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1 Introduction and Model Problem

Coarse spaces are in general needed to achieve scalability in domain decomposition

methods, see [16] and references therein. There are however exceptions, where one

level domain decomposition methods are scalable, which can be due to geometry

and/or the operator, see [2] and references therein. In particular for space‚time

problems this can happen when solving parabolic problems on short time intervals,

see [11] for a continuous analysis, [1] for Additive Schwarz applied to each time

step, and [4] for hyperbolic problems.

We are interested here in space‚time parallel solvers for parabolic problems over

longer time intervals, where a coarse correction is needed for scalability. While

for elliptic problems there are new coarse spaces constructed by improving directly

general condition number estimates, like GenEO [15] and GDSW [12], there are so

far no such estimates for evolution problems. We thus base our new coarse space

construction for space‚time problems on approximating an optimal coarse space,

optimal in the sense that the resulting method converges after one coarse correction,

see [8, 9] and references therein for elliptic problems.

With the invention of the parareal algorithm [13], research activity increased

again tremendously to develop space‚time parallel solvers, see the review [3] and

references therein. While the parareal algorithm can be combined with Schwarz
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waveform relaxation [10] to obtain a general space‚time parallel solver [14, 5],

whose convergence was analyzed in [6], we design here a new space‚time two level

Schwarz waveform relaxation method for evolution problems. For simplicity, we

consider the one dimensional heat equation

L� := ��� − ���� = � , in Ω × (0, �), ˘1¯

whereΩ = (�, �), � < �, with initial condition �(�, 0) = �0 (�), � ∈ Ω, and boundary

conditions �(�, �) = �1 (�) and �(�, �) = �2 (�), � ∈ [0, �].

2 New Two Level Schwarz Waveform Relaxation

We divide the spatial domain (�, �) into � overlapping subdomains Ω� := (�� , ��),

� = 1, 2, . . . , �, with �1 := �, �� := �, and decompose the time interval (0, �) into

� time subintervals, 0 =: �0 ≤ · · · ≤ �� := �Δ� ≤ · · · ≤ �� := � , Δ� := �/� .

This deines the space‚time subdomains Ω�,� := Ω� × (��, ��+1), � = 1, 2, . . . , �,

� = 0, . . . , � − 1. In [5, 6], the initial conditions in the space‚time subdomains were

updated using a parareal mechanism, while the boundary conditions were updated

using Schwarz waveform relaxation techniques. In contrast, our new two level space‚

time Schwarz waveform relaxation algorithm consists of iterating two stepsȷ a solve

on each space‚time subdomain, and a new coarse grid correction. The solver on each

space‚time subdomain Ω�,� solves for given initial value ��,�,0 and boundary value

B�,��̄

L��,� = � , in Ω�,�,

��,� (�, ��) = ��,�,0, � ∈ Ω� ,

B�,���,� = B�,��̄, on �Ω� × (��, ��+1).

˘2¯

Here the operators B�,� are transmission operators, which can be of Dirichlet, Robin

or higher order type. We discretize ˘1¯ by a centered inite diference scheme in space

and backward Euler in time, to get the linear space‚time system �ℎ� = � . We denote

by Ω
ℎ, Ωℎ

�,�
the discretized spaces corresponding to Ω and Ω�,�, � = 1, 2, . . . , �, � =

0, 1, . . . , � − 1. Also denoting by Γ� � ,� := �Ω�,� ∩ Ω � ,� the interfaces, and Γ�,� the

initial line for the space‚time subdomain Ω�,�, Γℎ
� �,�

and Γ
ℎ
�,�

are the corresponding

discretized spaces. Furthermore, we let �
Γ
ℎ
� �,�

and �
Γ
ℎ
�,�

be the number of degrees

of freedom ˘DOFs¯ on the interface Γ
ℎ
� �,�

and the initial line Γ
ℎ
�,�

for the space‚time

subdomain Ω
ℎ
�,�

.

Then for any initial guess of the initial values �0
�,�,0

on the initial line Γ
ℎ
�,�

and

the interface values Bℎ
�,�

�0 for the space‚time subdomain Ω
ℎ
�,�

, our new two level

Schwarz waveform relaxation method computes iteratively for � = 0, 1, . . ., and for

all subdomain indices � = 1, 2, . . . , �, � = 0, 1, . . . , � − 1ȷ

Step I. Solve the subdomain problems on each space‚time subdomain Ω
ℎ
�,�

,
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�ℎ�
�+1/2
�,�

= � , in Ω
ℎ
�,�
,

�
�+1/2
�,�

(�, ��) = �0
�,�,0, � ∈ Γ

ℎ
�,�,

B�,��
�+1/2
�,�

= B�,��
� , on Γ

ℎ
� �,�

.

˘3¯

Step II. Denoting by �̄�+1/2 a composed approximate solution from the subdomain

solutions �
�+1/2
�,�

using a partition of unity, the coarse correction step reads

��+1
= �̄�+1/2 + ��

� �
−1
� �� ( � − �ℎ�̄�+1/2), ˘4¯

where �� is a restriction matrix to a coarse space, and �� := ���
ℎ��

� . Finally we

set ��+1
�,�,0

= ��+1 on the initial lines Γℎ
�,�

.

Definition 1 (Complete coarse space) A complete coarse space for the two level

space‚time Schwarz waveform relaxation method ˘3¯‚˘4¯ for the model problem ˘1¯

is given by �� such that ˘3¯‚˘4¯ converges after one iteration for an arbitrary initial

guess �0
�,�,0

and B�,��
0, i.e. the method becomes a direct solver.

To give an example of such a complete coarse space for the two level space‚time

Schwarz waveform relaxation method ˘3¯‚˘4¯ for the model problem ˘1¯, we deine

��
� � ,�,cs

for each DOF � = 1, . . . , �
Γ
ℎ
�,�

on the interface Γ
ℎ
� �,�

to be the extension

�ℎ��
� � ,�,cs = 0 in Ω

ℎ
�,�,

��
� � ,�,cs = 1 at DOF � of Γℎ

� �,�,

��
� � ,�,cs = 0 on Γ

ℎ
�,� and the rest of Γℎ

� �,� and Ω
ℎ .

˘5¯

Similarly, we deine ��
�,�,cs

for each DOF � = 1, . . . , �
Γ
ℎ
�,�

on Γ
ℎ
�,�

to be the extension

�ℎ��
�,�,cs = 0 in Ω

ℎ
�,�,

��
�,�,cs = 1 at DOF � of Γℎ

�,�,

��
�,�,cs = 0 on Γ

ℎ
� �,� and the rest of Γℎ

�,� and Ω
ℎ .

˘6¯

We then deine our complete coarse space by

�0,cs := span{{��
� � ,�,cs}

�
Γ
ℎ
� �,�

�=1
}�=�,�=�−1
�=1,�=1

∪ {{��
�,�,cs}

�
Γ
ℎ
�,�

�=1
}�=�,�=�−1
�=1,�=1

. ˘7¯

Theorem 1 A complete coarse space for the two level space-time Schwarz waveform

relaxation method ˘3¯-˘4¯ for the model problem ˘1¯ is given by �� containing in its

columns the vectors of �0,cs from ˘7¯.

Proof The proof is technical [7], for an illustration see Section 3. □

The dimension of the complete coarse space ˘7¯ corresponds only to the size of the

interfaces and initial lines, but can still become prohibitively large, when the size
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of the problem increases, and we need to consider approximations of ˘7¯, which we

call optimized coarse spaces, formed by extensions of linear and spectral functions

along the interfaces Γℎ
� �,�

and initial lines Γℎ
�,�

. The linear functions on the interfaces

are �−1
� � with �−1

� � (��) = 0, �−1
� � (��+1) = 1, and �0

� � with �0
� � (��) = 1, �0

� � (��+1) = 0,

and the spectral functions are ��
� � = sin(

� � (�−��)
��+1−��

), � ∈ [��, ��+1]. Let ��
� � ,�,app

be

deined by the extension

�ℎ��
� � ,�,app = 0 in Ω

ℎ
�,�,

��
� � ,�,app = ��

� � on Γ
ℎ
� �,�, � = −1, 0, 1, . . . , ℓ� ,

��
� � ,�,app = 0 on Γ

ℎ
�,� and the rest of Γℎ

� �,� and Ω
ℎ .

˘8¯

Similarly the linear functions along the initial lines Γℎ
�,�

are �−1
� with �−1

� (��) = 0,

�−1
� (��) = 1, and �0

� with �0
� (��) = 1, �0

� (��) = 0, and the spectral functions are

��
� = sin(

� � (�−��)
��−��

), � ∈ [�� , ��]. Let ��
�,�,app

be deined by the extension

�ℎ��
�,�,app = 0 in Ω

ℎ
�,�,

��
�,�,app = ��

� on Γ
ℎ
�,�, � = −1, 0, 1, . . . , ℓ� ,

��
�,�,app = 0 on Γ

ℎ
� �,� and the rest of Ωℎ .

˘9¯

Our optimized coarse space is then given by

�0,cs‚l := span{{��
� � ,�,app}

ℓ�
�=−1

}�=�,�=�−1
�=1,�=1

∪ {{��
�,�,app}

ℓ�
�=−1

}�=�,�=�−1
�=1,�=1

. ˘10¯

3 Numerical Experiments

We solve the model problem on Ω × (0, �) := (0, 1) × (0, 1) with the source term

� ≡ 0, zero boundary conditions, and the initial value �0 = exp(−3(0.5 − �)2),

discretized by centered inite diferences in space using an overlap 4ℎ with ℎ = 1/40

being the mesh parameter and backward Euler in time with time step Δ� = 1/40. The

initial guesses along the interfaces and the initial lines of the space‚time subdomains

are all random. We irst decompose the domain Ω into two overlapping subdomains

and the time interval (0, �) also into two time subintervals. Figure 1 shows two

examples of basis functions from the complete coarse spaceȷ one coming from the

interface ˘left¯ and one from the initial line ˘right¯. In Figure 2 we show on the left

the residual after the irst Step I of the new space‚time Schwarz waveform relaxation

algorithm, which shows that the residual is only non‚zero along the interfaces and

the initial line of the space‚time subdomains. On the right we show the efect of the

following coarse correction Step II using the complete coarse space, which reduces

the residual to machine precisionȷ the method becomes a direct solver.
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Fig. 1: First basis function of the complete coarse space from the interface Γ
ℎ
12,1

of Ωℎ
1,1

˘left¯ and

from the initial line of Ωℎ
1,2

˘right¯.
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Fig. 2: Residual after the irst execution of Step I of our new space‚time Schwarz waveform

relaxation algorithm ˘left¯ and after the following coarse correction Step II with the complete

coarse space ˘right, note the diferent scale!¯.

We next show basis functions of our optimized coarse spaceȷ in Figure 3 basis

functions from the interface of the space‚time subdomains, and in Figure 4 basis

functions from the initial line of the space‚time subdomain. We show in Figure 5

the inluence on the convergence of the optimized coarse space for both 2 spatial

subdomains with 2 time subintervals ˘left¯ and 4 spatial subdomains with 4 time

subintervals ˘right¯. The size of the coarse problem is 12, 18, 24, 30 corresponding

to ℓ = 0, 1, 2, 3 for the irst case, and 72, 108, 144, 180 for the second case. Here

the size of the ine problem is 1560 for the all‚at‚once discretization. We see that

the coarse space indeed makes the new two level space‚time Schwarz waveform

relaxation method scalable, and increasing the number of spectral functions ℓ in the

enrichment improves convergence.
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Fig. 3: First two linear basis functions extended to Ω
ℎ
1,1

from the interface ˘top¯, and irst two

spectral basis functions for the same subdomain ˘bottom¯.

4 Conclusions

We presented a new two level parallel space‚time Schwarz waveform relaxation

method. The method alternates between solving subproblems in space‚time subdo‚

mains in parallel, and a new coarse correction which is a spectral approximation of

a complete coarse space in space‚time. We tested both the complete coarse space

and its spectral approximation for a heat equation model problem, but the algorithm

deinition is valid for much more general equations and also higher dimensions.
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Fig. 4: First two linear basis functions extended to Ω
ℎ
1,2

from the initial line ˘top¯, and irst two

spectral basis functions for the same subdomain ˘bottom¯.
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