ might hold.

The remainder of this paper is organized as follows. In Section 2 we describe the

model problem. In Section 3 we introduce the IETI‚DP solver and we end this paper

with numerical experiments in Section 4.

2 The problem setting

Let Ω ⊂ R2 be open, simply connected and bounded with Lipschitz boundary

�Ω. �2 (Ω) and �1 (Ω) are the common Lebesgue and Sobolev spaces. As usual,

�1
0
(Ω) ⊂ �1 (Ω) denotes the subspace of functions that vanish on �Ω.

We consider the following model problemȷ Find � ∈ �1
0
(Ω) such that

∫
Ω

∇� · ∇� d� =

∫
Ω

� � d� for all � ∈ �1
0 (Ω) ˘2¯

with a given source function � ∈ �2 (Ω). We assume that Ω is a composition of �

non‚overlapping patchesΩ(�) , where every patchΩ(�) is parametrized by a geometry

function

�� : Ω̂ := (0, 1)2 → Ω
(�) := �� (Ω̂) ⊂ R

2,

that has a continuous extension to the closure of Ω̂ and such that ∇�� ∈ �∞(Ω̂) and

(∇��)
−1 ∈ �∞ (Ω̂).

We consider the case where the pre‚images of the ˘Dirichlet¯ boundary consist of

whole edges. The indices of neighboring patches Ω(ℓ) of Ω(�) , that share at least a

part of their boundaries, is collected in the set

NΓ (�) := {ℓ ≠ � : meas (�Ω(�) ∩ �Ω(ℓ) ) > 0},
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where meas � is the measure of � . For any ℓ ∈ NΓ (�), we write Γ (�,ℓ) = �Ω(�) ∩

�Ω(ℓ) . The endpoints of �Ω(�) ∩ �Ω(ℓ) that are not located on the ˘Dirichlet¯

boundary of Ω are referred to as junctions. A junction could be a common vertex or

a T‚junction.

For the IgA discretization spaces, we irst construct a B‚spline space �̂ (�) on

the parameter domain Ω̂ by tensorization of two univariate B‚spline spaces. The

function spaces on the physical domain are then deined by the pull‚back principleȷ

� (�) := �̂ (�) ◦ �−1
�

.

The product of the local spaces gives the global approximation space� := � (1) ×

· · · × � (�) . On this discretization space, we introduce the SIPG formulation, cf. [1,

15]. Since we are interested in a domain decomposition approach, we need patch‚

local formulations of SIPG.

3 The dG IETI-DP solver

For our patch‚local formulations, we adapt the ideas of [3, 6, 5] and others. We choose

local function spaces �
(�)
� to be the product space of � (�) and the neighboring trace

spaces � (�,ℓ) , which are the restrictions of � (ℓ) to Γ (�,ℓ) . A function �
(�)
� ∈ �

(�)
�

is represented as a tuple �
(�)
� =

(
� (�) , (� (�,ℓ) )ℓ∈NΓ (�)

)
, where � (�) ∈ � (�) and

� (�,ℓ) ∈ � (�,ℓ) . Note that the traces of the basis functions for� (ℓ) restricted to Γ (�,ℓ)

form a basis of � (�,ℓ) . The basis for �
(�)
� consists of the basis functions of � (�) and

the basis functions for� (�,ℓ) . The basis functions on� (�,ℓ) are usually visualized as

living on artiicial interfaces.

On each patch, we consider the local problemȷ Find �
(�)
� ∈ �

(�)
� such that

�
(�)
� (�

(�)
� , �

(�)
� ) = ⟨ �

(�)
� , �

(�)
� ⟩ for all �

(�)
� ∈ �

(�)
� ,where

�
(�)
� (�

(�)
� , �

(�)
� ) := � (�) (�

(�)
� , �

(�)
� ) + � (�) (�

(�)
� , �

(�)
� ) + � (�) (�

(�)
� , �

(�)
� ),

⟨ �
(�)
� , �

(�)
� ⟩ :=

∫
Ω(�)

� � (�)d�,

� (�) (�
(�)
� , �

(�)
� ) :=

∫
Ω(�)

∇� (�) · ∇� (�) d�,

� (�) (�
(�)
� , �

(�)
� ) :=

︁
ℓ∈NΓ (�)

∫
Γ (�,ℓ)

�� (�)

���
(� (�,ℓ) − � (�) ) d�,

+
︁

ℓ∈NΓ (�)

∫
Γ (�,ℓ)

�� (�)

���
(� (�,ℓ) − � (�) ) d�,

� (�) (�
(�)
� , �

(�)
� ) :=

︁
ℓ∈NΓ (�)

∫
Γ (�,ℓ)

��2

ℎ�ℓ
(� (�,ℓ) − � (�) ) (� (�,ℓ) − � (�) ) d�
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and �� denotes the outward unit normal vector and � is the dG penalty parameter,

which has to be chosen large enough in order to guarantee that the bilinear form

�
(�)
� (·, ·) is coercive. In [16], it was shown that � can be chosen independently of �.

The discretization of �
(�)
� (·, ·) and ⟨ �

(�)
� , ·⟩ gives a local system, which we write

as (
�
(�)

II
�
(�)

IΓ

�
(�)

ΓI
�
(�)

ΓΓ

) (
�
(�)

I

�
(�)

Γ

)
=

(
� (�)

I

� (�)
Γ

)
, ˘3¯

where the index I refers to the basis functions that are only supported in the interior

of Ω(�) and the index Γ refers to the remaining basis functions, i.e., those living on

the patch boundary and on the artiicial interfaces. We eliminate the interior degrees

of freedom in ˘3¯ for every � = 1, . . . , � to get the block diagonal Schur complement

system

�� = �,

where the individual blocks of � are given by � (�) = �
(�)

ΓΓ
− �

(�)

ΓI

(
�
(�)

II

)−1
�
(�)

IΓ
.

The IETI‚DP method requires carefully selected primal degrees of freedom to be

solvable. We choose the degrees of freedom associated to the basis functions which

are non‚zero on a junction to be primal. For every standard corner, we only have one

primal degree of freedom per patch, as in [15]. On a T‚junction however, the number

of non‚zero basis functions grows linearly with �. Since we take all of them, we refer

to “fat vertices” in this context.

� = diag (� (1) , . . . , � (�) ) is the constraint matrix, i.e., it is deined such that

�� = 0 if and only if the associated function � vanishes at the primal degrees of

freedom. The matrix Ψ represents the energy minimizing basis functions for the

space of primal degrees of freedom.

Furthermore, we introduce the jump matrix �, which models the jumps of the

functions between the patch boundaries and the associated artiicial interfaces. Each

row corresponds to one degree of freedom ˘coeicient for a basis function¯ on the

the patch boundary and one artiicial interface; as usual, each row has only two

non‚zero coeicients that are −1 and 1. Primal degrees of freedom are excluded. For

a visualization, see Fig. 1, where the primal degrees of freedom are marked with

solid lines and the dotted arrows show the action of the jump matrix �. The basis

functions on the artiicial interfaces are labeled with the same symbols from the

original spaces.

Fig. 1: Action of matrix � ˘dot‚

ted lines¯

and primal degrees of freedom

˘solid lines¯

Ω(1)

Ω(2) Ω(3)
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The following problem is equivalent to the SIPG discretization of ˘2¯, cf. [11]ȷ

Find (�
Δ
, �, �

Π
, �) such that

©­­­«

� �⊤ �⊤

�

Ψ⊤�Ψ (�Ψ)⊤

� �Ψ

ª®®®
¬
©­­­
«

�
Δ

�

�
Π

�

ª®®®¬
=

©­­­«

�

0

Ψ⊤�

0

ª®®®¬
.

We obtain the solution of the original problem by � = �
Δ
+Ψ�

Π
. We build a Schur

complement of this system to get the linear problem

� � = �. ˘4¯

We solve ˘4¯ with a preconditioned conjugate gradient ˘PCG¯ solver with the scaled

Dirichlet preconditioner�sD := ��−1��−1�⊤,where� is a diagonal matrix deined

based on the principle of multiplicity scaling, cf. [14, 13].

4 Numerical results

We consider the model problem

−Δ�(�, �) = 2�2 sin(��) sin(��) for (�, �) ∈ Ω

� = 0 on �Ω,

on the geometries depicted in Fig. 2. Both represent the same computational domain

with an inner radius of 1 and an outer radius of 2. The ring in Fig. 2a consists of 20

patches each of which has a width of 0.2. For the ring in Fig. 2b, we consider again

4 patches per layer, where the thin layer has a width of 0.02 and the other layers

have a correspondingly larger width. We use NURBS of degree 2 to parametrize all

patches. In the coarsest setting, i.e., � = 0, the discretization spaces on all patches

consist of global polynomials only. The discretization spaces for � = 1, 2, 3, . . . are

obtained by uniform reinement steps. We use a PCG solver to solve system ˘4¯ with

the preconditioner �sD and to estimate the condition number �(�sD�), where we

use the zero vector as initial guess. All experiments are carried out in the C++ library

G+Smo, cf. [12] and are executed on the Radon11 cluster in Linz.

In the Table 1, we report on the iteration counts ˘it¯ and the condition numbers

(�) for various reinement levels � and various spline degrees �, where we chose

��‚smoothness with � = � − 1 within the patches. The tables show the expected

behavior with respect to ℎ. The condition number decreases when we increase the

spline degree �, which is better than one would expect from the theory in [15].

Although the width of the thin patches in Fig. 2b is one tenth of the width of the

1 httpsȷ//www.ricam.oeaw.ac.at/hpc/
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(a) Ring (b) Ring with thin gap

Fig. 2: Computational domains and the decomposition into patches

patches in Fig. 2a, the condition number grows only by a factor between 5 and 6.

Also the iteration counts grow only mildly.

Fig. 2a Fig. 2b

� = 2 � = 3 � = 6 � = 7 � = 2 � = 3 � = 6 � = 7

� it � it � it � it � it � it � it � it �

4 ß 3.7 ß 3.5 8 2.4 8 2.1 12 18.0 13 18.0 13 12.ß 11 11.6

5 10 4.6 10 4.5 ß 3.8 ß 3.5 20 24.1 1ß 23.4 1ß 1ß.3 18 18.0

6 10 5.8 10 5.5 10 4.ß 10 4.8 22 31.7 22 2ß.ß 21 25.ß 20 24.8

7 11 6.3 11 6.2 10 5.6 10 5.5 24 37.2 24 36.3 22 31.3 22 30.1

8 11 6.7 11 6.7 11 6.3 10 5.6 24 43.2 24 42.3 24 36.5 24 31.6

Table 1: Iterations it and condition numbers �; degree �; reinement level �

The Table 2 presents the parallel solving times for � processors. We only consider

the domain in Fig. 2a again with � = �− 1. We see that the speedup rate with respect

to � is a bit smaller than the expected rate of 2. This is probably caused by the rather

small number of patches in the computational domain. In Table 3 we report on the

iteration counts and the condition numbers for the decomposition in Fig. 2a when

we change the smoothness � of the B‚splines within the patches. The numbers in the

table show the behavior for � = 5. We see that for a ixed smoothness � the condition

number grows slightly with respect to the spline degree �. For a ixed degree �, we

observe a decline in the condition number when we increase the smoothness �.
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� = 3 � = 7

� � = 1 � = 2 � = 4 � = 8 � = 16 � = 1 � = 2 � = 4 � = 8 � = 16

6 3.8 2.8 2.4 1.2 0.8 10.0 6.5 5.0 2.5 1.75

7 24.0 16.1 13.6 6.4 4.1 47.0 31.7 26.1 12.2 ß.3

8 107.0 81.4 66.8 2ß.5 1ß.5 220.0 158.7 12ß.4 56.7 45.4

Table 2: Solving times ˘sec.¯; degree �; reinement level � ; � processors; Fig. 2a

� = 2 � = 3 � = 4 � = 5 � = 6 � = 7

� it � it � it � it � it � it �

0 10 5.0 10 5.3 10 5.4 10 5.5 10 5.6 10 5.6

1 10 4.6 10 5.2 10 5.3 10 5.4 10 5.5 10 5.5

2 10 4.5 10 5.0 10 5.3 10 5.4 10 5.5

3 ß 4.2 10 4.ß 10 5.1 10 5.3

4 ß 4.0 10 4.7 10 5.0

5 ß 3.8 ß 4.5

6 ß 3.5

Table 3: Iterations it and condition number �; reinement level � = 5; degree �; smoothness �;

Fig. 2a
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