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1 Introduction

The introduction of renewable energies into the power grid leads to the use of

more components based on power electronics which have to be well dimensioned

in order not to be damaged by electrical disturbances. These components imply

faster dynamics, for power system safety simulations, which cannot be handled by

traditional Transient Simulations ˘TS¯ with dynamic phasors. Nevertheless, for large

power grids, it can be expected that the need of high level details requiring Electro‚

Magnetic Transient ˘EMT¯ modeling will be localized close to disturbances, as other

parts of the network still use TS modeling. This paper deals with a proof of concept

to develop heterogeneous Schwarz domain decomposition with different modeling

˘EMT‚TS¯ between the sub‚domains. Hybrid ˘Jacobi type¯ EMT‚TS co‚simulation

has to face several locks [4]ȷ EMT and TS do not use the same time step size,

the transmission of values is also a problem as the solutions do not have the same

representation and are subject to some information loss. Our approach don’t use

waveform relaxation [5], and the domain partitioning is not based on cutting the

transmission lines [2, 6, 7] as we want to be able to define an overlap between the

two representations. On the contrary, we want to use the traditional Schwarz DDM

but also where the transmission conditions can lead to divergent DDM. The pure

linear convergence/divergence of the linearized problems is then used to accelerate

the convergence to the solution by the Aitken’s technique. In Section 2, we describe

the EMT and TS modeling and perform homogeneous Schwarz DDM accelerated

by the Aitken’s acceleration of the convergence technique. Section 3 gives behavior

results obtained for each modeling. Section 4 describes the heterogeneous EMT‚TS

DDM and gives first results obtained before concluding in section 5
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2 EMT and TS modeling

Simulation of power grid consists in solving a system of differential algebraic equa‚

tions ˘DAE¯ where the unknowns are currents and voltages. This system is built using

the Modified Augmented Nodal Analysis [8] where each component of the grid con‚

tributes through relations between currents and voltages and the Kirshoff’s laws give

the algebraical constraints. Let 𝑥 ˘respectively 𝑦¯ be the differential ˘respectively

algebraical¯ unknowns. For the EMT modeling, we have to solve the DAEȷ

𝐹 (𝑡, 𝑥(𝑡), ¤𝑥(𝑡), 𝑦(𝑡)) = 0, with Initial Conditions. ˘1¯

The linearized BDF time discretization of ˘1¯ ˘Backward Euler here¯ leads to

solve the linear system ˘2¯ to integrate the state space representation of the DAE

from time step 𝑡𝑛 to time step 𝑡𝑛+1 ˘operator I represents the difference between two

potentials or the identity for intensity variables, 𝐺 represents the voltage/intensity

sources¯ ȷ

(
I − Δ𝑡𝐴 𝐵

𝐶 𝐷

)
︸           ︷︷           ︸

H𝚫t

(
𝑥𝑛+1

𝑦𝑛+1

)
=

(
I 0

0 0

) (
𝑥𝑛

𝑦𝑛

)
+ 𝐺𝑛+1. ˘2¯

For TS modeling the variables are assumed to oscillate with a specific angular

frequency 𝜔0 =
2𝜋

𝑇
˘where 𝑇 is the period¯ and its selected harmonics taken from a

subset 𝐼 = {. . . ,−1, 0, 1, . . .} ȷ

𝑧(𝑡) =
∑︁
𝑘∈𝐼

𝑧𝑘 (𝑡)𝑒
𝑖𝑘𝜔0𝑡 , 𝑧 = {𝑥, 𝑦} . ˘3¯

Introducing ˘3¯ into ˘1¯ leads after simplification ˘i.e orthogonality of the functions

𝑒𝑖𝑘𝜔0𝑡 with respect to the dot product [ 𝑓 , 𝑔] =
1

𝑇

∫ 𝑡+𝑇

𝑡
𝑓 (𝑧)𝑔(𝑧)𝑑𝑧¯ to another DAE

system that takes into account the differential property of the dynamic phasor . The

resulting DAE system has smoother dynamics. The number of TS variables is then

multiplied by the number of harmonics chosen, and the number of equations must

be multiplied accordingly.

For example, on the right is the

structure of the matrix 𝐻𝑇𝑆 by

choosing two harmonics 𝑘 = 𝑎 and

𝑘 = 𝑐 and by solving the imaginary

and real part separately and with S

the matrix taking into account the

differential property of the dynamic

phasor modeling.

H𝑇𝑆 =

©«

HΔ𝑇 −𝑎 𝜔0 S

𝑎 𝜔0 S HΔ𝑇
0

0
HΔ𝑇 −𝑐 𝜔0 S

𝑐 𝜔0 S HΔ𝑇

ª®®®®®®®¬
.
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Let 𝑥𝑛+1

𝑇
˘respectively 𝑥𝑛+1

𝐸
¯ be the algebraic and differential unknowns of TS

˘respectively EMT¯ modeling associated to the linear system 𝐻𝑇𝑆𝑥
𝑛+1

𝑇
= 𝑏𝑛

𝑇
˘respec‚

tively 𝐻𝐸𝑥
𝑛+1

𝐸
= 𝑏𝑛

𝐸
¯.

3 EMT and TS Schwarz homogeneous DDM

We consider a linear RLC circuit of Figure 1 to develop the proof of concept of the

the Schwarz DDM on TS and EMT models.

By adapting the notations of [1], we consider a non‚singular matrix 𝐻 ∈ R𝑛×𝑛

having a non‚zero pattern and the associated directed graph 𝐺 = (𝑊, 𝐹), where

the set of vertices Ω = {1, , 𝑛} represents the 𝑛 unknowns and the set of edges

𝐹 =
{
(𝑖, 𝑗) |𝑎𝑖, 𝑗 ≠ 0

}
represents the pairs of vertices that are coupled by a non‚zero

element in 𝐻. Next, we assume that a graph partitioning was applied and resulted in

𝑁 non‚overlapping subsets Ω0

𝑖
whose union is Ω. Let Ω

𝑝

𝑖
be the 𝑝‚overlap partition

of Ω, obtained by including all the vertices immediately neighboring the vertices of

Ω
𝑝−1

𝑖
. Let 𝑅

𝑝

𝑖
∈ R𝑛𝑖×𝑛 be the operator which restricts 𝑥 ∈ R𝑛 to the components

of 𝑥 belonging to Ω
𝑝

𝑖
. Let �̃�0

𝑖
∈ R𝑛×𝑛 be the operator which restricts 𝑥 ∈ R𝑛 to

the components of 𝑥 belonging to Ω0

𝑖
and 0 otherwise. Let Ω

𝑝

𝑖,𝑒
= Ω

𝑝+1

𝑖
\Ω

𝑝

𝑖
and

𝑅
𝑝

𝑖,𝑒
∈ R𝑛𝑖,𝑒×𝑛 the restriction operator which restricts 𝑥 ∈ R𝑛 to the components of

𝑥 belonging to 𝑊
𝑝

𝑖,𝑒
. By defining 𝐻𝑖 = 𝑅

𝑝

𝑖
𝐻𝑅

𝑝

𝑖

𝑇
, 𝐹𝑖 = 𝑅

𝑝

𝑖
𝐻 (𝑅

𝑝

𝑖,𝑒
)𝑇 , 𝑥𝑖 = 𝑅

𝑝

𝑖
𝑥 and

b𝑖 = 𝑅
𝑝

𝑖
𝑏, 𝑥𝑖,𝑒 = 𝑅

𝑝

𝑖,𝑒
𝑥, then the Restrictive Additive Schwarz ˘RAS¯ iteration 𝑘 + 1

to solve 𝐻𝑥∞ = 𝑏 ∈ R𝑛 is written locally for the Ω
𝑝

𝑖
partition ȷ

𝑥𝑘+1

𝑖 = 𝐻−1

𝑖 (𝑏𝑖 − 𝐹𝑖𝑥
𝑘
𝑖,𝑒). ˘4¯

The previous paragraph presents the general way of proceeding and among other

things to set up the overlap. However, in this work we have chosen another overlap

for optimization reasons, because of the small size of our circuit.

The small linear system associated with the RLC circuit is partitioned into two

subdomains using graph partitioning without overlap ˘Figure 2 top¯ and with an

overlap of 1 ˘Figure 2 bottom¯. Each subdomain needs two values from the other to

solve its equations.

The RAS applied to each time step has a pure linear convergence i.e. the error

operator 𝑃 does not depend on the RAS iteration.

𝑥𝑚+1, 𝑝+1 − 𝑥𝑚+1,∞
= 𝑃(𝑥𝑚+1, 𝑝 − 𝑥𝑚+1,∞). ˘19¯

Thus, if it does not stagnate, it can be accelerated with the Aitken’s acceleration of

the convergence, using ˘19¯, to obtain the true solution regardless of its convergence

or divergence [3] ȷ

𝑥𝑚+1,∞
= (𝐼𝑑 − 𝑃)−1 (𝑥𝑚+1,1 − 𝑃𝑥𝑚+1,0). ˘20¯
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Ω

2 3 4 5

7 6
1

𝐶1

𝐶2

𝑅1

𝑅2

E cos 𝜔𝑡 = 𝛽

𝐿1

𝐿2

𝑣1 = 0, ˘5¯

𝑣2 − 𝑣1 − 𝐸 − 𝑍𝑠𝑖12 = 0, ˘6¯

𝑣3 − 𝑣2 − 𝐿1

𝑑𝑖23

𝑑𝑡
= 0, ˘7¯

𝑣4 − 𝑣3 − 𝑅1𝑖34 = 0, ˘8¯

𝐶1 (
𝑑𝑣5

𝑑𝑡
−

𝑑𝑣4

𝑑𝑡
) − 𝑖45 = 0, ˘9¯

𝑣6 − 𝑣5 − 𝑅2𝑖56 = 0, ˘10¯

𝑣7 − 𝑣6 − 𝐿2

𝑑𝑖67

𝑑𝑡
= 0, ˘11¯

𝐶2 (
𝑑𝑣1

𝑑𝑡
−

𝑑𝑣7

𝑑𝑡
) − 𝑖71 = 0, ˘12¯

𝑖12 − 𝑖23 = 0, ˘13¯

𝑖23 − 𝑖34 = 0, ˘14¯

𝑖34 − 𝑖45 = 0, ˘15¯

𝑖45 − 𝑖56 = 0, ˘16¯

𝑖56 − 𝑖67 = 0, ˘17¯

𝑖67 − 𝑖71 = 0. ˘18¯

Fig. 1: Linear RLC circuit and its associated EMT modeling DAE system with

𝑥 = {𝑣1, 𝑖23, 𝑣4, 𝑣5, 𝑖67, 𝑣7 } and 𝑦 = {𝑣2, 𝑖12, 𝑣3, 𝑖34, 𝑖45, 𝑖56, 𝑣6, 𝑖71 }. 𝐿1 = 𝐿2 = 0.7,

𝐶1 = 𝐶2 = 1.10
−6, 𝑅1 = 𝑅2 = 77, 𝑍𝑠 = 1.10

−6, 𝜔 = 2𝜋 50, 𝐸 = 5.

Ω = Ω1 ∪Ω2 Ω2Ω1

2 3 4 5

7 6
1

𝐶1

𝐶2

𝑅1

𝑅2

E cos 𝜔𝑡 = 𝛽

𝐿1

𝐿2

i34, v3

i67, v6

Ω = Ω1 ∪Ω2Ω1 Ω2

2 3 4 5

7 6
1

𝐶1

𝐶2

𝑅1

𝑅2

E cos 𝜔𝑡 = 𝛽

𝐿1

𝐿2

i12, v2

i56, v6

Fig. 2: Graph partitioning of the RLC circuit in two subdomains and the associated matrix partioning

without overlap ˘top¯ and with overlap of 1 ˘bottom¯.

For this small problem it can be directly computed working on the matrix partitioning.

𝑃 = −[(�̃�1)
𝑡 𝐴−1

1
𝐸1,𝑒𝑅1,𝑒 + (�̃�2)

𝑡 𝐴−1

2
𝐸2,𝑒𝑅2,𝑒] . ˘21¯

Table 1 gives the larger eigenvalue in modulus for the 𝑃 RAS ˘Restricted Ad‚

ditive Schwarz¯ error operator for the EMT modeling and for the 𝑃 RAS error

operator for the TS modeling harmonics 𝑘 = 0, 1 applied to the RLC circuit. In
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𝜆(𝑃)
without

overlap

with

overlap
Schwarz

time

step

EMT ± 6.0638i ± 6.0638i RAS 2.10
−4

TS k=1 ±0.3667 ± 6.0635i ±0.3667 ± 6.0635i RAS 2.10
−4

TS k=0 ±6.0638i ±6.0638i RAS 2.10
−4

TS k=1 ± 0.2114 ±1.1548i ± 0.2114 ±1.1548i RAS 2.10
−3

TS k=0 ±1.1946i ±1.1946i RAS 2.10
−3

Table 1: Larger eigenvalue for 𝑃 error operator for RAS and EMT modeling ˘Δ𝑡 = 2.10
−4¯, and

for RAS and TS 𝑘 = 0, 1 ˘Δ𝑇 = 2.10
−4, Δ𝑇 = 2.10

−3¯ modeling.

both cases EMT and TS modeling the eigenvalue modulus is greater than one, so

the method diverges. We can observe that the overlap does not impact the diver‚

gence of the method. The time step increasing from Δ𝑇 = 2.10
−4 to Δ𝑇 = 2.10

−3

has a beneficial effect on the TS‚TS DDM divergence. Nevertheless, the diver‚

gence is purely linear and the Aitken’s acceleration ˘20¯ can be performed after

the first iteration if 𝑃 is known ˘here by Eq˘20¯¯. If 𝑃 is unknown, the pure lin‚

ear convergence property also hold for the solution iterated at the global artifi‚

cial interface Γ =

{
𝑦 ∈ R𝑛Γ |𝑦 = (𝑥𝑇

1,𝑒
, 𝑥𝑇

2,𝑒
)𝑇
}
. Let 𝑅Γ be the restriction operator

from R𝑛 to Γ, 𝑦𝑚+1, 𝑝 = 𝑅Γ𝑥
𝑚+1, 𝑝 be the RAS iterated solution restricted to Γ

and 𝑒𝑝+1 = 𝑦𝑚+1, 𝑝+1 − 𝑦𝑚+1, 𝑝 be the error between two consecutive iterations.

Then, from 𝑒𝑝+1 = 𝑃Γ𝑒
𝑝 , one can build 𝑃Γ = [𝑒𝑛Γ+1, . . . , 𝑒2] [𝑒𝑛Γ , . . . , 𝑒1]−1 with

𝑛Γ + 1 RAS iterations and the true solution at interface 𝑦𝑚+1,∞ is obtained with

𝑦𝑚+1,∞ = (𝐼𝑑 − 𝑃Γ)
−1 (𝑦𝑚+1,𝑛Γ+1 − 𝑃Γ𝑦

𝑚+1,𝑛Γ ). Then one local solve gives 𝑥𝑚+1,∞.
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Fig. 3: Homogeneous DDM results comparison with DAE monodomainȷ ˘Left¯ RAS for EMT

modeling with Δ𝑡𝐸 = 1.10
−4 and ˘right¯ RAS for TS modeling with Δ𝑡𝑇 = 2.10

−3.
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4 Heterogeneous DDM EMT-TS

Our goal is to simulate, using heterogeneous RAS DDM, the electrical network with

one part with a TS modeling which can use large time steps Δ𝑇 and the other part

with the EMT modeling which requires smaller time steps Δ𝑡 as the high oscillations

remain.

These two representations TS and EMT of the solution imply having some op‚

erators 𝐸𝑇𝑆
𝑒𝑚𝑡 ˘respectively 𝐸𝑒𝑚𝑡

𝑇𝑆
¯ to transfer the solution from the subdomain EMT

˘respectively TS¯ to the other TS ˘respectively EMT¯. The 𝐸𝑒𝑚𝑡
𝑇𝑆

operator needs

to compute the fundamental harmonic and other harmonics chosen of the solution

from the history of the EMT solution. The history time length is one period. This

is performed by the FFT of the solution over the time period and keeping the mode

corresponding to the chosen harmonics.

The 𝐸𝑇𝑆
𝑒𝑚𝑡 operator is more simple as it consists in recombining the TS modes of

the solution with the appropriate Fourier basis modes.

Let us consider a linear electrical network with the TS modeling. The time

discretisation of the DAE to integrate from 𝑇𝑁 to 𝑇𝑁+1, assuming that Δ𝑇 = 𝑚Δ𝑡

can be witten asȷ(
I − Δ𝑇𝐴𝑇𝑆 𝐵𝑇𝑆

𝐶𝑇𝑆 𝐷𝑇𝑆

)
︸                   ︷︷                   ︸

𝐻𝑇𝑆

(
𝑥𝑁+1

𝑇𝑆

𝑦𝑁+1

𝑇𝑆

)
︸   ︷︷   ︸

𝑤𝑁+1

𝑇𝑆

=

(
I 0

0 0

)
︸︷︷︸
Θ𝑇𝑆

(
𝑥𝑁
𝑇𝑆

𝑦𝑁
𝑇𝑆

)
+

(
𝐸𝐴
𝑇𝑆

𝐸𝐵
𝑇𝑆

𝐸𝐶
𝑇𝑆

𝐸𝐷
𝑇𝑆

)
︸         ︷︷         ︸

𝐸𝑒𝑚𝑡
𝑇𝑆

(
𝑥𝑚𝑒𝑚𝑡

𝑦𝑚𝑒𝑚𝑡

)
+ 𝐺𝑁+1

𝑇𝑆 .

Similarly one time step for the EMT side to integrate from 𝑡𝑛 to 𝑡𝑛+1 can be witten

asȷ(
I − Δ𝑡𝐴𝑒𝑚𝑡 𝐵𝑒𝑚𝑡

𝐶𝑒𝑚𝑡 𝐷𝑒𝑚𝑡

)
︸                    ︷︷                    ︸

𝐻𝑒𝑚𝑡

(
𝑥𝑛+1
𝑒𝑚𝑡

𝑦𝑛+1
𝑒𝑚𝑡

)
︸  ︷︷  ︸

𝑤𝑛+1

=

(
I 0

0 0

)
︸︷︷︸
Θ𝑒𝑚𝑡

(
𝑥𝑛𝑒𝑚𝑡

𝑦𝑛𝑒𝑚𝑡

)
+

(
𝐸𝐴
𝑒𝑚𝑡 𝐸

𝐵
𝑒𝑚𝑡

𝐸𝐶
𝑒𝑚𝑡 𝐸

𝐷
𝑒𝑚𝑡

)
︸           ︷︷           ︸

𝐸𝑇𝑆
𝑒𝑚𝑡

(
𝑥𝑁+1

𝑇𝑆
(𝑡𝑛+1)

𝑦𝑁+1

𝑇𝑆
(𝑡𝑛+1)

)
︸           ︷︷           ︸

𝑊𝑁+1 (𝑡𝑛+1)

+𝐺𝑛+1

𝑒𝑚𝑡 .

The 𝑚 time steps can be gathered in one larger system considering 𝑡𝑛 = 𝑇𝑁 ȷ

©
«

𝐼

−Θ𝑒𝑚𝑡 𝐻𝑒𝑚𝑡

. . .
. . .

−Θ𝑒𝑚𝑡 𝐻𝑒𝑚𝑡

−Θ𝑒𝑚𝑡 𝐻𝑒𝑚𝑡

ª®®®®®®¬︸                                           ︷︷                                           ︸
H𝑒𝑚𝑡

©«

𝑤𝑛
𝑒𝑚𝑡

𝑤𝑛+1
𝑒𝑚𝑡
...

𝑤𝑛+𝑚−1
𝑒𝑚𝑡

𝑤𝑛+𝑚
𝑒𝑚𝑡

ª®®®®®®¬︸      ︷︷      ︸
W𝑒𝑚𝑡

=
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Fig. 4: Heterogeneous EMT ˘Δ𝑡 = 2.10
−4¯‚TS˘Δ𝑇 = 2.10

−2¯ DDM results comparison with DAE

monodomain ˘Left¯ and RAS convergence error for each subdomain at 𝑡 = 0.02 and its Aitken’s

acceleration with 𝑃Γ computed numerically from 9 iterates ˘ 𝑛Γ = 8¯ ˘right¯.

©
«

𝐼

𝐸𝑇𝑆
𝑒𝑚𝑡

. . .

𝐸𝑇𝑆
𝑒𝑚𝑡

𝐸𝑇𝑆
𝑒𝑚𝑡

ª®®®®®®
¬︸                           ︷︷                           ︸

E
𝑇𝑆
𝑒𝑚𝑡

©«

(𝑥𝑛, 𝑦𝑛)𝑡

𝑊𝑁+1 (𝑡𝑛+1)
...

𝑊𝑁+1 (𝑡𝑛+𝑚−1)

𝑊𝑁+1 (𝑡𝑛+𝑚)

ª®®®®®®¬︸                ︷︷                ︸
W

𝑁+1

𝑇𝑆

+

©«

0

𝐺𝑛+1
𝑒𝑚𝑡
...

𝐺𝑛+𝑚−1
𝑒𝑚𝑡

𝐺𝑛+𝑚
𝑒𝑚𝑡

ª®®®®®®¬︸       ︷︷       ︸
G

𝑁+1
𝑒𝑚𝑡

. ˘22¯

This system needs the values that the TS solution connected to the EMT part has

taken on the small time steps. The two domains are connected via the connected

or flowing variables. Since these variables should be the solution at time 𝑇𝑁+1, we

need the Schwarz iterative algorithm to obtain the exact values. We then iterate the

iteration 𝑝 + 1 by taking the connected values, at the iteration 𝑝, from the other

subdomain. We can use the multiplicative form or the additive form as followsȷ{
𝐻𝑇𝑆 𝑤

𝑁+1,p+1

𝑇𝑆
= Θ𝑇𝑆 𝑤

𝑁
𝑇𝑆

+ 𝐸𝑒𝑚𝑡
𝑇𝑆

𝑤
𝑚,p
𝑒𝑚𝑡 + 𝐺𝑁+1

𝑇𝑆
,

H𝑒𝑚𝑡W
𝑁+1,p+1
𝑒𝑚𝑡 = E

𝑇𝑆
𝑒𝑚𝑡W

𝑁+1,p

𝑇𝑆
+ G𝑁+1

𝑒𝑚𝑡 .
˘23¯

Figure 4 ˘left¯ shows the solutions 𝑣4 EMT and 𝑖71 TS of heterogeneous DDM

EMT ˘Δ𝑡 = 2.10
−4¯ ‚TS ˘Δ𝑇 = 2.10

−2¯ with comparison with the DAE solution on

monodomain. We proceed to a jump in amplitude at 𝑡 = 0.04 for the voltage source.

Figure 4 ˘right¯ gives the 𝑙𝑜𝑔10 of the error between two consecutive RAS iterates

at 𝑡 = 0.02. It shows a linear convergence behavior and can therefore be accelerated

by the Aitken’s accelerating of the convergence technique after ß iterates needed to

numerically construct the error operator 𝑃Γ.
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5 Conclusion

A Schwarz heterogeneous DDM was used to co‚simulate an RLC electrical circuit

where a part of the domain is modeled with EMT modeling and the other part with

TS modeling. We showed the convergence/divergence property of the homogeneous

DDM EMT‚EMT and TS‚TS and of the heterogeneous DDM TS‚EMT, with or

without overlap and we use the pure linear divergence/convergence of the method to

accelerate it toward the true solution with the Aitken’s acceleration of the convergence

technique. The domain partitioning is only based on connectivity considerations

since we want, in the long term, for the electrical network, to take advantage of

the two TS and EMT representations on the overlap in order to identify the loss of

information between the two models. We would like then to use this knowledge to

work on other transmission conditions than Dirichlet to conserve some invariants

such as electrical power.
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