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Abstract The finite element thin‚plate spline fits large scattered data efficiently while

retaining the smoothing properties of the thin plate‚spline. Its computational cost

is reduced by adaptive refinement that only refines sensitive regions identified by

an error indicator. Several traditional error indicators of the finite element method

were adapted for the finite element thin‚plate spline and their performance has been

evaluated using a large number of uniformly distributed data. In this article, we build

on that work to examine three new data distribution patterns, which are the uniform

distribution with missing data, random distribution and random normal distribution.

A numerical experiment is conducted to assess the performance of the finite element

thin‚plate spline and three error indicators with these four data distribution patterns.

1 Introduction

The thin‚plate spline is a data fitting technique that possesses many favourable proper‚

ties like insensitivity to noise [6]. One obstacle of its usage is the high computational

cost and memory requirement for large data sets. The finite element thin‚plate spline

˘TPSFEM¯ was proposed by Roberts, Hegland and Altas [11] to efficiently inter‚

polate large data sets with similar smoothing properties as the thin‚plate spline. It

uses simple 𝐻1 finite elements resulting in a sparser system of equations as opposed

to ones with higher‚order finite elements used in [5]. A detailed formulation of the

TPSFEM is provided by Stals and Roberts [16] and a brief description is given below

similar to the one shown by Fang [8].
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Let {(𝒙 (𝑖) , 𝑦 (𝑖) ) : 𝑖 = 1, 2, . . . , 𝑛} be the observed data of size 𝑛 and dimension 𝑑

on a domain Ω, where 𝒙 (𝑖) ∈ R
𝑑 and 𝑦 (𝑖) ∈ R are i‚th predictor value and response

value, respectively. The TPSFEM 𝑠 is defined as a combination of piecewise linear

basis functions 𝒃, where 𝑠(𝒙) = 𝒃(𝒙)𝑇 𝒄 and 𝒄 are coeffciients of the basis functions.

The TPSFEM 𝑠 minimises functional

𝐽 (𝒄, 𝒈1, . . . , 𝒈𝑑) = 𝒄𝑇 𝐴𝒄 − 2𝒅𝑇 𝒄 + 𝒚𝑇 𝒚/𝑛 + 𝛼

𝑑
∑︁

𝑘=1

𝒈𝑇
𝒌
𝐿𝒈𝒌 , ˘1¯

subject to Constraint 𝐿𝒄 =
∑

𝑑

𝑘=1
𝐺𝑘 𝒈𝑘 , where 𝒈𝑘 are coefficients of gradient approx‚

imations of 𝑠 in dimension 𝑘 , 𝐴 =
1

𝑛

∑

𝑛

𝑖=1
𝒃(𝒙 (𝑖) )𝒃(𝒙 (𝑖) )

𝑇 , 𝒅 =
1

𝑛

∑

𝑛

𝑖=1
𝒃(𝒙 (𝑖) )𝑦 (𝑖) ,

𝒚 = [𝑦 (1) , . . . , 𝑦 (𝑛) ]
𝑇 , 𝐿 is a discrete approximation to the negative Laplacian and

𝐺𝑘 is a discrete approximation to the gradient operator in dimension 𝑘 .

Smoothing parameter 𝛼 balances the goodness of fit and smoothness of 𝑠. It is

estimated iteratively using a stochastic estimator of the generalised cross‚validation

from Hutchinson [9] and more details are provided in [7]. It may also be calculated

using alternate approaches discussed in [5]. Minimiser ˘1¯ is solved using Lagrange

multipliers and the size of the resulting system of equations is proportional to the

number of basis functions. This system is more efficiently solved than that of the

thin‚plate spline. A comparison using data from Section 4 between the TPSFEM and

compactly supported basis functions ˘CSRBFs¯ from Wendland [17] with radius 0.5

is shown in Table 1. The TPSFEM achieves similar root mean square error ˘RMSE¯

and maximum errors ˘MAX¯ as the CSRBFs using a system with significantly fewer

nonzero entries. A comprehensive comparison is in progress and will be provided

in [15].

Table 1: Computational cost

Technique No. basis Dimension No. nonzero RMSE MAX

TPSFEM 900 3603 52,060 0.027 0.20

TPSFEM 1600 6403 93,538 0.014 0.091

CSRBFs 1024 1024 496,274 0.0098 0.157

The remainder of the article is organised as follows. In Section 2, we show adaptive

refinement and error indicators of the TPSFEM. In Section 3, four two‚dimensional

data distribution patterns are displayed and compared regarding their influence on

the maximum distance to any data. In Section 4, a numerical experiment is presented

to examine the influence of these patterns. In Section 5, we summarise this article

and the findings of the experiment.

2 Adaptive Refinement

The accuracy of finite element approximations depends on the mesh size of the finite

element grid [10]. The accuracy is improved by adaptive refinement that adapts
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the accuracy of the approximation within sensitive regions, like peaks, dynamically

during an iterative process. An error indicator marks regions that require finer

elements to achieve higher accuracy for refinement. Many error indicators have

been developed for approximating partial differential equations but they may not be

applicable for the TPSFEM.

The formulation of the TPSFEM is different from that of the traditional finite

element method and it may not provide the information required by some error indi‚

cators. For example, the TPSFEM uses the observed data instead of given functions

of partial differential equations and the data is often perturbed by noise or irregularly

distributed. Fang [8] adapted the iterative adaptive refinement process and three error

indicators of the finite element method for the TPSFEM. In this article, we will focus

on the performance of these three error indicators, which are the auxiliary problem

error indicator, recovery‚based error indicator and norm‚based error indicator.

The auxiliary problem error indicator evaluates approximation quality by solving

a local approximation, which is the TPSFEM built on a union of elements [1, 8, 10]. It

solves Minimiser ˘1¯ using a small subset of the observed data within those elements.

The local approximations are locally more accurate than the global TPSFEM 𝑠 and

the approximation quality is measured by the difference between them. The recovery‚

based error indicator estimates errors by post‚processing the gradient approximations

of the TPSFEM [18]. It improves the discontinuous gradient approximations of 𝑠with

piecewise linear basis functions and calculates the error as the difference between the

two gradient approximations. The norm‚based error indicator uses an error bound

on the 𝐿∞ norm of the TPSFEM to optimise the approximation [13]. It approximates

second‚order derivatives of 𝑠 to identify regions that change rapidly and refine them

to improve accuracy.

These three error indicators use different information of the TPSFEM to indicate

regions with large errors. The recovery‚based error indicator and norm‚based error

indicator only use 𝒄 values in Minimiser ˘1¯ and they were adapted without major

changes. In contrast, the original auxiliary problem error indicator solves boundary

value problems and was modified to use data instead of a given function [2, 7].

Consequently, it is more susceptible to changes in the data like noise [8]. When the

data distribution pattern changes, these error indicators may behave differently.

As opposed to the finite element method, the error of the TPSFEM may not

converge with a smaller mesh size ℎ. Roberts, Hegland and Altas [11] proved that

the error convergence of the TPSFEM depends on the smoothing parameter 𝛼,

maximum distance to data 𝑑𝒙 and ℎ. The new iterative adaptive refinement process

updates the optimal 𝛼 after the grid is refined and prevents it from dominating the

error [8]. Besides, previous studies tested the performance of the error indicators

using uniformly distributed data sets of size 1,000,000, which provide sufficiently

small 𝑑𝒙 [8]. When the data is irregularly distributed, we may not have sufficiently

small 𝑑𝒙 over the whole domain and the error convergence will be affected.
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3 Data Distribution

The observed data distributes differently depending on the application. For exam‚

ple, data is stored as maps of pixels for digital images or sampled randomly for

surface reconstructions [4, 12]. Previous studies on the TPSFEM already deployed

several data distribution patterns, including the uniform distribution [8], uniform

distribution with missing data [14], random distribution [16] and random normal

distribution [11]. We focus on these four data distribution patterns in this article.

(a) (b) (c)

Fig. 1: Data distribution of 10,000 data points with ˘a¯ uniform distribution with data missing; ˘b¯

random distribution; and ˘c¯ random normal distribution

The uniform distribution places data uniformly on the domain with fixed 𝑑𝒙,

which minimises its influence on the error convergence of the TPSFEM. However,

other data distribution patterns may have varied 𝑑𝒙 across the domain. Data points

in certain regions may be missing and the TPSFEM needs to recover these surfaces.

An example is shown in Figure 1˘a¯, where data points in eleven square regions are

missing and some of them neighbours each other. The error in these regions may

not be improved by smaller ℎ since 𝑑𝒙 is large. Besides, the auxiliary problem error

indicator uses data that is not available in those regions and the performance may be

affected.

In many applications, the predictor values of data are sampled randomly with

equal probabilities instead of a perfect uniform distribution, as shown in Figure 1˘b¯.

The random normal distribution places data points using a probability density func‚

tion defined by a mean and a variance [3]. An example with variance 1.5; and

mean 2.5 and 0 for predictor values 𝒙1 and 𝒙2 is shown in Figure 1˘c¯. The density

of the predictor values is higher at their mean than the rest of the domain. When a

randomly distributed data set contains a large number of data points, the data density

will be close across the domain. While it may not have a significant influence on

the interpolant 𝑠 due to sufficiently small 𝑑𝒙, it may affect the error indicators as

some elements may contain few data points. In comparison, a randomly normally

distributed data set has different data densities across the domain with varied 𝑑𝒙.

While the error convergence behaviour may not be affected by randomly distributed

data, the error indicators were not developed to handle data with various densities

and their performance may be affected [5].
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4 Numerical Experiment

A numerical experiment was conducted to test the error indicators using these

data distribution patterns. The data consists of 10,000 data points limited in‚

side [−3.6, 3.6]2 and is modeled by the peaks function 𝑓 from MATLAB, where

𝑓 (𝒙) = 3(1 − 𝑥1)
2𝑒−𝑥

2

1
−(𝑥2+1)2

− 10(𝑥1/5 − 𝑥3

1
− 𝑥5

2
)𝑒−𝑥

2

1
−𝑥2

2 − 1

3
𝑒−(𝑥1+1)2−𝑥2

2 . It has

oscillatory surfaces at the center of the domain and flat surfaces near its bound‚

aries [11]. Gaussian noise with mean 0 and standard deviation 0.01 is also included

in some data sets to assess the performance in the presence of noise. The distribution

patterns of irregularly distributed data sets have been shown in Figure 1.

We focus on the efficiency of uniform and adaptive grids, which is measured by

the error metric versus the number of nodes in the grid. A grid that achieves a low

error metric with a smaller number of nodes is considered more efficient. We consider

both the root mean square error ˘RMSE¯ and approximate error, which measures

how closely 𝑠 fits data and reproduces 𝑓 , respectively [7, 8]. The approximate error 𝑒

is defined as 𝑒 =

√︃

∑

𝑚

𝑖=1
ℎ2

𝑖
𝑒2

𝑖
, where 𝑒𝑖 is the difference between 𝑠 and 𝑓 at 𝑖‚th

node, ℎ𝑖 is the longest edge connected to 𝑖‚th node and 𝑚 is the number of nodes in

the grid. The efficiency of final grids are calculated as products of the error metric

and the number of nodes and is provided in the legend of each convergence plot.

4.1 Results

The convergence of the RMSE for data sets with the four distribution patterns is

shown in Figure 2. Adaptive refinement focuses on refining the oscillatory surfaces

at the centre and error convergence rates of all three adaptive grids are higher than

that of the uniform grid in Figure 2˘a¯. When the data is uniformly distributed, the

three error indicators have similar performance and produce adaptive grids more

than twice as efficient as the uniform grid.

Figure 2˘c¯ shows similar error convergence of uniform and adaptive grids with

random distribution. The TPSFEM and error indicators are not affected as 𝑑𝒙 remains

sufficiently small within a large number of randomly distributed data points. In

contrast, 𝑑𝒙 is large in some regions where data points are missing or the data is

randomly normally distributed shown in figures 1˘a¯ and 1˘c¯, respectively. While

this does not markedly affect the TPSFEM, it slightly weakens the performance of

the auxiliary problem error indicator, as shown in figures 2˘b¯ and 2˘d¯, respectively.

Local approximations of the auxiliary problems are built with different numbers of

data points and the accuracy deteriorates.

The convergence of the approximate error for data sets with the four distribution

patterns is shown in Figure 3. The error convergence rates of the approximate error

with the uniform or random distribution in figures 3˘a¯ and 3˘c¯ are similar to

those of the RMSE in figures 2˘a¯ and 2˘c¯. The TPSFEM closely reproduces the

original smooth function 𝑓 when 𝑑𝒙 is sufficiently small in these two distribution
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Fig. 2: RMSE for ˘a¯ uniform distribution; ˘b¯ uniform distribution with missing data; ˘c¯ random

distribution; and ˘d¯ random normal distribution.

patterns. When the data is scarce in some regions, the TPSFEM interpolates smooth

surfaces, which may not recover 𝑓 especially when it is oscillatory. Consequently,

the convergence of the approximate errors for the uniform distribution with missing

data or random normal distribution slows down in the last few iterations as shown in

figures 3˘b¯ and 3˘d¯, respectively. Similarly, the auxiliary problem error indicator

underperforms compared to the other two error indicators.

In the presence of noise, the RMSE values of the TPSFEM stop decreasing at some

point depending on the noise level of data as demonstrated by Fang [8]. Therefore, we

only consider the approximate error here. The convergence of the approximate error

for data sets with noise is shown in Figure 4. All error convergence rates are lower

than those without noise since the TPSFEM may not reproduce 𝑓 from noisy data.

The error convergence rates with the uniform or random distribution are higher than

the others in Figure 3. Elements in these two distribution patterns contain a similar

number of data points and the effects of noise are cancelled out when data points

are projected on the finite element grid. In comparison, the error with the uniform

distribution with missing data and random normal distribution stops decreasing at
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Fig. 3: Approximate error for ˘a¯ uniform distribution; ˘b¯ uniform distribution with missing data;

˘c¯ random distribution; and ˘d¯ random normal distribution.

the last two iterations. The error convergence rates with random normal distribution

in Figure 3˘d¯ are the lowest of four distribution patterns. Since some elements may

contain few data points, it is more sensitive to noise in data, which leads to marked

difference to 𝑓 .

The three error indicators perform differently in the experiment. The performance

of the auxiliary problem error indicator worsens when data is perturbed by noise,

especially for random distribution in Figure 4˘c¯. Since some elements may contain

few data points, the accuracy of the local approximation is more susceptible to

noise and may indicate large errors incorrectly. In contrast, the recovery‚based error

indicator and norm‚based error indicator use 𝒄 values to indicate large errors. Since

the effects of the data distribution pattern and noise have been minimised by the

TPSFEM, these two error indicators produce efficient adaptive grids for data sets

with noise in Figure 4.
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Fig. 4: Approximate error for data sets perturbed by noise with ˘a¯ uniform distribution; ˘b¯ uniform

distribution with missing data; ˘c¯ random distribution; and ˘d¯ random normal distribution.

5 Conclusion

In this article, we explore four data distribution patterns and investigate their effects

on the efficiency of adaptive grids generated using three error indicators. The four

data distribution patterns lead to different maximum distances to data and affect the

performance of the TPSFEM and its error indicators. While the TPSFEM may not

restore the original function in regions with scarce data, it recovers a smooth surface

to closely interpolate the data. Besides, the uniform and random distributions have

close data densities across the domain and thus have less influence on the TPSFEM

than the uniform distribution with missing data and random normal distribution.

We also find that all the error indicators significantly improves the efficiency of

adaptive grids with all data four distribution patterns. The auxiliary problem error

indicator uses data for local approximations and is more vulnerable to changes in the

data distribution patterns and noise. In contrast, the recovery‚based error indicator

and norm‚based error indicator only use the information of the TPSFEM and are

insensitive to these two factors.
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