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1 Introduction and Model Problem

Time‚periodic problems appear typically in special physical situations, for example

in eddy current simulations [1], or when periodic forcing is used, like for periodically

forced reactors, see [14, 15]. The numerical simulation of time‚periodic problems is

a special area of research, since the time periodicity modiies the problem structure

and solution methods signiicantly. When the scale of the problems increases, it is

desirable to use parallel methods to solve such problems.

For the time‚dependent problems, Schwarz waveform relaxation algorithms are

parallel algorithms based on a spatial domain decomposition [10]. More recently,

time‚parallel methods were also considered to increase the parallelism in time [5],

i.e., the parareal method proposed by Lions, Maday, and Turinici in the context

of virtual control to solve evolution problems in parallel; see [12]. Two parareal

algorithms for time‚periodic problems was proposed in [9]ȷ one with a periodic

coarse problem ˘PP‚PC¯, and one with a non‚periodic coarse problem ˘PP‚IC¯.

Further, based on these two algorithms, new applications and parallel methods for

time‚periodic problems were also considered; see [2, 11].

In [13], it was the irst time that the combination of Schwarz waveform relaxation

and parareal. Further, in [7], a new parallel algorithm named Parareal Schwarz wave‚

form relaxation algorithm ˘PSWR¯, where there is no order between the Schwarz
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waveform relaxation algorithm and the parareal algorithm was introduced, and a su‚

perlinear convergence estimate of such algorithm has been provided in [8]. Recently,

a new space‚time algorithm which uses the optimized Schwarz waveform relaxation

algorithm as the inner iteration of the parareal algorithm was also provided[4].

In this work, we consider a new PSWR algorithm for the following time‚periodic

parabolic problem

��

��
= L� + � in Ω × (0, �),

�(�, 0) = �(�, �) in Ω,

� = � on �Ω × (0, �),

˘1¯

where L is the Laplace operator, � (�, 0) = � (�, �), �(�, 0) = �(�, �), and Ω ⊂ R� ,

� = 1, 2, 3.

2 PSWR for Time-Periodic Parabolic Problem

We irst introduce a parareal algorithm for time‚periodic problems [7]. We decom‚

pose the time interval [0, �] into � subintervals [��, ��+1], � = 0, 1, . . . , � − 1,

with 0 = �0 < �1 < . . . < ��−1 < �� = � . We deine so called coarse propagator

� (��+1, ��,��, � , �) which provides a rough approximation in time of the solution

�� (�, ��+1) of ˘2¯

���

��
= L��+ � in Ω × (��, ��+1), �� (�, ��) = �� (�) in Ω, �� = � on �Ω × (��, ��+1).

˘2¯

with a given initial condition �� (�, ��) = �� (�), right hand side source term � and

boundary conditions �. And we also deine a ine propagator � (��+1, ��,��, � , �),

which gives a more accurate approximation in time of the same solution of ˘2¯.

Then starting with an initial guess�0
� at the coarse time points�0, �1, �2, . . . , ��−1,

e.g., solving the model problem on the coarse time points, the periodic parareal

algorithm with initial‚value coarse problem ˘PP‚IC¯ for the time‚periodic problem

˘1¯ performs for � = 0, 1, 2, . . . the correction iteration

��+1
0

= ��
� ,

��+1
�+1

= � (��+1, ��,�
�
� , � , �) + � (��+1, ��,�

�+1
� , � , �) − � (��+1, ��,�

�
� , � , �),

� = 0, 1, . . . , � − 1.

˘3¯

Furthermore, we introduce the Schwarz waveform relaxation algorithm for the

model problem ˘1¯ is based on a spatial decomposition only, in the most general

case into overlapping subdomains Ω = ∪�
�=1

Ω� . The Schwarz waveform relaxation

algorithm solves iteratively for � = 0, 1, 2, . . . the space‚time subdomain problems
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���+1
�

��
= L��+1

� + � in Ω� × (0, �),

��+1
� (�, 0) = �0 in Ω� ,

B��
�+1
� = B� �̄

� on �Ω� × (0, �).

Here �̄� denotes a composed approximate solution from the previous subdomain

solutions ��
�

using for example a partition of unity, and an initial guess �̄0 is needed

to start the iteration. The operators B� are transmission operatorsȷ in the case of the

identity, it will be Dirichlet transmission condition and we have the classical Schwarz

waveform relaxation algorithm; for Robin or higher order transmission conditions,

we obtain an optimized Schwarz waveform relaxation algorithm, if the parameters in

the transmission conditions are chosen to optimize the convergence of the algorithm.

Finally, according to the reference [8], which designed the PSWR algorithm for

the parabolic problems, we construct here PSWR for the time‚periodic parabolic

problem ˘1¯. We decompose the spatial domain Ω into � overlapping subdomains

Ω = ∪�
�=1

Ω� , and the time interval (0, �) is divided into � time subintervals (��, ��+1)

with 0 = �0 < �1 < · · · < �� = � . Therefore we can get a sequence of space‚time

subdomains Ω�,� = Ω� × (��, ��+1), � = 1, 2, . . . , �, � = 0, . . . , � − 1.

Like in the parareal algorithm, we introduce a ine subdomain solver

��,� (�
�
�,�
,B� �̄

�
�) and a coarse subdomain solver ��,� (�

�
�,�
,B� �̄

�
�), where we do not

explicitly state the dependence of these solvers on the time interval and the right hand

side � and original Dirichlet boundary condition � to not increase the complexity

of the notation further. There is also a further important notational diference with

pararealȷ here the ine solver � returns the entire solution in space‚time, not just at

the inal time, since this solution is also needed in the transmission conditions of the

algorithm. Then for any initial guess of the initial values�0
�,�

and the interface values

B� �̄
0
�, a new PSWR algorithm ˘named PSWR‚IC¯ for the time‚periodic parabolic

problem ˘1¯ computes for iteration index � = 0, 1, 2, . . . and all spatial and time

indices � = 1, 2, . . . , �, � = 0, 1, . . . , � − 1, Step I. Use the more accurate evolution

operator to calculate

��+1
�,� = ��,� (�

�
�,�,B� �̄

�
�);

Step II. Update new initial conditions using a parareal step both in space and time

for � = 0, 1, . . . , � − 1

��+1
�,�+1

= ��+1
�,� (·, ��+1) + ��,� (�

�+1
�,� ,B� �̄

�+1
� ) − ��,� (�

�
�,�,B� �̄

�
�),

Step III. Update initial conditions at � = 0ȷ ��+1
�,0

= ��
�,�

.

Here �̄�� is a composed approximate solution from the subdomain solutions ��
�,�

using for example a partition of unity, e.g., �̄�� = ��
�,�

in Ω�,� ∪
�
�=1, �≠�

\(Ω�,� ∩Ω � ,�),

and �̄�� is the average value of ��
�,�

and ��
�,�

in the overlap Ω�,�∩Ω � ,�, � = 1, 2, . . . , �

and � ≠ �. And an initial guess �̄0
� and �0

�,�
is needed to start the iteration ˘the latter

can for example be computed by a time‚periodic problem on the coarse using the

coarse propagator once the former is chosen¯. Note that the irst step in the proposed
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PSWR‚IC algorithm, which is the expensive step involving the ine propagator ��,�,

can be performed in parallel over all space‚time subdomains Ω�,�, since both the

initial and boundary data are available from the previous iteration. The cheap second

step in the proposed PSWR‚IC algorithm involving only the coarse propagator��,� to

compute a new initial condition for most space‚time subdomains on�1, �2, . . . , ��−1,

is still in parallel in space, but now sequential in time, like in the parareal algorithm.

In step III, we use the idea of the PP‚IC algorithm in [7] to update the initial condition

at � = 0, which is a relaxation of ��+1
�,0

= ��+1
�,�

, avoiding solving a coupled system

on the time coarse points �� .

We have the following convergence result for the PSWR‚IC algorithm as follows.

Remark 1 If the ine propagator � is the exact solver, and the coarse propagator � is

Backward Euler, then PSWR‚IC with Dirichlet transmission conditions and overlap

� in two subdomain case for the 1‚dimensional heat equation converges linearly on

bounded time intervals (0, �). The proof is technical [16], for an illustration see

Section 3.

3 Numerical Experiments

To investigate numerically how the convergence of the PSWR‚IC algorithm for

time‚periodic problems depends on the various parameters in the space‚time decom‚

position, we use the following time‚periodic 1‚dimensional model problem

��(�, �)

��
=

�2�(�, �)

��2
+ � (�, �) (�, �) ∈ Ω × (0, 1),

�(�, �) = 0 (�, �) ∈ �Ω × (0, 1),

�(�, 0) = �(�, �) � ∈ Ω,

˘4¯

where the domain Ω = (0, 3), and the exact solution of the model problem is

� = �(� − 3) sin(2��). The model problem ˘4¯ is discretized by a second‚order

centered inite diference scheme with mesh size ℎ = 3/128 in space and by the

Backward Euler method with Δ� = 1/100 in time. The time interval is divided

into � time subintervals, while the domain Ω is decomposed into � equal spatial

subdomains with overlap �. We deine the relative error of the ininity norm of

the errors along the interface and initial time in the space‚time subdomains as the

iterative error of our new algorithm.

We decompose the domain Ω into 2 spatial subdomains with overlap � = 2ℎ. The

total time interval length is � = 1. We show in Figure 1 on the left the convergence

of the PSWR‚IC algorithm when the number of time subintervals equals 1 ˘classical

Schwarz waveform relaxation for time‚periodic problems¯, 2, 4, 10, and 20. This

shows that the convergence of the PSWR‚IC algorithm does indeed not depend on

the number of time subintervals, which is the same as the PSWR algorithm for the

initial value problem. Here we also observe that the PSWR‚IC algorithm converges
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Fig. 1: Dependence of the PSWR‚IC algorithm for the time‚periodic problem ˘4¯ on the number of

time subintervals.
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Fig. 2: Dependence of the PSWR‚IC algorithm for the time‚periodic problem ˘4¯ on the overlap

˘left¯, and on the number of spatial subdomains ˘right¯.

linearly, which is contrast to that of the PSWR algorithm for the initial value problem

with the superlinear convergence.

We next study the dependence on the overlap. We use � = 2ℎ, 4ℎ, 8ℎ and

16ℎ, and divide the time interval (0, �) with � = 1 into 10 time subintervals, still

using the same two subdomain decomposition of Ω as before. We see on the left in

Figure 2 that increasing the overlap substantially improves the convergence speed

of the algorithm. This increases however also the cost of the method, since bigger

subdomain problems need to be solved.

We then investigate numerically if a similar convergence result we derived for two

subdomains also holds for the case of many subdomains. We decompose the domain
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Fig. 3: Independence of the PSWR‚IC algorithm on the number of time subintervals for four spatial

subdomains ˘left¯, and eight spatial subdomains ˘right¯.

Ω into 2, 4, and 8 spatial subdomains, keeping again the overlap � = 2ℎ. For each

case, we divide the time interval (0, �) with � = 1 into 10 time subintervals. We

see in Figure 2 on the right that using more spatial subdomains makes the algorithm

converge more slowly, like the PSWR algorithm for the initial value problem.

We further investigate whether the convergence of the algorithm still does not

depend on the number of time subintervals for the case of many subdomains. We

see in Figure 3 that the convergence behavior for four spatial subdomains ˘left¯, and

eight spatial subdomains ˘right¯ is the same as the convergence behavior for two

spatial subdomains.

Finally, we compare the convergence behavior of the PSWR‚IC algorithm for

the time‚periodic problem ˘4¯ with Dirichlet and optimized transmission conditions.

Using optimized transmission conditions leads to much faster, so called optimized

Schwarz waveform relaxation methods, see for example [6, 3]. We divide the time

interval (0, �) with� = 1 into 10 time subintervals, and the domainΩ is decomposed

into 2, 4 and 8 spatial subdomains. We use irst order transmission conditions and

choose for the parameters � = 1, � = 1.75 ˘for the terminology, see [3]¯, which

is the same as optimized Schwarz waveform relaxation and optimized PSWR for

initial value problem. In Figure 4, we show the corresponding convergence curves

show that using optimized transmission conditions of these parameters even could

not converge. Then we chose numerically optimized parameters � = 10.5, � = 0,

which leads to substantially better performance of the PSWR‚IC algorithm, even

better than very generous overlap, and this at no additional cost. We also investigate

the dependence on the number of time subintervals ˘on the right in Figure 5¯, where

we choose the problem coniguration as in the case of the Dirichlet transmission

conditions in Figure 1. We observe that convergence is much faster with optimized

transmission conditions ˘less than 10 iterations instead of over 100¯, and convergence

is still linear, indicating that there is a diferent convergence mechanism dominating

now, due to the optimized transmission conditions.
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Fig. 4: Comparison of the PSWR‚IC algorithm with Dirichlet and optimized transmission conditions

for two spatial subdomains ˘left¯ and and four spatial subdomains ˘right¯.
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Fig. 5: Leftȷ comparison of the PSWR‚IC algorithm with Dirichlet and optimized transmission

conditions for eight spatial subdomains. Rightȷ dependence of the PSWR‚IC algorithm on the

number of time subintervals with optimized transmission conditions.

4 Conclusions

We designed a new parareal PSWR algorithm for time‚periodic problems, i.e., the

PSWR‚IC algorithm. This algorithm is based on a domain decomposition of the entire

space‚time domain into smaller space‚time subdomains, i.e., the decomposition is

both in space and in time. The new algorithm iterates on these space‚time subdomains

using two diferent updating mechanismsȷ the Schwarz waveform relaxation approach

for boundary condition updates, and the parareal mechanism for initial condition

updates. All space‚time subdomains are solved in parallel, both in space and in time.

For the time‚periodic problem, in particular, we use the periodic parareal algorithm

with initial‚value coarse problem to update initial condition at � = 0. The numerical

results illustrate that the PSWR‚IC algorithm converges linearly on bounded time

intervals when using Dirichlet transmission conditions in space which is contrast

to PSWR for initial value problem with the superlinear convergence, and optimized

transmission conditions improve the convergence behavior signiicantly.
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