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1 Introduction

In the biology of the cell one has to take into account the situation when two

different materials — for example, the cytoplasm and the nucleus — are separated

by a permeable membrane. Chemicals inside the cell diffuse not only inside both the

nucleus and in the cytoplasm, but they also pass through the membrane as well. A

mathematical model of such phenomenon, which gained some popularity ˘see e.g.

[7, 14] and the literature therein¯ has been introduced by Kedem and Kachalsky,

where a system of diffusive PDEs is coupled by specific boundary conditions on the

inner interface. In this paper we will investigate a simplified problem, hoping our

approach may be applicable to more complicated cases as well.

Let us denote by Ω ⊂ 𝑅𝑑 ˘𝑑 = 2, 3¯ the domain occupied by the cell. It

naturally decomposes into disjoint open setsȷ the surrounding cytoplasm Ω1 and

𝑁 −1 organelles ˘the nucleus, mitochondria, etc.¯, denoted here Ω2, . . . ,Ω𝑁 , so that

Ω̄ =
⋃𝑁
𝑖=1

Ω̄𝑖 and Ω𝑖 ∩Ω 𝑗 = ∅, cf. Figure 1. The interface between the 𝑖‚th organelle

and the outer cell will be denoted Γ𝑖 = 𝜕Ω1 ∩ 𝜕Ω𝑖 = 𝜕Ω𝑖 and for the simplicity of

the notation we set Γ =
⋃𝑁
𝑖=2

Γ̄𝑖 . Our model problem readsȷ

− div(𝜚𝑖∇𝑢𝑖) + 𝐾𝑖𝑢𝑖 = 𝐹𝑖 in Ω𝑖 , 𝑖 = 1, . . . , 𝑁, ˘1¯

with interface conditions

−𝜚1∇𝑢1 · 𝑛1 = 𝐺𝑖 · (𝑢1 − 𝑢𝑖) = 𝜚𝑖∇𝑢𝑖 · 𝑛𝑖 on Γ𝑖 ˘2¯

for 𝑖 = 2, . . . , 𝑁 , where 𝑛𝑖 denotes the unit outer normal vector to Ω𝑖 . The system is

completed with a non‚permeability external boundary condition,
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−𝜚1∇𝑢1 · 𝑛 = 0 on 𝜕Ω. ˘3¯

Here, 𝜚1, . . . , 𝜚𝑁 and 𝐾1, . . . , 𝐾𝑁 are prescribed positive constants, which can be

different between the subdomains. For the source terms we assume 𝐹𝑖 ∈ 𝐿2 (Ω𝑖),

𝑖 = 1, . . . , 𝑁 . The unknown functions 𝑢𝑖 defined in Ω̄𝑖 , 𝑖 = 1, . . . , 𝑁 may represent

e.g. the hes1 mRNA concentration in the cell [14].

Positive constant parameters 𝐺𝑖 model the thickness of the interface; roughly

speaking, the permeability constant 𝐺𝑖 ∼ 1/𝐻𝑖 , where 𝐻𝑖 is the thickness of the

membrane between Ω𝑖 and Ω1; therefore for thin interfaces 𝐺𝑖 ≫ 1. In order to

address the interface conditions ˘2¯, we incorporate them directly into the bilinear

form, obtaining the following weak formulation of ˘1¯–˘3¯ȷ

Problem 1 Find (𝑢1, . . . , 𝑢𝑁 ) ∈ 𝑉 = 𝐻1 (Ω1) × · · · × 𝐻1 (Ω𝑁 ) such that

𝑁∑︁
𝑖=1

∫
Ω𝑖

𝜚𝑖∇𝑢𝑖 · ∇𝜑𝑖 +𝐾𝑖𝑢𝑖𝜑𝑖 𝑑𝑥 +

𝑁∑︁
𝑖=2

∫
Γ𝑖

𝐺𝑖 (𝑢𝑖 − 𝑢1) (𝜑𝑖 − 𝜑1) 𝑑𝑠 =

𝑁∑︁
𝑖=1

∫
Ω𝑖

𝐹𝑖𝜑𝑖 𝑑𝑥

for all (𝜑1, . . . , 𝜑𝑁 ) ∈ 𝑉 .

The bilinear form appearing in Problem 1 is symmetric and elliptic. Note that the

interface integral term in Problem 1 results from the permeability condition ˘2¯ and

it penalizes the jump of the solution across the interface Γ.

We discretize Problem 1 with a composite discontinuous Galerkin ℎ‚𝑝 finite

element method [8]. Inside Ω𝑖 , we use a continuous ℎ‚𝑝 method, while allowing for

the discontinuity of the solution across Γ. In order not to complicate the exposition,

we will assume from now on that each Ω𝑖 is a polyhedron.

Let us define a simplicial, quasi‚uniform, conforming triangulation Tℎ with mesh

size ℎ over Ω, whose elements are aligned with Ω𝑖 , so that Γ crosses no element in

Tℎ. In this way each Ω𝑖 , 𝑖 = 1, . . . , 𝑁 is supplied with its own triangulation Tℎ (Ω𝑖).

We define the corresponding local continuous finite element spaces as

𝑉
𝑝

ℎ
(Ω𝑖) = {𝑣 ∈ 𝐶 (Ω𝑖) : 𝑣 |𝐾 ∈ P 𝑝 (𝐾) ∀𝐾 ∈ Tℎ (Ω𝑖)},

where P 𝑝 is the space of polynomials of degree at most 𝑝 ≥ 1. The finite element

approximation of Problem 1 then readsȷ

Problem 2 Find 𝑢 ∈ 𝑉
𝑝

ℎ
= {𝑣 ∈ 𝐿2 (Ω) : 𝑣 |Ω𝑖 ∈ 𝑉

𝑝

ℎ
(Ω𝑖), 𝑖 = 1, . . . , 𝑁} such that

A(𝑢, 𝑣) =
∑𝑁
𝑖=1

∫
Ω𝑖
𝐹𝑖𝜑𝑖 𝑑𝑥 for all 𝜑 ∈ 𝑉

𝑝

ℎ
, where

A(𝑢, 𝑣) =

𝑁∑︁
𝑖=1

∫
Ω𝑖

𝜚𝑖∇𝑢𝑖 · ∇𝜑𝑖 + 𝐾𝑖𝑢𝑖𝜑𝑖 𝑑𝑥 +

𝑁∑︁
𝑖=2

∫
Γ𝑖

𝐺𝑖 · (𝑢𝑖 − 𝑢1) (𝜑𝑖 − 𝜑1) 𝑑𝑠

Our goal in this paper is to describe and experimentally evaluate the performance

of a preconditioner for Problem 2, based on the additive Schwarz method, see e.g.

[15], in terms of the convergence rate of the preconditioned conjugate gradients

iterative solver. The penalty constant 𝐺𝑖 is an independent parameter of the original
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problem, in contrast to the analogous term in the interior penalty discontinuous

Galerkin method. For the latter, a preconditioner for Poisson equation with 𝜚𝑖 =

1 was developed and proved optimal with respect to discretization and penalty

constant in [5], where numerical evidence was provided that this method leads to

the condition number which grows linearly with the contrast ratio in the diffusion

coefficient. Another approach was considered in [9] and [12], where it was proved the

convergence rate is uniformly bounded with respect to diffusion coefficient jumps;

however, the dependence on the penalizing constant was not investigated. Here, we

provide extensive tests of the preconditioning properties of a method first introduced

in [13], which is inspired by [5] and [12]. It turns out that the method considered

here is robust with respect to both the problem’s parameters and to discretization

parameters as well.

The rest of paper is organized as follows. In Section 2, a preconditioner based on

the additive Schwarz method for solving Problem 2 is presented. We report on its

performance in a series of numerical experiments in Section 3. We conclude with

final remarks in Section 4.

2 Additive Schwarz preconditioner

In this section we consider a preconditioner based on the nonoverlapping additive

Schwarz method, first proposed, in a different setting, in [2] and later developed in

many papers, including [9, 4, 12, 3]. The space 𝑉
𝑝

ℎ
is decomposed as followsȷ

𝑉
𝑝

ℎ
= 𝑉0 +

𝑁∑︁
𝑖=1

𝑉𝑖 ,

where for 𝑖 = 1, . . . , 𝑁 the local spaces are

𝑉𝑖 = {𝑣 ∈ 𝑉
𝑝

ℎ
: 𝑣 |Ω 𝑗 = 0 for all 𝑗 ≠ 𝑖},

so that 𝑉𝑖 is a zero–extension of functions from 𝑉
𝑝

ℎ
(Ω𝑖). Note that 𝑉

𝑝

ℎ
is already

a direct sum of these local spaces. In the setting of Problem 2, the main goal of

the coarse space 𝑉0 is to deal with the penalization term; we define 𝑉0 as the finite

element space of piecewise polynomial functions which are continuous in entire Ω,

𝑉0 = {𝑣 ∈ 𝐶 (Ω) : 𝑣 |𝐾 ∈ P 𝑝 (𝐾) for all 𝐾 ∈ Tℎ}.

The choice of the coarse space is inspired by the work by Antonietti et al. [5] for

the standard Poisson problem and notably leads to a problem whose number of

unknowns is smaller than the original only by a small fraction.

As mentioned above, A(·, ·) is symmetric positive definite on 𝑉
𝑝

ℎ
⊂ 𝑉 . We

define operators 𝑇𝑖 : 𝑉
𝑝

ℎ
→ 𝑉𝑖 , 𝑖 = 0, 1, . . . , 𝑁 , by “inexact” solvers 𝐴𝑖 (𝑇𝑖𝑢, 𝑣) =

A(𝑢, 𝑣) ∀𝑣 ∈ 𝑉𝑖 . We will assume that 𝐴𝑖 (·, ·) are symmetric, positive definite, and
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they induce a linear operator which is spectrally equivalent to the operator induced

by A(·, ·) on 𝑉𝑖 . The preconditioned operator is

𝑇 = 𝑇0 +

𝑁∑︁
𝑖=1

𝑇𝑖 . ˘4¯

While all 𝑇𝑖 , 𝑖 = 0, 1, . . . , 𝑁 , can be applied in parallel, the performance of the

preconditioner is affected by the specific choice of subspace solvers 𝐴𝑖 (·, ·). In the

experiments in the following section, we will choose the algebraic multigrid ˘AMG¯

solvers, see e.g. [16]. In particular, it is well known that AMG can be a robust

preconditioner for discontinuous coefficient problems discretized with continuous

finite elements, so a parallel AMG makes a reasonable choice for the inexact solver on

𝑉0 ˘other choices, e.g. the additive average Schwarz method [10], are also possible¯.

From the definition of 𝑇𝑖 it follows that virtually all degrees of freedom are solved

twice when 𝑇 is applied, so there is room for the improvement of the complexity

of the method. On the other hand, as it will be shown in the following section, the

method converges independently of the size of the permeability coefficients.

3 Numerical experiments

Since the number of problem parameters is large we restrict ourselves to the case

when 𝜚1 = 𝐾1 = 1 and 𝜚2 = . . . = 𝜚𝑁 , 𝐾2 = . . . = 𝐾𝑁 and 𝐺2 = . . . = 𝐺𝑁 = 𝐺.

Our goal in this section is to investigate the influence of various parameters of

the problemȷ the diffusion coefficient contrast 𝜚 = 𝜚2/𝜚1, the reaction coefficient

contrast 𝐾 = 𝐾2/𝐾1, the value of the permeability coefficient 𝐺, the number of

subdomains 𝑁 , and discretization parametersȷ the mesh size and the polynomial

degree, on the convergence rate of the preconditioned conjugate gradients ˘PCG¯

iteration and the condition number of𝑇 . Our implementation is based on the FEniCS

software [1] with PETSc [6] as the linear algebra backend. For the inexact solvers on

the subspaces we chose the algebraic multigrid methodȷ BoomerAMG solver from

the hypre library [11], with default parameters. We performed tests for Ω in 2D and

3D; example domains are depicted in Figure 1. The organelles were allowed to touch

neither the boundary of the domain, nor other organelles.

The domain Ω was triangulated with unstructured, quasi‚uniform mesh with

resolution parameter 𝑟 , roughly proportional to ℎ−1. For the finite element polynomial

degrees 1 ≤ 𝑝 ≤ 3 this resulted in discrete problem sizes summarized in Table 1.

In tables below, we report the number of iterations required to reduce the initial

residual norm by a factor of 10
8; in parentheses, we also provide the condition

number estimate of 𝑇 , with the mantissa rounded to the nearest integer. The initial

guess was always equal to zero. If the convergence criterion was not reached in 100

iterations, we place a dash. Experiments which were not performed due to hardware

limitations are marked with ‘N/A‘. For comparison, we also include results when the
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Fig. 1: Types of domains and subdomains. Leftȷ elliptic shaped Ω with regularly placed circular

𝑁 = 11 organelles. Centerȷ elliptic shapedΩwith randomly placed nonoverlapping circular 𝑁 = 33

organelles. Rightȷ 3D ellipsoid with regularly placed organelles ˘visualized is a cross–section of

the domain; colors reflect the value of the solution¯.

↓ 𝑟 → 𝑝 1 2 3

16 4.4 · 10
2

1.7 · 10
3

3.7 · 10
3

32 1.7 · 10
3

6.5 · 10
3

1.4 · 10
4

64 6.2 · 10
3

2.5 · 10
4

5.5 · 10
4

128 2.5 · 10
4

ß.7 · 10
4

2.2 · 10
5

↓ 𝑟 → 𝑝 1 2 3

16 1.3 · 10
4

ß.6 · 10
4

3.2 · 10
5

24 6.1 · 10
4

4.7 · 10
5 N/A

32 ß.6 · 10
4

7.4 · 10
5 N/A

Table 1: Approximate total number of degrees of freedom for various values of mesh resolution

parameter 𝑟 and polynomial degree 𝑝. Leftȷ 2D case; rightȷ 3D case.

problem was solved with the PCG, where the BoomerAMG was used to precondition

the whole discrete system resulting from Problem 2.

While varying other parameters, if not specified otherwise, we assume default

values 𝜚 = 𝐾 = 1, 𝑝 = 2, 𝑁 = 22 and 𝑟 = 128 in 2D case or 𝑟 = 32 in 3D case. In

Tables 2–3 we investigate the dependence of the convergence rate on 𝑟 , 𝑝, 𝜚, 𝐾 for

both moderate and very large value of 𝐺. It turns out that the performance of 𝑇 is

essentially uniform across the range ˘with some small degradation for certain extreme

values of 𝜚 or 𝐾¯ regardless of 𝐺, while the AMG suffers for most combinations of

parameters when 𝐺 is large. Tables 6–7 confirm analogous behavior in 3D.

In Table 4 we repeat the first experiment with irregularly scattered organelles

˘cf. the middle picture in Figure 1¯ with no significant differences. From Table 5

it follows 𝑇 performs well, independently of the number of inclusions, again, with

some increase of the number of iterations for large 𝜚.

Finally, in Table 8 we provide more detailed insight into the convergence rate of

𝑇 for 𝐺 in the range 10
0 . . . 10

12, while keeping other parameters fixed. It turns out

that the number of iterations of 𝑇 stays essentially constant.

4 Conclusions

Numerical experiments indicate the preconditioner under consideration performs

well in a broad range of problem parameters. The main advantage of the proposed

preconditioner over the AMG preconditioner applied directly to the discrete prob‚
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↓ 𝑟 → 𝑝 1 2 3 1 2 3

16 10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 10 ˘2 · 10
0¯ 6 ˘1 · 10

0¯ 6 ˘1 · 10
0¯ 7 ˘1 · 10

0¯

32 10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 10 ˘2 · 10
0¯ 6 ˘1 · 10

0¯ 6 ˘1 · 10
0¯ 7 ˘1 · 10

0¯

64 10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 10 ˘2 · 10
0¯ 6 ˘1 · 10

0¯ 6 ˘1 · 10
0¯ 7 ˘1 · 10

0¯

128 10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 11 ˘2 · 10
0¯ 6 ˘1 · 10

0¯ 7 ˘1 · 10
0¯ 7 ˘1 · 10

0¯

16 7 ˘2 · 10
0¯ ß ˘2 · 10

0¯ 11 ˘3 · 10
0¯ 46 ˘3 · 10

5¯ ß6 ˘3 · 10
5¯ −

32 ß ˘2 · 10
0¯ ß ˘2 · 10

0¯ 11 ˘2 · 10
0¯ 6ß ˘3 · 10

5¯ − −

64 ß ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 11 ˘2 · 10
0¯ ß2 ˘3 · 10

5¯ − −

128 ß ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 11 ˘3 · 10
0¯ − − −

Table 2: Iteration count ˘the condition number estimate in parentheses¯ for varying mesh resolution

𝑟 and polynomial degree 𝑝ȷ 𝑇 ˘left¯ vs. AMG preconditioner ˘right¯. Topȷ 𝐺 = 10
0; bottomȷ

𝐺 = 10
6. 2D case, regularly placed 𝑁 = 22 subdomains. 𝜚 = 𝐾 = 1.

↓ 𝜚 → 𝐾 10
−6

10
0

10
6

10
−6

10
0

10
6

10
−6

10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 10 ˘2 · 10
0¯ 13 ˘3 · 10

0¯ 13 ˘3 · 10
0¯ 7 ˘1 · 10

0¯

10
0

12 ˘3 · 10
0¯ 10 ˘2 · 10

0¯ 10 ˘2 · 10
0¯ ß ˘2 · 10

0¯ 7 ˘1 · 10
0¯ 7 ˘1 · 10

0¯

10
6

15 ˘4 · 10
0¯ 13 ˘3 · 10

0¯ 11 ˘2 · 10
0¯ 11 ˘2 · 10

0¯ ß ˘1 · 10
0¯ 7 ˘1 · 10

0¯

10
−6

11 ˘2 · 10
0¯ 12 ˘3 · 10

0¯ 11 ˘2 · 10
0¯ − − 40 ˘4 · 10

1¯

10
0

10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 11 ˘2 · 10
0¯ − − 40 ˘4 · 10

1¯

10
6

14 ˘3 · 10
0¯ 13 ˘3 · 10

0¯ 10 ˘2 · 10
0¯ 52 ˘1 · 10

6¯ 44 ˘7 · 10
5¯ 13 ˘3 · 10

0¯

Table 3: Iteration count ˘the condition number estimate in parentheses¯ for varying contrast ratios

𝜚 and 𝐾 for 𝑇 ˘left¯ vs. AMG preconditioner ˘right¯. Topȷ 𝐺 = 10
0; bottomȷ 𝐺 = 10

6. 2D case,

regularly placed 𝑁 = 22 subdomains. 𝑟 = 128, 𝑝 = 2.

↓ 𝑟 → 𝑝 1 2 3 1 2 3

16 ß ˘2 · 10
0¯ ß ˘2 · 10

0¯ 10 ˘2 · 10
0¯ 6 ˘1 · 10

0¯ 6 ˘1 · 10
0¯ 7 ˘1 · 10

0¯

32 10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 10 ˘2 · 10
0¯ 6 ˘1 · 10

0¯ 6 ˘1 · 10
0¯ 7 ˘1 · 10

0¯

64 10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 10 ˘2 · 10
0¯ 6 ˘1 · 10

0¯ 6 ˘1 · 10
0¯ 7 ˘1 · 10

0¯

128 10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 10 ˘2 · 10
0¯ 6 ˘1 · 10

0¯ 7 ˘1 · 10
0¯ 8 ˘1 · 10

0¯

16 7 ˘2 · 10
0¯ ß ˘2 · 10

0¯ 10 ˘2 · 10
0¯ 32 ˘2 · 10

5¯ 64 ˘3 · 10
5¯ ß3 ˘3 · 10

5¯

32 8 ˘2 · 10
0¯ ß ˘2 · 10

0¯ 11 ˘2 · 10
0¯ 68 ˘3 · 10

5¯ − −

64 ß ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 11 ˘2 · 10
0¯ 85 ˘3 · 10

5¯ − −

128 10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 12 ˘3 · 10
0¯ − − −

Table 4: Iteration count ˘the condition number estimate in parentheses¯ for varying mesh resolution

𝑟 and polynomial degree 𝑝ȷ𝑇 ˘left¯ vs. AMG preconditioner ˘right¯. Topȷ𝐺 = 10
0 bottomȷ𝐺 = 10

6.

2D case, irregularly placed 𝑁 = 1ß subdomains. 𝜚 = 𝐾 = 1.

lem is the robustness of the former with respect to the permeability parameter 𝐺.

Theoretical analysis of the preconditioner will be presented elsewhere.
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→ 𝑁 1ß 35 51 1ß 35 51

↓ 𝜚

10
−6

10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 11 ˘2 · 10
0¯ 12 ˘3 · 10

0¯ 13 ˘3 · 10
0¯ 16 ˘4 · 10

0¯

10
0

10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 10 ˘2 · 10
0¯ 7 ˘1 · 10

0¯ 7 ˘1 · 10
0¯ 7 ˘1 · 10

0¯

10
6

12 ˘2 · 10
0¯ 13 ˘3 · 10

0¯ 14 ˘3 · 10
0¯ 8 ˘1 · 10

0¯ ß ˘1 · 10
0¯ 10 ˘1 · 10

0¯

10
−6

11 ˘2 · 10
0¯ 11 ˘2 · 10

0¯ 11 ˘2 · 10
0¯ − − −

10
0

10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 10 ˘2 · 10
0¯ − − −

10
6

13 ˘3 · 10
0¯ 13 ˘3 · 10

0¯ 13 ˘3 · 10
0¯ 44 ˘7 · 10

5¯ 61 ˘7 · 10
5¯ 6ß ˘ß · 10

5¯

Table 5: Iteration count ˘the condition number estimate in parentheses¯ for varying contrast ratios

𝜚 and number of subdomains 𝑁 ȷ 𝑇 ˘left¯ vs. AMG preconditioner ˘right¯. Topȷ 𝐺 = 10
0 bottomȷ

𝐺 = 10
6. 2D case, irregularly placed subdomains. 𝑟 = 128, 𝑝 = 2, 𝐾 = 1.

↓ 𝑟 → 𝑝 1 2 3 1 2 3

24 10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 11 ˘3 · 10
0¯ 5 ˘1 · 10

0¯ 7 ˘2 · 10
0¯ ß ˘2 · 10

0¯

32 ß ˘2 · 10
0¯ ß ˘2 · 10

0¯ N/A 5 ˘1 · 10
0¯ 6 ˘1 · 10

0¯ N/A

48 ß ˘2 · 10
0¯ 10 ˘2 · 10

0¯ N/A 5 ˘1 · 10
0¯ 6 ˘1 · 10

0¯ N/A

32 8 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 11 ˘3 · 10
0¯ 86 ˘1 · 10

5¯ − −

64 7 ˘2 · 10
0¯ ß ˘2 · 10

0¯ N/A 83 ˘1 · 10
5¯ − N/A

128 8 ˘2 · 10
0¯ ß ˘2 · 10

0¯ N/A ß2 ˘1 · 10
5¯ − N/A

Table 6: Iteration count ˘the condition number estimate in parentheses¯ for varying mesh resolution

𝑟 and polynomial degree 𝑝ȷ𝑇 ˘left¯ vs. AMG preconditioner ˘right¯. Topȷ𝐺 = 10
0 bottomȷ𝐺 = 10

6.

3D case. 𝜚 = 𝐾 = 1, 𝑁 = 22.

↓ 𝜚 → 𝐾 10
−6

10
0

10
6

10
−6

10
0

10
6

10
−6

ß ˘2 · 10
0¯ 11 ˘2 · 10

0¯ 12 ˘2 · 10
0¯ ß ˘2 · 10

0¯ 10 ˘2 · 10
0¯ 12 ˘2 · 10

0¯

10
0

10 ˘2 · 10
0¯ 10 ˘2 · 10

0¯ 12 ˘2 · 10
0¯ 7 ˘1 · 10

0¯ 6 ˘1 · 10
0¯ 12 ˘2 · 10

0¯

10
6

12 ˘3 · 10
0¯ 11 ˘2 · 10

0¯ ß ˘2 · 10
0¯ ß ˘1 · 10

0¯ 8 ˘1 · 10
0¯ 6 ˘1 · 10

0¯

10
−6

ß ˘2 · 10
0¯ 11 ˘2 · 10

0¯ 15 ˘3 · 10
0¯ − − 42 ˘3 · 10

1¯

10
0

ß ˘2 · 10
0¯ ß ˘2 · 10

0¯ 15 ˘3 · 10
0¯ − − 42 ˘3 · 10

1¯

10
6

12 ˘3 · 10
0¯ 12 ˘3 · 10

0¯ 10 ˘2 · 10
0¯ 34 ˘6 · 10

5¯ 33 ˘5 · 10
5¯ 14 ˘4 · 10

0¯

Table 7: Iteration count ˘the condition number estimate in parentheses¯ for varying contrast ratios

𝜚 and 𝐾 ȷ 𝑇 ˘left¯ vs. AMG preconditioner ˘right¯. Topȷ 𝐺 = 10
0; bottomȷ 𝐺 = 10

6. 3D case,

𝑟 = 32, 𝑝 = 2, 𝑁 = 22.
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0

10
2

10
4

10
6
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8

10
10
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12
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