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1 Introduction and problem setting

In recent years, the gradual saturation of parallelization in space has been a strong

motivation for the design and analysis of new parallel‚in‚time algorithms. Among

these methods, the parareal algorithm, irst introduced by Lions, Maday and Turinici

[9], has received signiicant attention. This scheme has been formulated in the

literature as a multiple shooting method [7], a predictor‚corrector scheme [13], and

a two‚level multigrid method in time ˘see [3, 5] in the linear setting, and [7] for

nonlinear problems using the full approximation storage ˘FAS¯ multigrid solver¯.

The key idea of the parareal method is to decompose the time interval into

a certain number of subintervals, and solve the original problem concurrently over

each one of them. In doing so, it deines two propagation operators which provide ine

and coarse approximations to the exact solution. Since the coarse propagator usually

considers large stepsizes, implicit time integrators are often used in this case to ensure

stability. Choosing the implicit Euler method as the coarse propagator, diferent

ine propagators have been analyzed in the literatureȷ implicit Euler [7, 11, 18],
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trapezoidal rule [7, 11, 18], Radau IIA [7], diagonally implicit Runge–Kutta ˘DIRK¯

[18] and Gauss Runge–Kutta [18], among others. Several combinations of �‚ and

�‚stable singly diagonally Runge–Kutta ˘SDIRK¯ ine and coarse propagators have

been further studied in [6].

The main contribution of this work is to consider domain decomposition splitting

time integrators as the ine and coarse propagators of the parareal algorithm. Since

these methods are related to an overlapping decomposition of the spatial domain,

spatial parallelization can also be exploited. Consequently, the resulting algorithms

allow for parallelization in both time and space. This class of splitting methods

was introduced in [15] in the context of regionally‚additive schemes, and has been

subsequently extended for solving linear parabolic problems [1, 2, 10, 12, 16] ˘see

[4] for a recent work on nonlinear degenerate parabolic equations¯. The advantage

of the new algorithms with respect to related existing methods ˘as parareal Schwarz

waveform relaxation methods¯ is that they do not require any iteration to adjust

the boundary conditions of the subdomains. As shown later, they are robust with

respect to the discretization parameters, the number of disjoint components in each

subdomain, the overlapping size and the coarsening factor under consideration.

In the rest of this section, we introduce the time‚dependent reaction–difusion

problem to be solved, and derive the stif system of ordinary diferential equations

resulting from the spatial discretization. More precisely, let us consider an initial‚

boundary value problem of the form



�� + �� = � , in Ω × (0, �],

� = �, on Γ × (0, �],

� = �0, in Ω × {0},

˘1¯

where Ω ⊂ R2 is a bounded connected Lipschitz domain with boundary Γ = �Ω,

and � = � (x) is an elliptic operator such that �� = −∇ · (�∇�) + ��. Herein,

� = � (x) ∈ R2×2 is a symmetric tensor with coeicients ��, � ∈ �∞ (Ω), for

�, � ∈ {1, 2}, that satisies

�∗ �
�� ≤ ��� � ≤ �∗ ��� ∀ � ∈ R2 and for almost all x ∈ Ω,

for some 0 < �∗ ≤ �∗ < ∞. In addition, the functions � = �(x, �), � = � (x, �), � =

�(x, �), �0 = �0 (x) and � = �(x), with � ≥ 0, are assumed to be suiciently smooth,

and � and �0 further satisfy suitable compatibility conditions, so that problem ˘1¯

admits a unique weak solution ˘see [14] for details¯.

Following the method of lines, we irst deine a suitable mesh Ωℎ covering the

spatial domain Ω, where ℎ refers to the maximal grid spacing. Then, using a suitable

discretization of the spatial variables ˘by means of inite diference, inite element

or inite volume schemes¯, we obtain the initial value problem1

1 If we consider a standard inite element method for discretizing ˘1¯, we initially obtain a system

of ordinary diferential equations of the form �ℎ�
′
ℎ
(�) + �ℎ�ℎ (�) = �ℎ (�) , which is similar to

the irst equation in ˘2¯, but involves two symmetric and positive deinite matrices, usually referred

to as the mass ˘�ℎ¯ and stifness ˘�ℎ¯ matrices. Now, considering the Cholesky decomposition
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Fig. 1: Overlapping decompositions {Ω� }
�
�=1

of the unit square Ω into � = 2 ˘left¯ and � = 4

˘right¯ subdomains. Each subdomain Ω� is further decomposed into {Ω�� }
��
�=1

disjoint connected

components, with �� = 2 ˘left¯ and �� = 4 ˘right¯.

{
� ′

ℎ
(�) + �ℎ�ℎ (�) = �ℎ (�), � ∈ (0, �],

�ℎ (0) = Rℎ�0,
˘2¯

where Rℎ stands for an appropriate restriction or projection operator acting on the

initial condition. If we denote by � the number of degrees of freedom in Ωℎ for any

� ∈ [0, �],�ℎ (�) ∈ R
� and �ℎ ∈ R�×� denote the corresponding approximations

to �(x, �) and � (x), respectively. Finally, �ℎ (�) ∈ R
� includes the approximation to

� (x, �) and the contribution of the boundary data �(x, �).

2 Domain decomposition splitting methods

In this section, we describe how to construct a smooth partition of unity subordinate

to an overlapping decomposition of the spatial domain Ω. In addition, we deine

suitable splittings for the discrete operator �ℎ and the right‚hand side �ℎ, and

further use them in a time integrator with a multiterm partitioning structure.

Let {Ω�}
�
�=1

be an overlapping decomposition of Ω into � subdomains, i.e.,

Ω =
⋃�

�=1 Ω� . Each subdomain Ω� ⊂ Ω is further deined as an open set involving

�� connected components Ω� =
⋃��

�=1
Ω�� , for � = 1, 2, . . . , �, that are considered to

be pairwise disjoint ˘Ω�� ∩Ω� � = ∅, for � ≠ �¯. The overlapping size is denoted by �.

Figure 1 shows two diferent decompositions of the unit square into � = 2 and � = 4

subdomains, each consisting of �� = 2 and �� = 4 disjoint connected components,

respectively.

Subordinate to this descomposition, we deine a smooth partition of unity consist‚

ing of a family of � non‚negative and C∞ (Ω) functions {�� (x)}
�
�=1

. Each function

�� : Ω → [0, 1] is chosen to be

�ℎ = �ℎ�
�
ℎ

, where �ℎ is a lower triangular matrix with positive diagonal entries, we can deine

the new unknown �ℎ (�) = ��
ℎ
�ℎ (�) . It is immediate to see that �ℎ (�) satisies a system like

˘2¯; in particular, �′
ℎ
(�) + �̂ℎ�ℎ (�) = �̂ℎ (�) , where �̂ℎ = �−1

ℎ
�ℎ�

−�
ℎ

is symmetric and positive

deinite and �̂ℎ (�) = �−1
ℎ

�ℎ (�) ˘cf. [8]¯.
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�� (x) =




0, if x ∈ Ω \Ω� ,

ℎ� (x), if x ∈
⋃�

�=1; �≠� (Ω� ∩Ω�),

1, if x ∈ Ω� \
⋃�

�=1; �≠� (Ω� ∩Ω�),

where ℎ� (x) is C∞ (Ω) and such that 0 ≤ ℎ� (x) ≤ 1 and
∑�

�=1 ℎ� (x) = 1, for any

x ∈
⋃�

�=1; �≠� (Ω�∩Ω�). By construction, the family of functions {�� (x)}
�
�=1

satisies

supp(�� (x)) ⊂ Ω� , 0 ≤ �� (x) ≤ 1,
∑�

�=1 �� (x) = 1, ˘3¯

for any x ∈ Ω. In practice, ℎ� (x) may not necessarily beC∞ (Ω), but only a continuous

and piecewise smooth function [10].

In this framework, given the parabolic problem ˘1¯, we can deine a domain

decomposition operator splitting � = �1 + �2 + . . . + �� and � = �1 + �2 + . . . + ��
such that each split term is given by

��� = −∇ · (���∇�) + ����, �� = �� � , for � = 1, 2, . . . , �. ˘4¯

Accordingly, in the discrete setting ˘2¯, we may introduce the domain decomposition

matrix splitting �ℎ = �1ℎ + �2ℎ + . . . + ��ℎ and �ℎ = �1ℎ + �2ℎ + . . . + ��ℎ,

where each term ��ℎ and ��ℎ is deined to be a suitable spatial discretization of

its continuous counterpart ˘4¯, for � = 1, 2, . . . , �. Typically, the discrete split terms

��ℎ have a simpler structure than �ℎ, but they do not commute pairwise. This

lack of commutativity demands the use of suitable time integrators which preserve

the unconditional stability even in the non‚commuting case. The simplest of such

methods is given by the so‚called fractional implicit Euler scheme, irst proposed by

Yanenko in [19] and described in the sequel.

Let us divide the time interval [0, �] into �� subintervals [��, ��+1], with stepsize

Δ� = ��+1 − �� = �/�� , for � = 0, 1, . . . , �� − 1. We further deine the fully

discrete solution ��
ℎ
≈ �ℎ (��) at times �� = �Δ�, for � = 0, 1, . . . , �� . Then, given

�0
ℎ
= Rℎ�0, the fractional implicit Euler method can be written recursively, for

� = 0, 1, . . . , �� − 1, as

(� + Δ� ��ℎ)�
�+�/�

ℎ
= �

�+(�−1)/�

ℎ
+ Δ� ��ℎ (��+1), for � = 1, 2, . . . , �. ˘5¯

Note that one integration step with ˘5¯ can be seen as � consecutive steps with the

implicit Euler method, each with a diferent right‚hand side function. In consequence,

this time integrator is irst‚order convergent [17]. Eliminating the internal stages

�
�+�/�

ℎ
, for � = 1, 2, . . . , � − 1, ˘5¯ can be expressed as

��+1
ℎ =

(
�∏

�=1

(� + Δ� ��ℎ)

)−1

��
ℎ +

�︁

�=1

©­«
�∏

�= �

(� + Δ� ��ℎ)
ª®¬
−1

Δ� ��ℎ (��+1). ˘6¯

For later use, we will denote the right‚hand side of this expression by SΔ� (�
�
ℎ
). The

linear system to be solved at the �‚th internal stage of ˘5¯ involves just the split
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Fig. 2: Fine and coarse time grids considered in the parareal method.

term ��ℎ in the system matrix. As stated in ˘3¯, the function �� (x) has compact

support on Ω� . Hence, by construction, the entries of ��ℎ corresponding to the

nodes that lie outside of this subdomain are zero. Moreover, since Ω� involves ��
disjoint connected components Ω�� , the previous linear system is indeed a collection

of �� uncoupled subsystems, which can be solved in parallel.

3 The parareal method

In this section, we briely review the basis for the parareal algorithm, and further

establish the connection with domain decomposition splitting schemes in order to

derive our new proposal.

Let us irst divide the time interval [0, �] into � large time subintervals [��, ��+1],

for � = 0, 1, . . . , � − 1, with stepsize Δ� = ��+1 − �� = �/�. Thus, �� = �Δ� , for

� = 0, 1, . . . , �. Subsequently, we further divide each [��, ��+1] into � ≥ 2 smaller

time subintervals [��, ��+1], for � = 0, 1, . . . , �� − 1, with stepsize Δ� = Δ�/� =

�/�� , where �� = ��. In this case, �� = �Δ�, for � = 0, 1, . . . , �� . The parameter

� is sometimes referred to as coarsening factor. A representation of these ine and

coarse grids is shown in Figure 2.

In this setting, the parareal method makes use of two propagation operators which

provide ine and coarse approximations to the solution of ˘2¯. We will denote by

FΔ� the ine propagator, with stepsize Δ�, and by GΔ� the coarse propagator, with

stepsize Δ� . Essentially, the algorithm generates a sequence of iterations �
�,ℓ

ℎ
, for

ℓ = 0, 1, . . ., which converges to the solution of ˘2¯. To this end, we sequentially

obtain an initial approximation to the numerical solution at the coarse time levels by

using the coarse propagator GΔ� on the interval [0, �]ȷ given�
0,0
ℎ

= Rℎ�0,

�
�+1,0
ℎ

= GΔ� (�
�,0
ℎ

), for � = 0, 1, . . . , � − 1. ˘7¯

Then, for ℓ = 0, 1, . . ., until convergence, we doȷ

1. On each subinterval [��, ��+1], we solve on the ine grid using the ine propagator

FΔ� ȷ given �̃��
ℎ

= �
�,ℓ

ℎ
, for � = 0, 1, . . . , � − 1,

�̃
��+ �+1

ℎ
= FΔ� (�̃

��+ �

ℎ
), for � = 0, 1, . . . , � − 1. ˘8¯
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2. On the interval [0, �], we solve on the coarse grid using the coarse propagator

GΔ� ȷ given�
0,ℓ+1
ℎ

= Rℎ�0,

�
�+1,ℓ+1
ℎ

= GΔ� (�
�,ℓ+1
ℎ

) + �̃��
ℎ − GΔ� (�

�,ℓ

ℎ
), for � = 0, 1, . . . , � − 1. ˘9¯

As suggested in [18], if we denote �̃��
ℎ

= F�
Δ�
(��,ℓ

ℎ
), indicating that we are taking

� steps of the ine propagator with initial value�
�,ℓ

ℎ
and a stepsize Δ�, the previous

algorithm can be compactly written as

�
�+1,ℓ+1
ℎ

= GΔ� (�
�,ℓ+1
ℎ

) + F�
Δ� (�

�,ℓ

ℎ
) − GΔ� (�

�,ℓ

ℎ
), for � = 0, 1, . . . , � − 1.

Based on this expression, the parareal method can be interpreted as a predictor‚

corrector scheme in which GΔ� (�
�,ℓ+1
ℎ

) plays the role of the predictor, while

F�
Δ�
(��,ℓ

ℎ
) − GΔ� (�

�,ℓ

ℎ
) is the correction term. Note that, at the (ℓ + 1)‚th itera‚

tion, we can use � processors to compute both {F�
Δ�
(��,ℓ

ℎ
)}

�

�=1
and {GΔ� (�

�,ℓ

ℎ
)}

�

�=1

in parallel.

Now, we are in position to introduce the new family of parareal domain decompo‚

sition splitting methods by suitably combining the fractional implicit Euler method

˘5¯ with the parareal algorithm ˘7¯‚˘9¯. More precisely, we propose using ˘5¯ for

solving the ine‚ and coarse‚grid problems in the parareal method. Recalling the def‚

inition of SΔ� (�
�
ℎ
) as the right‚hand side of ˘6¯, we shall consider FΔ� (·) = SΔ� (·)

in ˘8¯, and GΔ� (·) = SΔ� (·) in ˘7¯ and ˘9¯. In consequence, the resulting method

allows for parallelization in both space and time. Remarkably, unlike related existing

schemes ˘e.g., parareal Schwarz waveform relaxation methods¯, our proposal does

not require Schwarz iterations, since the internal stages in ˘5¯ are solved sequentially

˘i.e., interface conditions need not be imposed on subdomains during the solution

process¯. In the next section, we illustrate the performance of the new algorithm as

compared to the classical parareal method using implicit Euler propagators FΔ� and

GΔ� .

4 Numerical experiments

Let us consider the two‚dimensional heat equation with a simple reaction term ˘i.e.,

� = � and � = 1¯ on Ω × [0, �] = [0, 1]3, with homogeneous initial and Dirichlet

boundary conditions, whose right‚hand side is chosen such that the exact solution is

�(�, �, �) = ��−��(1 − �)�(1 − �). We consider a ive‚point inite diference spatial

discretization with � = �� = �� spatial nodes on each direction ˘so that the total

number of degrees of freedom for the spatial discretization is � = �2¯, and the

parareal time integrator with � coarse intervals, each containing � ine subintervals.

Both the ine and coarse propagators,FΔ� andGΔ� , are chosen to be either the implicit

Euler method or the fractional implicit Euler method. In the sequel, we will refer to

these methods as Euler and DD‚Euler, respectively. In the latter case, Ω is further
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Table 1: Number of iterations, varying the number � of disjoint components ˘left¯ and the overlap‚

ping size � ˘right¯, for a ixed value of Δ� = �/(��) and increasing values of � .

Parametersȷ � = 16, � = 20, � = 2−6

� 10 20 40 80 160

Euler 8 8 8 8 8

DD-Euler � = 2 11 13 14 14 14

� = 4 12 13 15 14 15

� = 8 9 14 15 14 15

Parametersȷ � = 16, � = 20, � = 4

� 10 20 40 80 160

Euler 8 8 8 8 8

DD-Euler � = 2−4 12 12 13 14 13

� = 2−5 12 13 12 14 15

� = 2−6 12 13 15 14 15

Table 2: Number of iterations, varying the number � of disjoint components ˘left¯ and the overlap‚

ping size � ˘right¯, for a ixed value of � and decreasing values of Δ� = �/(��) .

Parametersȷ � = 16, � = 160, � = 2−6

� 20 40 80 160 320

Euler 8 8 8 8 8

DD-Euler � = 2 14 15 15 15 15

� = 4 15 15 15 15 15

� = 8 15 16 16 16 16

Parametersȷ � = 16, � = 160, � = 4

� 20 40 80 160 320

Euler 8 8 8 8 8

DD-Euler � = 2−4 13 13 14 14 14

� = 2−5 15 15 16 16 16

� = 2−6 15 15 15 15 15

decomposed into � = 2 subdomains, each consisting of � disjoint components, with

overlapping size �. Figure 1 ˘left¯ illustrates the case � = 2 and � = 2.

Tables 1 and 2 show the asymptotic dependence of the two parareal algorithms

on the parameters � and �. In addition, for the DD‚Euler method, we also show

the asymptotic dependence on the values � and �. In all the cases, we stop the

iteration process when the diference between the iterate and the target solution2

is less than 10−8. Notice that the number of iterations for the DD‚Euler method

does not increase when considering either a larger number � of disjoint connected

components or a smaller overlapping size �. Although not reported here, a similar

number of iterations is obtained for larger values of �. In conclusion, the newly

proposed algorithms are robust with respect to the discretization parameters, the

number of disjoint components � , the overlapping size �, and the coarsening factor

�.

Finally, for the implicit Euler method, if we have a time grid with �� nodes, we

need to solve sequentially �� linear systems with �2 unknowns. If we perform ���
iterations of the parareal Euler method to satisfy the stopping criterion, we need to

solve sequentially ��� (� + � + 1) linear systems with �2 unknowns. Thus, for large

values of � with respect to �, the parallelization of computations make the efective

cost of the parareal Euler method smaller than that of the classical Euler scheme. In

turn, if we perform ���� iterations of the parareal DD‚Euler method, considering �

2 The target solution is the solution obtained at the coarse time levels using the ine propagator FΔ�

on the whole time interval in a sequential way.
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subdomains and � disjoint connected components, and assuming � ≈ 0, we need to

solve sequentially ���� (� + � + 1) � linear systems with �2/(��) unknowns. Thus,

for large values of � with respect to � and large values of � , the efective cost of

the parareal DD‚Euler method will be even smaller than that of the parareal Euler

method.
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