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1 Introduction

Consider the surface intrinsic positive Helmholtz equation

(𝑐 − ΔS)𝑢 = 𝑓 , ˘1¯

whereΔS denotes the Laplace‚Beltrami operator associated with the surfaceS ⊂ R𝑑 ,

and 𝑐 > 0 is a constant. Discretization of this equation arises in many applications

including the time‚stepping of reaction‚diffusion equations on surfaces [10], the

comparison of shapes [15], and the solution of Laplace‚Beltrami eigenvalue prob‚

lems [9]. As a consequence, considerable recent work has taken place to develop

efficient, high‚speed solvers for this and other related PDEs on surfaces.

There are several methods to solve surface intrinsic differential equations ˘DEs¯.

If a surface parameterization ˘a mapping from the surface to a parameter space¯ is

known, then the equation can be solved in the parameter domain [4]. For triangulated

surfaces, a finite element discretization can be created [5]. Alternatively, we can

solve the DE in a neighborhood of the surface using standard PDE methods in the

underlying embedding space [2, 16, 3, 12]. Here, we discretize via the closest point

method ˘CPM¯, which is an embedding method suitable for the discretization of

PDEs on surfaces. The closest point method leads to non‚symmetric linear systems

to solve. On complex geometries or when varying scales arise, iterative solvers

can be slow despite the sparsity of the underlying systems. In order to develop an

efficient iterative solver which is also capable of parallelism, Parallel Schwarz ˘PS¯

and Optimized Parallel Schwarz ˘OPS¯ algorithms have been applied to the CPM for
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˘1¯ in [13]. Here, we study the convergence of the PS‚CPM at the continuous level for

smooth, closed 1‚manifolds where periodicity is inherent in the geometry. As shown

in Section 3, this problem, posed in R𝑑 , is equivalent to a one‚dimensional periodic

problem. This leads us to study the 1‚dimensional periodic problem in detail.

While there has been substantial work carried out on Schwarz methods, they have

not been widely used for solving surface DEs. The shallow‚water equation is solved

with a PS iteration on the cubed‚sphere with a finite volume discretization in [17].

PS and OPS methods for the 2D positive definite Helmholtz problem are investigated

on the unit sphere in [8]. In [8], the analysis is based on latitudinal subdomains that

are periodic in longitude. Hence, the Fourier transform is a natural choice to solve

the subproblems analytically and obtain the contraction factor. PS and OPS methods

are also analyzed with an overset grid for the shallow‚water equation in [14]. In

that work, the discretization in 1D is reduced to the positive definite Helmholtz

problem on the unit circle. The unit circle case is investigated with two equal‚sized

subdomains, and a convergence factor is derived for the configuration in terms of the

overlap parameter. In addition, the 2D positive definite Helmholtz problem on the

sphere is analyzed where the subdomains are derived from a Yin‚Yang grid system. It

is worth noting a key difference between our work and [14]. In our problem, domain

subdivision is carried out in the underlying embedding space. As a consequence, the

unequal‚sized subdomain case is essential to our understanding of the problem.

The convergence of PS and OPS for general surfaces remains unknown. Section 2

reviews the CPM. Section 3 studies the PS‚CPM combination for the surface intrinsic

positive Helmholtz equation ˘1¯ by analyzing an equivalent one‚dimensional periodic

problem. This section proves convergence and derives convergence factors. Although

˘1¯ on 1‚manifolds can be solved through parameterization, we only investigate

the convergence of the PS‚CPM for 1‚manifolds in this paper with the hope of

extending our work to higher dimensional manifolds in the future. Section 4 provides

a numerical experiment in which the PS‚CPM contraction factor converges to its PS

counterpart by increasing the grid resolution. Finally, Section 5 gives conclusions.

2 The Closest Point Method

The CPM was first introduced in [16] for explicitly solving evolutionary PDEs

on surfaces. It is an embedding method and allows the use of standard Cartesian

methods for the discretization of surface intrinsic differential operators. The surface

representation and extension of quantities defined on the surface to the surrounding

embedding space is done using the closest point mapping cpS (𝑥) = arg min
𝑠∈S

|𝑥 − 𝑠 |

for 𝑥 ∈ R𝑑 . This mapping gives the closest point in Euclidean distance to the surface

for any point 𝑥 in the embedding space. It is smooth for any point in the embedding

space within a distance 𝑅0 of a smooth surface, where 𝑅0 is a lower bound for the

surface radii of curvature [3].
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Suppose the closest point mapping of a manifold is smooth over a tubular neigh‚

borhood Ω ⊂ R𝑑 of the manifold. We introduce 𝑢̃ : Ω → R as the solution to the

embedding CPM problem. Two principles are fundamental to the CPMȷ equivalence

of gradients and equivalence of divergence [16]. Assuming a smooth manifold S,

the equivalence of gradients principle gives us ∇𝑢̃(cpS) = ∇S𝑢 since 𝑢̃(cpS) is

constant in the normal direction to the manifold. Further, applying the equivalence

of divergence principle, ∇ · (∇𝑢̃(cpS)) = ∇S · (∇𝑢̃(cpS)) holds on the manifold.

Therefore, on the manifold,

Δ𝑢̃(cpS) = ∇ · (∇𝑢̃(cpS)) = ∇S · (∇𝑢̃(cpS)) = ∇S · (∇S𝑢) = ΔS𝑢. ˘2¯

A modified version of ˘2¯ offers improved stability at the discrete level and is normally

used in elliptic problems [11, 9, 7]. The regularized Laplace operator is

Δ
#

ℎ𝑢̃ = Δ𝑢̃(cpS) −
2𝑑

ℎ2

[
𝑢̃ − 𝑢̃(cpS)

]
, ˘3¯

where 0 < ℎ ≪ 1. As in [11, 9], we take the parameter ℎ to be equal to the mesh

spacing in the fully discrete setting.

Equation ˘3¯ gives our replacement for the Laplace‚Beltrami operator. Applying

it, and extending the function 𝑓 off the manifold using the closest point mapping

gives our embedding equation for ˘1¯ȷ

(𝑐 − Δ
#

ℎ) 𝑢̃ = 𝑓 (cpS), 𝑥 ∈ Ω. ˘4¯

Standard numerical methods in the embedding space may be applied to ˘4¯ to

complete the discretization. In this paper, we apply standard second order finite

differences on regular grids to approximate the derivative operators. Because discrete

points do not necessarily lie on S, an interpolation scheme is needed to recover

surface values. Utilizing tensor product barycentric Lagrangian interpolation [1], an

extension matrix E is defined to extend values off of the manifold. Note that the

extension matrix may be viewed as a discretization of the closest point mapping.

Using a mesh spacing ℎ and degree‚𝑝 interpolation polynomials, it is sufficient

to numerically approximate equation ˘4¯ in a narrow tube around S of radius 𝑟 =√︁
(𝑑 − 1) (𝑝 + 1)2 + (𝑝 + 3)2ℎ/2. A more thorough explanation of the CPM at the

discrete level can be found in [11].

3 The PS-CPM Convergence Analysis

PS is an overlapping domain decomposition method which is designed to iteratively

solve DEs over subdomains, distributing the computational costs. It is also capable

of parallelism and can be combined with the CPM, a method whose underlying

linear system is sparse. We assume S to be a smooth, closed 1‚manifold in R𝑑 with

arclength 𝐿. We consider the case with two subdomains, but the discussion can be
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generalized to any finite number of subdomains [18]. We let the disjoint subdomains

be S̃1 and S̃2. We parameterize the manifold by arclength 𝑠 starting at a boundary

of S̃1. Next, we let the overlapping subdomains be S1 = [𝑎1, 𝑏1] and S2 = [𝑎2, 𝑏2].
Since overlapping subdomains are needed, we have 𝑎1 < 0 and 𝑏2 > 𝐿. Define

ℓ1 ≡ 𝑏1 − 𝑎1 and ℓ2 ≡ 𝑏2 − 𝑎2 to be the subdomain lengths. Further, let 𝛿1 = 𝑏1 − 𝑎2

and 𝛿2 = 𝑏2 − (𝑎1 + 𝐿) denote the subdomain overlaps at 𝑠 = ℓ1 and 𝑠 = ℓ2,

respectively. In addition, we assume 0 < 𝛿1 + 𝛿2 < min{ℓ1, ℓ2}. In the CPM, the

overlapping subdomains Ω1 and Ω2, corresponding to S1 and S2, are constructed

using a graph‚based partitioning algorithm applied over the computational tube [13].

Then, the PS‚CPM for equation ˘1¯ isȷ for 𝑛 = 0, 1, . . . and for 𝑗 = 1, 2 solve

{
(𝑐 − Δ#

ℎ
) 𝑢̃𝑛+1

𝑗
= 𝑓 (cpS), in Ω 𝑗 ,

𝑢̃𝑛+1

𝑗
= 𝑢̃𝑛 (cpS), on Γ 𝑗𝑘 , 𝑘 ≠ 𝑗

˘5¯

where Γ 𝑗𝑘 for 𝑗 , 𝑘 = 1, 2 are the boundaries of subdomains 𝑗 and 𝑘 .

To begin, an initial guess is needed over the subdomain boundaries. An iteration

may then be completed by solving all subproblems. This gives new boundary values

that can be used to initiate the next iteration, and so on, until convergence. In this form

of the Schwarz algorithm, there is no concept of a global solution. In order to construct

the global solution, a weighted average of subdomain solutions is utilized [6]. In this

paper, at any time, the approximation of the global solution is given as the union of

the disjoint subdomain solutions 𝑢𝑛 = 𝑢𝑛
1
| S̃1

∪𝑢𝑛
2
| S̃2

. This is called restricted additive

Schwarz ˘RAS¯, and we use the labels PS and RAS interchangeably. Our analysis

examines the equivalent one dimensional periodic problem formulated below.

Theorem 1 In the limit as ℎ → 0, and using two subdomains S1 = [𝑎1, 𝑏1] and

S2 = [𝑎2, 𝑏2], the PS-CPM for the positive surface intrinsic Helmholtz equation ˘5¯

is equivalent to:




(𝑐 − d
2

d𝑠2
)𝑢𝑛+1

1
= 𝑓 , in S1,

𝑢𝑛+1

1
(𝑎1) = 𝑢𝑛

2
(𝑎1 + 𝐿),

𝑢𝑛+1

1
(𝑏1) = 𝑢𝑛

2
(𝑏1),

,




(𝑐 − d
2

d𝑠2
)𝑢𝑛+1

2
= 𝑓 , in S2,

𝑢𝑛+1

2
(𝑎2) = 𝑢𝑛

1
(𝑎2),

𝑢𝑛+1

2
(𝑏2) = 𝑢𝑛

1
(𝑏2 − 𝐿),

˘6¯

where 𝐿 is the manifold length.

Proof For a smooth manifold S, the regularized operator Δ#

ℎ
is consistent with

the Laplace operator on the manifold [11]. Thus the CPM is consistent with the

surface intrinsic PDE problems in the limit ℎ → 0 where ℎ denotes the mesh size.

Parameterizing a one‚dimensional manifold S in R𝑑 by arclength 𝑠, the differential

operator ΔS becomes d
2/d𝑠2, yielding our result. □

In [14], the convergence of ˘6¯ is studied for an equal‚sized partitioning. The

partitioning arising from the PS‚CPM problems in ˘5¯ is performed within the

embedding space. As a consequence, our subdomains will be unequal. This motivates

us to investigate the convergence of the method for an unequal‚sized partitioning.
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By defining the errors 𝜖𝑛
𝑗
= 𝑢𝑛

𝑗
− 𝑢 |S 𝑗

, 𝑗 = 1, 2, and using the linearity of ˘1¯,

iteration ˘6¯ is reduced toȷ




(𝑐 − d
2

d𝑠2
)𝜖𝑛+1

1
= 0, in S1,

𝜖𝑛+1

1
(𝑎1) = 𝜖𝑛

2
(𝑎1 + 𝐿),

𝜖𝑛+1

1
(𝑏1) = 𝜖𝑛

2
(𝑏1),

,




(𝑐 − d
2

d𝑠2
)𝜖𝑛+1

2
= 0, in S2,

𝜖𝑛+1

2
(𝑎2) = 𝜖𝑛

1
(𝑎2),

𝜖𝑛+1

2
(𝑏2) = 𝜖𝑛

1
(𝑏2 − 𝐿).

˘7¯

After solving the ODEs in ˘7¯, error values at the boundaries can be computed. At

each iteration, these error values depend on the error values at the boundaries from

the previous iteration. To state this concisely, we define an error vector at iteration 𝑛

which is comprised of the error values at the boundariesȷ

𝝐
𝑛

:= [𝜖𝑛
1
(𝑏2 − 𝐿), 𝜖𝑛

1
(𝑎2), 𝜖𝑛2 (𝑏1), 𝜖𝑛2 (𝑎1 + 𝐿)]𝑇 . ˘8¯

We obtain, in matrix form, 𝝐𝑛+1 = MPS𝝐
𝑛, where

MPS =



0 0 𝑟1 𝑝1

0 0 𝑞1 𝑠1

𝑟2 𝑝2 0 0

𝑞2 𝑠2 0 0



˘9¯

is called the iteration matrix. It has entries

𝑝 𝑗 =
1 − 𝑒2

√
𝑐 (ℓ 𝑗−𝛿 𝑗−1)

1 − 𝑒2
√
𝑐ℓ 𝑗

𝑒
√
𝑐𝛿 𝑗−1 , 𝑟 𝑗 =

1 − 𝑒2
√
𝑐𝛿 𝑗−1

1 − 𝑒2
√
𝑐ℓ 𝑗

𝑒
√
𝑐 (ℓ 𝑗−𝛿 𝑗−1) ,

𝑞 𝑗 =
1 − 𝑒2

√
𝑐 (ℓ 𝑗−𝛿 𝑗 )

1 − 𝑒2
√
𝑐ℓ 𝑗

𝑒
√
𝑐𝛿 𝑗 , 𝑠 𝑗 =

1 − 𝑒2
√
𝑐𝛿 𝑗

1 − 𝑒2
√
𝑐ℓ 𝑗

𝑒
√
𝑐 (ℓ 𝑗−𝛿 𝑗 ) , ˘10¯

for 𝑗 = 1, 2 and 𝛿0 ≡ 𝛿2. The definitions of 𝛿 𝑗 and ℓ 𝑗 may be found at the beginning

of this section. The following lemma holds for the quantities in ˘10¯ȷ

Lemma 1 ([18])

Suppose 0 < 𝛿1 + 𝛿2 < min{ℓ1, ℓ2}. Then the scalars 𝑝 𝑗 , 𝑞 𝑗 , 𝑟 𝑗 , 𝑠 𝑗 , 𝑗 = 1, 2,

appearing in ˘10¯ satisfy 0 < 𝑞 𝑗 + 𝑠 𝑗 < 1 and 0 < 𝑝 𝑗 + 𝑟 𝑗 < 1.

Now, we arrive at the most important result of this section.

Theorem 2 Under the restrictions on the partitioning of the manifold S detailed

in Lemma 1 above, the PS iteration ˘6¯ for the positive Helmholtz equation on any

closed, smooth one-dimensional manifold converges globally.

Proof We must show the spectral radius of the iteration matrix, 𝜌(MPS), is less than

1. ∥MPS∥∞ bounds the spectral radius, 𝜌(MPS) ≤ ∥MPS∥∞ = max{𝑟 𝑗 + 𝑝 𝑗 , 𝑞 𝑗 + 𝑠 𝑗 }.
In Lemma 1, we have shown that 0 < 𝑝 𝑗 + 𝑟 𝑗 < 1 and 0 < 𝑞 𝑗 + 𝑠 𝑗 < 1. Therefore,

∥MPS∥∞ < 1, and consequently the algorithm converges. □

We define the convergence factor 𝜅 as the ratio of the ∞‚norm of the error

vector ˘8¯ at two steps 𝑛 + 2 and 𝑛, 𝜅 = ∥𝝐𝑛+2∥∞/∥𝝐𝑛∥∞. Considering the inequality



646 Alireza Yazdani, Ronald D. Haynes, and Steven J. Ruuth

∥𝝐𝑛+1∥∞ ≤ ∥MPS∥∞∥𝝐𝑛∥∞, ∥MPS∥2
∞ is an upper bound for the convergence factor.

That is, 𝜅 ≤ ∥MPS∥2
∞. In the following corollary, we show that the our analysis for

the equal‚sized partitioning agrees with the one obtained in [14].

Corollary 1 Assume an equal-sized partitioning for the PS iteration ˘6¯. That is,

S1 = [−𝛿, 𝐿/2 + 𝛿], S2 = [𝐿/2 − 𝛿, 𝐿 + 𝛿]. Then, the convergence factor can be

calculated as 𝜅 ≤ (𝑝 + 𝑟)2 = (𝑒
√
𝑐𝐿/2 + 𝑒

√
𝑐𝛿)2/(1 + 𝑒

√
𝑐 (𝐿/2+𝛿) )2.

Proof If we make the simplifying assumption that both subdomains are of equal

size and have a common overlap size, then 𝑞1 = 𝑞2 = 𝑝1 = 𝑝2 = 𝑝 and 𝑠1 = 𝑠2 =

𝑟1 = 𝑟2 = 𝑟 . The iteration matrix becomes a doubly stochastic matrix with row and

column sums of 𝑝 + 𝑟, and subsequently 𝜌(MPS) = 𝑝 + 𝑟. By a direct substitution

for 𝑝 and 𝑟 , we obtain 𝜅 = 𝜌(MPS)2 = (𝑒
√
𝑐𝐿/2 + 𝑒

√
𝑐𝛿)2/(1 + 𝑒

√
𝑐 (𝐿/2+𝛿) )2. □

4 Numerical Simulation

Here we numerically verify the results obtained in Section 3. Since numerical so‚

lutions of the PS‚CPM and the PS algorithm will be compared, we use RAS as the

domain decomposition method to build a global approximate solution. It is shown

in [6] that RAS and PS are identical iterations and have the same convergence rate.

Hence, we will use RAS‚CPM instead of PS‚CPM hereafter.

Theorem 1 shows that the CPM equipped with RAS as a solver is in the limit

as ℎ → 0 equivalent to RAS applied to a 1D periodic problem. To verify this, we

numerically solve ˘1¯ with 𝑐 = 1 and 𝑓 (𝑠) = sin(2𝜋𝑠/𝐿) using the RAS‚CPM for

the boundary of a Möbius strip with width 1, whose center circle has radius 1. The

initial guess for the discrete solution is taken as 𝑈 (0) = 0. Two disjoint subdomains

are created by splitting the length of the curve in a 1ȷ2 ratio, and overlapping

subdomains are formed using overlaps 𝛿 = 𝛿1 = 𝛿2 = 0.1𝐿. The solution using the

RAS‚CPM with grid spacing ℎ = 0.01 and fourth degree barycentric Lagrangian

interpolation applied in a dimension‚by‚dimension fashion is shown in Fig. 1 ˘left¯.

Here, the disjoint subdomains are visualized as point clouds. Convergence histories

for various grid spacings are depicted in Fig. 1 ˘right¯. Here, the RAS and the RAS‚

CPM contraction factors are compared with the theoretical result. The errors are

defined as the max‚norm of the difference of the DD solution and the single domain

solution. As we observe in Fig.1 ˘right¯, the RAS error has the same decay rate as

that described in Theorem 1 ˘shown as the dashed line¯. In addition, the RAS‚CPM

error tends toward the RAS error as the mesh size is reduced.

As another experiment, ˘1¯ is solved with two equal‚sized subdomains, assuming

S is the unit circle. The disjoint subdomains are shown in Fig. 2 ˘left¯. Fig. 2 ˘right¯

shows the effect of the overlap parameter 𝛿 on RAS‚CPM for three different grids ˘ℎ =

0.05, 0.01, 0.005¯. For a given ℎ and 𝛿, the numerical convergence factor changes

slightly as the iteration progresses, hence we present an average of the convergence

factor over all iterations. To compare with the result in Corollary 1, the theoretical

convergence factor associated with a double iteration, (𝑒𝐿/2 + 𝑒𝛿)2/(1+ 𝑒𝐿/2+𝛿)2, is
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Fig. 1: Left: RAS‚CPM solution of the surface intrinsic Helmholtz equation on edge of a Möbius

strip. The disjoint subdomains are depicted. Right: Error versus the double iteration number.
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Fig. 2: Left: Equal‚sized disjoint subdomains for the unit circle. Right: Comparison of the RAS‚

CPM convergence factor and theoretical convergence factor for different values of overlap parameter

in an equal‚sized subdomain configuration for the unit circle.

shown in Fig. 2 ˘right¯ as a dashed line. The observed RAS‚CPM contraction factor

converges to the theoretical value as the grid quality improves. By increasing the

overlap, 𝜅 is reduced and a better convergence factor is obtained.

5 Conclusion

Employing RAS as a solver for the CPM parallelizes the solution of PDEs on surfaces

and enhances the performance for large scale problems. In this paper, convergence

of the ˘continuous¯ CPM equipped with a restricted additive Schwarz solver was

investigated for a one‚dimensional manifold in R𝑑 . Convergence was shown for

the two‚subdomain case; extensions to any finite number of subdomains is under

investigation [18]. Observed convergence rates agree with our theory as the mesh

spacing is refined. Indeed, the results apply to any convergent discretization ˘e.g., a
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finite element discretization¯ of RAS solvers applied to surface PDEs as the mesh

spacing approaches zero. Finally, note that other variants of Schwarz methods –

sequential restricted additive Schwarz, optimized restricted additive Schwarz, and

multiplicative methods – can be utilized as a solver or a preconditioner for the CPM.

We plan to extend our analysis to these cases as well.

Acknowledgements The authors gratefully acknowledge the financial support of NSERC Canada

˘RGPIN 2016‚04361 and RGPIN 2018‚04881¯.

References

1. J.‚P. Berrut and L. N. Trefethen. Barycentric Lagrange interpolation. SIAM Review, 46˘3¯ȷ501–

517, 2004.
2. M. Bertalmi, L.‚T. Cheng, S. Osher, and G. Sapiro. Variational problems and partial differential

equations on implicit surfaces. J. Comput. Phys., 174˘2¯ȷ759–780, 2001.
3. J. Chu and R. Tsai. Volumetric variational principles for a class of partial differential equations

defined on surfaces and curves. Math. Sci., 5˘2¯ȷ1–38, 2018.
4. P. Degener, J. Meseth, and R. Klein. An adaptable surface parameterization method. IMR,

3ȷ201–213, 2003.
5. A. Demlow and G. Dziuk. An adaptive finite element method for the Laplace–Beltrami operator

on implicitly defined surfaces. SIAM J. Numer. Anal., 45˘1¯ȷ421–442, 2007.
6. E. Efstathiou and M. J. Gander. Why restricted additive Schwarz converges faster than additive

Schwarz. BIT Numer. Math., 43, 2003.
7. I. Glehn, T. März, and C. B. Macdonald. An embedded method‚of‚lines approach to solving

partial differential equations on surfaces, 2013.
8. S. Loisel, J. Côté, M. J. Gander, L. Laayouni, and A. Qaddouri. Optimized domain decompo‚

sition methods for the spherical Laplacian. SIAM J. Numer. Anal., 48˘2¯ȷ524–551, 2010.
9. C. B. Macdonald, J. Brandman, and S. J. Ruuth. Solving eigenvalue problems on curved

surfaces using the closest point method. J. Comput. Phys., 2011.
10. C. B. Macdonald, B. Merriman, and S. J. Ruuth. Simple computation of reaction–diffusion

processes on point clouds. PNAS USA, 110˘23¯ȷ9209–9214, 2013.
11. C. B. Macdonald and S. J. Ruuth. The implicit closest point method for the numerical solution

of partial differential equations on surfaces. SIAM J. Sci. Comput., 31˘6¯ȷ4330–4350, 2010.
12. L. Martin and Y. Tsai. Equivalent extensions of Hamilton‚Jacobi‚Bellman equations on hyper‚

surfaces. J. Sci. Comput., 84ȷ43, 2020.
13. I. C. T. May, R. D. Haynes, and S. J. Ruuth. Schwarz solvers and preconditioners for the closest

point method. SIAM J. Sci. Comput., 42˘6¯ȷA3584–A3609, 2020.
14. A. Qaddouri, L. Laayouni, S. Loisel, J. Côté, and M. J. Gander. Optimized Schwarz methods

with an overset grid for the shallow‚water equationsȷ preliminary results. Appl Numer Math,

58˘4¯ȷ459 – 471, 2008. Selected Papers from the Seventh IMACS International Symposium

on Iterative Methods in Scientific Computing.
15. M. Reuter, FE. Wolter, M. Shenton, and M. Niethammer. Laplace–Beltrami eigenvalues

and topological features of eigenfunctions for statistical shape analysis. CAD, 41˘10¯ȷ739–

755, 2009. Selected Papers from the 2007 New Advances in Shape Analysis and Geometric

Modeling Workshop.
16. S. J. Ruuth and B. Merriman. A simple embedding method for solving partial differential

equations on surfaces. J. Comput. Phys., 227˘3¯ȷ1943–1961, 2008.
17. C. Yang, J. Cao, and X.‚C. Cai. A fully implicit domain decomposition algorithm for shallow

water equations on the cubed‚sphere. SIAM J. Sci. Comput., 32˘1¯ȷ418–438, 2010.
18. A. Yazdani. Convergence study of the domain decomposition of the closest point method.

Master’s thesis, Simon Fraser University, In progress.


