
Construction of Grid Operators for Multilevel

Solvers: a Neural Network Approach

Claudio Tomasi and Rolf Krause

1 Introduction

Multigrid ˘MG¯ methods are among the most successful strategies for solving linear

systems arising from discretized elliptic equations. The main idea is to combine

different levels of approximation in a multilevel hierarchy to compute the solutionȷ

it is possible to show that this algorithm is effective on the entire spectrum, thus

leading to an optimal convergence property [2, 3]. Common to all these strategies

is the need for the transfer of data or information between the different grids, or

meshes. Therefore, a crucial point for reaching fast convergence is the definition of

transfer operators, but they are generally problem‚dependent. Except for the case of

nested meshes, the computation of these operators is very expensive, and domain

knowledge is always required.

The ever‚increasing application of Machine Learning ˘ML¯ as support for methods

in scientific computing makes it a natural solution to be employed in the definition

of transfer operators, reducing the costs of their construction. In [9], the learning

of a mapping between PDEs and operators has been proposed. Another approach is

presented in [10], where restriction and prolongation matrices are optimized while

minimizing the spectral radius of the iteration matrix. As an alternative, the method

proposed in [13] uses Graph Neural Networks, for learning AMG prolongation

operators, having classes of sparse matrices as input.

In this paper, we propose a methodology based on Deep Neural Networks to

define transfer operators based on the concept of 𝐿2‚projection. We take information

from the domain to create several examples and to make our model learn from

experience. Therefore, our focus is the construction of a suitable training set and

a correct loss function definition to create a model that can be employed in MG

solvers. The actual state of the method presents some limitations related to the mesh

Claudio Tomasi and Rolf Krause

Università della Svizzera Italiana,Via Buffi 13, CH‚6904 Lugano, e‚mailȷ claudio.tomasi@usi.

ch,rolf.krause@usi.ch

547

548 Claudio Tomasi and Rolf Krause

structure. An extension to a wider range of scenarios should be considered in future

works.

2 Problem Definition

Let Ω ⊂ R𝑛 be a domain with Lipschitz boundary and let 𝐻1
0
(Ω) be the Sobolev

space of one‚time weakly differentiable functions on Ω, with weak derivatives in

𝐿2 (Ω). We consider a multigrid method for the solution of the following problemȷ

find 𝑢 ∈ 𝑉 : 𝑎(𝑢, 𝑣) = 𝑓 (𝑣) ∀𝑣 ∈ 𝑉, ˘1¯

where 𝑉 ⊂ 𝐻1
0
(Ω), 𝑎 : 𝑉 × 𝑉 → R is a continuous symmetric elliptic bilinear form

and 𝑓 : 𝑉 → R is a continuous linear functional. Let 𝑉ℎ ⊂ 𝑉 be the associated finite

elements space, where dim(𝑉ℎ) = 𝑛ℎ and ℎ > 0, and consider a conforming shape‚

regular triangulation Tℎ. For a more rigorous explanation see e.g. [14]. Furthermore,

let 𝐼ℎ
𝐻

: R𝑛𝐻 → R𝑛ℎ be a transfer operator which transfers information between Tℎ
and a coarser grid T𝐻 , with 𝐻 > ℎ and 𝑛𝐻 < 𝑛ℎ. We denote with 𝐴ℎ𝑢ℎ = 𝑏ℎ the

linear system arising from the finite element discretization of ˘1¯.

Let us consider a 2‚grid correction scheme for solving the linear system. The

extension to a general multigrid scenario is straightforward. To restrict or prolong

information between coarse and fine grids, we apply 𝐼ℎ
𝐻

. Moreover, we define the

coarse problem using the expression 𝐴𝐻 = (𝐼ℎ
𝐻
)𝑇 𝐴ℎ 𝐼

ℎ
𝐻

. Hence, the definition of the

transfer operator plays a central role in obtaining a fast convergence of the method.

In [11], a general definition of transfer operators between meshes is discussed. Here,

we focus on the 𝐿2‚projection as transfer operator. Let us call it 𝑄ȷ

𝑄 = 𝑀−1
ℎ 𝐵ℎ,

where 𝑀ℎ is the mass matrix related to the fine level ˘grid¯, and 𝐵ℎ is a rectangular

coupling operator matrix. The latter relates the two meshes, and it is computed

through their intersection. Since the inverse of 𝑀ℎ is a dense matrix, the computation

of𝑄might become expensive. Therefore, we use the pseudo‚𝐿2‚projection, where we

invert the lumped mass matrix instead of 𝑀ℎ. For further reading refer to [4, 5, 6, 7].

2.1 Neural Networks

ML algorithms are able to learn from data [8]; we refer to a single data object calling

it example. An example is a collection of features together with a corresponding

target. A feature is a property that has been measured from some object or event.

The target is the correct response to the features, that the system should be able to

reproduce. We represent an example as a couple (x, y), where x ∈ R𝑛 is the feature set

and y ∈ R𝑚 is the target. ML can solve different tasks, as classification, transcription,

Construction of Grid Operators for Multilevel Solversȷ a Neural Network Approach 549

and so on. Our focus is regressionȷ we ask the model to predict numerical values

given some inputs. In order to solve this task, the model is asked to output a function

𝑓 : R𝑛 → R
𝑚. To evaluate the ML algorithm abilities, we define a measure of its

performance, called loss functionȷ for regression, we select the Mean Squared Error

˘MSE¯ indicator.

Neural Networks ˘NNs¯ belong to the class of supervised ML algorithms. They

consist of layers of neurons, connected by weighted synapses. A NN defines a

mapping y = 𝑓 (x; 𝜽) and learns the values of the parameters 𝜽 , providing the best

function approximation. More details can be found in [1, 12].

2.2 Training Trasfer Operators

We aim to define a NN model to learn and then predict the transfer operator 𝑄.

Specifically, we do not learn directly𝑄, but the coupling operator 𝐵ℎ. Once the model

is optimized, we employ it as a black box for solving linear systems of equations in an

MG fashion. We proceed by coarseningȷ we take 𝑀ℎ on the fine level, and we extract

the features in input to the NN. More details on the data extraction from 𝑀ℎ are

given in Section 3.1. The model produces parts of 𝐵ℎ that combined give rise to the

full operator. We then retrieve the transfer operator 𝑄, and we employ it in the MG

algorithm. Furthermore, we use the predicted transfer operators to define the coarser

mass matrix 𝑀𝐻 using the so‚called Galerkin operator, i.e., 𝑀𝐻 = 𝑄⊤𝑀ℎ𝑄.

We recursively apply this procedure to define coarser problems, giving rise to a

multilevel hierarchy.

3 Training Set

In order to allow the NN to learn, we provide a large number of examples ˘or records¯.

We need several distinct examples to be sure of avoiding overfitting, occurring when

the model predictions correspond too closely or exactly to a particular set of data.

Thus, we define classes of examples, and we choose a fixed amount of records for

each class. This allows us to create an unbiased training set without preferring some

classes over others. The definition of class is related to the mesh from which we

extrapolate the records. We set a number of elements 𝑁ȷ all the records coming from

meshes with 𝑁 elements belong to class 𝐶𝑁 .

3.1 Records

Given a subset of pre‚identified coarse nodes, we extract a record for each of them.

Let 𝑗 be a coarse node. An example contains information related to patch(𝑗); here,

550 Claudio Tomasi and Rolf Krause

patch(𝑗) is the set consisting of node 𝑗 together with its neighbors. For each node

𝑘 ∈ patch(𝑗), we define features and target as the non‚zero entries of the 𝑘th rows of

𝑀ℎ and 𝐵ℎ, respectively.

We consider different examples of 2‚grid scenarios, where we associate to each

fine mesh one coarse mesh, in order to approximate an actual function. Since we

consider several examples for the same class 𝐶𝑁 , we need a strategy to avoid

duplication inside the dataset. For this purpose, in each example, we consider the

fine mesh and we move the nodes along the edges by a random quantity, proportional

to the step size ℎ. Therefore, we create different elements and consequently different

records. We generate the examples in 𝐶𝑁 , and we proceed to the next class by

increasing 𝑁 . Since NN models allow only fixed input and output dimensions, we

define distinct models for 1D and 2D scenarios.

3.2 One-Dimensional Model

The records related to one‚dimensional meshes are extracted from scenarios obtained

by coarseningȷ starting from a randomly generated fine mesh, we decide which nodes

to keep for defining the coarse grid. Here, patch(𝑗) consists only of 𝑗 itself, together

with its left and right neighbors. For each coarse node, we take the information on

patch(𝑗) from 𝑀ℎ and 𝐵ℎ following the strategy explained in Section 3.1, to define

each example.

3.3 Two-Dimensional Model

Let us call patch-size the number of nodes in a specific patchȷ given a node 𝑗 , its

patch‚size is the cardinality of the set patch(𝑗). In 2D, even in the same mesh, we

can have nodes with different patch‚sizes. Hence, we start considering only a fixed

triangulation, such that the nodes would have the same neighborhood pattern. We

will focus on dealing with different patch‚sizes later in the paper, referring to their

treatment in the context of NNs.

A crucial point is to find a correct distribution of data in the training set, in

terms of magnitude of the values. Since the NN should not prefer some examples ‚

thus, some classes ‚ over others, we need to define a correct and even filling of the

training set. As a first approach, we relate the concept of class to the procedure of

refinement. Mesh refinement is a strategy to increase the accuracy of the solution of a

discretized problem. It works as an iterative procedure applied to the single elements

of a mesh. Here we consider two different strategiesȷ bisection, which halves each

element, and mid‚point refinement, which takes the mid‚points of each edge and

joins them to create new elements. When we refine, we deal with a new class of

examples. Applying a training algorithm on these data results in a poor ability of

approximation and a large prediction error, making a NN model unfit to work in

Construction of Grid Operators for Multilevel Solversȷ a Neural Network Approach 551

a MG setting. The refinement procedure makes the number of elements scale by a

factor of 2 ˘bisection¯ or 4 ˘mid‚point¯. In terms of domain of training examples, this

means that the initial classes of records, i.e.,𝐶𝑁 with 𝑁 small, are close to each other,

while their distance grows when 𝑁 increases. This turns out to produce an uneven

training set, without a good balance in terms of data distribution. For this reason,

we need a linear increase in the number of elements. If the classes of examples are

evenly spaced in terms of domain, the network does not prefer some classes over

others. Therefore, a second approach changes the definition of class, independent of

the concept of refinementȷ we start from a number 𝑁 , and we create a mesh having

exactly 𝑁 elements. Once we extract enough records, we proceed to the next class,

increasing 𝑁 by a constant 𝐾 , and create a new mesh with 𝑁 +𝐾 elements. For each

class, we extract the same number of examples. Following this simple procedure,

the resulting training set is effectively unbiased and with a good distribution of the

examples. A learning algorithm applied to these data produces the expected good

approximation. Therefore, a model trained on this dataset can be applied inside an

MG scenario.

4 Model Training

A NN optimizes its parameters in order to reduce the prediction error. Employing

MSE as loss function results in good predictions, but the model does not gain a good

generalization property, i.e., the ability to perform well on previously unobserved

inputs.

Regularization helps us overcome this issueȷ it reduces the hypothesis space, al‚

lowing the NN to have a higher probability of choosing the most correct function. We

introduce in the loss function some penalty terms related to the domain knowledge.

These terms force constraints during the training phase in order to respect properties

that the transfer operator must satisfy.

4.1 Regularization

During the construction of the training set, for each coarse node 𝑗 , we extract patches

of 𝑀ℎ and parts of 𝐵ℎ. We use this information to ask the model to force some rules

on the rows of the predicted coupling operator.

We define the 𝑗 th predicted and actual rows of the operator 𝑄 as

𝑄
pred

𝑗
=

1∑
𝑀 𝑗

𝐵
pred

𝑗
, 𝑄true

𝑗 =
1∑
𝑀 𝑗

𝐵true
𝑗 , ˘2¯

where Φ 𝑗 denotes the 𝑗 th row of the operator Φ = {𝑀ℎ, 𝐵ℎ}.

We know that the predicted transfer operator should preserve constants ˘more

details can be found in [4, Section 3.2]¯. Hence, we consider the following penalty

552 Claudio Tomasi and Rolf Krause

terms to specialize our loss functionȷ

∥𝑄
pred

𝑗
· 1𝐻 − 1ℎ∥2

, ∥𝑄
pred

𝑗
−𝑄true

𝑗 ∥
2
, ˘3¯

where ∥·∥
2
denotes the Euclidean norm,1𝐻 and1ℎ the all‚ones vectors of dimensions

𝑛𝐻 and 𝑛ℎ, respectively. We then define, for all the nodes 𝑘 ∈ patch(𝑗)

𝑝𝑘 =
1

𝛼
∥𝑄

pred

𝑘
· 1𝐻 − 1ℎ∥2

+
1

𝛽
∥𝑄

pred

𝑘
−𝑄true

𝑘 ∥
2
, ˘4¯

where 0 < 𝛼, 𝛽 < 1.

Therefore, we define the loss function as

ℒ(𝑦true, 𝑦pred) = 𝑀𝑆𝐸 (𝑦true, 𝑦pred) +
∑︁

𝑘

𝑝𝑘 . ˘5¯

Adopting the latter during the training phase, in addition to minimize the simple

distance between target and prediction, we aim to respect the above properties related

to the transfer operator.

4.2 Model Details

We use a classic splitting for our datasetȷ 20% for test and 80% for training, where

the latter is divided again in 20% for the validation set and the remaining for

the training phase. For a preliminary examination of the method, we used around

500.000 examples. For both one‚ and two‚dimensional models, we adopt Adam as

optimizer. Regarding the architecture, we report here only the structure for the 2D

scenario used as initial testȷ we need at least 20 hidden layers, where for each of

them we use 800 neurons, for a total of 12 million parameters. Through further

investigations and several tests, the NN complexity can be improved, giving rise to

less expensive computations. We initialize our weights using a normal distribution,

using the methods provided by Tensorflow. In the context of the NN definition, more

extensive works should be devoted to study the sensitivity of the predictions while

changing the NN parameters.

5 Numerical Results

We test our NNs for both prediction accuracy and their application in an MG setting.

We compare our method with the Semi‚Geometric multigrid ˘SGMG¯ method ˘see

[4, Chapter 3]¯, which adopts the 𝐿2‚projection computed through intersections

between meshes. In addition to the convergence, we consider the difference in the

time spent to assemble the transfer operator. For our method, we take into account

Construction of Grid Operators for Multilevel Solversȷ a Neural Network Approach 553

Fig. 1: Convergence of 2D Neural MG against SGMG on an example of 100.000 dofs ˘left¯.

Comparison of CPU time between the two methods, increasing the dofs ˘right¯.

patches extraction, predictions, assembly of 𝐵 and the computation of the operator.

Regarding the computation of the actual 𝐿2‚projection we consider the time spent

for intersecting fine and coarse mesh, triangulation for each intersecting polygon and

numerical integration. We test the method on one‚dimensional examples, and the

results are good as expected, considering two or more levels. Our method converges

with the same number of iterations as the SGMG method. Comparing the CPU time

spent in creating the transfer operators, we see that the predicted one is assembled

faster than the other since it depends only on the problem dimensions.

During the test on two‚dimensional settings we need to deal with different patch‚

sizes, as described in Section 3.3. Even if we consider a simple regular mesh,

the nodes near the boundaries have fewer neighbors than the internal nodes. A

preliminary solution requires the mesh to be extended, to make all the nodes have

the same patch‚size. Virtually, we add neighbors to those nodes having a smaller

patch in the given mesh. Using this expedient, the method works, and we can test

the convergence against the SGMG method. Extending the mesh shows to be useful

for an initial application of MG, but it is very expensive in terms of computations.

Increasing the degrees of freedom ˘dofs¯, we would have more and more virtual

nodes to add and heavier computations to carry out. Therefore, we consider different

NNs, each of them defined and optimized for a specific patch‚size.

Fig. 1 shows the performance of the method on a two‚dimensional scenarioȷ in

the left picture, we compare the convergence of our method against the convergence

of Semi‚Geometric MG; in the right picture we compare the CPU time spent in both

methods.

554 Claudio Tomasi and Rolf Krause

6 Conclusion

This work presented the study and definition of a methodology to construct NNs

to predict transfer operators for MG solvers. Starting from a one‚dimensional case,

we built an unbiased training set allowing the optimization of a model, which

brought very good results in an MG context. Reproducing the same methodology,

we approached the two‚dimensional setting, which gave us the chance to better define

a training set for this kind of methods. Furthermore, we could test our method using

different input‚sized neural networks, resulting in fast convergence and bringing a

great speedup in the computation of the transfer operator. The same procedure can

be employed for constructing models to deal with a general 𝑁‚dimensional scenario.

Given the limitations of this method at its current state, further investigations should

be devoted to overcome the necessity of having multiple NNs modeled on different

patch‚sizes, in order to define a general strategy for solving arbitrary problems.

Future works should extend the method to deal with a wider class of triangulation,

and for applications in other Multilevel scenarios.

References

1. C. M. Bishop. Pattern recognition and machine learning. Information Science and Statistics.

Springer, New York, 2006.
2. D. Braess. Finite elements: Theory, fast solvers, and applications in solid mechanics. Cam‚

bridge University Press, 2007.
3. W. L. Briggs, V. E. Henson, and S. F. McCormick. A multigrid tutorial. Society for Industrial

and Applied Mathematics ˘SIAM¯, Philadelphia, PA, second edition, 2000.
4. T. Dickopf. On multilevel methods based on non‚nested meshes. PhD Thesis, 2010.
5. T. Dickopf and R. Krause. A pseudo‚𝐿2‚projection for multilevel methods based on non‚nested

meshes. INS Preprint, 908, 2009.
6. T. Dickopf and R. Krause. A study of prolongation operators between non‚nested meshes. In

Domain decomposition methods in science and engineering XIX, volume 78 of Lect. Notes

Comput. Sci. Eng., pages 343–350. Springer, Heidelberg, 2011.
7. T. Dickopf and R. Krause. Evaluating local approximations of the 𝐿2‚orthogonal projection

between non‚nested finite element spaces. Numer. Math. Theory Methods Appl., 7˘3¯ȷ288–316,

2014.
8. I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Adaptive Computation and

Machine Learning. MIT Press, Cambridge, MA, 2016.
9. D. Greenfeld, M. Galun, R. Basri, et al. Learning to optimize multigrid pde solvers. In

International Conference on Machine Learning, pages 2415–2423. PMLR, 2019.
10. A. Katrutsa, T. Daulbaev, and I. Oseledets. Black‚box learning of multigrid parameters. J.

Comput. Appl. Math., 368ȷ112524, 12, 2020.
11. R. Krause and P. Zulian. A parallel approach to the variational transfer of discrete fields

between arbitrarily distributed unstructured finite element meshes. SIAM J. Sci. Comput.,

38˘3¯ȷC307–C333, 2016.
12. H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for training deep

neural networks. Journal of machine learning research, 10˘1¯, 2009.
13. I. Luz, M. Galun, H. Maron, et al. Learning algebraic multigrid using graph neural networks.

In International Conference on Machine Learning, pages 6489–6499. PMLR, 2020.
14. A. Quarteroni. Numerical models for differential problems, volume 2. Springer, 2009.

