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1 Introduction

As is well known, domain decomposition methods applied to elliptic problems re‚

quire in most cases a coarse correction to be scalable ˘for exceptions, see [5, 6]¯, the

choice of the coarse space being critical to achieve good performance. We present

here four new coarse spaces for the Restricted Additive Schwarz ˘RAS¯ method

of Cai and Sarkis [4], both for symmetric and non‚symmetric problems, and im‚

plement them in the PETSc library [1, 2, 3]. We compare them to a coarse space

named Q1 here from [10], originating from [7] and [9], and more classical coarse

spaces. In particular, we introduce the new adapted coarse spaces Q1_adapt and

Q1_inner_adapt using basis functions that locally solve the problem considered

also with advection and turn out to be more robust for strong advection. We also in‚

troduce the Half_Q1 coarse space that halves the coarse space dimension compared

to Q1 by using a selected combination of its basis functions and turns out to be the

fastest, and the new enriched coarse space Enriched_Q1 which leads to the lowest

iteration counts. We further present results of the optimized method ORAS obtained

by introducing optimized transmission conditions at subdomain interfaces [8, 16, 7].

Throughout the paper, our model problem for the symmetric case is the Laplace

problem, while for the non‚symmetric case we consider

−Δ𝑢 + a · ∇𝑢 = 0 ˘1¯

with an upwind scheme on the unit interval ˘in 1‚D¯ or unit square ˘in 2‚D¯ using

the 5‚point finite difference discretization and homogeneous boundary conditions.
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Fig. 1: Coarse grid point choice in 1‚D and 2‚D for the Q1 ˘squares¯, Q1_fair ˘diamonds¯ and

Middle ˘circles¯ options.

2 Two-level RAS with classical and new coarse spaces

We consider the solution of 𝐴x = b on a domain Ω decomposed into a set of possibly

overlapping subdomains Ω 𝑗 and introduce a restriction operator 𝑅 𝑗 onto each Ω 𝑗 .

We also introduce a partition of Ω into non‚overlapping subdomains Ω̃ 𝑗 as well as

the corresponding restriction operators �̃� 𝑗 for RAS. Obtaining a two‚level method

through coarse correction requires a restriction operator 𝑅𝑐 to a coarse space, such

that the resulting coarse system matrix reads 𝐴𝑐 = 𝑅𝑐 𝐴 𝑅𝑇
𝑐 . The two‚level coarse

corrected RAS method with multiplicative coarse correction ˘denoted RAS2 in what

follows¯ can then be written as

x
𝑛+1/2

= x
𝑛 +

𝐽∑︁

𝑗=1

�̃�𝑇
𝑗 𝐴

−1

𝑗 𝑅 𝑗 (b − 𝐴x
𝑛), ˘2¯

x
𝑛+1

= x
𝑛+1/2 + 𝑅𝑇

𝑐 𝐴−1

𝑐 𝑅𝑐 (b − 𝐴x
𝑛+1/2), ˘3¯

where the first half iteration is the RAS method as defined by Cai and Sarkis [4].

The definition of the coarse space is critical to obtain an efficient two‚level method.

We consider here the following classical and new coarse spacesȷ

“MidBasic”: The classical MidBasic coarse space, also called Nicolaides coarse

space, defined by using a constant coarse basis function in each subdomain.

“Middle”: The classical Middle coarse space taking the fine mesh points in the

middle of each subdomain as coarse grid points, along with linear ˘bilinear in 2‚D¯

basis functions centered on these points. This is illustrated in Fig. 1 in 1‚ and 2‚D.

“Q1”: The Q1 coarse space [9, 7] based on linear basis functions with coarse grid

points chosen as illustrated in Fig. 1, namely placed on each side of the subdomain

interfaces ˘in 1‚D¯ or around each cross point ˘in 2‚D¯ of the non‚overlapping

decomposition. It was shown in [9] that, for the Laplace equation, the Q1 coarse
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correction yields convergence in two iterations in 1‚D ˘or at iteration 1 in PETSc,

where iteration count starts at 0¯.

“Q1_fair”: This coarse space uses linear basis functions and the same number

of coarse mesh points as Q1, but equally distributed as illustrated in Fig. 1. It is

introduced for a fair comparison with Q1 in terms of coarse space dimensions.

“Q1_adapt”: The new Q1_adapt coarse space using the same coarse points as

Q1, but computed ˘“adapted”¯ basis functions that solve the homogeneous equation

considered in each subdomain. In the Laplace case, the Q1_adapt basis functions

are thus the same as the Q1 ˘i.e., linear¯ functions, while with advection, the basis

functions are different. In 1‚D, Q1_adapt gives convergence of the two‚level method

at iteration 1 in PETSc, even in the non‚symmetric case when advection is present,

like Q1 for the Laplace problem in [9].

In 2‚D, the Q1_adapt basis functions are computed in two steps, first on the

edges with a 1‚D stencil obtained by lumping ˘i.e., summing up¯ the system matrix

coefficients in the perpendicular direction, then inside each subdomain using the

computed edge functions as boundary conditions, a bit like in MsFEM.

“Q1_inner_adapt”: Defined in 2‚D only, this new coarse space differs from

Q1_adapt in that the coarse basis functions are “adapted” only inside each subdo‚

mainȷ the first of the two steps in Q1_adapt is skipped, and linear edge functions are

used as boundary conditions to compute the basis functions within each subdomain.

“Half_Q1”: The new Half_Q1 coarse space is motivated by the eigenmodes of the

RAS iteration matrix corresponding to its eigenvalues closest to 1 in modulus. In

Fig. 2a, we computed them with SLEPc [13] ˘https://slepc.upv.es¯, for the

Laplace test case and a 2 × 2 subdomain decomposition using minimal overlap ˘no

algebraic overlap, i.e., block Jacobi¯. If 𝑞1, 𝑞2, 𝑞3, 𝑞4 are the Q1 basis functions at a

cross point, it can be observed that these modes appear to be 𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 and

𝑞1 − 𝑞2 + 𝑞3 − 𝑞4, respectively. The Half_Q1 coarse space is therefore obtained by

taking these 2 combinations as basis functions, thus with 2 basis functions per cross

point instead of 4 in the Q1 case. ˘To add to Fig. 2a which gives only the first two

eigenvalues, note that the next eigenvalues are .ß75571 ˘double¯, −.ß75571 ˘double¯,

−.ß6ß651 and .ß6ß651¯.

With minimal overlap, we observed that the property of having the two largest

eigenmodes in modulus corresponding to one continuous and one discontinuous

mode remains verified when increasing the number of subdomains. We also observed

this property when introducing various types of advection. This is illustrated in Fig.

2b for the case with 25 subdomains on our model problem ˘1¯ with rotating fluid

advection 𝑎𝑥 = −10𝑦 and 𝑎𝑦 = 10𝑥 ˘‚ for this case, the next eigenvalues are complexȷ

−0.ß8ß110 ± 0.001513𝑖, 0.ß8ß110 ± 0.001513𝑖 and 0.ß83268 ± 0.002304𝑖¯.

With more than minimal overlap ˘i.e., non‚zero algebraic overlap¯, even if we

observed exceptions ˘typically when using more than 4 subdomains and a relatively

low fine mesh resolution¯, the largest two modes tend to remain one continuous

and one discontinuous one, but the corresponding eigenvalues are then different in

modulus, with a difference that increases when increasing the overlap. We illustrate
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(a) 2 × 2 subdomains, no advection, minimal overlap.

(b) 5 × 5 subdomains, advection 𝑎𝑥 = −10𝑦 and 𝑎𝑦 = 10𝑥, minimal overlap.

(c) 2 × 2 subdomains, no advectionȷ evolution of

the two largest eigenvalues in modulus with the

overlap.

Fig. 2: In ˘a¯ and ˘b¯, eigenmodes of the RAS iteration operator corresponding to the two largest

eigenvalues in modulus using a 256 × 256 fine mesh resolution; continuous modes on the left and

discontinuous modes on the right. In ˘c¯, evolution of the two largest eigenvalues in modulus.

this for the 2× 2 subdomain decomposition by displaying in Fig. 2c the evolution of

the two largest eigenvalues in modulus when increasing the overlap.

“Enriched_Q1”: This new coarse space is obtained by adding extra linear basis

functions to the Q1 coarse space, namely ˘in 2‚D¯ with one extra coarse point placed

in the middle of each edge and corresponding extra linear basis function. The goal

is to come a step closer to the 2D grid representing a complete coarse space, leading
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(a) RAS2 (b) ORAS2

Fig. 3: Results with advection 𝑎𝑥 = −10𝑦 and 𝑎𝑦 = 10𝑥.

to convergence in two iterations [9, Fig. 8]. This coarse space is thus twice as big as

as Q1.

3 Numerical Results

Fig. 3 shows the iteration count for a weak scalability analysis on our non‚symmetric

model problem ˘1¯ with rotating fluid advection 𝑎𝑥 = −10𝑦 and 𝑎𝑦 = 10𝑥. This

analysis consists in increasing the size of the problem while maintaining constant

the workload per subdomain. The subdomain decomposition ranges from 2 × 2 to

32 × 32, each subdomain having a 256 × 256 fine mesh and being handled by one

CPU core. The number of cores 𝐽 ranges thus from 4 to 1024 here, and the coarse

space dimension is 𝐽 for MidBasic and Middle, 4𝐽 for Q1, Q1_fair, Q1_adapt and

Q1_inner_adapt, 2𝐽 for Half_Q1 and 8𝐽 for Enriched_Q1 . An algebraic overlap

of 2 is considered, which means one extra mesh layer for both subdomains at an

interface and corresponds to an overlap of 1 in the PETSc sense. The corresponding

Laplace results are very similar, we thus only show them in Table 1 for comparison.

While Fig. 3a displays the result for the RAS2 method, Fig. 3b displays the results

for the optimized ORAS2 method obtained by modifying the local 𝐴 𝑗 matrices in the

RAS2 iterations ˘2¯‚˘3¯ to express Robin interface conditions [16], with a first‚order

accurate discretization of the normal derivative and two‚level optimized coefficients

˘determined for the symmetric case¯ as defined in [7].

We observe that, except for the larger Enriched_Q1 coarse space, the Q1 coarse

space gives the lowest iteration count when used with ˘non‚optimized¯ RAS. Using

adapted basis functions ˘i.e., Q1_adapt or Q1_inner_adapt¯ does not reduce the

iteration count in the present case. However, these adapted coarse spaces appear

more robust than Q1 when increasing the advection strength, as can be seen in Table

1 with a five times larger advectionȷ some of the stationary iterations appear to
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(a) Without GMRES acceleration (b) With GMRES acceleration

Fig. 4: Computation times ˘s.¯ for the weak scaling experiment for the non‚symmetric model

problem with 𝑎𝑥 = −10𝑦 and 𝑎𝑦 = 10𝑥.

diverge using the Q1 and/or Half_Q1 coarse spaces with a rotating fluid advection

of magnitude 50, while this is not the case with magnitude 10 ˘Fig. 3¯.

We also observe from Fig. 3 that Q1_fair and Half_Q1 take more advantage of

the application of the optimized ORAS method than Q1, since their iteration counts

then become all quasi‚identical.

Timing results are presented in Fig. 4 for our weak scalability analysis, this time

using up to 128×128 = 16, 384 CPU cores ˘one per subdomain¯ of the CPU partition

of the Jean Zay supercomputer at the Institute for Development and Resources in

Intensive Scientific Computing ˘CNRS/IDRIS¯. A relative tolerance of 1.e‚8 is used

as convergence criteria. Note that PETSc’s native direct solver is used for the local

serial subdomain solves, while the coarse solve is performed in parallel with the

MUMPS direct solver, after agglomeration of the coarse unknowns on a subset of

the processors ˘here maximum 64¯ using PETSc’s “Telescope” tool [14]. Beside

the results obtained with the various coarse corrections introduced above, timings

obtained with two algebraic multigrid options available through PETSc are also

presented, namely HYPRE/BoomerAMG [12] ˘with tuning form [17]¯ and PETSc’s

native algebraic multigrid preconditioner GAMG ˘with smoothed aggregation and CG

eigenvalue estimator [2]¯.

J 4 16 64 256 1024 4 16 64 256 1024

RAS2 ORAS2

Q1_fair 179˘420¯ 357˘424¯ 481˘479¯ 506˘509¯ 521˘522¯ 80˘34¯ 39˘35¯ 37˘36¯ 37˘37¯ 37˘37¯

Q1 Div˘255¯ Div˘295¯ 259˘303¯ 281˘298¯ 288˘291¯ 68˘35¯ 45˘35¯ 35˘35¯ 35˘36¯ 36˘36¯

Half_Q1 Div˘257¯ Div˘348¯ Div˘380¯ 494˘385¯ 409˘391¯ Div˘32¯ Div˘34¯ 172˘35¯ 41˘36¯ 37˘37¯

Q1_adapt 145 237 291 310 313 66 35 37 37 36

Q1_inner_ad. 145 213 261 282 289 70 36 35 35 36

Table 1: Number of RAS2 and ORAS2 stationary iterations with advection 𝑎𝑥 = −50𝑦, 𝑎𝑦 = 50𝑥,

where “Div” means that the iterations are diverging. Laplace results are in parentheses, with

“adapted” results then the same as Q1.
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As already observed in [10] for the symmetric case, we see here that re‚

sults with the ORAS2 method can be competitive with the multigrid options

also in the non‚symmetric case when using one of the Q1, Q1_fair, Half_Q1 or

Enriched_Q1 coarse spaces ˘or even Middle with GMRES acceleration¯. Among

the various coarse spaces considered, Half_Q1 exhibits the fastest computational

times, most presumably thanks to its lower dimensionality that does not significantly

impacts the iteration count ˘as observed in Fig. 3 up to 1024 cores and as can be

verified up to 16,384 cores¯. This remains true when plotting not only the solving

times as in Fig. 4, but the total timings including the setup/assembly phase.

4 Conclusions

We considered several coarse space options for the two‚level RAS method applica‚

ble to non‚symmetric problems and implemented them in the PETSc library. The

Q1 option, that enables a solution in two iterations on a 1‚D Laplace test case, shows

good performance on our 2‚D non‚symmetric model problem as well ˘using coarse

points placed around the cross points¯, in that it has a better iteration count than

the Q1_fair option ˘which uses as many but equally distributed coarse points¯. The

new Q1_adapt and Q1_inner_adapt coarse spaces enable a solution in two itera‚

tions for a non‚symmetric 1‚D advection‚diffusion test case, as in the Laplace case

in [10]. Despite this promising feature, iteration counts on our 2‚D model problem

did not show improvements compared to the Q1 option for moderate advection, but

increased robustness was observed for strong advection. The Enriched_Q1 coarse

space, with its higher dimensionality, yields lower iteration counts but appears not

to improve the overall computation time. Finally, the new Half_Q1 coarse space

shows promising performance in that the increase in iteration count due to its lower

dimensionality appears very moderate and virtually disappears if optimized trans‚

mission conditions are introduced ˘ORAS method¯. In turn, this option provided the

best computational time results in our weak scaling analysis, of the same order of

magnitude as multigrid options. Other harmonic coarse spaces like GenEO [15] and

GDSW/RGDSW [11] that target improving condition number estimates of Additive

Schwarz, in contrast to accelerating low frequency continuous and discontinuous

modes of RAS like our new coarse spaces, are also intrinsically based on MsFEM

techniques. A more extensive comparison of all these coarse spaces will appear

elsewhere.
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