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1 Introduction

In this work, we investigate the applicability of unstructured space‚time methods to

the numerical solution of inverse problems considering the classical inverse problem

of the reconstruction of the initial temperature in the heat equation from an obser‚

vation of the temperature ��
�
∈ �2 (Ω) at a inite time horizon as model problemȷ

Find the initial temperature ��
0
(·) := �(·, 0) ∈ �2 (Ω) on Σ0 of the solution � of the

backward heat equation

��� − Δ�� = 0 in �, � = 0 on Σ, � = ��� on Σ� , ˘1¯

where � := Ω × (0, �) denotes the space‚time cylinder with the boundary �� =

Σ∪Σ0∪Σ� , Σ := �Ω× (0, �), Σ0 := Ω×{0}, Σ� := Ω×{�}, the bounded Lipschitz

domain Ω ⊂ R� , � ∈ {1, 2, 3}, and a inite time horizon � > 0. The observed

terminal temperature ��
�

may contain some noise characterized by the noise level

� ≥ 0,

∥��� − �� ∥�2 (Ω) ≤ �, ˘2¯
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where �� = �(·, �) ∈ �2 (Ω) represents the unpolluted exact data.

In contrast to the forward heat equation with known initial data, the backward

heat equation ˘1¯ is severely ill‚posed; see [2, Example 2.9]. In fact, the solution

of ˘1¯ does not continuously depend on the data ��
�

even when the solution exists.

Following the notation in [2], the problem ˘1¯ may be reformulated as an abstract

operator equation in a more general settingȷ Find �0 ∈ X such that

��0 = �� , ˘3¯

where � : X → Y denotes a bounded linear operator between two Hilbert spaces X
andY. It is clear that there does not exist a continuous inverse operator �−1 : Y → X
in general. Therefore, we consider a regularized solution, depending on the choice

of Tikhonov’s regularization parameter � := �(�),

�
�, �

0
:= (�∗� + ��)−1

�∗��� ,

as the unique minimizer of the Tikhonov functional [9]

J� (�) :=
1

2
∥�� − ��� ∥2

Y + �

2
∥�∥2

X . ˘4¯

It is well known that we have the convergence

lim
�→0

�
�, �

0
= �

†
0

in X, if the conditions lim
�→0

�(�) = 0 and lim
�→0

�2

�(�) = 0

are satisied. Here, �
†
0

denotes the best‚approximated solution to the operator equation

˘3¯; see [2, Theorem 5.2] for a more detailed discussion, and also [1, 7].

The main focus of this work is to describe a space‚time inite element method

˘FEM¯ on fully unstructured simplicial meshes to solve the minimization problem

˘4¯ subject to the solution of the backward heat equation ˘1¯. Such a space‚time

method has been studied for the forward heat equation in [8], and for other parabolic

optimal control problems in [5, 6].

The remainder of this paper is structured as followsȷ In Section 2, we discuss the

related optimal control problem. Its solution is obtained by the optimality system

consisting of the ˘forward¯ heat equation, the adjoint heat equation, and the gradient

equation. Based on the Banach–Nečas–Babuška theory [3], we establish unique solv‚

ability of the resulting coupled system, when eliminating the unknown initial datum.

In Section 3, for the numerical solution of the inverse problem ˘1¯, we irst consider

the discrete optimal control problem, which is based on the space‚time discretization

of the forward problem. The solution is characterized by a discrete gradient equation,

which turns out to be the Schur complement system of the discretized coupled vari‚

ational formulation. First numerical results are reported in Section 4. These results

show the potential of the space‚time approach proposed. Finally, some conclusions

are drawn in Section 5.
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2 The related optimal control problem

In our case, the Hilbert spaces X and Y are speciied as X = Y = �2 (Ω), and

the image �� of the operator � : �2 (Ω) → �2 (Ω) in the Tikhonov functional ˘4¯

is deined by the solution � ∈ � := �2 (0, � ;�1
0
(Ω)) ∩ �1 (0, � ;�−1 (Ω)) of the

forward heat conduction problem

��� − Δ�� = 0 in �, � = 0 on Σ, � = � on Σ0, ˘5¯

and its evaluation on Σ� , i.e., (��) (�) = �(�, �), � ∈ Ω. Here, the control � ∈ �2 (Ω)
represents the initial data in ˘5¯. Rewriting the minimization of the functional ˘4¯ in

terms of �, we obtain the optimal control problem

J� (�) :=
1

2
∥�(�, �) − ��� ∥2

�2 (Ω) +
�

2
∥�∥2

�2 (Ω) → min
�∈�2 (Ω)

, ˘6¯

where the state � ∈ � is associated to the control � subject to ˘5¯.

To set up the necessary and suicient optimality conditions for the optimal control

� with associated state �, we introduce the adjoint equation

−�� � − Δ� � = 0 in �, � = 0 on Σ, � = � − ��� on Σ� . ˘7¯

It has a unique solution � ∈ � , the adjoint state. The adjoint equation can be

derived by a formal Lagrangian technique as in [10]. If � is the optimal control with

associated state � ∈ � , then a unique adjoint state � ∈ � solving ˘7¯ exists such that

the gradient equation

� + � � = 0 on Σ0 ˘8¯

is satisied. Using this equation, we can eliminate the unknown initial datum � in the

state equation ˘5¯ to conclude

��� − Δ�� = 0 in �, � = 0 on Σ, � = − 1

�
� on Σ0 ˘9¯

for the optimal state �. The reduced optimality system ˘7¯,˘9¯ is necessary and

suicient for optimality of � with associated adjoint state �. In what follows, we will

describe a space‚time inite element approximation of this system.

The space‚time variational formulation of the heat equation in ˘9¯ ˘without initial

condition¯ is to ind � ∈ � such that

�(�, �) :=

∫ �

0

∫
Ω

[
���(�, �)�(�, �) + ∇��(�, �) · ∇��(�, �)

]
�� �� = 0 ˘10¯

is satisied for all � ∈ � := �2 (0, � ;�1
0
(Ω)). The spaces � and � are equipped with

the norms

∥�∥� = ∥∇��∥�2 (�) and ∥�∥� =

︃
∥���∥2

� ∗ + ∥�∥2
�
=

︃
∥��∥2

�
+ ∥�∥2

�
,
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with �� ∈ � being the unique solution of the variational problem

∫ �

0

∫
Ω

∇��� (�, �) · ∇��(�, �) �� �� =
∫ �

0

∫
Ω

���(�, �) �(�, �) �� �� ∀ � ∈ � .

We multiply the adjoint heat equation ˘7¯ by a test function � ∈ � , integrate over �,

and apply integration by parts both in space and time. Then we insert the terminal

data �(�) − ��
�

of � in the arising term �(�), and substitute the term �(0) by

−�� = −��(0) in view of ˘8¯. In this way, we arrive at the weak form of the adjoint

problem ˘7¯

0 =

∫ �

0

∫
Ω

[
− �� �(�, �) �(�, �) − Δ� �(�, �) �(�, �)

]
�� ��

= −
∫
Ω

[�(�, �) − ��� (�)] �(�, �) �� − �
∫
Ω

�(�, 0) �(�, 0) ��

+
∫ �

0

∫
Ω

[
�(�, �) ���(�, �) + ∇� �(�, �) · ∇��(�, �)

]
�� �� .

We end up with the variational problem to ind (�, �) ∈ � × � such that

B(�, �; �, �) = ⟨��� , �(�)⟩�2 (Ω) ∀ (�, �) ∈ � × �, ˘11¯

where the bilinear form B(·, ·; ·, ·) is given as

B(�, �; �, �) := �(�, �) − �(�, �) + ⟨�(�), �(�)⟩�2 (Ω) + � ⟨�(0), �(0)⟩�2 (Ω) .

We note that the bilinear form �(·, ·), as deined by ˘10¯, is boundedȷ

|�(�, �) | ≤
√

2 ∥�∥� ∥�∥� ∀� ∈ �, � ∈ � .

Since � is continuously embedded in � ( [0, �]; �2 (Ω)), there is a positive constant

� such that ∥�(0)∥�2 (Ω) ≤ � ∥�∥� and ∥�(�)∥�2 (Ω) ≤ � ∥�∥�,

� =

(
1 + 1

2

[ ��
�

]2

+
︂

1

4

[ ��
�

]4

+
[ ��
�

]2
)1/2

,

where �� is the constant in Friedrichs’ inequality in �1
0
(Ω). With these ingredients,

we are in the position to prove that the bilinear form B(·, ·; ·, ·) is bounded, i.e., for

all (�, �), (�, �) ∈ � × � , there holds

|B(�, �; �, �) | ≤ 2 (1 + �) �2
︃
∥�∥2

�
+ ∥�∥2

�

︃
∥�∥2

�
+ ∥�∥2

�
.

Moreover, we can establish the following inf‚sup stability condition which can be

proved similarly to [5, Lemma 3.2].
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Lemma 1 For simplicity, let us assume � ∈ (0, 1]. Then there holds the inf-sup

stability condition

3

10
�

︃
∥�∥2

�
+ ∥�∥2

�
≤ sup

0≠(�,�) ∈�×�

B(�, �; �, �)︃
∥�∥2

�
+ ∥�∥2

�

∀ (�, �) ∈ � × � .

Moreover, for any (0, 0) ≠ (�, �) ∈ � × � , there exist (�, �) ∈ � × � satisfying

B(�, �; �, �) > 0.

Now, using the Banach–Nečas–Babuška theorem ˘see, e.g., [3]¯, we can ensure

well‚posedness of the variational optimality problem ˘11¯ for any ixed positive

regularization parameter �.

3 Space-time finite element methods

For the space‚time inite element discretization of the variational formulation ˘11¯,

we irst introduce conforming inite element spaces �ℎ ⊂ � and�ℎ ⊂ � . In particular,

we consider �ℎ = �ℎ spanned by piecewise linear continuous basis functions which

are deined with respect to some admissible decomposition of the space‚time domain

� into shape regular simplicial inite elements. In addition, we will use the subspace

�0,ℎ ⊂ �ℎ of basis functions with zero initial values. Moreover, �ℎ ⊂ �2 (Ω) is a inite

element space to discretize the control �. The space‚time inite element discretization

of the forward problem ˘5¯ reads to ind �ℎ ∈ �ℎ such that

�(�ℎ, �ℎ) = 0 ∀�ℎ ∈ �0,ℎ, ⟨�ℎ − �ℎ, �ℎ⟩�2 (Σ0) = 0 ∀�ℎ ∈ �ℎ\�0,ℎ . ˘12¯

When denoting the degrees of freedom of �ℎ at Σ0, at Σ� , and in � by �0, �
�

, and

�
�
, respectively, the variational formulation ˘12¯ is equivalent to the linear system

©«
�00

�0� �� � ���

��� ���

ª®¬
©«
�0

�
�

�
�

ª®¬
=

©«
�⊤

ℎ
�

0

0

ª®¬
,

where the block entries of the stifness matrix �ℎ and the mass matrices �00 and

�ℎ are deined accordingly. After eliminating �0, the resulting system corresponds

to the space‚time inite element approach as considered in [8]. In particular, we can

compute �
�
= �ℎ� to determine �ℎ (�) in dependency on the initial datum �ℎ, where

�ℎ =

(
��� − ����

−1
� � ���

)−1

����
−1
� � �0��

−1
00 �

⊤
ℎ = �̃ℎ�

⊤
ℎ .

Instead of the cost functional ˘6¯, we now consider the discrete cost functional
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J�,ℎ (�ℎ) =
1

2
∥�ℎ (�, �) − ��� ∥2

�2 (Ω) +
�

2
∥�ℎ∥2

�2 (Ω)

=
1

2
(�⊤

ℎ��� �ℎ�, �) − (�⊤
ℎ � , �) +

1

2
∥��� ∥2

�2 (Ω) +
�

2
(�ℎ�, �),

whose minimizer is given as the solution of the linear system

�⊤
ℎ (��� �ℎ� − � ) + � �ℎ� = 0. ˘13¯

Note that ��� is the mass matrix formed by the basis functions of �ℎ at Σ� , �ℎ

is the mass matrix related to the control space �ℎ, and � is the load vector of the

target ��
�

tested with basis functions from �ℎ at Σ� . When inserting �
�
= �ℎ� and

introducing �
0

:= �̃⊤
ℎ
(����� − � ), �

�
:= (��� − ����

−1
� �
��� )−⊤ (����� − � ),

�
�

:= −�−⊤
� �
�⊤
��
�
�

, this inally results in the linear system to be solvedȷ

©«

−�00 −�⊤
0�

−�⊤
� �

−�⊤
��

��� −�⊤
��

−�⊤
��

��ℎ �ℎ

�00 −�⊤
ℎ

�0� �� � ���

��� ���

ª®®®®®®®®®¬

©«

�0

�
�

�
�

�

�
0

�
�

�
�

ª®®®®®®®®®®¬

=

©«

0

0

�

0

0

0

0

ª®®®®®®®®®¬

. ˘14¯

In the particular case, when �ℎ = �ℎ |Σ0
⊂ �1

0
(Ω) is the space of piecewise linear

basis functions as well, the mass matrices �00 = �ℎ = �ℎ coincide, and therefore

we can eliminate � = �0 and �
0
= −�� = −��0 to obtain

©«

��00 −�⊤
0�

−�⊤
� �

−�⊤
��

��� −�⊤
��

−�⊤
��

�0� �� � ���

��� ���

ª®®®®®¬

©«

�0

�
�

�
�

�
�

�
�

ª®®®®®¬
=

©«

0

0

�

0

0

ª®®®®®¬
. ˘15¯

Note that ˘15¯ is nothing but the Galerkin discretization of the variational formulation

˘11¯ when using �ℎ ⊂ � and �0,ℎ ⊂ � as inite element ansatz and test spaces.

Obviously, the linear system ˘13¯ and, therefore, ˘15¯ are uniquely solvable.

In practice, the noise level � ≥ 0 is usually given by the measurement environment,

and one has to choose suitable discretization and regularization parameters ℎ and �.

This is well investigated for linear inverse problems; see, e.g., the classical book by

Tikhonov and Arsenin [9] and the more recent publications [2, 4]. In our numerical

experiments presented in the next section, we only play with the parmeters � and ℎ

for a ixed small �.



Space‚Time FEM for Initial Temperature Reconstruction 585

4 Numerical results

We take Ω = (0, 1) and � = 1, i.e., � = (0, 1)2, and consider the manufactured

observation data ��
�
(�) := �−�

2

sin(��) + � sin(10��) with some noise represented

by the second term; see exact and noisy data with � ∈ {0, 10−5, 5 ·10−6, 2.5 ·10−6} in

Fig. 1. To study the convergence of the space‚time inite element solution to the exact

Fig. 1: Comparison of the exact ˘� = 0¯ and noisy ˘� > 0¯ observation data.

initial datum sin(��), we use the target �� (�) = �−�
2

sin(��) without any noise.

The reconstructed initial data with respect to a varying mesh size are illustrated

in the left plot of Fig. 2, where � = 10−14. We clearly see the convergence of the

approximations to the exact initial datum with respect to the mesh reinement. The

right plot of Fig. 2 shows the reconstructed initial approximation with diferent noise

levels �. For a decreasing �, we observe an improved reconstruction.

5 Conclusions

We have applied the space‚time FEM from [8] to the numerical solution of the clas‚

sical inverse heat conduction problem to determine the initial datum from measured

observation data at some time horizon � . The numerical results show the potential

of this approach for more interesting inverse problems. The space‚time FEM is very

much suited for designing smart adaptive algorithms along the line proposed in [4]

determining the optimal choice of � and ℎ for a given noise level � in a multilevel

˘nested iteration¯ setting.
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Fig. 2: Convergence of the reconstructed initial data with respect to the mesh reinement ℎ ∈
{1/16, 1/32, 1/64}, � = 0, � = 10−14 ˘left¯, and convergence with respect to the noise level

� ∈ {0.5, 0.4, 0.3, 0.2, 10−1, 10−3, 10−5 }, ℎ = 1/64, � = 10−14 ˘right¯.
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