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1 Introduction

Nowadays high performance computers have several thousand cores and more and

more complex hierarchical communication networks. For these architectures, the

use of a global reduction operation such as the dot product involved in the GMRES

acceleration can be a bottleneck for the performance. In this context domain decom‚

position’s solvers with local communications are becoming particularly interesting.

Nevertheless, the probability of temporarily failures/unavailabilty of a set of proces‚

sors/clusters is non‚zero, which leads to the need for fault tolerant algorithms such

as asynchronous Schwarz type’s methods. With the asynchronism the transmission

conditions ˘TC¯ at artificial interfaces generated by the domain decomposition may

not have been updated for some subdomains and for some iterations. The message

passing interface MPI‚3 standard provides one‚sided communication protocol where

a process can directly write on the local memory of an another process without syn‚

chronizing. This can also occur in the OpenMP implementation. For asynchronous

methods, it is very difficult to know if the update has been performed and most

papers fail to give the level of asynchronism in their implementation results.

From the numerical point of view, this asynchronism affects the linear operator of

the interface problem. In this context Aitken’s acceleration of the convergence should

not be applicable as it is based on the pure linear convergence of the DDM [6] [10]

[11], i.e. there exists a linear operator 𝑃 independent of the iteration that connects

the error at the artificial interfaces of two consecutives iterations. This paper focuses

on Aitken’s acceleration of the convergence of the asynchronous Restricted Additive

Schwarz ˘RAS¯ iterations. We develop a mathematical model of the Asynchronous

RAS allowing us to set the percentage of the number of randomly chosen local

artificial interfaces where transmission conditions are not updated. Then we show

how this ratio deteriorates the convergence of the Asynchronous RAS and how some
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regularization techniques on the traces of the iterative solutions at artificial interfaces

allow us to accelerate the convergence to the true solution.

The plan of the paper is the following. Section 2 gives the notation and the

principles of the Aitken‚Schwarz method using some low‚rank approximation of the

interface error operator. Section 3 presents the modeling of the asynchronous RAS

on a 2D Poisson problem allowing us to define the level of asynchronism. Section 4

present the results of the acceleration with respect to the level of asynchronism and the

enhancement of this acceleration with regularisation techniques before concluding

in section 5.

2 Aitken-Schwarz method principles

By adapting the notations of [3], we consider a non‚singular matrix 𝐴 ∈ R𝑛×𝑛 having

a non‚zero pattern and the associated graph 𝐺 = (𝑊, 𝐹), where the set of vertices

𝑊 = {1, . . . , 𝑛} represents the 𝑛 unknowns and the edge set 𝐹 =
{
(𝑖, 𝑗) |𝑎𝑖, 𝑗 ≠ 0

}

represents the pairs of vertices that are coupled by a nonzero element in 𝐴. Then we

assume that a graph partitioning has been applied and has resulted in 𝑁 nonoverlap‚

ping subsets𝑊0

𝑖
whose union is𝑊 . Let𝑊

𝑝

𝑖
be the 𝑝‚overlap partition of𝑊 , obtained

by including all the immediate neighboring vertices of the vertices from 𝑊
𝑝−1

𝑖
. Let

be 𝑊
𝑝

𝑖,𝑒
= 𝑊

𝑝+1

𝑖
\𝑊 𝑝

𝑖
. Then let 𝑅

𝑝

𝑖
∈ R𝑛𝑖×𝑛 ˘ 𝑅

𝑝

𝑖,𝑒
∈ R𝑛𝑖,𝑒×𝑛 and �̃�0

𝑖
∈ R𝑛𝑖×𝑛 respec‚

tively ¯ be the operator that restricts 𝑥 ∈ R𝑛 to the components of 𝑥 belonging to 𝑊
𝑝

𝑖

˘𝑊
𝑝

𝑖,𝑒
and 𝑊0

𝑖
respectively, and the operator �̃�0

𝑖
∈ R𝑛𝑖×𝑛 puts 0 to those unknowns

belonging to 𝑊
𝑝

𝑖
\𝑊0

𝑖
¯. We define the operators 𝐴𝑖 = 𝑅

𝑝

𝑖
𝐴𝑅

𝑝𝑇

𝑖
and 𝐸𝑖 = 𝑅

𝑝

𝑖
𝐴𝑅

𝑝𝑇

𝑖,𝑒
,

the vectors 𝑥𝑖 = 𝑅
𝑝

𝑖
𝑥, 𝑏𝑖 = 𝑅

𝑝

𝑖
𝑏, and 𝑥𝑖,𝑒 = 𝑅

𝑝

𝑖,𝑒
𝑥, then the RAS iteration 𝑘 + 1

writes locally for the partition 𝑊
𝑝

𝑖
ȷ

𝑥𝑘+1

𝑖 = 𝐴−1

𝑖 (𝑏𝑖 − 𝐸𝑖𝑥
𝑘
𝑖,𝑒). ˘1¯

By defining 𝑀−1

𝑅𝐴𝑆

𝑑𝑒 𝑓
=

∑𝑁−1

𝑖=0
�̃�0𝑇
𝑖

𝐴−1

𝑖 𝑅
𝑝

𝑖
and adding the contribution of each parti‚

tion 𝑊
𝑝

𝑖
, RAS can be viewed as a Richardson’s processȷ

𝑁−1∑︁

𝑖=0

�̃�0𝑇
𝑖 𝑅

𝑝

𝑖
𝑥𝑘+1

=

𝑁−1∑︁

𝑖=0

�̃�0𝑇
𝑖 𝐴−1

𝑖 𝑅
𝑝

𝑖
𝑏 −

𝑁−1∑︁

𝑖=0

�̃�0𝑇
𝑖 𝐴−1

𝑖 𝑅
𝑝

𝑖
𝐴𝑅

𝑝𝑇

𝑖,𝑒
𝑥𝑘 , ˘2¯

𝑥𝑘+1
= 𝑀−1

𝑅𝐴𝑆𝑏 − 𝑀−1

𝑅𝐴𝑆𝐴𝑥
𝑘 + 𝑥𝑘 = 𝑥𝑘 + 𝑀−1

𝑅𝐴𝑆 (𝑏 − 𝐴𝑥𝑘). ˘3¯

The Richardson’s process ˘3¯ is deduced from ˘2¯ ˘see [5, Theorem 3.7]¯ with using

the property 𝑅
𝑝

𝑖
𝐴 = 𝑅

𝑝

𝑖
𝐴(𝑅𝑝𝑇

𝑖
𝑅
𝑝

𝑖
+ 𝑅

𝑝𝑇

𝑖,𝑒
𝑅
𝑝

𝑖,𝑒
). It can be reduced to a problem with

the unknowns on the interface ˘see [12, eq. ˘2.12¯ and ˘2.13¯]¯.

The restriction of ˘3¯ to the interface Γ =

{
𝑊

𝑝

0,𝑒
, . . . ,𝑊

𝑝

𝑁−1,𝑒

}
of size

𝑛Γ =
∑𝑁−1

𝑖=0
𝑛𝑖,𝑒, by defining 𝑅Γ = (𝑅𝑝

0,𝑒
, . . . , 𝑅

𝑝

𝑁−1,𝑒
)𝑇 ∈ R𝑛Γ×𝑛 and by using the
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property 𝑅
𝑝𝑇

𝑖,𝑒
𝑅
𝑝

𝑖,𝑒
𝑅𝑇
Γ
𝑅Γ = 𝑅

𝑝𝑇

𝑖,𝑒
𝑅
𝑝

𝑖,𝑒
, writesȷ

𝑅Γ𝑥
𝑘+1

︸  ︷︷  ︸
𝑦𝑘+1

= 𝑅Γ

(
𝐼 − 𝑀−1

𝑅𝐴𝑆𝐴
)
𝑅𝑇
Γ

︸                     ︷︷                     ︸
𝑃

𝑅Γ𝑥
𝑘

︸︷︷︸
𝑦𝑘

+ 𝑅Γ𝑀
−1

𝑅𝐴𝑆𝑏︸      ︷︷      ︸
𝑐

.
˘4¯

The pure linear convergence of the RAS at the interface given by ȷ 𝑦𝑘 − 𝑦∞ =

𝑃(𝑦𝑘−1−𝑦∞) ˘the error operator 𝑃 does not depend of the iteration 𝑘¯ allows to apply

the Aitken’s acceleration of the convergence technique to obtain the true solution

𝑦∞ on the interface Γȷ 𝑦∞ = (𝐼 − 𝑃)−1 (𝑦𝑘 − 𝑃𝑦𝑘−1), and thus after another local

resolving, the true solution 𝑥∞. Let us note that we can accelerate the convergence

to the solution for a convergent or a divergent iterative method. The only need is

that 1 is not one of the eigen values of 𝑃. Considering 𝑒𝑘 = 𝑦𝑘 − 𝑦𝑘−1, 𝑘 = 1, . . .,

the operator 𝑃 ∈ R𝑛Γ×𝑛Γ can be computed algebraically after 𝑛Γ + 1 iterations as

𝑃 = [𝑒𝑛Γ+1, . . . , 𝑒2] [𝑒𝑛Γ , . . . , 𝑒1]−1. Nevertheless, for 2D or 3D problems, the value

𝑛Γ may be too large to have an efficient method. So a low‚rank approximation of

𝑃 is computed using the iterated interface solutions and the Aitken’s acceleration

is performed on the low‚rank space of dimension 𝑛𝛾 ≪ 𝑛Γ. As we search the

converged interface solution 𝑦∞, we build from the singular value decomposition

[9] of the matrix 𝑌 = [𝑦0, . . . 𝑦𝑞] = 𝑈Σ𝑉𝑇 a low‚rank space with selecting the 𝑛𝛾
singular vectors associated to the most significant singular values.

Algorithm 1 Approximated Aitken’s acceleration

Require: 𝑥0 an arbitrary initial condition , 𝜖 > 0 a given tolerance, 𝑦0
= 𝑅Γ𝑥

0,

1ȷ repeat

2ȷ for 𝑘 = 1 . . . 𝑞 do

3ȷ 𝑥𝑘
= 𝑥𝑘−1 +𝑀−1

𝑅𝐴𝑆

(
𝑏 − 𝐴𝑥𝑘−1

)
, 𝑦𝑘

= 𝑅Γ𝑥
𝑘 // RAS iteration

4ȷ end for

5ȷ Compute SVD of [𝑦0, 𝑦1, . . . , 𝑦𝑞 ] =𝑈Σ𝑉′,

keep the 𝑛𝛾 singular vectors 𝑈1:𝑛𝛾
such that 𝜎𝑛𝛾+1 < 𝜖

6ȷ Compute [ �̂�𝑞−𝑛𝛾−2, . . . , �̂�𝑞 ] =𝑈𝑇
1:𝑛𝛾
[𝑦𝑞−𝑛𝛾−2, . . . , 𝑦𝑞 ], and �̂�𝑘 = �̂�𝑘 − �̂�𝑘−1

7ȷ Compute 𝑃 = [�̂�𝑞−𝑛𝛾 . . . , �̂�𝑞 ] [�̂�𝑞−𝑛𝛾−1, . . . , �̂�𝑞−1 ]−1

8ȷ 𝑦0 ←𝑈1:𝑛𝛾

(
𝐼 − 𝑃

)−1 (
�̂�𝑞 − 𝑃�̂�𝑞−1

)

9ȷ until convergence

This low‚rank approximation of the acceleration has been very efficient to solve

3D Darcy flow with highly heterogeneous and randomly generated permeability field

[1]. Step 7 of the algorithm may be subject to bad conditioning and matrix inversion

can be replaced by pseudo inverse. Other techniques developed in [1] avoid the

matrix inversion. For 1D partitioning ˘i.e ∀𝑖 = {0, . . . 𝑁 − 1}, 𝑊 𝑝

𝑖,𝑒
∩𝑊0

𝑗
= ∅,∀ 𝑗 ≠

{𝑖 − 1, 𝑖 + 1}¯, we can use the sparsity of 𝑃 to define a Sparse‚Aitken acceleration,

numerically more efficient by using local SVD for each subdomain [2].
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3 Modeling the Asynchronous RAS

If the Schwarz DDM converges then the asynchronous Schwarz does the same [8,

Theorem 5 with assumption 2], under the additional hyppothesis that the TC have

been generated before their use, no subdomain stop updating its components and no

subdomain have a TC that is never updated.

We consider the 2D Poisson problemȷ





−( 𝜕
2

𝜕𝑧2

1

+ 𝜕2

𝜕𝑧2

2

) 𝑥(𝑧1, 𝑧2) = 𝑏(𝑧1, 𝑧2), (𝑧1, 𝑧2) ∈]0, 1[×]0, 1[,

with homogeneous Dirichlet B.C.

˘5¯

We discretize ˘5¯ with second order centered finite differences on a regular Cartesian

mesh of 𝑛
𝑔
𝑧1
× 𝑛

𝑔
𝑧2
= 𝑛 points.

Given a non‚prime number 𝑁 ∈ N, we split the domain [0, 1]2 in 𝑁 = 𝑁𝑧1
× 𝑁𝑧2

overlapping partitions𝑊
𝑝

𝑖
. For the sake of simplicity, we consider that each partition

𝑊
𝑝

𝑖
has 𝑛𝑖 = 𝑛𝑙𝑧1

× 𝑛𝑙𝑧2
points of discretizing and we define 𝑛

𝑔
𝑧1

and 𝑛
𝑔
𝑧2

accordingly.

Due to the Cartesian mesh discretizing, the set 𝑊
𝑝

𝑖,𝑒
, for each 𝑖, can be split in a

maximum of four parts corresponding to the four local artificial interfaces generated

by the partitioning. Twoȷ 𝑊
𝑂,𝑝

𝑖,𝑒
and 𝑊

𝐸,𝑝

𝑖,𝑒
˘respectively 𝑊

𝑆,𝑝

𝑖,𝑒
and 𝑊

𝑁,𝑝

𝑖,𝑒
¯ are in the

𝑧1 ˘respectively 𝑧2¯ direction.

The asynchronous RAS algorithm does not wait that the updates of the transmis‚

sion conditions ˘TC¯ ˘the term 𝐸𝑖𝑥
𝑘 in ˘1¯¯ are done before starting the next iteration.

Consequently, the TC of one partition could have not been totally or partially up‚

dated. As there is not control on the restraining of the communication network, it is

difficult to evaluate the number of update of the local TC that are missing.

In order to modelize the asynchronous RAS, we propose a model where each

of the four TC of each subdomains are totally update or not, following a random

draw of four numbers (𝑙𝑂
𝑖
, 𝑙𝑊

𝑖
, 𝑙𝑆

𝑖
, 𝑙𝑁

𝑖
) per 𝑊

𝑝

𝑖
. Only if the draw associated to a

local TC is greater than a fixed limit 𝑙 then this local TC is updated. The value 𝑙

gives the percentage of missing TC updates. The synchronous RAS algorithm is

obtained setting 𝑙 = 0 and we note 𝑙‚RAS the asynchronous RAS with a 𝑙 level

of asynchronism. The 𝑙‚RAS iterates until 𝑅Γ𝑥
𝑘 does not evolve anymore. Figure

1 ˘left¯ shows that the level of asynchronism deteriorates the convergence of the

RAS. The error between two consecutive iterations oscillates quite strongly with 𝑙.

These oscillations are smoother for the error with the true solution. Table 1 shows

the log10 of the error with the true solution of the asynchronous 𝑙‚RAS for 240

iterations and the associated Aitken’s acceleration of the convergence. The results

for 𝑙‚RAS, with respect to the asynchronism level 𝑙, have an increasing variance but

the min,max and mean values of the error are close. The Aitken’s acceleration of the

convergence, using the set of 240 𝑙‚RAS iterations, still accelerates even at a high

level 𝑙 of asynchronism, even though the acceleration deteriorates with increasing 𝑙.

Those results have a more stable variance and the mean value is closer to the max

value than to the min value. We limited 𝑛𝛾 to be 40 for 𝑙 ≠ 0 and to be 20 for 𝑙 = 0
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Fig. 1: 𝑙‚RAS convergence with respect to the level of asynchronism 𝑙ȷ for two consecutive iterations

˘continuous line¯ and ˘left¯ with the true solution ˘+¯ , ˘right¯ two consecutive iterations after

Césaro’s summation ˘+¯. ˘𝑛𝑙𝑧1
= 𝑛𝑙𝑧2

= 10, 𝑁𝑧1
= 𝑁𝑧2

= 5, 𝑛𝛾 = 40¯

due to the strong decreasing of the firsts singular values. Let us notice for this test

case 𝑛Γ = 544 and the low‚rank space is of size 𝑛𝛾 = 40.

Aitken 𝑙‚RAS 𝑙‚RAS Update failures

𝑙 min max mean 𝜎 min max mean 𝜎 min max mean 𝜎

0.0% ‚11.12 ‚11.12 ‚11.12 2e‚14 ‚2.543 ‚2.543 ‚2.543 3e‚15 0 0 0 0

0.5% ‚3.666 ‚5.839 ‚4.969 4.0e‚1 ‚2.527 ‚2.556 ‚2.533 4.8e‚3 99 145 120.7 9.9

1.0% ‚2.814 ‚5.440 ‚4.751 4.7e‚1 ‚2.513 ‚2.544 ‚2.524 7.1e‚3 202 277 239.48 15.6

5.0% ‚2.521 ‚5.023 ‚4.284 4.2e‚1 ‚2.415 ‚2.479 ‚2.443 1.4e‚2 1121 1286 1197.3 34.3

10.% ‚1.729 ‚4.707 ‚3.956 5.3e‚1 ‚2.303 ‚2.406 ‚2.347 2.1e‚2 2267 2502 2397.9 43.6

30.% ‚1.037 ‚4.005 ‚3.280 4.6e‚1 ‚1.868 ‚2.089 ‚1.974 4.7e‚2 7044 7349 7203.3 66.5

50.% 0.548 ‚3.613 ‚2.643 6.1e‚1 ‚1.472 ‚1.961 ‚1.678 9.3e‚2 11860 12199 12013 66.1

Table 1: Statistics ˘min,max,mean and variance 𝜎¯, based on 100 runs, of 𝑙𝑜𝑔10( | |𝑥240 − 𝑥∞ | |∞)
, with respect to 𝑙, for the asynchronous 𝑙‚RAS and its Aitken’s acceleration of the convergence

˘with the same data¯. ˘𝑛𝑙𝑧1
= 𝑛𝑙𝑧2

= 10, 𝑁𝑧1
= 𝑁𝑧2

= 5, 𝑛𝛾 = 40¯

4 Regularization of the Aitken acceleration of the convergence of

the Asynchronous RAS

At first glance, previous results on Aitken’s acceleration of the convergence of the

𝑙‚RAS are surprising as the pure linear convergence of the RAS is destroyed with

the asynchronism, i.e. the error operator depends of the iterationȷ 𝑦𝑘+1 − 𝑦𝑘 =

𝑃𝑘 (𝑦𝑘 − 𝑦𝑘−1). The explanation comes from the low‚rank space built with the SVD.

Let 𝑌𝑙 = [𝑦0

𝑙
, . . . , 𝑦

𝑞

𝑙
] be the matrix of the iterated 𝑙‚RAS interface solutions. As the

asynchronous 𝑙‚RAS converges, we can write𝑌𝑙 = 𝑌0 +𝐸𝑙 where 𝐸𝑙 is a perturbation

matrix with smaller and smaller entries with respect to the iterations. Then using the

Fan inequality [4, Theorem 2, p.764] of the SVD of a perturbation matrix, we haveȷ
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Aitken Césaro 𝑙‚RAS Upper Aitken 𝑙‚RAS 𝑙‚RAS

𝑙 min max 𝜎 mean bound mean mean

0.0% ‚12.42 ‚12.42 8.e‚15 ‚12.42 ‚12.27 ‚11.111 ‚2.543

0.5% ‚4.059 ‚6.968 4.5e‚1 ‚6.284 ‚6.120 ‚4.969 ‚2.533

1.0% ‚4.667 ‚6.856 3.9e‚1 ‚6.096 ‚5.902 ‚4.751 ‚2.524

5.0% ‚4.184 ‚6.383 4.9e‚1 ‚5.546 ‚5.434 ‚4.284 ‚2.443

10.% ‚3.844 ‚6.047 4.5e‚1 ‚5.294 ‚5.106 ‚3.956 ‚2.347

30.% ‚3.457 ‚5.261 3.9e‚1 ‚4.500 ‚4.431 ‚3.280 ‚1.974

50.% ‚2.505 ‚4.553 4.7e‚1 ‚3.841 ‚3.794 ‚2.643 ‚1.678

Table 2: Statistics ˘min,max,mean and variance 𝜎¯ for 100 runs of 𝑙𝑜𝑔10 of the error with the true

solution of the Aitken acceleration of the convergence of 𝑙‚RAS with Cesaro’s mean with respect

to the asynchronism level 𝑙. ˘𝑛𝑙𝑧1
= 𝑛𝑙𝑧2

= 10, 𝑁𝑥 = 𝑁𝑦 = 5, 𝑛𝛾 = 40, 𝑚 = 200¯

𝜎𝑟+𝑠+1 (𝑌0 + 𝐸𝑙) ≤ 𝜎𝑟+1 (𝑌0) + 𝜎𝑠+1 (𝐸𝑙) with 𝑟, 𝑠 ≥ 0, 𝑟 + 𝑠 + 1 ≤ 𝑞 + 1.

Setting 𝑠 = 0, we have |𝜎𝑟+1 (𝑌0 + 𝐸𝑙) − 𝜎𝑟+1 (𝑌0) | ≤ 𝜎1 (𝐸𝑙) = | |𝐸𝑙 | |2,∀𝑟 ≤ 𝑞. By

using the Schmidt’s Theorem [7, Theorem 2.5.3] on the SVD approximation, we can

writeȷ

min
𝑋,𝑟𝑎𝑛𝑘𝑋=𝑘

( | |𝑌𝑙 − 𝑋 | |2) = 𝜎𝑘+1 (𝑌𝑙) = min
𝑋,𝑟𝑎𝑛𝑘𝑋=𝑘

( | |𝑌𝑙 − 𝑌0 + 𝑌0 − 𝑋 | |2

≤ ||𝑌𝑙 − 𝑌0 | |2 + min
𝑋,𝑟𝑎𝑛𝑘𝑋=𝑘

| |𝑌0 − 𝑋 | |2

≤ 𝜎1 (𝐸𝑙) + 𝜎𝑘+1 (𝑌0) ˘6¯

This result implies thatȷ

• the low‚rank space 𝑈𝑙 built from 𝑌𝑙 is an approximation of 𝑈0 with a small

perturbation | |𝐸𝑙 | |2 = 𝜎1 (𝐸𝑙).
• As lim𝑘→∞ 𝑦𝑘

𝑙
→ 𝑦∞, the perturbation matrix 𝐸𝑙 has its columns with a decreas‚

ing 2‚norm. Thus, a better acceleration is obtained with considering the last 𝑞

iterations to build 𝑈𝑙 .

This last result suggests an improvement of the Aitken’s acceleration of the con‚

vergence with the Césaro’s mean of the iterated interface solutions. We transform

the sequence (𝑦𝑙) in an another sequence ( �̃�𝑙) defined as �̃�𝑖
𝑙
=

1

𝑚

∑𝑚−1

𝑗=0
𝑦
𝑖+ 𝑗
𝑙

. The

summation still preserves the pure linear convergence of the synchronous 0%‚RASȷ

�̃�𝑘+1

0
− 𝑦∞ = 𝑃( �̃�𝑘

0
− 𝑦∞) and will smooth the perturbation 𝐸𝑙 . Figure 1 ˘right¯ shows

the log10 of the error with the true solution of the iterated interface solution with

the Césaro’s mean with 𝑚 = 200. This last allows to smooth the error oscillations

on the convergence of 𝑙‚RAS. The difference between two consecutive iterations of

the sequence ( �̃�𝑙) has a smaller amplitude than for the original sequence (𝑦𝑙). This

leads to have a low‚rank space 𝑈𝑙 built from this ( �̃�𝑙) more representative of the

space where the true solution lives.

Table 2 gives the statistics for 100 runs of the Aitken’s acceleration of the conver‚

gence for the 𝑙‚RAS using the Césaro’s mean with respect to 𝑙. The acceleration of

the convergence is enhanced using ( �̃�𝑙) than (𝑦𝑙). The variance and the amplitude

between the min and the max values of the results are smaller. Even the 0%‚RAS is
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better accelerated. Moreover, it shows a upper bound for the mean acceleration of

the 𝑙‚RAS with the Césaro’s mean to be
1
√
𝑚

the mean acceleration of the 𝑙‚RAS.

Figure 2 gives the singular values (𝜎𝑖) of the SVD of 𝑌𝑙 obtained with 𝑙‚RAS with

Fig. 2: Singular values of one sample of 250 𝑙‚RAS iterations for 𝑙 =

{0%, 1%, 5%, 10%, 30%, 50%} ˘left¯ and for 𝑙 = {0%, 0.01%, 0.025%, 0.05%, 0.1%, 0.5%}
and 300 iterations with the number of transmission condition update failures in brackets ˘right¯.

˘𝑁 𝑙
𝑥 = 𝑁 𝑙

𝑦 = 10, 𝑃𝑥 = 𝑃𝑦 = 5, 𝑝 = 40¯

respect to the level 𝑙 of asynchronism. It shows that the fast decreasing of (𝜎𝑖) is

lost with the asynchronism. It still exhibits some decreasing of (𝜎𝑖) that allows the

Aitken’s acceleration of the convergence. The right figure shows that even with a

very small level 𝑙 of asynchronism, the decreasing of 𝜎𝑖 is deteriorated even with

few TC update failures ˘the total number of update for 300 0%‚RAS iterations is

300 × (4 × 2 + 12 × 3 + ß × 4) = 24000¯.

5 Conclusion

We have succeed to accelerate the asynchronous RAS with the Aitken’s acceleration

of the convergence technique based on the low‚rank approximation of the error

operator with the SVD of the matrix of interface iterated solutions. The SVD allows

to smooth the asynchronous effect over the iterations. We proposed a modeling for

setting the level of asynchronism. It can be used to estimate the asynchronism in

real application. Knowing the observed convergence rate of the real application,

we can extrapolate the level of asynchronism of the implementation. The model

proposed here considers a uniform probability for TC update failure ˘the worst case¯

but we also can consider that only certain parts of the domain decomposition may

be temporarily at fault. Finally, we proposed a regularisation technique based on the
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Césaro’s mean of the 𝑙‚RAS iterated interface solutions that improves the Aitken’s

acceleration of the convergence even on the synchronous RAS.
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