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1 Introduction

Schwarz Waveform relaxation ˘SWR¯ [1, 2, 6] is an iterative algorithm for solving

time dependent partial diferential equations ˘PDEs¯ in parallel. The domain of the

PDE is partitioned into overlapping or non‚overlapping subdomains, then the PDE

is solved iteratively on each subdomain. The emphasis has focused on developing

artiicial transmission conditions which exchange information between neighboring

subdomains and lead to fast convergence.

The initial guess at the subdomain boundaries is often chosen to be a constant

˘maybe a continuation of the initial condition for the PDE¯. We show here, that

in some situations, we can dramatically reduce the number of SWR iterations to

convergence by computing an improved initial guess at the subdomain boundaries

using a multirate ˘MR¯ time integrator. The MR time integrator naturally produces

a spatial splitting over time windows, while the SWR portion of the algorithm can

ix a potential loss of accuracy in the MR approach. The eicacy of the resulting

accelerated SWR ˘ASWR¯ algorithm is demonstrated for a test problem.

2 Background Material

We assume the PDE has been semi‚discretized in space using inite diferences,

leading to a system of ordinary diferential equations ˘ODEs¯ of the form
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�′ = � (�, �),

�(�0) = �0, � ∈ �� .
˘1¯

We integrate ˘1¯ using a MR method largely due to Savenco et al. [5].

Consider the embedded Rosenbrock method given by

(� − �Δ� �� (��−1, ��−1))K1 = Δ� � (��−1, ��−1) + �Δ�2 �� (��−1, ��−1),

(� − �Δ� �� (��−1, ��−1))K2 = Δ� � (��−1 + Δ�, ��−1 + K1)

− �Δ�2 �� (��−1, ��−1) − 2K1,

�� = ��−1 + K1,

�̂� = ��−1 +
3

2
K1 +

1

2
K2,

where �� (��, ��) is the Jacobian matrix and �� (��, ��) is the time derivative. In what

follows, �� is estimated using a forward diference. The irst order approximation

˘ROS1¯, ��, is used as the time integrator to obtain the numerical results presented

in this paper, while the second order approximation ˘ROS2¯, �̂�, provides an estimate

of the local error vector, ��. In our tests we use � = 1/2 which results in �–stable

ROS1 and ROS2 methods [4]. The approximation is linearly implicit, requiring a

linear solve at each time step. This can be eicient for non‚linear problems.

ROS1 and ROS2 can be used together to produce an adaptive ˘single rate¯ time

stepper based on local error control. The local error of the ��ℎ component for the

ODEs ˘1¯ at time � = ��, ��,� , can be estimated as ��,� = |��,� − �̂�,� |, for � =

1, . . . , � . If ∥��∥∞ ˘obtained with time step Δ�¯ is less than the required tolerance,

the integration proceeds with a ˘possibly larger¯ new time step, otherwise the step

is repeated with a smaller step size. In either case the new time step is given by

Δ�new = �Δ� (���/∥��∥∞)
1/2, where � < 1 is a safety factor and ��� is the tolerance.

3 A Multirate Approach

The local error control mechanism can also be used as the basis for a MR approach,

see [5]. Suppose a local error, ��, is obtained with a time step Δ�. We can estimate

the time step required by each component of the ODE system, Δ��,� to achieve

the tolerance ��� as Δ��,� = �Δ� (���/��,�)
1/2, for � = 1, 2, . . . , � . We denote the

minimum time step required by any component asΔ���� = min�=1,...,� Δ��,� . Figure 1

shows two scenarios for the size of the local error during the integration of parabolic

PDEs of interest here.
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Fig. 1: Identifying fast components using the local error.

In the igure on the left all of the components of the local error are below the

required tolerance. In this case the time step is accepted, and likely increased for the

next step. The plot on the right shows a situation where some components of the

local error are larger than the required tolerance. In the MR approach, only these

˘fast¯ components are recomputed ˘using the smaller time step, Δ�min). The other

˘slow¯ components are accepted without further computation. Coupling between the

fast and slow components is typically handled by interpolation or using dense output

formulae. The single rate approach, in contrast, would recompute all components

with a smaller time step if the norm of the local error is larger than the tolerance. The

process is then repeated for the next global time step. In [5] the size of the global

time step is chosen using a MR factor which is controlled by a heuristic based on the

estimated computational savings.

In [5] uniform or recursive reinements are suggested for the fast components. An

error analysis for linear systems and the �–method with one level of reinement is

given in [3]. For parabolic time dependent PDEs which have groups of components

evolving at diferent time scales, the MR method demonstrates a gain in eiciency.

In our experience, however, the approach is quite sensitive to the choice of slow and

fast components and the accuracy of the interpolation method.

To illustrate this we consider the traveling wave equation

�� = ���� + ��2 (1 − �), ˘2¯

for 0 < � < 5, 0 < � ≤ � = 3, with initial and boundary conditions �(�, 0) =

(1 + ��(�−1) )−1 and �� (0, �) = �� (5, �) = 0, where � = 10
−2, � = 1/� and � =

︁

�/2� . In space, � is discretized with � = 1000 grid points and standard second

order diferences. For comparison purposes a single rate reference solution has been

integrated in time using Matlab’s ���15� with tolerance 10
−10. The solution is a

travelling wave solution with a sharp interface between � = 1 and � = 0 moving to

the right.

In Tables 1 and 2, we use Savenco’s code, see [5], for both the single rate and

MR approaches. We modify the inputs to control the MR time step size, the number

of points added to fast region identiied by the local error test, and the interpolation

used to generate the slow components needed during the reinement of the fast
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components. The errors at the inal time are measured by subtracting the single or

the MR solution from the reference solution in the ininity norm. The work estimates

are based on the cost of the linear solves in the timestepping. The CPU times

˘in seconds¯ for both the single rate and MR approaches are reported for various

tolerances.

Table 1 shows that the MR approach is able to reduce the CPU time, albeit with

some decrease in the accuracy. The reduction in CPU time is more dramatic for

smaller required tolerances. The loss in accuracy can be reduced by adding points

to the fast regions identiied by the component‚wise local error test or by increasing

the accuracy of the interpolation used at the interfaces of the regions, see Table 2.

Single-rate Multirate

Tol Error Work CPU Error Work CPU

1.00e‚03 3.204e‚03 1639638 3.790 1.406e‚02 131260 3.020

5.00e‚04 1.924e‚03 2256254 5.530 2.586e‚03 167978 2.990

1.00e‚04 4.835e‚04 4862858 3.990 6.812e‚03 319690 4.530

5.00e‚05 2.541e‚04 6816810 5.580 3.294e‚03 442186 4.120

1.00e‚05 5.427e‚05 15057042 12.120 5.460e‚04 971304 6.880

Table 1: Errors, Work and ��� time in seconds at � = 3 of Savcenco’s MR approach with

uniform reinement and using the dense output method.

Added Points Error� Error� Error�
0 8.392e‚03 3.407e‚03 3.271e‚03

5 2.061e‚03 1.052e‚03 1.028e‚03

10 7.418e‚04 5.623e‚04 5.582e‚04

15 5.062e‚04 4.751e‚04 4.744e‚04

20 4.654e‚04 4.600e‚04 4.599e‚04

Table 2: Errors obtained using linear and quadratic interpolation and dense output for ˘2¯ at � = 3

using a ixed MR time step Δ�� = 2Δ�� with ��� = 10
−4 while varying the number of points

added to the fast region.

The number of added points which allows the MR algorithm to recover the single

rate error for a given tolerance depends on the MR time step size, the inal integration

time, the PDE being solved, and the discretizations used. This is diicult to determine

a priori.

4 An Accelerated SWR approach

Consider our test problem discretized using 1000 uniformly spaced points on [0, 5].

We solve the global domain problem with MR time steps of Δ�� = �Δ�� with a
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multirate factor � and Δ�� = 0.01 ˘a time step which keeps the local error below a

tolerance of ��� = 5 × 10
−3 for the single rate ˘global¯ algorithm¯. In Figure 2, the

horizontal lines show multirate time steps with � = 20. The local error estimate is

used to identify the fast region ˘shown in red¯ and the slow regions, during each MR

time step.

To implement a SWR iteration the domain is partitioned into ten equal subdo‚

mains, as shown in the left of Figure 2. We refer to this as a static partitioning.

Overlapping subdomains are obtained by adding a small overlap ˘not shown¯ to the

left and right of the interior interfaces. We generate initial guesses for the SWR

iteration as follows. If an interface lies in a slow region then an interpolant in time,

constructed using the solution obtained from the MR time step, is used. If an interface

lies in a fast region then an improved initial guess is constructed by reining the fast

region using a single rate method with a time step of Δ��, as described in Section 3.

A ˘classical¯ SWR iteration is used from these initial guesses, here the SWR iterates

are also computed using Δ�� ˘in practice one could use an adaptive time stepping for

the subdomain solves¯. The process is then repeated over the next Δ��, and so on.

To demonstrate, in Figure 3 we plot the results of this experiment for ASWR with

static partitioning ˘S‚ASWR¯ on the second ˘left¯ and fourth ˘right¯ time windows.

The vertical axis shows the error between the single rate and SWR solutions. The

two norm of the error ˘in time¯ is calculated along all interfaces. SWR is accelerated

if any of the subdomain boundaries lie in a fast region and hence is able to beneit

from the reined solution. The reduction in the iteration count on each time window

depends on the position of the interface in the fast region. For this example, we will

see that with a good placement of the interface one SWR iteration is able to correct

the loss of accuracy inherent in the MR algorithm.

Motivated by the improvement, should a subdomain boundary lie in a fast region,

we can build an improved dynamic partitioning algorithm. After completing a global

MR time step, assuming a suicient number of processors we partition the whole

domain by introducing an interface in each fast region, and partition the rest of

domain so that the subdomains are of ˘approximately¯ equal size. This is illustrated

in the right plot in Figure 2. Placing the interface in the middle of the fast region

attempts to minimize the coupling between the fast and slow components. With

this dynamic partitioning D‚ASWR accelerates convergence in an approximately

uniform way over all time windows, see Figure 4 where the SWR errors are shown

on the second time window for two diferent multirate time steps.

The diiculty in choosing the appropriate number of points to add to the fast

region and the interpolation required in the MR method is pushed aside and instead

the reined fast solution can be used to accelerate a correction using SWR. The

computation of the global time step and the subsequent partitioning from the MR

algorithm providesȷ information that can guide the SWR partitioning, improved

initial guesses at the interfaces for the subsequent SWR correction, and information

about the single rate or SWR time step required to globally achieve the local error

tolerance.

A general algorithm would handle multiple fast regions during a multirate time

step. Interfaces are introduced into each fast region and SWR initial guesses are
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obtained by reining the fast regions ˘in parallel¯. A global time step for the SWR

iteration can be chosen to be the smallest time step used over all the fast regions. Again

with a suicient number of processors a well load–balanced splitting is possible while

keeping interfaces in the fast regions.
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(b) Dynamic Partitioning

Fig. 2: Partitioning approaches for ASWR.
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(b) � ∈ [3Δ�� , 4Δ�� ]

Fig. 3: Convergence histories for classical S‚ASWR with � = 10 and � = 20 on the second ˘left¯

and fourth ˘right¯ time window using a static partitioning. An overlap of 10 points is used during

the SWR.
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(a) � ∈ [Δ�� , 2Δ�� ] with � = 20
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(b) � ∈ [Δ�� , 2Δ�� ] with � = 10

Fig. 4: Convergence histories for D‚ASWR with � = 20, 10 points of overlap, on � = 10

subdomains ˘left¯ and � = 10, 5 points of overlap, on � = 15 subdomains ˘right¯ on the second

time window using a dynamic partitioning.
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The number of SWR iterations can be further minimized by introducing a non‚

overlapping splitting and an optimized SWR iteration.

5 A Comparison

In Table 3, we provide a comparison of the single rate, MR, static and dynamic

ASWR algorithms. Single rate results are given, then the local error estimate is used

to identify and reine the fast region. MR results ˘using the algorithm in Section 3¯

with 0 and 20 points added to the identiied fast region are provided. Finally, one

classical ASWR iteration is used with static and dynamic partitioning with � = 15

subdomains for Δ�� = 0.01, � = 26 for Δ�� = 0.005, � = 30 for Δ�� = 0.0025, � = 34

for Δ�� = 0.00125 and only one point of overlap. A multirate factor of � = 10 is

used for the MR and ASWR results.

Single-rate MR (0) MR (20) S-ASWR D-ASWR

Δ�� Error Work Error Work Error Work Error Work Error Work

0.01 0.0273 300000 0.0345 51910 0.0274 63930 0.0279 72198 0.0274 74505

0.005 0.0131 600000 0.2126 84760 0.0138 108600 0.0243 115085 0.0130 110360

0.025 0.0042 1200000 0.0950 162710 0.0043 210680 0.0107 215412 0.0037 207800

0.0125 0.0012 2400000 0.0391 317990 0.0012 413980 0.0309 423535 0.0002 400996

Table 3: Errors and work at � = 3 for the single rate method, MR with 0 and 20 added points to

the fast region, and static and dynamic ASWR.

Table 3 shows that the MR method without points added to the fast region loses

accuracy compared to the single rate method. The reined fast region allow us to

accelerate the SWR convergence recovering the lost accuracy with a cost less than

the cost of the single rate solution. Increasing the number of subdomains further

makes the simulation more eicient. The S‚ASWR method ˘with static partioning¯

has a higher error than the D‚ASWR approach after one SWR correction. This is due

to the somewhat random placement of the interfaces in the S‚ASWR approach. One

iteration of D‚ASWR is suicient to achieve the required tolerance for this problem.

6 Conclusions

The MR approach proposed in [5] provides an automatic way to identify the fast

and slow components of a problem based on a local error estimate. The coupling

between this fast‚slow splitting leads to a loss in accuracy as compared to a single

rate approach. The error can be reduced by increasing the size of the fast region ˘to

reduce the coupling¯ but the required size of the overlap is problem dependent.
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We propose algorithms which use the MR splitting to provide a decomposition

of the space‚time domain and improved initial guesses for the SWR ˘correction¯,

resulting in an ASWR algorithm. The robustness and eiciency of the ASWR comes

from the large reduction in the number of SWR iterations to reach the single rate

accuracy and the increase in the number of subdomains. This can be achieved with

the dynamic partitioning approach. Future work will include an analysis of these

ASWR algorithms.
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