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1 Introduction

We present here an overview of Newton‚Krylov solvers for implicit time discretiza‚

tions of the cardiac Bidomain equations, preconditioned by Balancing Domain De‚

composition with Constraints ˘BDDC¯ [5] or Dual‚Primal Finite Element Tearing

and Interconnecting ˘FETI‚DP¯ [7] algorithms.

The Bidomain model describes the propagation of the electric signal in the cardiac

tissue by means of two parabolic partial diferential equations ˘PDEs¯ [3, 13]; it is

coupled through the non‚linear reaction term to a system of ordinary diferential

equations ˘ODEs¯, modeling the ionic currents through the cell membrane and the

associated opening and closing process of ionic channel gates.

One of the main issues to face when computing these systems is the choice of

an appropriate solver, which can combine computational eiciency and accuracy in

representing the solution. As a matter of fact, the need of accurately representing

phenomena both at macroscopic and at microscopic level leads to time and space

discretizations with millions of degrees of freedom ˘dofs¯ or more. The solution of the

associated large discrete systems for increasing dimensions represent a challenging

computation, requiring eicient parallel solvers [4, 14].

In this work we show some parallel numerical results obtained with two non‚

linear solvers, each of whom derives from a diferent solution strategyȷ a monolithic

˘or coupled¯ solution approach and a staggered ˘or decoupled¯ approach. Both these

approaches arise from an implicit time discretization of the Bidomain model, which
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is solved coupled to or decoupled from the ionic equations, respectively, as in Refs.

[11, 12].

In Sec. 2 a brief description of the model is provided, while in Sec. 3 we present

our solution strategies. Parallel numerical experiments in Sec. 4 using the PETSc

library [1] end this work.

2 The Bidomain cardiac electrical model

The propagation of the electrical impulse in the cardiac tissue is modeled by a system

of two parabolic reaction‚difusion PDEs coupled through the non‚linear reaction

term to a system of ODEs describing the low of ionic currents inward and outward

the cell membraneȷ
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where �� and �� are the intra‚ and extracellular potentials, �(�, �) = �� (�, �) −�� (�, �)

is the transmembrane potential and � represents the opening and closing process of

the ionic channel gates in the cell membrane. Here,�� is the membrane capacitance,

�ion the ionic membrane current ˘both for unit area of the membrane surface¯, � is

the membrane surface to volume ratio and �app is the applied external current. This

system is known in the literature as Bidomain model [3, 13].

In this work, we consider a phenomenological ionic model, named the Rogers‚

McCulloch ionic model [15]. More realistic and complex ionic models have been

integrated in diferent numerical studies, see e.g. Refs. [4, 14].

3 Dual-Primal Newton-Krylov methods

Space and time discretizations. The cardiac domain Ω is discretized in space

with a structured quasi‚uniform grid of hexahedral inite elements, leading to the

semi‚discrete system
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with the stifness and mass block‚matrices A =

[
�� 0

0 ��

]
, M =

[
� −�

−� �

]
.

Regarding the time discretization, in the literature it is very common to adopt

operator splitting strategies [2, 16] or implicit‚explicit ˘IMEX¯ schemes [4, 17], in

order to avoid the elevated computational costs related to the solution of the non‚

linear discrete problem. Here we propose two ways for the solution of the discretized

system using the Backward Euler methodȷ a monolithic, or coupled, solution strategy

where at each time step we solve the non‚linear system with the discrete Bidomain

coupled with the ionic model, as in Refs. [8, 12], and a staggered, or decoupled,

solution approach ˘as in Refs. [9, 11]¯. Both approaches rely on a preconditioned

Krylov method nested within a Newton loop.

Coupled solution approach. The monolithic strategy can be summarized in al‚

gorithmic steps as follows. At the �‚th time step, solve the non‚linear system

Fcoupled (s
�+1) = 0, with s�+1

= (u�+1
�

, u�+1
� ,w�+1¯ȷ

Fcoupled (s
�+1) =
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and being � = ��+1− ��. This non‚linear system

is solved with a Newton methodȷ

1. compute and solve the Jacobian linear system DF(s�) ds�+1
= −F(s�), where

ds�+1 := (du�+1
�

, du�+1
� , dw�+1) is the increment at step � + 1;

2. update u�+1
�

= u�
�
+ du�+1

�
, u�+1

� = u�
� + du�+1

� and w�+1
= w� + dw�+1.

Since the linear system in Step 1 is non‚symmetric ˘due to the presence of the gating

term¯, it is necessary to use the Generalized Minimal Residual method ˘GMRES¯

for its solution.

Decoupled solution approach. As alternative to the previous strategy, the staggered

approach requires irst the solution of the ionic model, then solve and update the

Bidomain equations. For each time step �,

a. given the intra‚ and extracellular potentials at the previous step, hence v :=

u�
�
− u�

� , compute the gating

w�+1 − ��(v,w�+1) = w�;

b. solve and update the Bidomain non‚linear system. Given u�
�,�

at the previous

time step and given w�+1, compute u�+1
= (u�+1

�
, u�+1

� ) by solving the system

Fdecoupled (u
�+1) = G
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The Jacobian linear system associated to the non‚linear problem in step ˘b¯ is sym‚

metric, thus allowing us to use the Conjugate Gradient ˘CG¯ method within each

Newton iteration.

Dual-primal preconditioners. In both approaches, a linear system has to be solved

within each Newton loop, either by GMRES ˘in case of the coupled approach¯ or by

CG method ˘for the decoupled case¯, preconditioned by a dual‚primal substructuring

algorithm.

In this work, we focus on the most common dual‚primal iterative substructuring

algorithms, the BDDC and FETI‚DP methods.

FETI‚DP methods were irst proposed in Ref. [7] and are based on the transposition

of the linear system to a constrained minimization problem.

Conversely, BDDC methods were introduced in Ref. [5] as an alternative to FETI‚DP

and provide a preconditioner for the discretized linear problem.

Convergence rate bound. In Ref. [10] these two algorithms are shown to be spec‚

trally equivalent, thus allowing us to derive a convergence rate estimate for the

preconditioned operator, which holds for both preconditioners in case the same

coarse space is chosen. In the coupled approach, the bound is related to the residual

at the �‚th iteration of GMRES, while in the decoupled strategy the bound is for

the condition number. Details on the derivation of both bounds can be found in the

works of the authors [9, 8].

4 Numerical experiments

The parallel numerical experiments are

performed on an idealized left ventricu‚

lar geometry, modeled as a portion of half

truncated ellipsoid, see Fig. 1.

Boundary and initial conditions represent

an isolated tissue with resting potential.

We simulate the initial excitation process

on the time interval [0, 2] ms following

an extracellular stimulus. Fig. 1: Computational domain.

Diferent supercomputers are taken into accountȷ the Galileo cluster from the Cineca

centre ˘a Linux Ininiband cluster equipped with 1084 nodes, each with 36 2.30

GHz Intel Xeon E5‚2697 v4 cores and 128 GB/node, for a total of 39024 cores,

www.hpc.cineca.it¯ for the tests related to the coupled solution approach and the

weak scaling of the decoupled case; the Linux cluster Indaco at the University of

Milan ˘a Linux Ininiband cluster with 16 nodes, each carrying 2 processors Intel
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Xeon E5‚2683 v4 2.1 GHz with 16 cores each, https://www.indaco.unimi.it/¯

for the strong scaling of the decoupled approach.

Our C code is based on the parallel library PETSc [1] from the Argonne National

Laboratory. BDDC and FETI‚DP preconditioners are built‚in in PETSc library, both

applied with default parameters ˘coarse space made up of vertices and edge averages,

direct subdomain solver with a LU factorization, etc¯, while Boomer Algebraic

MultiGrid ˘bAMG¯ is from the Hypre library [6]. In our tests, we always assign one

subdomain to each processor. In the strong scaling tests, part of the speedup comes

from the superlinear computational complexity of the sparse subdomain solvers

based on LU factorization.

We manually implement the Newton method for the coupled case, with an absolute

residual stopping criterion with tolerance 10−4, while for the decoupled case we

use the default non‚linear solver ˘SNES¯ from PETSc library and we adopt the

default SNES convergence test as stopping criterion, based on the comparison of the

�2‚norm of the non‚linear function at the current iterate and at the current step ˘see

PETSc manual [1] for tolerance values and further details¯. The linear systems arising

in Steps 1 and ˘b¯ of the two approaches are solved with GMRES and CG methods

respectively, both using PETSc default stopping criteria and default tolerances. We

compare the following quantitiesȷ the average Newton iterations per time step nit,

the average linear iterations per Newton iteration lit and the average CPU solution

time per time step time in seconds.

Coupled tests. The linear system arising from the discretization of the Jacobian

problem at each Newton step is solved with GMRES method, preconditioned by

BDDC preconditioners and bAMG.

Coupled weak scaling. We report here a weak scaling test. We ix the local mesh to

12 · 12 · 12 elements and we increase the number of subdomains ˘and therefore the

number of processors¯ from 32 to 256, yielding an ellipsoidal portion of increasing

dimensions. It is clear from Table 1 that BDDC performs better than bAMG in terms

of average number of linear iterations per non‚linear step, as this parameter is lower

for BDDC and does not increase with the number of processors. As a matter of fact,

there is an increasing reduction rate up to ß0% for the average linear iterations. In

contrast, BDDC’s average CPU time is higher than bAMG CPU time ˘we do not

have a clear explanation of this fact¯, but we remark that BDDC timings do not

increase signiicantly when the number of processors is increased from 32 to 256,

while bAMG timings more than double.

Coupled strong scaling. We ix the global mesh to 128 ·128 ·24 elements ˘resulting

in more than 1 million of global dofs¯ and we increase the number of processors

from 32 to 256. As the number of processor increases, the local number of dofs

decreases and BDDC’s average number of linear iterations and CPU times decrease

˘see Table 2¯, while bAMG iterations increase and the CPU timings decrease less

than expected, even if they are lower than BDDC timings. Moreover, in order to test

the eiciency of the proposed solver on the parallel architecture, we compute the

parallel speedup
�1

��
, which is the ratio between the runtime �1 needed by 1 ˘ or �1¯
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Table 1: Coupled weak scaling test. Local mesh of 12 · 12 · 12 elements. Comparison of Newton‚

Krylov solvers preconditioned by BDDC and bAMG. Clusterȷ Galileo.

procs. global n. dofs
BDDC bAMG

nit lit time nit lit time

32 180,075 2 45 6.8 2 142 1.5

64 356,475 2 32 6.9 2 145 1.9

128 705,675 2 23 7.0 2 158 2.1

256 1,404,075 2 23 8.5 2 212 3.2

processor and the average runtime �� needed by � processors to solve the problem.

Here, we set �1 = 32. While bAMG is sub‚optimal, BDDC outperforms the ideal

linear speedup.

Table 2: Coupled strong scaling test. Global mesh of 128 · 128 · 24 elements ˘1,248,075 dofs¯.

Comparison of Newton‚Krylov solvers preconditioned by BDDC and bAMG. Parallel speedup

˘��¯, with ideal speedup in brackets. Clusterȷ Galileo.

procs.
BDDC bAMG

nit lit time �� nit lit time ��

32 2 37 189.3 ‚ 2 187 15.1 ‚

64 2 44 59.1 3.2 ˘2¯ 2 222 9.2 1.6 ˘2¯

128 2 29 20.1 9.4 ˘4¯ 2 240 5.3 2.8 ˘4¯

256 2 46 10.2 18.5 ˘8¯ 2 280 3.2 4.7 ˘8¯

Decoupled tests. The outer Newton loop is solved with the non‚linear solver SNES

of the PETSc library, which implements a Newton method with cubic backtracking

linesearch. The linear system arising from the discretization of the Jacobian problem

at each Newton step is solved with the CG method, preconditioned by BDDC or

FETI‚DP preconditioners.

Decoupled weak scaling. We ix here the local mesh size to 16 · 16 · 16 and we

increase the number of processors from 32 to 2048. Also in this case, the good

performance of the dual‚primal algorithms is conirmed by the average number of

linear iterations per Newton step, which is low and remains stable as the number of

subdomains increases ˘see Table 3¯.

Decoupled strong scaling. We now compare the performance of the dual‚primal

preconditioners while varying the number of processors from 64 to 256 over a time

interval of [0, 100] ms, for a total of 2000 time steps. The global mesh is ixed to

1ß2 · ß6 · 24 elements ˘936,050 dofs¯. We can observe an overall reduction of the

CPU time while increasing the number of subdomains from 64 to 128. As concerns

FETI‚DP behavior, the increase of average CPU time and average number of linear
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Table 3: Decoupled weak scaling test. Local mesh of 16 · 16 · 16 elements. Comparison of Newton‚

Krylov solvers preconditioned by BDDC and FETI‚DP. Clusterȷ Galileo.

procs dofs
BDDC FETI‚DP

nit lit time nit lit time

32 278,850 1 30 5.4 1 20 4.7

64 549,250 1 37 6.2 1 20 6.5

128 1,090,050 1 26 7.5 1 19 6.6

256 2,171,650 1 25 8.7 1 17 10.7

512 4,309,890 1 27 10.5 1 18 11.4

1024 8,586,370 1 28 12.5 1 19 11.0

2048 17,139,330 1 28 26.6 1 19 21.4

iterations between 128 and 256 processors is unexpected and further investigations

should be devoted to explain this result ˘Figure 2¯.
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between BDDC ˘left column¯ and FETI‚DP ˘right column¯ preconditioners. Topȷ average number

of linear iterations per time step; bottomȷ average CPU time in seconds of each SNES solver call.

Clusterȷ Indaco.
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5 Conclusion

We designed and numerically tested two diferent solution strategies for the solution

of implicit time discretizations of the Bidomain model. Each of these solvers is

preconditioned by a dual‚primal substructuring algorithm, which perform better

than the algebraic multigrid method in terms of number of iterations, scalability, and

speedup, even if the computational times of algebraic multigrid are still better for

these parameter settings. Future works should extend these solver to the solution of

coupled cardiac electro‚mechanical models and to more complex ionic models.
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