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1 Introduction

As a model problem, we consider the Dirichlet boundary value problem for the wave

equation,

����(�, �) − Δ��(�, �) = � (�, �) for (�, �) ∈ � := Ω × (0, �),
�(�, �) = 0 for (�, �) ∈ Σ := �Ω × [0, �],

�(�, 0) = ���(�, �) |�=0 = 0 for � ∈ Ω,




˘1¯

where Ω ⊂ R� , � = 1, 2, 3, is some bounded Lipschitz domain, � > 0 is a inite time

horizon, and � is some given source. For simplicity, we only consider homogeneous

boundary and initial conditions, but inhomogeneous data or other types of boundary

conditions can be handled as well. To compute an approximate solution of the wave

equation ˘1¯, diferent numerical methods are available. Classical approaches are

time‚stepping schemes together with inite element methods in space, see [1] for

an overview. An alternative is to discretize the time‚dependent problem without

separating the temporal and spatial variables. However, on the one hand, most space‚

time approaches are based on discontinuous Galerkin methods, see, e.g., [3, 6]. On

the other hand, conforming tensor‚product space‚time discretizations with piecewise

polynomial, continuous ansatz and test functions are of Petrov–Galerkin type, see,
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e.g., [7, 8, 12], where a stabilization is needed to avoid a CFL condition, i.e., a

relation between the time mesh size and the spatial mesh size.

In this work, we use a modiied Hilbert transformation to introduce a new space‚

time variational formulation of the wave equation ˘1¯, where ansatz and test spaces are

equal. Conforming discretizations of this new variational setting, using polynomial,

globally continuous ansatz and test functions, lead to space‚time Galerkin–Bubnov

inite element methods, which are unconditionally stable and provide optimal conver‚

gence rates in ∥ · ∥�2 (�) and | · |�1 (�) , respectively. The rest of the paper is organized

as followsȷ In Section 2, a modiied Hilbert transformation and its main properties are

given. Section 3 states the space‚time variational setting for the wave equation and

introduces the new space‚time Galerkin–Bubnov inite element method. Numerical

examples for a one‚ and a two‚dimensional spatial domain are presented in Section 4.

Finally, we draw some conclusions in Section 5.

2 A modified Hilbert transformation

In this section, we summarize the deinition and some of the most important proper‚

ties of the modiied Hilbert transformation H� as introduced in [8], see also [9, 11].

Since the modiied Hilbert transformation covers the dependency in time only, in

this section, we consider functions �(�) for � ∈ (0, �), where a generalization to

functions in (�, �) is straightforward.

For � ∈ �2 (0, �), we consider the Fourier series expansion

�(�) =
∞︁

�=0

�� sin
(( �

2
+ ��

) �
�

)
, �� :=

2

�

∫ �

0

�(�) sin
(( �

2
+ ��

) �
�

)
d�,

and we deine the modiied Hilbert transformation H� as

(H��) (�) =
∞︁

�=0

�� cos
(( �

2
+ ��

) �
�

)
, � ∈ (0, �). ˘2¯

By interpolation, we introduce ��
0,
(0, �) := [�1

0,
(0, �), �2 (0, �)]� for � ∈ [0, 1],

where the space �1
0,
(0, �) covers the initial condition �(0) = 0 for � ∈ �1 (0, �).

Analogously, we deine ��
,0
(0, �) for � ∈ [0, 1]. With these notations, the mapping

H� : ��
0,
(0, �) → ��

,0
(0, �) is an isomorphism for � ∈ [0, 1], where the inverse

is the �2 (0, �) adjoint, i.e., ⟨H��, �⟩�2 (0,�) = ⟨�,H−1
�
�⟩�2 (0,�) for all �, � ∈

�2 (0, �). In addition, the relations

⟨�,H��⟩�2 (0,�) > 0 for 0 ≠ � ∈ ��
0, (0, �), 0 < � ≤ 1,

⟨��H��, �⟩�2 (0,�) = −⟨H−1
� ���, �⟩�2 (0,�) for � ∈ �1

0, (0, �), � ∈ �2 (0, �)
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hold true. For the proofs of these aforementioned properties, we refer to [8, 9, 11].

Furthermore, the modiied Hilbert transformation ˘2¯ allows a closed representation

[8, Lemma 2.8] as Cauchy principal value integral, i.e., for � ∈ �2 (0, �),

(H��) (�) = v.p.

∫ �

0

1

2�

(
1

sin
� (�+�)

2�

+ 1

sin
� (�−�)

2�

)
�(�) d�, � ∈ (0, �).

This representation can be used for an eicient realization, also using low‚rank

approximations of related discrete matrix representations, see [9] for a more detailed

discussion.

3 Space-time variational formulations

A possible space‚time variational formulation for the Dirichlet boundary value prob‚

lem ˘1¯ is to ind � ∈ �1,1
0;0,

(�) := �2 (0, � ;�1
0
(Ω)) ∩ �1

0,
(0, � ; �2 (Ω)) such that

−⟨���, ���⟩�2 (�) + ⟨∇��,∇��⟩�2 (�) = ⟨ � , �⟩�2 (�) ˘3¯

is satisied for all � ∈ �
1,1
0;,0

(�) := �2 (0, � ;�1
0
(Ω)) ∩ �1

,0
(0, � ; �2 (Ω)). Note

that the space �1
0,
(0, � ; �2 (Ω)) covers zero initial conditions, while the space

�1
,0
(0, � ; �2 (Ω)) involves zero terminal conditions at � = � . For � ∈ �2 (�), there

exists a unique solution � of ˘3¯, satisfying the stability estimate

∥�∥
�

1,1
0;0,

(�) := |� |�1 (�) :=
︃
∥���∥2

�2 (�) + ∥∇��∥2
�2 (�) ≤

1
√

2
� ∥ � ∥�2 (�) ,

see [4, 8, 12]. Note that the solution operator L : �2 (�) → �
1,1
0;0,

(�), L � := �, is

not an isomorphism, i.e., L is not surjective, see [10] for more details.

A direct numerical discretization of the variational formulation ˘3¯ would result

in a Galerkin–Petrov scheme with diferent ansatz and test spaces, being zero at

the initial and the terminal time, respectively. Hence, introducing some bijective

operator � : �
1,1
0;0,

(�) → �
1,1
0;,0

(�), we can express the test function � in ˘3¯ as

� = �� for � ∈ �1,1
0;0,

(�) to end up with a Galerkin–Bubnov scheme. While the time

reversal map ���(�, �) := �(�, � − �) as used, e.g., in [2], is rather of theoretical

interest, in the case of a tensor‚product space‚time inite element discretization, one

may use the transformation ��ℎ (�, �) := �ℎ (�, �) − �ℎ (�, �), see [8]. However,

the resulting numerical scheme is only stable when a CFL condition is satisied,

e.g., ℎ� < ℎ�/
√
� when using piecewise linear basis functions and a tensor‚product

structure also in space. Although it is possible to derive an unconditionally stable

scheme by using some stabilization approach, see [7, 12], our particular interest is in

using an appropriate transformation � to conclude an unconditionally stable scheme

without any further stabilization. A possible choice is the use of the modiied Hilbert

transformation H� as introduced in Section 2. So, with the properties of H� , given
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in Section 2, we conclude that

−⟨���, ��H��⟩�2 (�) = ⟨���,H−1
� ���⟩�2 (�) = ⟨H����, ���⟩�2 (�)

for all �, � ∈ �
1,1
0;0,

(�), which leads to the variational formulation to ind � ∈
�

1,1
0;0,

(�) such that

⟨H����, ���⟩�2 (�) + ⟨∇��,∇�H��⟩�2 (�) = ⟨ � ,H��⟩�2 (�) ˘4¯

is satisied for all � ∈ �1,1
0;0,

(�). Since the mapping H� : �
1,1
0;0,

(�) → �
1,1
0;,0

(�) is

an isomorphism, unique solvability of the new variational formulation ˘4¯ follows

from the unique solvability of the variational formulation ˘3¯.

Let �ℎ = span{��}��=1
⊂ �

1,1
0;0,

(�) be some conforming space‚time inite element

space. The Galerkin–Bubnov formulation of the variational formulation ˘4¯ is to ind

�ℎ ∈ �ℎ such that

⟨H����ℎ, ���ℎ⟩�2 (�) + ⟨∇��ℎ,∇�H��ℎ⟩�2 (�) = ⟨ � ,H��ℎ⟩�2 (�) ˘5¯

is satisied for all �ℎ ∈ �ℎ. Note that for any conforming space‚time inite element

space �ℎ ⊂ �
1,1
0;0,

(�), the related bilinear form in ˘5¯ is positive deinite, since

both summands are discretizations of second‚order diferential operators, which

lead, together with the properties of H� , to two positive deinite bilinear forms.

Further details on the numerical analysis of this new Galerkin–Bubnov variational

formulation ˘5¯ are far beyond the scope of this contribution, we refer to [5]. The

discrete variational formulation ˘5¯ corresponds to the linear system �ℎ� = � with

the stifness matrix �ℎ = �ℎ + �ℎ, and

�ℎ [�, �] =
∫ �

0

∫

Ω

H���� � (�, �) ���� (�, �) d� d�,

�ℎ [�, �] =
∫ �

0

∫

Ω

∇�� � (�, �) · ∇�H��� (�, �) d� d�

for �, � = 1, . . . , � . Since the realization of the modiied Hilbert transformation H�

is much easier for solely time‚dependent functions, see [9, 11], here we choose as

a special case a tensor‚product ansatz. For this purpose, let the bounded Lipschitz

domain Ω ⊂ R� be an interval Ω = (0, �) for � = 1, polygonal for � = 2, or

polyhedral for � = 3. We consider admissible decompositions

� = Ω × [0, �] =
��⋃

�=1

�� ×
��⋃

ℓ=1

[�ℓ−1, �ℓ]

with � := �� ·�� space‚time elements, where the time intervals (�ℓ−1, �ℓ) with mesh

sizes ℎ� ,ℓ = �ℓ − �ℓ−1 are deined via the decomposition

0 = �0 < �1 < �2 < · · · < ���−1 < ���
= �
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of the time interval (0, �). The maximal and the minimal time mesh sizes are

denoted by ℎ� := ℎ� ,max := maxℓ ℎ� ,ℓ , and ℎ� ,min := minℓ ℎ� ,ℓ , respectively. For

the spatial domain Ω, we consider a shape‚regular sequence (T�)�∈N of admissible

decompositions T� := {�� ⊂ R� : � = 1, . . . , ��} of Ω into inite elements �� ⊂ R�
with mesh sizes ℎ�,� and the maximal mesh size ℎ� := max� ℎ�,� . The spatial

elements �� are intervals for � = 1, triangles for � = 2, and tetrahedra for � = 3.

Next, we introduce the inite element space �1
ℎ,0

(�) := �1
ℎ� ,0

(Ω) ⊗ �1
ℎ� ,0,

(0, �) of

piecewise multilinear, continuous functions, i.e.,

�1
ℎ� ,0

(Ω) :=�1
ℎ�
(Ω) ∩ �1

0 (Ω) = span{�1
� }

��

�=1
,

�1
ℎ� ,0,

(0, �) :=�1
ℎ�
(0, �) ∩ �1

0, (0, �) = span{�1
ℓ }

��

ℓ=1
,

where�1
� , � = 1, . . . , �� , are the spatial nodal basis functions, and �1

ℓ
, ℓ = 1, . . . , �� ,

are the temporal nodal basis functions. In fact, �1
ℎ�
(0, �) is the space of piecewise

linear, continuous functions on intervals, and �1
ℎ�
(Ω) is the space of piecewise linear,

continuous functions on intervals ˘� = 1¯, triangles ˘� = 2¯, and tetrahedra ˘� = 3¯.

Choosing �ℎ = �1
ℎ,0

(�) in ˘5¯ leads to the space‚time Galerkin–Bubnov varia‚

tional formulation to ind �ℎ ∈ �1
ℎ,0

(�) such that

⟨H����ℎ, ���ℎ⟩�2 (�) + ⟨∇��ℎ,∇�H��ℎ⟩�2 (�) = ⟨�0
ℎ � ,H��ℎ⟩�2 (�) ˘6¯

for all �ℎ ∈ �1
ℎ,0

(�). Here, for an easier implementation, we approximate the

right‚hand side � ∈ �2 (�) by

� ≈ �0
ℎ � ∈ �

0
ℎ�
(Ω) ⊗ �0

ℎ�
(0, �), ˘7¯

where �0
ℎ

: �2 (�) → �0
ℎ�
(Ω) ⊗ �0

ℎ�
(0, �) is the �2 (�) projection on the space

�0
ℎ�
(Ω) ⊗ �0

ℎ�
(0, �) of piecewise constant functions. The discrete variational formu‚

lation ˘6¯ is equivalent to the global linear system

�ℎ� = �̃ ˘8¯

with the system matrix

�ℎ = �
H�

ℎ�
⊗ �ℎ�

+ �H�

ℎ�
⊗ �ℎ�

∈ R�� ·��×�� ·�� ,

where�ℎ�
∈ R��×�� and �ℎ�

∈ R��×�� denote spatial mass and stifness matrices

given by

�ℎ�
[�, �] = ⟨�1

� , �
1
� ⟩�2 (Ω) , �ℎ�

[�, �] = ⟨∇��
1
� ,∇��

1
� ⟩�2 (Ω) , �, � = 1, . . . , �� ,

and �
H�

ℎ�
∈ R��×�� and �

H�

ℎ�
∈ R��×�� are deined by

�
H�

ℎ�
[ℓ, �] := ⟨�1

� ,H��
1
ℓ⟩�2 (0,�) , �

H�

ℎ�
[ℓ, �] := ⟨H����

1
� , ���

1
ℓ⟩�2 (0,�)
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for ℓ, � = 1, . . . , �� . The matrices �
H�

ℎ�
, �

H�

ℎ�
are nonsymmetric, but positive dei‚

nite, which follows from the properties of H� , given in Section 2. Additionally, the

matrices �ℎ�
, �ℎ�

are positive deinite. Thus, standard properties of the Kronecker

product yield that the system matrix �ℎ is also positive deinite. Hence, the global

linear system ˘8¯ is uniquely solvable.

4 Numerical results

In this section, numerical examples for the Galerkin–Bubnov inite element method

˘6¯ for a one‚ and a two‚dimensional spatial domain are given. For both cases,

the number of degrees of freedom is given by dof = �� · �� . The assembling of

the matrices �
H�

ℎ�
, �

H�

ℎ�
is done as proposed in [11, Subsection 2.2]. Further, to

accelerate the computations, data‚sparse approximations as known from boundary

element methods, e.g., hierarchical matrices, can be used, see [9]. The integrals for

computing the projection �0
ℎ
� in ˘7¯ are calculated by using high‚order quadrature

rules. The global linear system ˘8¯ is solved by a direct solver.

For the irst numerical example, we consider the one‚dimensional spatial domain

Ω := (0, 1) with the terminal time � = 10, i.e., the rectangular space‚time domain

� := Ω × (0, �) := (0, 1) × (0, 10). ˘9¯

As an exact solution, we choose

�1 (�, �) = �2 sin(10��) sin(� �), (�, �) ∈ �. ˘10¯

The spatial domain Ω = (0, 1) is decomposed into nonuniform elements with the

vertices

�0 = 0, �1 = 1/4, �2 = 1, ˘11¯

whereas the temporal domain (0, �) = (0, 10) is decomposed into nonuniform

elements with the vertices

�0 = 0, �1 = 5/4, �2 = 5/2, �3 = 10 = �, ˘12¯

see Fig. 1 for the resulting space‚time mesh. We apply a uniform reinement strategy

for the meshes ˘11¯, ˘12¯. The numerical results for the smooth solution �1 in ˘10¯ are

given in Table 1, where we observe unconditional stability, quadratic convergence

in ∥ · ∥�2 (�) , and linear convergence in | · |�1 (�) .
For the second numerical example, the two‚dimensional spatial Γ‚shaped domain

Ω := (−1, 1)2 \ ([0, 1] × [−1, 0]) ⊂ R2 ˘13¯

and the terminal time � = 2 are considered for the solution

�2 (�1, �2, �) = sin(��1) sin(��2) (sin(��1�2))2, (�1, �2, �) ∈ � = Ω×(0, �). ˘14¯
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Table 1: Numerical results of the Galerkin–Bubnov inite element discretization ˘6¯ for the space‚

time cylinder ˘9¯ for the function �1 in ˘10¯ for a uniform reinement strategy.

dof ℎ�,max ℎ�,min ℎ�,max ℎ�,min ∥�1 − �1,ℎ ∥�2 (�) eoc |�1 − �1,ℎ |�1 (�) eoc

3 0.7500 0.2500 7.5000 1.2500 5.0e+02 ‚ 3.2e+03 ‚

18 0.3750 0.1250 3.7500 0.6250 4.2e+02 0.3 2.7e+03 0.2

84 0.1875 0.0625 1.8750 0.3125 3.2e+02 0.4 2.5e+03 0.1

360 0.0938 0.0312 0.9375 0.1562 8.4e+01 1.9 2.1e+03 0.2

1488 0.0469 0.0156 0.4688 0.0781 2.6e+01 1.7 1.0e+03 1.0

6048 0.0234 0.0078 0.2344 0.0391 7.2e+00 1.9 5.0e+02 1.1

24384 0.0117 0.0039 0.1172 0.0195 1.8e+00 2.0 2.5e+02 1.0

97920 0.0059 0.0020 0.0586 0.0098 4.7e‚01 2.0 1.2e+02 1.0

392448 0.0029 0.0010 0.0293 0.0049 1.2e‚01 2.0 6.2e+01 1.0

1571328 0.0015 0.0005 0.0146 0.0024 2.9e‚02 2.0 3.1e+01 1.0

Fig. 1 Starting meshes for

the one‚dimensional spatial

domain ˘left¯ and the two‚

dimensional spatial domain

˘right¯.

0 0.5 1 x
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x
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Table 2: Numerical results of the Galerkin–Bubnov inite element discretization ˘6¯ for the Γ‚shape

˘13¯ and � = 2 for the function �2 in ˘14¯ for a uniform reinement strategy.

dof ℎ� ℎ�,max ℎ�,min ∥�2 − �2,ℎ ∥�2 (�) eoc |�2 − �2,ℎ |�1 (�) eoc

20 0.3536 1.5000 0.1250 1.756e‚01 ‚ 1.331e+00 ‚

264 0.1768 0.7500 0.0625 6.370e‚02 1.5 6.882e‚01 1.0

2576 0.0884 0.3750 0.0312 1.903e‚02 1.7 3.439e‚01 1.0

22560 0.0442 0.1875 0.0156 5.206e‚03 1.9 1.730e‚01 1.0

188480 0.0221 0.0938 0.0078 1.306e‚03 2.0 8.555e‚02 1.0

1540224 0.0110 0.0469 0.0039 3.284e‚04 2.0 4.268e‚02 1.0

The spatial domain Ω is decomposed into uniform triangles with uniform mesh size

ℎ� as given in Fig. 1 for the irst level. The temporal domain (0, 2) = (0, �) is

decomposed into nonuniform elements with the vertices

�0 = 0, �1 = 1/8, �2 = 1/4, �3 = 1/2, �4 = 2 = �. ˘15¯

When a uniform reinement strategy is applied for the temporal mesh ˘15¯ and for the

spatial mesh, the numerical results for the smooth solution �2 are given in Table 2,

where unconditional stability is observed and the convergence rates in ∥ · ∥�2 (�) and

| · |�1 (�) are optimal.
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5 Conclusions

In this work, we introduced new conforming space‚time Galerkin–Bubnov meth‚

ods for the wave equation. These methods are based on a space‚time variational

formulation, where ansatz and test spaces are equal, using also integration by parts

with respect to the time variable and the modiied Hilbert transformation H� . As

discretizations of this variational setting, we considered a conforming tensor‚product

approach with piecewise multilinear, continuous basis functions. However, a gen‚

eralization to piecewise polynomials of higher‚order degree is straightforward. We

gave numerical examples, where the unconditional stability, i.e., no CFL condition

is required, and optimal convergence rates in space‚time norms were illustrated. For

a more detailed stability and error analysis, we refer to our ongoing work [5]. Other

topics include the realization for arbitrary space‚time meshes, a posteriori error es‚

timates and adaptivity, and the parallel solution including domain decomposition

methods.
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