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1 Introduction

We set out to solve the linear system Ax∗ = b, for a given symmetric positive

definite ˘spd¯ matrix A ∈ R𝑛×𝑛. There exist a variety of two‚level methods for

which fast convergence is guaranteed without making assumptions on the number of

subdomains, their shape, or the distribution of the coefficients in the underlying PDE

˘see e.g [12, 5, 15, 16, 8, 11, 13, 6, 19, 18, 3]¯. These methods have in common to

select vectors for the coarse space by computing low‚ or high‚frequency eigenvectors

of well‚chosen generalized eigenvalue problems ˘of the form M𝐴y = 𝜆M𝐵y¯ posed

in the subdomains. To the best of the author’s knowledge, none of these methods

can be applied if the so‚called local Neumann matrices are not known. Specifically,

the definition of either M𝐴 or M𝐵 is based on a family of symmetric positive

semi‚definite ˘spsd¯ matrices N𝑠 that satisfy

∃𝐶 > 0, such that

𝑁
∑︁

𝑠=1

x⊤R𝑠⊤N𝑠R𝑠x ≤ 𝐶 x⊤Ax; ∀x ∈ R𝑛, ˘1¯

where it has been assumed that there are 𝑁 subdomains with restriction operators

R𝑠 . The Neumann matrices are a natural choice for N𝑠 and the above estimate then

holds with constant 𝐶 equal to the maximal multiplicity of a mesh element. This

limitation is very well known ˘and stated clearly in e.g.:, [1, 2]¯.

In this work, it is proposed to relax the assumptions on the matrices N𝑠 in ˘1¯

by allowing them to be symmetric ˘but not necessarily positive semi‚definite¯. Such

matrices N𝑠 , then denoted B𝑠 , can always be defined algebraically. Special treatment

must be applied to the non‚positive part of B𝑠 and this will be reflected in the cost

of setting up and applying the preconditioner. In Section 2, the new preconditioner
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is defined and the result on the condition number is given. In Section 3, some

preliminary numerical illustrations are provided. Finally, Section 4 offers up some

conclusive remarks about the new preconditioner, as well as some of its current

limitations that are addressed in the full length article [7].

2 Definition of the new preconditioner and theory

This section introduces the new preconditioner H(𝜏) and proves the resulting bound

for the condition number of H(𝜏)A. The methodology is as follows. In Subsection 2.1,

some elements of the abstract Schwarz setting are defined in their algebraic form.

Then, in Subsection 2.2, a new matrix A+ is introduced for which an algebraic

splitting into spsd matrices is available by construction ˘i.e., ˘1¯ is satisfied¯. The

availability of this splitting makes it possible to apply the abstract GenEO theory

[14] to choose a coarse space. Hence, in Subsection 2.3, a two‚level preconditioner

H+ (𝜏), with a GenEO coarse space parametrized by a threshold 𝜏, is defined for A+.

The spectral bound for H+ (𝜏)A+ is given. Finally in Subsection 2.4, the Woodbury

matrix identity [17] is applied to find a formula for A−1 − A−1
+ and this ˘provably

low‚rank¯ term is added to H+ (𝜏) in order to form the new preconditioner H(𝜏) for

A. A spectral bound for H(𝜏)A follows.

2.1 Algebraic Domain Decomposition

Let Ω = ⟦1, 𝑛⟧ be the set of all indices in R𝑛. In all that follows, it is assumed

that Ω has been partitioned into a family of subdomains (Ω𝑠)𝑠=1,...,𝑁 and that the

partition has minimal overlap in the sense given by Definition 1. The usual restriction

operators are also defined.

Definition 1 A set (Ω𝑠)𝑠=1,...,𝑁 of 𝑁 ∈ N subsets of Ω = ⟦1, 𝑛⟧ is called a partition

of Ω if Ω =
⋃𝑁

𝑠=1 Ω
𝑠 . Each Ω𝑠 is called a subdomain. The partition is said to have at

least minimal overlap ifȷ for any pair of indices (𝑖, 𝑗) ∈ ⟦1, 𝑛⟧2, denoting by 𝐴𝑖 𝑗 the

coefficient of A at the 𝑖‚th line and 𝑗‚th column,

𝐴𝑖 𝑗 ≠ 0 ⇒ (∃ 𝑠 ∈ ⟦1, 𝑁⟧ such that {𝑖, 𝑗} ⊂ Ω
𝑠) .

Moreover, for each 𝑠 ∈ ⟦1, 𝑁⟧, let 𝑛𝑠 be the cardinality of Ω𝑠 . Finally, let the

restriction matrix R𝑠 ∈ R𝑛
𝑠×𝑛 be zero everywhere except for the block formed by

the columns in Ω𝑠 which is the 𝑛𝑠 × 𝑛𝑠 identity matrix.
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2.2 Definition of A+ and related operators

The starting point for the algebraic preconditioner is to relax condition ˘1¯ by allowing

symmetric, but possibly indefinite, matrices in the splitting of A.

Definition 2 Let B ∈ R𝑛×𝑛 be the matrix whose (𝑖, 𝑗)‚th entry is

𝐵𝑖 𝑗 :=

{

𝐴𝑖 𝑗

#{𝑠;{𝑖, 𝑗 }⊂Ω𝑠 } if 𝐴𝑖 𝑗 ≠ 0,

0 otherwise.

Then, for each 𝑠 = 1, . . . , 𝑁 , let B𝑠 := R𝑠BR𝑠⊤ (∈ R𝑛
𝑠×𝑛𝑠 ).

Theorem 1 Thanks to the minimal overlap assumption, the symmetric matrices B𝑠

are well-defined and satisfy A =
∑𝑁

𝑠=1 R𝑠⊤B𝑠R𝑠 .

The proof is given in [7][Theorem 3.2]. In particular, ˘1¯ holds with N𝑠 = B𝑠 and

𝐶 = 1. Next, each B𝑠 is split into a spsd and a symmetric negative semi‚definite part.

Definition 3 Let 𝑠 ∈ ⟦1, 𝑁⟧. Since B𝑠 is symmetric, there exist a diagonal matrix

𝚲
𝑠 and an orthogonal matrix V𝑠 such that B𝑠 = V𝑠

𝚲
𝑠V𝑠⊤. It can further be assumed

that the diagonal entries of 𝚲
𝑠 ˘which are the eigenvalues of B𝑠¯ are sorted in

non‚decreasing order and that

𝚲
𝑠
=

(

𝚲
𝑠
− 0

0 𝚲
𝑠
+

)

, V𝑠
=

[

V𝑠
− |V

𝑠
+

]

, 𝚲
𝑠
+ is spd, −𝚲𝑠

− is spsd.

Finally, let

A𝑠
+ := V𝑠

+𝚲
𝑠
+V𝑠

+
⊤ and A𝑠

− := −V𝑠
−𝚲

𝑠
−V𝑠

−
⊤
.

With words, the positive ˘respectively, non‚positive¯ eigenvalues of B𝑠 are on

the diagonal of 𝚲𝑠
+ ˘respectively, 𝚲𝑠

−¯ and the corresponding eigenvectors are in the

columns of V𝑠
+ ˘respectively, V𝑠

−¯. It is also clear that

B𝑠
= A𝑠

+ − A𝑠
−, A𝑠

+ is spsd, and A𝑠
− is spsd.

In the next definition, these new local matrices are assembled into global matrices

and in particular the all important matrix A+ is defined.

Definition 4 Let A+ and A− be the two matrices in R𝑛×𝑛 defined by

A+ :=

𝑁
∑︁

𝑠=1

R𝑠⊤A𝑠
+R𝑠 , and A− :=

𝑁
∑︁

𝑠=1

R𝑠⊤A𝑠
−R𝑠 .

It is clear that A = (A+ − A−) and A− is spsd. As a result, A+ is spd .
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2.3 Two-level preconditioner for A+ with a GenEO coarse space

Following [14], there are many possible choices for a two‚level preconditioner for

A+ with a GenEO coarse space. This is not the novelty here so only one is given with

no further comment on other possibilities.

Theorem 2 Let 𝜏 > 1 be a threshold. Let H+ (𝜏) be defined by

H+ (𝜏) :=

𝑁
∑︁

𝑠=1

R𝑠⊤ (R𝑠A+R𝑠⊤) −1R𝑠 + R0 (𝜏)⊤ (R0 (𝜏)A+R0 (𝜏)⊤)−1R0 (𝜏),

where the lines of R0 (𝜏) form a basis for the GenEO coarse space𝑉0 (𝜏). The coarse

space is in turn defined according to [14][Definition 5] by

𝑉0 (𝜏) :=

𝑁
∑︁

𝑠=1

span
{

R𝑠⊤y𝑠; (𝜆𝑠 , y𝑠) ∈ R+ × R𝑛
𝑠

solution of ˘2¯ and 𝜆𝑠 < 𝜏−1
}

.

where the generalized eigenvalue problem is

(D𝑠)−1A𝑠
+ (D

𝑠)−1y𝑠 = 𝜆𝑠R𝑠A+R𝑠⊤y𝑠; for D𝑠 := R𝑠

(

𝑁
∑︁

𝑡=1

R𝑡⊤R𝑡

)−1

R𝑠⊤. ˘2¯

If 𝜏 > 1 and N+ is the minimal number of colors that are needed to color each sub-

domain in such a way that two subdomains with the same color are A+-orthogonal,

then the eigenvalues of the preconditioned operator satisfy

𝜆(H+ (𝜏)A+) ∈
[

((1 + 2N+)𝜏)
−1 ,N+ + 1

]

. ˘3¯

Proof This is the result in [14][Remark 3,Corollary 4,Assumption 6]. □

2.4 New preconditioner for A

Definition 5 Let 𝑛− = rank(A−). Let 𝚲− ∈ R𝑛−×𝑛− and V− ∈ R𝑛×𝑛− be the diagonal

matrix and the orthogonal matrix that are obtained by removing the null part of A−

from its diagonalization in such a way that A− = V−𝚲−V⊤
− with 𝚲− spd.

It now holds that A = A+ − V−𝚲−V⊤
− and the Woodbury matrix identity [17]

applied to computing the inverse of A, viewed as a modification of A+, gives

A−1
= A−1

+ + A−1
+ V−

(

𝚲
−1
− − V⊤

−A−1
+ V−

)−1

V⊤
−A−1

+ . ˘4¯

This leads to the main theorem in this article in which the new algebraic precondi‚

tioner for A is defined and the corresponding spectral bound is proved.
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Theorem 3 For 𝜏 > 1, let the new preconditioner be defined as

H(𝜏) := H+ (𝜏) + A−1
+ V−

(

𝚲
−1
− − V⊤

−A−1
+ V−

)−1

V⊤
−A−1

+ .

The eigenvalues of the preconditioned operator satisfy

𝜆(H(𝜏)A) ∈
[

((1 + 2N+)𝜏)
−1 ,N+ + 1

]

, ˘5¯

where, once more N+ is the coloring constant with respect to the operator A+.

Proof The estimate for the eigenvalues of H+ (𝜏)A+ in ˘3¯ is equivalent to

((1 + 2N+)𝜏)
−1 ⟨x,A−1

+ x⟩ ≤ ⟨x,H+ (𝜏)x⟩ ≤ (N+ + 1)⟨x,A−1
+ x⟩, ∀x ∈ R𝑛.

Adding, ⟨x,A−1
+ V−

(

𝚲
−1
− − V⊤

−A−1
+ V−

)−1

V⊤
−A−1

+ x⟩ to each term, it holds that

((1 + 2N+)𝜏)
−1 ⟨x,A−1x⟩ ≤ ⟨x,H(𝜏)x⟩ ≤ (N+ + 1)⟨x,A−1x⟩, ∀x ∈ R𝑛,

where ˘4¯ was applied as well as N+ ≥ 1 and 𝜏 ≥ 1. This is equivalent to ˘5¯. □

Remark 1 (Cost of the new preconditioner) In order to apply the preconditioner,

the matrix A−1
+ V− must be formed. This can be done by solving iteratively 𝑛− linear

systems preconditioned by H+ (𝜏). It is likely that block Krylov methods would be ad‚

vantageous. Note that unfortunately A−1
+ V− is dense as is

(

𝚲
−1
− − V⊤

−A−1
+ V−

)

. Setting

up and applying the second coarse problem A−1
+ V−

(

𝚲
−1
− − V⊤

−A−1
+ V−

)−1

V⊤
−A−1

+ is

the most costly part of the algorithm.

The good news is that the number 𝑛− of columns in V− ˘which equals the rank

of A−¯ satisfies 𝑛− ≤
∑𝑁

𝑠=1 𝑛
𝑠 − 𝑛. Consequently, the rank of A− is low compared to

the rank 𝑛 of A ˘𝑛− ≪ 𝑛¯ as long as there is little overlap between subdomains. Note

that 𝑛− can be ˘and hopefully is¯ much smaller even than
∑𝑁

𝑠=1 𝑛
𝑠 − 𝑛.

3 Numerical Illustration

The results in this section are obtained using the software FreeFem++ [9], GNU

Octave [4] and METIS [10]. The linear systems that are considered arise from

discretizing with P1 finite elements some two‚dimensional linear elasticity problems.

Fig. 1: Testcase 1 – partition ˘𝑁 = 4¯ and distribution of 𝐸 ˘108 if white and 103 if dark¯
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The first test case is posed on the domain Ω = [4, 1] discretized by 112 × 28

elements. The problem size is 𝑛 = 64ß6 degrees of freedom. The coefficients in the

linear elasticity equation are 𝜈 = 0.3 for Poisson’s ratio and

𝐸 (𝑥, 𝑦) = 108 if 𝑦 ∈ [1/7, 2/7]∪[3/7, 4/7]∪[5/7, 6/7]; 𝐸 (𝑥, 𝑦) = 103 otherwise.

The domain is partitioned into 4 subdomains with Metis. No overlap is added.

Figure 1 shows both the partition into subdomains and the distribution of 𝐸 . For this

problem, the coloring constants with respect to A and A+ are N = 2, and N+ = 3.

The problem is solved with the one‚level Additive Schwarz ˘AS¯, the two‚level AS

with the GenEO coarse space from [14][Section 5.2.2] and the new method. The

value of the threshold 𝜏 for the last two methods is chosen to be 𝜏 = 10. The

theoretical bounds for GenEO and the new method is that the eigenvalues are in

the interval [1/50 = 0.02, 3] and [1/70 ≈ 0.014, 4], respectively. The A‚norm of

the error at each iteration of the preconditioned conjugate gradient is represented

in Figure 2. The quantities of interest are in Table 1. The one‚level method is not

efficient on this problem. This was to be expected. Both the GenEO solver and the

new solver converge fast. With 𝜏 = 10 in both methods, the coarse space for the

new method is larger than with GenEO ˘58 versus 49 coarse vectors¯. For the new

method there is also an additional problem of size 49. The results show that the new

preconditioner converges a little bit faster than GenEO. A study with more values of

all the parameters is needed to compare GenEO and the new solver as the parameter

𝜏 does not play exactly the same role in the setup of both preconditioners. Since there

is a lot more information injected into GenEO ˘through the Neumann matrices¯, it is

expected that GenEO will be more efficient. However the new method has the very

significant advantage of being algebraic, and being almost as efficient as GenEO

would be an achievement.
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r
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x
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Fig. 2: Testcase 1 – Convergence history for the one‚level method, the two‚level GenEO method

and the new method.
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𝜆min 𝜆max 𝜅 It #𝑉0 𝑛−

One‚level AS 2 · 10−4 2.0 1.0 · 104 >100 0 0

Two‚level AS with GenEO 0.059 3.0 51 65 49 0

New method 0.24 2.93 12 30 58 49

Table 1: Testcase 1 – Extreme eigenvalues ˘𝜆min and 𝜆max¯, condition number ˘𝜅¯, iteration count

˘It¯, size of coarse space ˘#𝑉0¯, and size of second coarse space in new method ˘𝑛− = rank(A−)¯

It is very good news that the coarse space and the space𝑉− did not explode on the

previous test case. The second test case is a rather easy problem posed on Ω = [1, 1]
with a distribution of both coefficients that is homogeneousȷ 𝜈 = 0.3 and 𝐸 = 108.

Two partitions are consideredȷ one into 𝑁 = 16 regular subdomains and the other

into 𝑁 = 16 subdomains with Metis. No overlap is added to the subdomains. The

results are presented in Table 2. For the problem with regular subdomains, the new

method selects a coarse space of size 44 ˘versus 40 for GenEO¯. This means, that

even without the knowledge of the Neumann matrix, a coarse space is constructed

that has almost the same number of vectors as the optimal coarse space for this

problem which consists of 3 × 12 = 36 rigid body modes ˘there are 4 non‚floating

subdomains¯. Of course the second coarse space also adds to the cost.

𝑁 = 16 regular subdomains 𝑁 = 16 subdomains with Metis

𝜆min 𝜆max 𝜅 It #𝑉0 𝑛− 𝜆min 𝜆max 𝜅 It #𝑉0 𝑛−

One‚level AS 2 · 10−3 4.0 1996 97 0 0 1.7 · 10−3 3.0 1817 >100 0 0

Two‚level AS with GenEO 0.07 4.0 60 61 40 0 0.095 3.4 36 54 74 0

New method 0.19 4.0 21 39 44 24 0.26 3.0 11.3 31 117 94

Table 2: Testcase 2 – Extreme eigenvalues ˘𝜆min and 𝜆max¯, condition number ˘𝜅¯, iteration count

˘It¯, size of coarse space ˘#𝑉0¯, and size of second coarse space in new method ˘𝑛− = rank(A−)¯

4 Conclusion

A new algebraic preconditioner was defined for the first time and bounds for the

spectrum of the resulting preconditioned operator were proved. They are indepen‚

dent of the number of subdomains and any parameters in the problem. The new

preconditioner has two coarse spaces. One of them is dense and a sparse approxima‚

tion is under investigation. The full length article [7] proposes variants of the new

preconditioner that have cheaper choices for H+ and less exotic coarse solves.
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