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1 Introduction

This paper is concerned with additive Schwarz methods for convex optimization

problems of the form

min
𝑢∈𝑉

{𝐸 (𝑢) := 𝐹 (𝑢) + 𝐺 (𝑢)} , ˘1¯

where 𝑉 is a reflexive Banach space, 𝐹 : 𝑉 → R is a Frechét differentiable convex

function, and 𝐺 : 𝑉 → R is a proper, convex, lower semicontinuous function which

is possibly nonsmooth. We further assume that 𝐸 is coercive, so that ˘1¯ admits a

solution 𝑢∗ ∈ 𝑉 . There are plenty of scientific problems of the form ˘1¯, e.g., nonlinear

elliptic problems [13], variational inequalities [1, 12], and mathematical imaging

problems [5, 10], and has been much research on Schwarz methods corresponding

to them.

In this paper, we present a unified view to some notable recent results [8, 9]

on additive Schwarz methods for convex optimization ˘1¯. The starting point is

the generalized additive Schwarz lemma presented in [9]. Based on the relevancy

between additive Schwarz methods and gradient methods for ˘1¯ investigated in the

generalized additive Schwarz lemma, two main results are consideredȷ the abstract

convergence theory [9] that generalizes some important existing results [1, 13, 15]

and the momentum acceleration scheme [8] that greatly improves the convergence

rate for additive Schwarz methods. In addition, we propose a novel backtracking

strategy for additive Schwarz methods that further improves the convergence rate. We

present numerical results for additive Schwarz methods equipped with the proposed

backtracking strategy in order to highlight numerical efficiency.
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2 Additive Schwarz methods

In this section, we present an abstract additive Schwarz method for ˘1¯. In what

follows, an index 𝑘 runs from 1 to 𝑁 . Let 𝑉𝑘 be a reflexive Banach space and

𝑅∗
𝑘

: 𝑉𝑘 → 𝑉 be a bounded linear operator such that 𝑉 =
∑𝑁
𝑘=1 𝑅

∗
𝑘
𝑉𝑘 and its adjoint

𝑅𝑘 : 𝑉∗ → 𝑉∗
𝑘

is surjective. In order to describe local problems, we define 𝑑𝑘 : 𝑉𝑘 ×

𝑉 → R and 𝐺𝑘 : 𝑉𝑘 × 𝑉 → R as functions which are proper, convex, and lower

semicontinuous with respect to their first arguments. For positive constants 𝜏 and 𝜔,

an additive Schwarz operator ASM𝜏,𝜔 : 𝑉 → 𝑉 is defined by

ASM𝜏,𝜔 (𝑣) = 𝑣 + 𝜏

𝑁∑︁

𝑘=1

𝑅∗
𝑘 �̃�𝑘 ,

where

�̃�𝑘 ∈ arg min
𝑤𝑘 ∈𝑉𝑘

{
𝐹 (𝑣) + ⟨𝐹 ′(𝑣), 𝑅∗

𝑘𝑤𝑘⟩ + 𝜔𝑑𝑘 (𝑤𝑘 , 𝑣) + 𝐺𝑘 (𝑤𝑘 , 𝑣)
}
. ˘2¯

We note that ˘2¯ may admits nonunique minimizers; we take �̃�𝑘 as any one among

them in this case. If we set

𝑑𝑘 (𝑤𝑘 , 𝑣) = 𝐷𝐹 (𝑣 + 𝑅
∗
𝑘𝑤𝑘 , 𝑣), 𝐺𝑘 (𝑤𝑘 , 𝑣) = 𝐺 (𝑣 + 𝑅∗

𝑘𝑤𝑘), 𝜔 = 1 ˘3a¯

in ˘2¯, then the minimization problem is reduced to

min
𝑤𝑘 ∈𝑉𝑘

𝐸 (𝑣 + 𝑅∗
𝑘𝑤𝑘), ˘3b¯

which is the case of exact local problems. Here 𝐷𝐹 denotes the Bregman distance

𝐷𝐹 (𝑢, 𝑣) = 𝐹 (𝑢) − 𝐹 (𝑣) − ⟨𝐹 ′(𝑣), 𝑢 − 𝑣⟩ , 𝑢, 𝑣 ∈ 𝑉.

We note that other choices of 𝑑𝑘 and𝐺𝑘 , i.e., cases of inexact local problems, include

various numerical methods such as block coordinate descent methods and constraint

decomposition methods [5, 12]; see [9, Sect. 6.4] for details.

The abstract additive Schwarz method for ˘1¯ is presented in Algorithm 1. Con‚

stants 𝜏0 and 𝜔0 in Algorithm 1 will be given in Section 3. Note that dom𝐺 denotes

the effective domain of 𝐺, i.e., dom𝐺 = {𝑣 ∈ 𝑉 : 𝐺 (𝑣) < ∞} .

Algorithm 1 Additive Schwarz method for (1)

Choose 𝑢 (0) ∈ dom𝐺, 𝜏 ∈ (0, 𝜏0 ], and 𝜔 ≥ 𝜔0.

for 𝑛 = 0, 1, 2, . . .

𝑢 (𝑛+1)
= ASM𝜏,𝜔 (𝑢 (𝑛) )

end
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An important observation made in [9, Lemma 4.5] is that Algorithm 1 can

be interpreted as a kind of a gradient method equipped with a nonlinear distance

function [14]. A rigorous statement is presented in the following.

Proposition 1 (generalized additive Schwarz lemma)

For 𝜏, 𝜔 > 0, we have

ASM𝜏,𝜔 (𝑣) = arg min
𝑢∈𝑉

{
𝐹 (𝑣) + ⟨𝐹 ′(𝑣), 𝑢 − 𝑣⟩ + 𝑀𝜏,𝜔 (𝑢, 𝑣)

}
, 𝑣 ∈ 𝑉,

where the functional 𝑀𝜏,𝜔 : 𝑉 ×𝑉 → R is given by

𝑀𝜏,𝜔 (𝑢, 𝑣) = 𝜏 inf

{
𝑁∑︁

𝑘=1

(𝜔𝑑𝑘 + 𝐺𝑘) (𝑤𝑘 , 𝑣) : 𝑢 − 𝑣 = 𝜏

𝑁∑︁

𝑘=1

𝑅∗
𝑘𝑤𝑘 , 𝑤𝑘 ∈ 𝑉𝑘

}

+ (1 − 𝜏𝑁)𝐺 (𝑣), 𝑢, 𝑣 ∈ 𝑉.

In the field of mathematical optimization, there has been numerous research on

gradient methods for solving convex optimization problems [4, 6, 14]. Therefore,

invoking Proposition 1, we can adopt many valuable tools from the field of mathemat‚

ical optimization in order to analyze and improve Schwarz methods. In particular,

we present two fruitful results in the remainder of the paperȷ novel convergence

theory [9] and acceleration [8] for additive Schwarz methods.

3 Convergence theory

This section is devoted to an abstract convergence theory of additive Schwarz meth‚

ods for convex optimization. The convergence theory introduced in this section

directly generalizes the classical theory for linear problems [15, Chapter 2] to con‚

vex optimization problems. Similar to [15, Chapter 2], the following three conditions

are consideredȷ stable decomposition, strengthened convexity, and local stability.

Assumption 1 (stable decomposition)

There exists a constant 𝑞 > 1 such that for any bounded and convex subset 𝐾 of

𝑉 , the following holdsȷ for any 𝑢, 𝑣 ∈ 𝐾 ∩ dom𝐺, there exists 𝑤𝑘 ∈ 𝑉𝑘 , 1 ≤ 𝑘 ≤ 𝑁 ,

with 𝑢 − 𝑣 =
∑𝑁
𝑘=1 𝑅

∗
𝑘
𝑤𝑘 , such that

𝑁∑︁

𝑘=1

𝑑𝑘 (𝑤𝑘 , 𝑣) ≤
𝐶
𝑞

0,𝐾

𝑞
∥𝑢 − 𝑣∥𝑞 ,

𝑁∑︁

𝑘=1

𝐺𝑘 (𝑤𝑘 , 𝑣) ≤ 𝐺 (𝑢) + (𝑁 − 1)𝐺 (𝑣),

where 𝐶0,𝐾 is a positive constant depending on 𝐾 .

Assumption 2 (strengthened convexity)

There exists a constant 𝜏0 ∈ (0, 1] which satisfies the followingȷ for any 𝑣 ∈ 𝑉 ,

𝑤𝑘 ∈ 𝑉𝑘 , 1 ≤ 𝑘 ≤ 𝑁 , and 𝜏 ∈ (0, 𝜏0], we have
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(1 − 𝜏𝑁) 𝐸 (𝑣) + 𝜏

𝑁∑︁

𝑘=1

𝐸 (𝑣 + 𝑅∗
𝑘𝑤𝑘) ≥ 𝐸

(

𝑣 + 𝜏

𝑁∑︁

𝑘=1

𝑅∗
𝑘𝑤𝑘

)

.

Assumption 3 (local stability)

There exists a constant 𝜔0 > 0 which satisfies the followingȷ for any 𝑣 ∈ dom𝐺,

and 𝑤𝑘 ∈ 𝑉𝑘 , 1 ≤ 𝑘 ≤ 𝑁 , we have

𝐷𝐹 (𝑣 + 𝑅
∗
𝑘𝑤𝑘 , 𝑣) ≤ 𝜔0𝑑𝑘 (𝑤𝑘 , 𝑣), 𝐺 (𝑣 + 𝑅∗

𝑘𝑤𝑘) ≤ 𝐺𝑘 (𝑤𝑘 , 𝑣).

Assumption 1 is compatible with various variants of stable decomposition pre‚

sented in existing works [1, 13, 15]. Assumption 2 trivially holds with 𝜏0 = 1/𝑁 due

to the convexity of 𝐸 . However, a better value for 𝜏0 independent of 𝑁 can be found

by the usual coloring technique. In the same spirit as [15], Assumption 3 gives a

one‚sided measure of approximation properties of the local solvers. It was shown

in [9, Sect. 4.1] that the above assumptions reduce to [15, Assumptions 2.2 to 2.4] if

they are applied to linear elliptic problems. Under the above three assumptions, we

have the following convergence theorem for Algorithm 1 [9, Theorem 4.7].

Theorem 1 Suppose that Assumptions 1, 2, and 3 hold. In Algorithm 1, we have

𝐸 (𝑢 (𝑛) ) − 𝐸 (𝑢∗) = 𝑂
( 𝜅ASM

𝑛𝑞−1

)
,

where 𝜅ASM is the additive Schwarz condition number defined by 𝜅ASM = 𝜔𝐶
𝑞

0
/𝜏𝑞−1.

Meanwhile, it is well‚known that the Łojasiewicz inequality holds in many appli‚

cations [11]; it says that the energy functional 𝐸 of ˘1¯ is sharp around the minimizer

𝑢∗. We summarize this property in Assumption 4.

Assumption 4 (sharpness)

There exists a constant 𝑝 > 1 such that for any bounded and convex subset 𝐾 of

𝑉 satisfying 𝑢∗ ∈ 𝐾 , we have

𝜇𝐾

𝑝
∥𝑢 − 𝑢∗∥ 𝑝 ≤ 𝐸 (𝑢) − 𝐸 (𝑢∗), 𝑢 ∈ 𝐾,

for some 𝜇𝐾 > 0.

We can obtain an improved convergence result for Algorithm 1 compared to

Theorem 1 under an additional sharpness assumption on 𝐸 [9, Theorem 4.8].

Theorem 2 Suppose that Assumptions 1, 2, 3, and 4 hold. In Algorithm 1, we have

𝐸 (𝑢 (𝑛) ) − 𝐸 (𝑢∗) =





𝑂

((
1 −

(
1 − 1

𝑞

)
min

{
𝜏,

(
𝜇

𝑞𝜅ASM

) 1
𝑞−1

})𝑛)
, if 𝑝 = 𝑞,

𝑂

(
(𝜅 𝑝ASM

/𝜇𝑞)
1

𝑝−𝑞

𝑛
𝑝 (𝑞−1)
𝑝−𝑞

)

, if 𝑝 > 𝑞,

where 𝜅ASM was defined in Theorem 1.
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Theorems 1 and 2 are direct consequences of Proposition 1 in the sense that

they can be easily deduced by invoking theories of gradient methods for convex

optimization [9, Sect. 2].

4 Acceleration

An important observation on Schwarz methods for linear problems is that they

can be interpreted as preconditioned Richardson iterations with appropriate pre‚

conditioners. Replacing Richardson iterations by conjugate gradient iterations with

the same preconditioners, we can obtain improved algorithms that converge faster.

Since Proposition 1 says that additive Schwarz methods for ˘1¯ are in fact gradient

methods, in the same spirit, we may adopt some acceleration schemes for gradient

methods ˘see, e.g., [4, 7]¯ in order to improve additive Schwarz methods. Motivated

by the FISTA ˘Fast Iterative Shrinkage‚Thresholding Algorithm¯ momentum [2]

and the gradient adaptive restarting scheme [7], the following accelerated variant of

Algorithm 1 was considered in [8].

Algorithm 2 Accelerated additive Schwarz method for (1)

Let 𝑢 (0)
= 𝑣 (0) ∈ dom𝐺, 𝜏 > 0, and 𝑡0 = 1.

for 𝑛 = 0, 1, 2, . . .

𝑢 (𝑛+1)
= ASM𝜏,𝜔 (𝑣 (𝑛) )

{

𝑡𝑛+1 = 1, 𝛽𝑛 = 0, if 〈𝑣 (𝑛) − 𝑢 (𝑛+1) , 𝑢 (𝑛+1) − 𝑢 (𝑛) 〉 > 0,

𝑡𝑛+1 =

1+
√

1+4𝑡
2
𝑛

2
, 𝛽𝑛 =

𝑡𝑛−1

𝑡𝑛+1
, otherwise.

𝑣 (𝑛+1)
= 𝑢 (𝑛+1) + 𝛽𝑛 (𝑢 (𝑛+1) − 𝑢 (𝑛) )

end

The major part of each iteration of Algorithm 2 is to compute the additive Schwarz

operator ASM𝜏,𝜔; the computational cost for momentum parameters 𝑡𝑛 and 𝛽𝑛 is

marginal. Therefore, the main computational cost of Algorithm 2 is the same as the

one of Algorithm 1. Nevertheless, it was shown numerically in [8] that Algorithm 2

achieves much faster convergence to the energy minimum compared to Algorithm 1.

In the remainder of this section, we consider how to further improve Algorithm 2.

More precisely, we present a backtracking strategy for additive Schwarz methods that

allows for local optimization of the parameter 𝜏. Mimicking [3, 6], at each iteration

of additive Schwarz methods, we choose 𝜏 as large as possible satisfying

𝐸 (𝑢 (𝑛+1) ) ≤ 𝐹 (𝑢 (𝑛) ) + ⟨𝐹 ′(𝑢 (𝑛) ), 𝑢 (𝑛+1) − 𝑢 (𝑛)⟩ + 𝑀𝜏,𝜔 (𝑢
(𝑛+1) , 𝑢 (𝑛) ).



678 Jongho Park

An optimal 𝜏 can be found by a logarithmic grid search. Algorithm 2 accompanied

with the backtracking strategy is presented in Algorithm 3. Note that the parameter

𝜌 ∈ (0, 1) in Algorithm 3 plays a role of an adjustment parameter for the grid search.

Algorithm 3 Accelerated additive Schwarz method for (1) with backtracking

Let 𝑢 (0) = 𝑣 (0) ∈ dom𝐺, 𝜏 > 0, 𝑡0 = 1, and 𝜌 ∈ (0, 1) .
for 𝑛 = 0, 1, 2, . . .

𝜏 ← 𝜏/𝜌
repeat

𝑢 (𝑛+1) = ASM𝜏,𝜔 (𝑣 (𝑛) )
if 𝐸 (𝑢 (𝑛+1) ) > 𝐹 (𝑢 (𝑛) ) + 〈𝐹 ′ (𝑢 (𝑛) ) , 𝑢 (𝑛+1) − 𝑢 (𝑛) 〉 +𝑀𝜏,𝜔 (𝑢 (𝑛+1) , 𝑢 (𝑛) )

𝜏 ← 𝜌𝜏

end if

until 𝐸 (𝑢 (𝑛+1) ) ≤ 𝐹 (𝑢 (𝑛) ) + 〈𝐹 ′ (𝑢 (𝑛) ) , 𝑢 (𝑛+1) − 𝑢 (𝑛) 〉 +𝑀𝜏,𝜔 (𝑢 (𝑛+1) , 𝑢 (𝑛) )
{

𝑡𝑛+1 = 1, 𝛽𝑛 = 0, if 〈𝑣 (𝑛) − 𝑢 (𝑛+1) , 𝑢 (𝑛+1) − 𝑢 (𝑛) 〉 > 0,

𝑡𝑛+1 =

1+
√

1+4𝑡2
𝑛

2
, 𝛽𝑛 =

𝑡𝑛−1

𝑡𝑛+1
, otherwise.

𝑣 (𝑛+1) = 𝑢 (𝑛+1) + 𝛽𝑛 (𝑢 (𝑛+1) − 𝑢 (𝑛) )
end

Different from the existing works [3, 6], adopting the backtracking strategy for

additive Schwarz methods has an own difficulty that evaluation of𝑀𝜏,𝜔 (𝑢
(𝑛+1) , 𝑢 (𝑛) )

is not straightforward due to its complicated definition. The following proposition

provides a way to evaluate 𝑀𝜏,𝜔 (𝑢
(𝑛+1) , 𝑢 (𝑛) ) without major computational cost.

Proposition 2 If 𝑢 = ASM𝜏,𝜔 (𝑣), then it satisfies that

𝑀𝜏,𝜔 (𝑢, 𝑣) = 𝜏

𝑁∑︁

𝑘=1

(𝜔𝑑𝑘 + 𝐺𝑘) (�̃�𝑘 , 𝑣) + (1 − 𝜏𝑁)𝐺 (𝑣),

where �̃�𝑘 , 1 ≤ 𝑘 ≤ 𝑁 , were defined in ˘2¯. In particular, if the exact local prob-

lems ˘3¯ are used, then we have

𝐹 (𝑣) + ⟨𝐹 ′(𝑣), 𝑢 − 𝑣⟩ + 𝑀𝜏,𝜔 (𝑢, 𝑣) = (1 − 𝜏𝑁)𝐸 (𝑣) + 𝜏

𝑁∑︁

𝑘=1

𝐸 (𝑣 + 𝑅∗
𝑘 �̃�𝑘).

Proof See the proof of [9, Lemma 4.5]. □

Thanks to Proposition 2, one can compute 𝑀𝜏,𝜔 (𝑢
(𝑛+1) , 𝑢 (𝑛) ) in Algorithm 3

without solving the infimum in the definition of 𝑀𝜏,𝜔 . As discussed in [3], the
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backtracking strategy improves the convergence rate because it allows for adaptive

adjustment of 𝜏 depending on the local flatness of the energy functional.

In order to show the computational efficiency of Algorithm 3, we present nu‚

merical results applied to a finite element 𝑠‚Laplacian problem ˘𝑠 ≥ 1¯. We set

Ω = [0, 1]2 ⊂ R2. We decompose the domain Ω into N = 𝑁 ×𝑁 square subdomains

{Ω𝑘}
N
𝑘=1

in which each subdomain has the sidelength 𝐻 = 1/𝑁 . Each subdomain Ω𝑘 ,

1 ≤ 𝑘 ≤ N , is partitioned into 2 × 𝐻/ℎ × 𝐻/ℎ uniform triangles to form a global

triangulation Tℎ of Ω. Similarly, we partition each Ω𝑘 into two uniform triangles

and let T𝐻 be a coarse triangulation of Ω consisting of such triangles. Overlapping

subdomains {Ω′
𝑘
}N
𝑘=1

are constructed in a way that Ω′
𝑘

is a union of Ω𝑘 and its

surrounding layers of fine elements in Tℎ with the width 𝛿 such that 0 < 𝛿 < 𝐻/2.

The model finite element 𝑠‚Laplacian problem is written as

min
𝑢∈𝑆ℎ (Ω)

{
1

𝑠

∫

Ω

|∇𝑢 |𝑠 𝑑𝑥 −

∫

Ω

𝑓 𝑢 𝑑𝑥

}
, ˘4¯

where 𝑓 ∈ (𝐿𝑠 (Ω))∗ and 𝑉 = 𝑆ℎ (Ω) is the continuous piecewise linear finite

element space on Tℎ with the homogeneous Dirichlet boundary condition. We set

𝑉𝑘 = 𝑆ℎ (Ω
′
𝑘
), 1 ≤ 𝑘 ≤ N , and take 𝑅∗

𝑘
: 𝑉𝑘 → 𝑉 as the natural extension operator,

where 𝑆ℎ (Ω
′
𝑘
) is the continuous piecewise linear finite element space on the Tℎ‚

elements in Ω
′
𝑘

with the homogeneous Dirichlet boundary condition. As a coarse

space, we set 𝑉0 by the continuous piecewise linear space 𝑆𝐻 (Ω) on T𝐻 and take

𝑅∗
0
: 𝑉0 → 𝑉 as the natural interpolation operator.

For numerical experiments, we set 𝑠 = 4, 𝑓 = 1, and 𝑢 (0) = 0. Exact local and

coarse solvers ˘3¯ were used; they were solved numerically by FISTA with gradient

adaptive restarts [7]. The initial step size 𝜏 was chosen as 1/5 ˘cf. [9, Sect. 5.1]¯.

˘a¯ ˘b¯

Fig. 1: Decay of the energy error 𝐸 (𝑢(𝑛) ) −𝐸 (𝑢∗) in additive Schwarz methods ˘𝜏 = 1/5, 𝜔 = 1¯

for the 𝑠‚Laplacian problem ˘4¯ ˘ℎ = 1/26,𝐻 = 1/23, 𝛿 = 4ℎ¯. ˘a¯ Algorithm 3 with various values

of 𝜌. ˘b¯ Comparison of various additive Schwarz methods. FISTA denotes the FISTA momentum

without restarts and ALG3 denotes Algorithm 3 with 𝜌 = 0.5.
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Figure 1 plots the energy error 𝐸 (𝑢 (𝑛) ) − 𝐸 (𝑢∗) of various additive Schwarz

methods when ℎ = 1/26, 𝐻 = 1/23, and 𝛿 = 4ℎ. As shown in Figure 1˘a¯, Algo‚

rithm 3 shows faster convergence to the energy minimum compared to Algorithm 2

for various values of 𝜌. Hence, we can say that the backtracking strategy proposed in

this paper is effective for acceleration of convergence. Although Algorithm 3 shows

better performance than Algorithm 2 for all values of 𝜌, it remains as a future work

to discover how to find an optimal 𝜌. Figure 1˘b¯ presents a numerical comparison

of Algorithm 1, Algorithm 1 equipped with the FISTA momentum, Algorithms 2

and 3. We can observe that all of the FISTA momentum, adaptive restarting tech‚

nique, and backtracking strategy provide positive effects on the convergence rate

of additive Schwarz methods. Consequently, Algorithm 3, which assembles all of

the aforementioned acceleration schemes, show the best convergence rate among all

methods. Since the main computational costs of all algorithms are essentially the

same, we conclude that Algorithm 3 numerically outperforms all the others.
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