
Domain Decomposition Algorithms for
Physics-Informed Neural Networks

Hyea Hyun Kim1 and Hee Jun Yang2

1 Introduction

Domain decomposition algorithms are widely used as fast solutions of algebraic

equations arising from discretization of partial diferential equations. The original

algebraic equations are partitioned and solved in each subdomain combined with

an iterative procedure. The resulting solution for the original algebraic equations

is then obtained from the iterative procedure. In such approaches, the convergence

often gets slow as more subdomains are introduced. To accelerate the convergence,

a global coarse problem is formed and combined in the iterative procedure. We refer

[9] for a general introduction to domain decomposition algorithms.

Recently, there have been developed many successful approaches to solve partial

diferential equations using deep neural networks, see [1, 8, 7, 5]. The advantage

of these new approaches is that they can be used for partial diferential equations

without much concern on discretization methods suitable for the given problem. On

the other hand, a suitable design of the neural network and a suitable choice of data

sets for training the parameters are important for these new approaches. In general,

the network can be large and the data set can be also large. The parameter training

then becomes ineicient and even may encounter numerical instability.

The purpose of this study is to develop domain decomposition algorithms for

solutions of partial diferential equations using deep neural networks. The idea is

similar to the classical domain decomposition methods. The problem is solved using

independent smaller neural networks iteratively and the smaller neural networks are

trained as solutions of local problems, that are restriction of the original problem to

smaller subdomains. In previous pioneering studies by [3, 4], the same idea is used

but there has been no study for accelerating the convergence of the iterative scheme.

In this work, an additional global coarse network is introduced and it is trained as

1Department of Applied Mathematics and Institute of Natural Sciences, Kyung Hee Univer‚

sity, Korea. hhkim@khu.ac.kr ·2Department of Mathematics, Kyung Hee University, Korea.

yhjj109@khu.ac.kr

657

658 Hyea Hyun Kim and Hee Jun Yang

a solution of the global problem using a coarse data set. The global coarse network

is then used to accelerate the convergence of the iterative solution obtained from

the independent smaller neural networks. The smaller neural networks and global

coarse network are trained in each iteration. Their parameter training can be done

in parallel. Among several neural network approaches, we will consider the PINN

˘Physics Informed Neural Network¯ method by [7]. Our domain decomposition

approach can be applied to other methods by [1, 8, 5] as well.

In this work we report the irst successful result for parallel algorithms for PINN

using both local networks and one global coarse network. The introduction of the

global coarse network is noble and it accelerate the convergence of the iteration.

Numerical results also present that the use of the global coarse network makes the

parallel algorithm scalable, i.e., the number of iterations is robust to the increase of

the number of subdomains.

This paper is organized as follows. In Section 2, we introduce the method by

PINN for solving partial diferential equations and in Section 3 we propose a two‚

level overlapping domain decomposition algorithm for solving partial diferential

equations utilizing the PINN approach. In Section 4, numerical results are presented

for a model elliptic problem in two dimensions and conclusions are given.

2 Physics informed neural networks (PINN)

We will introduce the physics‚informed neural networks ˘PINN¯ which are trained to

solve supervised learning tasks in order to satisfy any given laws of physics described

by partial diferential equations, see [7]. We consider a general diferential operator

with a boundary condition,

L(�) = � , in Ω,

B(�) = �, on �Ω,
˘1¯

where L can be a diferential operator deined for a function � and B describes a

given boundary condition on �, and � , � are given functions. We assume that the

model problem in ˘1¯ is well‚posed and the solution � exists. We then approximate

the solution � in ˘1¯ by a neural network, � (�; �), that can be trained by minimizing

the cost function J (�) consisting of the two terms

J (�) = J�Ω
(�) + J��Ω

(�),

where

J�Ω
(�) :=

1

|�Ω |

︁

�∈�Ω

|L(� (�; �)) − � (�) |2,

J��Ω
(�) :=

1

|��Ω |

︁

�∈��Ω

|B(� (�; �)) − �(�) |2.

DD Algorithms for Physics‚Informed Neural Networks 659

In the above, �� denotes the collection of points chosen from the region � and |�� |

denotes the number of points in the set �� . The cost function J�Ω
(�) and J��Ω

(�)

are designed so that the optimized neural network � (�; �) satisies the equations in

˘1¯ derived from physics laws.

3 A two-level overlapping algorithm for PINN

We consider the following model elliptic problem in two dimensional domain Ω,

−△� = � in Ω,

� = � on Ω.
˘2¯

We propose an iterative scheme to ind its solution � by using overlapping subdomain

partition, {Ω�}� , with an overlapping width �. For a given � (�) , we solve the following

problem in each subdomain Ω� to ind �
(�+1)
�

,

−△�
(�+1)
�

= � in Ω� ,

�
(�+1)
�

= � (�) on �Ω� ,

�
(�+1)
�

= � (�) in Ω \Ω� .

˘3¯

Using �
(�+1)
�

, the next iterate is given by

� (�+1)
= (1 − ��)� (�) + �

�︁

�=1

�
(�+1)
�

, ˘4¯

where � denotes the number of subdomains and � denotes the relaxation parameter.

Let �� be the maximum number of subdomains sharing the same geometric position

in Ω. With � ≤ 1/��, � (�) converges to the solution � of ˘2¯ under a suitably chosen

space of functions, see [10, 9, 2, 6]. We can rewrite the above iteration formula as

followsȷ for any � in Ω

� (�+1) (�) = (1 − |�(�) |�)� (�) (�) + �
︁

�∈� (�)

�
(�+1)
�

(�), ˘5¯

where �(�) denotes the set of subdomain indices sharing � and |�(�) | denotes the

number of elements in the set �(�). We introduce

�̂ (�+1) (�) :=
1

|�(�) |

︁

�∈� (�)

�
(�+1)
�

(�)

and rewrite the above iteration formula into

660 Hyea Hyun Kim and Hee Jun Yang

� (�+1) (�) = (1 − |�(�) |�)� (�) (�) + |�(�) |��̂ (�+1) (�).

Using this formula, we can see that �̂ (�+1) (�) also converges to �(�).

For � in �(�), the solution �
(�+1)
�

(�) is updated after solving the local problem

in ˘3¯. We thus deine �� (�; �
(�+1)
�

) as a neural network function to approximate

�
(�+1)
�

(�) in each Ω� . Using the method of PINN, we can ind the optimal parameters

�
(�+1)
�

. Using them, we deine

�̂ (�+1) (�) :=
1

|�(�) |

︁

�∈� (�)

�� (�; �
(�+1)
�

). ˘6¯

We now propose the following one‚level methodȷ

Algorithm 1: One-level method ˘inputȷ � (0) , outputȷ �̂ (�+1) ¯

Step 0ȷ Let � (0) (�) be given and � = 0.

Step 1ȷ Find �
(�+1)
�

in �� (�; �
(�+1)
�

) for

−△� = � in Ω� ,

� = � (�) on �Ω� .

Step 2ȷ Update � (�+1) at each data set ��Ω�
as, see ˘6¯,

� (�+1) (�) = (1 − � |�(�) |)� (�) (�) + � |�(�) |�̂ (�+1) .

Step 3ȷ Go to Step 1 with � = � + 1 or set the output as �̂ (�+1) if the stopping

condition is met.

Using suiciently large enough neural network functions �� (�; �
(�)
�

), we can ap‚

proximate �
(�+1)
�

(�) and �̂ (�+1) (�) will thus approximate �̂ (�+1) (�). Since �̂ (�+1) (�)

converges to �(�), �̂ (�+1) (�) will converge to �(�). We note that if one wishes to take

� (�+1) (�) as the inal output then one needs to store all the parameters �
(�)
�

for all

previous steps �. In addition, the evaluation of� (�+1) (�) at any given point � can be

very expensive. We thus take �̂ (�+1) (�) as the inal solution in our algorithm. We will

only need to store the parameters �
(�+1)
�

at the inal step. Since the local problems in

the above algorithm are solved by the PINN method, the function �̂ (�+1) (�) needs to

be evaluated at � in the data set ��Ω�
. In our algorithm, we only store these function

values at each iteration and use them when we solve the local problems ˘3¯ using the

PINN method.

As we can see in numerical results provided in Section 4, the convergence of the

one‚level algorithm gets slower as more subdomains are introduced in the partition.

We thus improve the one‚level algorithm by enriching the boundary condition � (�)

with a suitable coarse correction term. For a given � (�) , we consider the following

global problemȷ

DD Algorithms for Physics‚Informed Neural Networks 661

−△�
(�)
� = � in Ω� ,

−△�
(�)
� = −△� (�) in Ω \Ω� ,

�
(�)
� = � on �Ω,

˘7¯

where Ω� denotes the overlapping region of the subdomain partition {Ω�}� . For the

solution �
(�)
� , we can obtain the following error equation,

−△(� − �
(�)
�) = 0 in Ω� ,

−△(� − �
(�)
�) = −△(� −� (�)) in Ω \Ω� ,

� − �
(�)
� = 0 on �Ω.

˘8¯

From the above error equation, we have � − �
(�)
� with smaller errors than � −� (�) .

We will then ind a coarse correction term�
(�)
� (�; �

(�)
�) that approximates �

(�)
� with

the parameters �
(�)
� determined by the PINN method. Using the coarse correction

term, for � > 0 we set

�̃ (�)
= (1 − �)� (�) + ��

(�)
�

and use it when we evaluate the boundary condition for the local problems in ˘3¯. We

note that when we ind �
(�)
� using the PINN method we will only need to evaluate

−△� (�) at the data set �Ω\Ω�
without the need to store the parameters �

(�)
�

for all

previous steps �.

We now summarize the two‚level methodȷ

Algorithm 2: Two-level method ˘inputȷ � (0) , outputȷ �̂ (�+1) ¯

Step 0ȷ Let � (0) (�) be given and � = 0.

Step 1-1ȷ Find �
(�)
� (�; �

(�)
�) for ˘7¯ and set

�̃ (�) (�) = (1 − �)� (�) (�) + ��
(�)
� (�; �

(�)
�).

Step 1-2ȷ Find �
(�+1)
�

in �� (�; �
(�+1)
�

) for

−△� = � in Ω� ,

� = �̃ (�) on �Ω� .

Step 2ȷ Update � (�+1) (�) at each data set ��Ω�
as, see ˘6¯,

� (�+1) (�) = (1 − � |�(�) |)� (�) (�) + � |�(�) |�̂ (�+1) .

Step 3ȷ Go to Step 1-1 with � = � + 1 or set the output as �̂ (�+1) if the stopping

condition is met.

662 Hyea Hyun Kim and Hee Jun Yang

4 Numerical results

We perform numerical results of the proposed two algorithms for the model problem

in ˘2¯ with � and � given according to the known exact solution �(�, �) and with Ω

as a unit rectangular domain. The domain Ω is partitioned into uniform rectangular

subdomains with an overlapping width �. For the iterates � (�) , we stop the iteration

when the relative �2‚error between the two successive iterates is less than 5 × 10−3.

When training parameters �
(�)
�

and �
(�)
� , we stop the iteration when the relative errors

for cost function values between 100 steps is less than 10−4 or when the number of

iterations is more than the maximum number of epochs, that is set as 5000. For local

problems, we use neural network functions as a two block Resnet with each block

consisting of 10 hidden layers and with Tanh as the activation function, that give

921 parameters �
(�)
�

for each local problem. To train the parameters, we use 200 data

points for �Ω�
and 40 data points for ��Ω�

. For the coarse problem, we use the same

network and the same size of data sets.

In our method, we have two parameters � and �. For �, we can set � as less than

or equal to 1/�� and � as a number between 0 and 1. When � = 0, the two‚level

algorithm is identical to the one‚level algorithm. With � > 0, the method is enhanced

with the coarse correction term.

In Table 1, we report the performance of the proposed method with various � and

� for the exact solution �(�, �) = sin(��) sin(��). The relative �2‚errors to the exact

solution and the number of iterations are presented. We set � as 1/4, note �� = 4.

Without the coarse correction term, i.e., � = 0, the one‚level method shows that the

number of iterations increases as increasing � . For the other choices of �(> 0),

the coarse correction term accelerates the convergence and the number of iterations

seems robust to the increase of the number of subdomains.

Table 1: The performance with � = 1/4 depending on � and � ˘the subdomain partition¯ȷ the

numbers are relative �
2‚errors to the exact solution and the numbers inside the parenthesis are the

number of iterations.

� � = 0 � = 0.25 � = 0.5 � = 1

2 × 2 0.0098˘22¯ 0.0073˘14¯ 0.0117˘19¯ 0.0082˘21¯

3 × 3 0.0282˘34¯ 0.0243˘17¯ 0.0260˘14¯ 0.0310˘14¯

4 × 4 0.0402˘52¯ 0.0070˘18¯ 0.0237˘10¯ 0.0431˘ 8¯

5 × 5 0.0769˘67¯ 0.0255˘21¯ 0.0298˘13¯ 0.0392˘10¯

We compare our Algorithm 1 and that in the previous study by [4]. Under the

same setting with Table 3 of [4], we apply our Algorithm 1 and obtain much less

iteration and more accurate solutions, see Table 2.

To show the advantage of partitioning the problem, we consider a more diicult

problem with the exact solution given by

�(�, �) = 100�(1 − �)�(1 − �) sin((� − 0.5) (� − 0.5)/0.05). ˘9¯

DD Algorithms for Physics‚Informed Neural Networks 663

Table 2: The performance of Algorithm 1 under the same setting for the model in [4, Table 3]ȷ

relative �
2‚errors and the number of iterations ˘numbers inside the parenthesis¯ depending on the

number of layers ˘L¯, and the number of units ˘U¯.

�
L

U
10 20 30 40 50 100

4 2 0.0040˘2¯ 0.0037˘2¯ 0.0030˘2¯ 0.0043˘2¯ 0.0023˘2¯ 0.0029˘2¯

4 3 0.0042˘2¯ 0.0034˘2¯ 0.0046˘2¯ 0.0030˘2¯ 0.0037˘2¯ 0.0061˘2¯

4 4 0.0075˘2¯ 0.0046˘2¯ 0.0038˘2¯ 0.0045˘2¯ 0.0060˘2¯ 0.0047˘2¯

To approximate the highly oscillatory solution with high contrast, we use a single

neural network with its number of parameters as 9109 and with 2000 interior points

and 400 boundary points for training the parameters using 250000 epochs. With

this, we solve the model problem in the whole domain Ω = (0 1)2. For the same

model problem, we partition the domain into 9 overlapping subdomains and employ

a smaller neural network with 921 number of parameters. For the global coarse

network, we use the same number of parameters. For training parameters in both

local and coarse neural networks, 200 interior points and 40 boundary points are

used. The computation time and the accuracy of trained solutions are compared in

Table 3. We can observe the advantage of partitioning with much less computation

time and less errors than the single domain case. When the local solutions are

solved in parallel, the computation time can be further reduced. For the analysis of

computational time, we let �� be the training time for one local or coarse neural

network, and � be the training time for the single neural network of the whole

domain. Let ���� be the number of iterations in our Algorithm 2. Assuming that the

local networks are trained in parallel, the total computation time becomes ���� ×2�� .

With a proper size of local and coarse neural networks, the computation time �� can

become much smaller than � and the total computation time is thus expected to be

much smaller than � .

Table 3: The performance of the proposed method for the model problem in ˘9¯ȷ single domain

and 9 subdomains with diferent � values, the numbers inside the parenthesis are the number of

iterations.

single domain � = 0 � = 0.25 � = 0.5 � = 1.0

�
2‚error 0.0754 0.0820 ˘93¯ 0.0623 ˘56¯ 0.0705 ˘61¯ 0.0793 ˘61¯

time˘sec¯ 289840 74702 49980 54442 54442

In conclusions, a two‚level algorithm suitable for deep neural network architecture

is proposed and tested. By partitioning the large deep neural network, the computation

time is greatly reduced with a more accurate solution in our test example. More

rigorous numerical study and convergence analysis will be done in a more complete

paper.

664 Hyea Hyun Kim and Hee Jun Yang

Acknowledgments: The authors are supported by NRF‚2019R1A2C1010090.

References

1. Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning‚based numerical methods for

high‚dimensional parabolic partial diferential equations and backward stochastic diferential

equations. Commun. Math. Stat., 5˘4¯ȷ349–380, 2017.

2. Martin J. Gander. Schwarz methods over the course of time. Electron. Trans. Numer. Anal.,

31ȷ228–255, 2008.

3. Ke Li, Kejun Tang, Tianfan Wu, and Qifeng Liao. D3mȷ A deep domain decomposition method

for partial diferential equations. IEEE Access, 8ȷ5283–5294, 2019.

4. Wuyang Li, Xueshuang Xiang, and Yingxiang Xu. Deep domain decomposition methodȷ

Elliptic problems. In Mathematical and Scientiic Machine Learning, pages 269–286. PMLR,

2020.

5. Zichao Long, Yiping Lu, and Bin Dong. PDE‚Net 2.0ȷ learning PDEs from data with a

numeric‚symbolic hybrid deep network. J. Comput. Phys., 399ȷ108925, 17, 2019.

6. Jongho Park. Additive Schwarz methods for convex optimization as gradient methods. SIAM

J. Numer. Anal., 58˘3¯ȷ1495–1530, 2020.

7. M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics‚informed neural networksȷ a deep

learning framework for solving forward and inverse problems involving nonlinear partial

diferential equations. J. Comput. Phys., 378ȷ686–707, 2019.

8. Justin Sirignano and Konstantinos Spiliopoulos. DGMȷ a deep learning algorithm for solving

partial diferential equations. J. Comput. Phys., 375ȷ1339–1364, 2018.

9. Andrea Toselli and Olof Widlund. Domain decomposition methods—algorithms and theory,

volume 34 of Springer Series in Computational Mathematics. Springer‚Verlag, Berlin, 2005.

10. Jinchao Xu and Ludmil Zikatanov. The method of alternating projections and the method of

subspace corrections in Hilbert space. J. Amer. Math. Soc., 15˘3¯ȷ573–597, 2002.

