
Preface

This volume contains a selection of 84 papers submitted to the 26th International
Conference on Domain Decomposition Methods, hosted by Department of Math-
ematics at the Chinese University of Hong Kong, and held in virtual format on
December 7–12, 2020.

Background of the Conference Series

With its first meeting in Paris in 1987, the International Conference on Domain
Decomposition Methods has been held in 15 countries in Asia, Europe, and North
America, and now for the first time in Hong Kong SAR. The conference is held at
roughly 18-month intervals. A complete list of 26 meetings appears below.
Domain decomposition is often seen as a form of divide-and-conquer for math-

ematical problems posed over a physical domain, reducing a large problem into a
collection of smaller problems, each of which is much easier to solve computa-
tionally than the undecomposed problem, and most or all of which can be solved
independently and concurrently, and then solving them iteratively in a consistent
way. Much of the theoretical interest in domain decomposition algorithms lies in
ensuring that the number of iterations required to converge is very small. Domain
decomposition algorithms can be tailored to the properties of the physical system as
reflected in the mathematical operators, to the number of processors available, and
even to specific architectural parameters, such as cache size and the ratio of memory
bandwidth to floating point processing rate, proving it to be an ideal paradigm for
large-scale simulation on advanced architecture computers.
The principal technical content of the conference has always been mathematical,

but the principal motivation has been to make efficient use of distributed mem-
ory computers for complex applications arising in science and engineering. While
research in domain decomposition methods is presented at numerous venues, the
International Conference on Domain Decomposition Methods is the only regularly
occurring international forum dedicated to interdisciplinary technical interactions
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between theoreticians and practitioners working in the development, analysis, soft-
ware implementation, and application of domain decomposition methods.
As we approach the dawn of exascale computing, where we will command 1018

floating point operations per second, clearly efficient and mathematically well-
founded methods for the solution of large-scale systems become more and more
important — as does their sound realization in the framework of modern HPC archi-
tectures. In fact, the massive parallelism, which makes exascale computing possible,
requires the development of new solutions methods, which are capable of efficiently
exploiting this large number of cores as well as the connected hierarchies for memory
access. Ongoing developments such as parallelization in time asynchronous itera-
tive methods, or nonlinear domain decomposition methods show that this massive
parallelism does not only demand for new solution and discretization methods, but
also allows to foster the development of new approaches.
Here is a list of the 26 conferences on Domain Decomposition:

1. Paris, France, January 7–9, 1987
2. Los Angeles, USA, January 14–16, 1988
3. Houston, USA, March 20–22, 1989
4. Moscow, USSR, May 21–25, 1990
5. Norfolk, USA, May 6–8, 1991
6. Como, Italy, June 15–19, 1992
7. University Park, Pennsylvania, USA, October 27–30, 1993
8. Beijing, China, May 16–19, 1995
9. Ullensvang, Norway, June 3–8, 1996
10. Boulder, USA, August 10–14, 1997
11. Greenwich, UK, July 20–24, 1998
12. Chiba, Japan, October 25–20, 1999
13. Lyon, France, October 9–12, 2000
14. Cocoyoc, Mexico, January 6–11, 2002
15. Berlin, Germany, July 21–25, 2003
16. New York, USA, January 12–15, 2005
17. St. Wolfgang–Strobl, Austria, July 3–7, 2006
18. Jerusalem, Israel, January 12–17, 2008
19. Zhangjiajie, China, August 17–22, 2009
20. San Diego, California, USA, February 7–11, 2011
21. Rennes, France, June 25–29, 2012
22. Lugano, Switzerland, September 16–20, 2013
23. Jeju Island, Korea, July 6–10, 2015
24. Spitsbergen, Svalbard, Norway, February 6–10, 2017
25. St. John’s, Newfoundland, Canada, July 23–27, 2018
26. Hong Kong SAR (virtual format), China, December 7–12, 2020
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International Scientific Committee on Domain Decomposition Methods

• Petter Bjørstad, University of Bergen, Norway
• Susanne Brenner, Louisiana State University, USA
• Xiao-Chuan Cai, CU Boulder, USA
• Martin Gander, University of Geneva, Switzerland
• Laurence Halpern, University Paris 13, France
• David Keyes, KAUST, Saudi Arabia
• Hyea Hyun Kim, Kyung Hee University, Korea
• Axel Klawonn, Universität zu Köln, Germany
• Ralf Kornhuber, Freie Universität Berlin, Germany
• Ulrich Langer, University of Linz, Austria
• Luca Pavarino, University of Pavia, Italy
• Olof Widlund, Courant Institute, USA
• Jinchao Xu, Penn State, USA
• Jun Zou, Chinese University of Hong Kong, Hong Kong

About the 26th Conference

The twenty-sixth International Conference on Domain Decomposition Methods had
close to 250 participants from about 30 different countries. The conference contained
12 invited presentation selected by the International Scientific Committee, fostering
both experienced and younger scientists, 22 minisymposia around specific topics
and 6 contributed sessions. The present proceedings contain a selection of 84 papers
grouped into three separate groups: 9 plenary papers, 60 minisymposium papers,
and 15 contributed papers.

Sponsoring Organizations
• Department of Mathematics, Chinese University of Hong Kong
• Department of Mathematics, Hong Kong Baptist University
• Faculty of Science, Chinese University of Hong Kong
• United College, Chinese University of Hong Kong
• The Hong Kong Mathematical Society

Local Organizing/Program Committee Members
• Jian-Feng Cai, Hong Kong University of Science and Technology
• Raymond Chan, City University of Hong Kong
• Zhiming Chen, Chinese Academy of Sciences
• Eric Chung, Chinese University of Hong Kong
• Felix Kwok, Université Laval and Hong Kong Baptist University
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• Lok Ming Lui, Chinese University of Hong Kong
• Michael Ng, University of Hong Kong
• Jinchao Xu, Pennsylvania State University
• Tieyong Zeng, Chinese University of Hong Kong
• Jun Zou, Chinese University of Hong Kong

Plenary Presentations
• Local Multiscale Model Reducation and Applications, Eric Chung (Chinese
University of Hong Kong, Hong Kong SAR)

• Robust Solvers for Time-Harmonic Wave Propagation Problems, Victorita
Dolean (Université Côte d’Azur, France and Strathclyde University, Scotland)

• Improving Efficiency of Scalable TFETI/BETI Contact Solvers for Huge Prob-
lems, Zdeněk Dostál (Technical University of Ostrava, Czech Republic)

• An Efficient and High Order Accurate Direct Solution Technique for Variable
Coefficient Elliptic Partial Differential Equations, AdriannaGillman (University
of Colorado, Boulder, USA)

• Fundamental Coarse Space Components for Schwarz Methods with Cross-
points, Laurence Halpern (Université Paris 13, France)

• Domain Decomposition Methods for Time Harmonic Wave Propagation Prob-
lems, Patrick Joly (ENSTA ParisTech, France)

• Multilevel Strategies for Non-Linear Problems and Machine Learning: On Non-
Linear Preconditioning, Multilevel Optimization, and Multilevel Training, Rolf
Krause (University of Lugano, Switzerland)

• Adaptive Space-Time Finite Element and Isogeometric Analysis, Ulrich Langer
(Johannes Kepler University Linz, Austria)

• From Differential Equations to Deep Learning for Image Processing, Carola-
Bibiane Schönlieb (University of Cambridge, UK)

• Nonoverlapping Domain Decomposition Methods for Saddle Point Problems,
Xuemin Tu (University of Kansas, USA)

• Domain Decomposition for Modeling Two-Phase Flow in Porous Media, Mary
Wheeler (University of Texas at Austin, USA)

• General Convection-Diffusion Problems: Robust Discretizations, Fast Solvers
and Applications, Shuonan Wu (Peking University, China)
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Multiscale Model Reduction for a Class of
Optimal Control Problems with Highly
Oscillating Coefficients

Tak Shing Au Yeung and Eric Chung

1 Introduction

The paper is concerned with the discretization of a class of elliptic optimal control
problems with highly heterogeneous coefficient:

inf 𝐽 (𝑢) = 𝐹 (𝑦, 𝑢) = 1
2
∥𝑦 − 𝑦𝑑 ∥2𝐿2 (Ω) +

𝜈

2
∥𝑢∥2

𝐿2 (Ω) (1)

subject to the state equations

−div(𝜅(𝑥)∇𝑦) = 𝑢, in Ω, (2)
𝑦 = 0, on Γ, (3)

and to the control constraints

𝑎 ≤ 𝑢(𝑥) ≤ 𝑏 for a.e. 𝑥 ∈ Ω, (4)

whereΩ ⊂ R2 is a bounded polygonal Lipschitz domain and Γ is the boundary ofΩ;
𝜅(𝑥) is a high-contrast heterogeneous permeability field with 0 < 𝜅0 ≤ 𝜅(𝑥) ≤ 𝜅1
and 𝑎, 𝑏 are real numbers. In (1), we assume 𝑦𝑑 ∈ 𝐿2 (Ω). Moreover, 𝜈 > 0 is a fixed
positive number. We denote the set of admissible controls by𝑈𝑎𝑑:

𝑈𝑎𝑑 = {𝑢 ∈ 𝐿2 (Ω) : 𝑎 ≤ 𝑢 ≤ 𝑏, a.e. in Ω}.

Tak Shing Au Yeung
Department of Mathematics, The Chinese University of Hong Kong, Hong Kong SAR e-mail:
iauyeung@math.cuhk.edu.hk

Eric Chung
Department of Mathematics, The Chinese University of Hong Kong, Hong Kong SAR e-mail:
tschung@math.cuhk.edu.hk
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In many practical situations, one may encounter heterogeneous media such as
fractured media or porous media with high contrast channels. The coefficients for
these problems usually contain scale disparity and high contrast regions. Solutions
to the problems in these scenarios can contain multiple scales, and very fine com-
putational meshes are typically needed in order to capture these scales. Because of
these reasons, some type of model reduction is crucial for these problems. These
reduced models are usually constructed based on a coarse grid, whose size does not
necessarily resolve any of the scales. In addition, the resulting solutions are required
to be robust with respect to the scales and the contrasts of the media, which is the
main challenge.
There are existing multiscale approaches, such as [1, 2, 6, 7, 4]. The method in

this paper is based on the Constraint Energy Minimizing Generalized Multiscale
Finite Element Method (CEM-GMsFEM) [3]. In general, the method has two com-
putational stages, called the offline and the online stages. In the offline stage, some
computations are performed once and the reduced model is obtained. In the online
stage, the problem formulated using the reduced model is solved when the input
arguments and source terms are provided. The key to the success of the method is
that the reduced model is only computed once in the offline stage, and the model
can be used repeatedly in the online stage for various choices of input parameters
and sources. In the offline stage, we will construct some local multiscale basis func-
tions. The construction begins with a local auxiliary space, which is defined for
each coarse element. The local auxiliary space is determined using a local spectral
problem, which is able to identify high contrast channelized networks and fractures,
as well as identify some important modes of the solution. We will use the first few
eigenfunctions corresponding to small eigenvalues as the local auxiliary functions.
Next, for each auxiliary function on a target coarse element, we will define a corre-
sponding target multiscale basis function. The multiscale basis function is obtained
by minimizing an energy over an oversampling region, obtained by extending the
target coarse element by a few coarse grid layers, subject to some orthogonality
conditions. These orthogonality conditions require that the target multiscale basis
function is orthogonal to all auxiliary functions except the one being selected. The
resulting multiscale basis functions have several important properties. One of them
is that these basis functions are localized, providing the foundation of computing
numerically on local oversampling regions. Another property is that the resulting
coarse model based on the Galerkin formulation is first order convergent with respect
to the coarse mesh size in the natural energy norm. The error bound is independent
of the heterogeneities and contrast of the medium parameter 𝜅. Hence the reduced
model is very robust.

2 Method description

This section will give the detail of our multiscale method and state the main conver-
gence results. First of all, we introduce the adjoint equation
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−div(𝜅(𝑥)∇𝑝) = 𝑦 − 𝑦𝑑 , in Ω, (5)
𝑝 = 0, on Γ. (6)

We call the solution 𝑦 of (2)-(3) for a control 𝑢 an associated state to 𝑢 and denote it
as 𝑦(𝑢). In the same way, we call the solution 𝑝 of (7)-(6) corresponding to 𝑦(𝑢) an
associated adjoint state to 𝑢 and denote it as 𝑝(𝑢). We introduce the projection

Π[𝑎,𝑏] ( 𝑓 (𝑥)) = max(𝑎,min(𝑏, 𝑓 (𝑥))).

Then we can formulate the necessary and sufficient first order optimality condition
for (1)-(4).

Lemma 1 A necessary and sufficient condition for the optimality of a control �̄� with
corresponding state �̄� = 𝑦(�̄�) and adjoint state 𝑝 = 𝑝(�̄�), respectively, is that the
equation

�̄� = Π[𝑎,𝑏]

(
−1
𝜈
𝑝

)
(7)

holds, where the state and adjoint equations for control �̄� is given by:

−div(𝜅(𝑥)∇�̄�) = �̄�, in Ω,

�̄� = 0, on Γ

and

−div(𝜅(𝑥)∇𝑝) = �̄� − 𝑦𝑑 , in Ω,

𝑝 = 0, on Γ.

Moreover, due to (7), we obtain �̄� ∈ 𝐻1 (Ω). See Theorem 2.28 in [8] for details.

We are now in a position to introduce the discretized problem. We apply a
multiscale finite element based approximation of the optimal control problem (1)-
(4). First, the notions of fine and coarse grids are introduced. Let𝑇𝐻 be a conforming
partition of Ω into finite elements. Here, 𝐻 is the coarse-mesh size and this partition
is called coarse grid. We let 𝑁𝑐 be the number of vertices and 𝑁 be the number of
elements in the coarse mesh. We assume that each coarse element is partitioned into
a connected union of fine-grid cells and this partition is called 𝑇ℎ. Note that 𝑇ℎ is
a refinement of the coarse grid 𝑇𝐻 with the mesh size ℎ. It is assumed that the fine
grid is sufficiently fine to resolve the solution.
Moreover, we set

𝑈𝐻 = {𝑢 ∈ 𝐿∞ (Ω) : 𝑢 |𝑇′ is constant on all 𝑇 ′ ∈ 𝑇𝐻 },
𝑈𝑎𝑑𝐻 = 𝑈𝐻 ∩𝑈𝑎𝑑 ,
𝑉 = 𝐻1

0 (Ω).

For each 𝑢𝐻 ∈ 𝑈𝐻 , the solution 𝑦(𝑢𝐻 ) of (2)-(3) satisfies
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𝑎(𝑦(𝑢𝐻 ), 𝑣) =
∫
Ω
𝑢𝐻𝑣 𝑑𝑥 ∀𝑣 ∈ 𝑉, (8)

where 𝑎 : 𝑉 × 𝑉 → R is the bilinear form defined by 𝑎(𝑦, 𝑣) =
∫
Ω
𝜅∇𝑦 · ∇𝑣 𝑑𝑥.

We define the energy norm ∥𝑦∥𝑎 = 𝑎(𝑦, 𝑦) 1
2 . Notice that our goal is to construct a

numerical scheme that gives the cell average of the control on the coarse grid.

2.1 Multiscale basis functions

We will construct 𝑉𝑚𝑠 , which is the space spanned by all multiscale basis functions.
Then the multiscale solution 𝑦𝑚𝑠 is defined as the solution of the following problem:
find 𝑦𝑚𝑠 ∈ 𝑉𝑚𝑠 such that

𝑎(𝑦𝑚𝑠 (𝑢𝐻 ), 𝑣) =
∫
Ω
𝑢𝐻𝑣 𝑑𝑥 ∀𝑣 ∈ 𝑉𝑚𝑠 . (9)

We will first construct our auxiliary multiscale basis functions, which will be
constructed for each coarse cell 𝐾 in the coarse grid. Let 𝐾𝑖 be the 𝑖-th coarse
cell and let 𝑉 (𝐾𝑖) be the restriction of 𝑉 on 𝐾𝑖 , which is 𝐻1 (𝐾𝑖). Following the
construction from [3], we need a local spectral problem, which is to find a real
number 𝜆 (𝑖)𝑗 and a function 𝜙

(𝑖)
𝑗 ∈ 𝑉 (𝐾𝑖) such that

𝑎𝑖 (𝜙 (𝑖)𝑗 , 𝑤) = 𝜆 (𝑖)𝑗 𝑠𝑖 (𝜙 (𝑖)𝑗 , 𝑤), ∀𝑤 ∈ 𝑉 (𝐾𝑖), (10)

where 𝑎𝑖 is a symmetric non-negative definite bilinear operator and 𝑠𝑖 is a symmet-
ric positive definite bilinear operators defined on 𝑉 (𝐾𝑖) × 𝑉 (𝐾𝑖). We assume the
normalization 𝑠𝑖 (𝜙 (𝑖)𝑗 , 𝜙 (𝑖)𝑗 ) = 1. Notice that 𝜆 (𝑖)𝑗 depends on 𝐻. In the numerical
implementation, we need a fine grid in order to compute 𝜙 (𝑖)𝑗 . Based on the analysis
in [3], we can choose

𝑎𝑖 (𝑣, 𝑤) =
∫
𝐾𝑖

𝜅∇𝑣 · ∇𝑤 𝑑𝑥, 𝑠𝑖 (𝑣, 𝑤) =
∫
𝐾𝑖

𝜅𝑣𝑤 𝑑𝑥

where 𝜅 =
∑𝑁𝑐
𝑗=1 𝜅 |∇𝜒𝑚𝑠𝑗 |2 and {𝜒𝑚𝑠𝑗 }𝑁𝑐𝑗=1 are the standard multiscale finite element

(MsFEM) basis functions or piecewise bilinear basis, which satisfy the partition of
unity property. We note that 𝜅 is positive and it is important in the estimate of local-
ization of basis functions, see Lemma 3 of [3]. We let 𝜆 (𝑖)𝑗 be the eigenvalues of (10)
arranged in ascending order. We will use the first 𝑙𝑖 eigenfunctions to construct our
local auxiliary multiscale space 𝑉 (𝑖)𝑎𝑢𝑥 , where 𝑉

(𝑖)
𝑎𝑢𝑥 = span{𝜙 (𝑖)𝑗 | 𝑗 ≤ 𝑙𝑖}. The precise

choice of 𝑙𝑖 is based on a given tolerance. In particular, we let Λ = min1≤𝑖≤𝑁 𝜆
(𝑖)
𝑙𝑖+1.

Then we can choose 𝑙𝑖 so that Λ is less than a given tolerance, which can be chosen
as 𝑂 (1). Such tolerances will be introduced in Theorem 1. The global auxiliary
multiscale space 𝑉𝑎𝑢𝑥 is the sum of these local auxiliary multiscale spaces, namely



Multiscale Model Reduction for Optimal Control 7

𝑉𝑎𝑢𝑥 = ⊕𝑁𝑖=1𝑉
(𝑖)
𝑎𝑢𝑥 . This space is used to construct the target multiscale basis functions

that are 𝜙-orthogonal to the auxiliary space𝑉𝑎𝑢𝑥 . The notion of 𝜙-orthogonality will
be defined next.
For the local auxiliary multiscale space 𝑉 (𝑖)𝑎𝑢𝑥 , the bilinear form 𝑠𝑖 in (10) defines

an inner product with norm ∥𝑣∥𝑠 (𝐾𝑖) = 𝑠𝑖 (𝑣, 𝑣) 1
2 . These local inner products and

norms provide natural definitions of inner product and norm for the global auxiliary
multiscale space 𝑉𝑎𝑢𝑥 , which are defined by

𝑠(𝑣, 𝑤) =
𝑁∑︁
𝑖=1

𝑠𝑖 (𝑣, 𝑤), ∥𝑣∥𝑠 = 𝑠(𝑣, 𝑣)
1
2 , ∀𝑣 ∈ 𝑉𝑎𝑢𝑥 .

We note that 𝑠(𝑣, 𝑤) and ∥𝑣∥𝑠 are also an inner product and norm for the space
𝑉 . Using the above inner product, we can define the notion of 𝜙-orthogonality in
the space 𝑉 . Given a function 𝜙 (𝑖)𝑗 ∈ 𝑉𝑎𝑢𝑥 , we say that a function 𝜓 ∈ 𝑉 is
𝜙 (𝑖)𝑗 -orthogonal if

𝑠(𝜓, 𝜙 (𝑖)𝑗 ) = 1, 𝑠(𝜓, 𝜙 (𝑖′)𝑗′ ) = 0, if 𝑗 ′ ≠ 𝑗 or 𝑖′ ≠ 𝑖.

We remark that the function 𝜙 (𝑖)𝑗 has support 𝐾𝑖 , and we assume that 𝜙
(𝑖)
𝑗 is zero

outside 𝐾𝑖 . Now, we let 𝜋𝑖 : 𝐿2 (𝐾𝑖) → 𝑉 (𝑖)𝑎𝑢𝑥 be the projection with respect to the
inner product 𝑠𝑖 (𝑣, 𝑤). So, the operator 𝜋𝑖 is given by

𝜋𝑖 (𝑢) =
𝑙𝑖∑︁
𝑗=1

𝑠𝑖 (𝑢, 𝜙 (𝑖)𝑗 )𝜙 (𝑖)𝑗 , ∀𝑢 ∈ 𝑉.

In addition, we let 𝜋 : 𝐿2 (Ω) → 𝑉𝑎𝑢𝑥 be the projection with respect to the inner
product 𝑠(𝑣, 𝑤). So, the operator 𝜋 is given by

𝜋(𝑢) =
𝑁∑︁
𝑖=1

𝑙𝑖∑︁
𝑗=1

𝑠𝑖 (𝑢, 𝜙 (𝑖)𝑗 )𝜙 (𝑖)𝑗 , ∀𝑢 ∈ 𝑉.

Note that 𝜋 =
∑𝑁
𝑖=1 𝜋𝑖 .

We next present the construction of our multiscale basis functions. For each
coarse element 𝐾𝑖 , we define an oversampled domain 𝐾𝑖,𝑚 ⊂ Ω by enlarging 𝐾𝑖
by 𝑚 coarse grid layers, where 𝑚 ≥ 1 is an integer. An illustration of the fine grid,
coarse grid, and oversampling domain are shown in Fig. 1. We emphasize that the
basis functions 𝜓 (𝑖)𝑗 ,𝑚𝑠 are supported in the oversampling region 𝐾𝑖,𝑚 with 𝑚 being
the number of oversampling layers. We will state in Theorem 1 the requirement on
this integer 𝑚.
We next define the multiscale basis function 𝜓 (𝑖)𝑗 ,𝑚𝑠 ∈ 𝑉0 (𝐾𝑖,𝑚) by

𝜓 (𝑖)𝑗 ,𝑚𝑠 = argmin
{
𝑎(𝜓, 𝜓) |𝜓 ∈ 𝑉0 (𝐾𝑖,𝑚), 𝜓 is 𝜙 (𝑖)𝑗 -orthogonal

}
(11)
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Fig. 1: Illustration of the coarse grid, fine grid and oversampling domain.

where 𝑉 (𝐾𝑖,𝑚) is the restriction of 𝑉 in 𝐾𝑖,𝑚 which is 𝐻1 (𝐾𝑖,𝑚), and 𝑉0 (𝐾𝑖,𝑚)
is the subspace of 𝑉 (𝐾𝑖,𝑚) with zero trace on 𝜕𝐾𝑖,𝑚, i.e. 𝑉0 (𝐾𝑖,𝑚) = 𝐻1

0 (𝐾𝑖,𝑚).
Equivalently, we find 𝜓 (𝑖)𝑗 ,𝑚𝑠 ∈ 𝑉0 (𝐾𝑖,𝑚) and 𝜇 ∈ 𝑉 (𝑖,𝑚)𝑎𝑢𝑥 that satisfy the following

𝑎(𝜓 (𝑖)𝑗 ,𝑚𝑠 , 𝑣) + 𝑠(𝑣, 𝜇)= 0, ∀𝑣 ∈ 𝑉0 (𝐾𝑖,𝑚),
𝑠(𝜓 (𝑖)𝑗 ,𝑚𝑠 , 𝜈)= 𝑠(𝜙 (𝑖)𝑗 , 𝜈), ∀𝜈 ∈ 𝑉 (𝑖,𝑚)𝑎𝑢𝑥 .

(12)

In the above, we define 𝑉 (𝑖,𝑚)𝑎𝑢𝑥 = ⊕𝑉 ( 𝑗)𝑎𝑢𝑥 where the sum is over all 𝐾 𝑗 ⊂ 𝐾𝑖,𝑚. Our
multiscale finite element space 𝑉𝑚𝑠 is defined by

𝑉𝑚𝑠 = span
{
𝜓 (𝑖)𝑗 ,𝑚𝑠 | 1 ≤ 𝑗 ≤ 𝑙𝑖 , 1 ≤ 𝑖 ≤ 𝑁

}
.

Finally, we set
𝑉𝐻 = 𝑉𝑚𝑠 ⊂ 𝐻1

0 (Ω).
This is the coarse space for the systems (2)-(3) and (7)-(6).

2.2 The proposed method

We will use the space 𝑈𝑎𝑑𝐻 for the approximation of the control 𝑢. For the state
variables 𝑦 and 𝑝, we will use the space 𝑉𝐻 . For each 𝑢𝐻 ∈ 𝑈𝐻 , the approximate
solution 𝑦𝐻 (𝑢𝐻 ) ∈ 𝑉𝐻 of (2)-(3) satisfies

𝑎(𝑦𝐻 (𝑢𝐻 ), 𝑣𝐻 ) =
∫
Ω
𝑢𝐻𝑣𝐻 𝑑𝑥, ∀𝑣𝐻 ∈ 𝑉𝐻 . (13)

In other words, 𝑦𝐻 (𝑢𝐻 ) is the approximated state associated with 𝑢𝐻 . The finite
dimensional approximation of the optimal control problem is defined as: find 𝑢𝐻 ∈
𝑈𝑎𝑑𝐻 such that is minimizes the following functional
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𝐽 (𝑢𝐻 ) = 1
2
∥𝑦𝐻 (𝑢𝐻 ) − 𝑦𝑑 ∥2𝐿2 (Ω) +

𝜈

2
∥𝑢𝐻 ∥2𝐿2 (Ω) . (14)

The adjoint equation is discretized in the same way: find 𝑝𝐻 (𝑢𝐻 ) ∈ 𝑉𝐻 such that

𝑎(𝑝𝐻 (𝑢𝐻 ), 𝑣𝐻 ) =
∫
Ω
(𝑦𝐻 (𝑢𝐻 ) − 𝑦𝑑)𝑣𝐻 𝑑𝑥 ∀𝑣𝐻 ∈ 𝑉𝐻 . (15)

From now on, we denote the optimal control of the discrete optimization problem as
�̄�𝐻 and corresponding state and adjoint solutions as �̄�𝐻 and 𝑝𝐻 respectively. That
is �̄�𝐻 = 𝑦𝐻 (�̄�𝐻 ) and 𝑝𝐻 = 𝑝𝐻 (�̄�𝐻 ). We remark that the associated adjoint state
𝑝 belongs to the space 𝐻1 (Ω). The optimal control �̄� is obtained by the projection
formula (7).
Let �̄� be the solution of (1)-(4). We define a piecewise constant function by using

the local mean value of �̄�:

𝑤𝐻 (𝑥) =
∫
𝑇𝑖
�̄�(𝑥)𝑑𝑥∫
𝑇𝑖

1𝑑𝑥
if 𝑥 ∈ 𝑇𝑖 where 𝑇𝑖 ∈ 𝑇𝐻 . (16)

It is clear that 𝑤𝐻 ∈ 𝑈𝑎𝑑𝐻 .
Now we are able to formulate our convergence result.

Theorem 1 Let �̄�𝐻 be the solution of (14). Moreover, if the number of oversampling
layers 𝑚 = 𝑂 (log(𝐻−1𝜅−1

0 𝜅1)) and 𝜒𝑖 are bilinear partition of unity, then we have
the following error bound

∥�̄�𝐻 − �̄�∥𝐿2 (Ω) + ∥ �̄�𝐻 − �̄�∥𝑎 + ∥𝑝𝐻 − 𝑝∥𝑎 ≤ 𝐶𝐻Λ−
1
2 𝜈−1. (17)

whereΛ is the minimal eigenvalue that the corresponding eigenvector is not included
in the auxiliary space, that is, Λ = min1≤𝑖≤𝑁 𝜆

(𝑖)
𝑙𝑖+1. Moreover, the constant 𝐶 is

independent of the mesh size and the coefficient 𝜅.
Note that the precise equation for 𝑚 can be found at the end of Section 5 in [3].

2.3 Outline of error analysis

Wewill briefly outline the error analysis and a proof of Theorem 1. Using the results
in [3], we obtain Lemmas 2-4.

Lemma 2 Let 𝑢 ∈ 𝐿2 (Ω). Moreover, if the number of oversampling layers 𝑚 =
𝑂 (log(𝐻−1𝜅−1

0 𝜅1)) and {𝜒𝑖} are bilinear partition of unity, then we have

∥𝑦(𝑢) − 𝑦𝐻 (𝑢)∥𝑎 ≤ 𝐶𝐻Λ−
1
2 ∥𝜅− 1

2 𝑢∥𝐿2 (Ω) , (18)

∥𝑝(𝑢) − 𝑝𝐻 (𝑢)∥𝑎 ≤ 𝐶𝐻Λ−
1
2 (∥𝜅− 1

2 𝑦∥𝐿2 (Ω) + ∥𝜅−
1
2 𝑦𝑑 ∥𝐿2 (Ω) ),

≤ 𝐶𝐻Λ− 1
2 𝜅
− 1

2
0 (∥𝑢∥𝐿2 (Ω) + ∥𝑦𝑑 ∥𝐿2 (Ω) ). (19)
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Lemma 3 Let 𝑤𝐻 be the function defined by (16). In addition, suppose that the
assumptions of Lemma 2 are fulfilled. Then we have

∥𝑦𝐻 (�̄�) − 𝑦𝐻 (𝑤𝐻 )∥𝑎 ≤ 𝐶𝐻𝜅−
1
2

0 ∥�̄�∥𝐻1 (Ω) , (20)

∥𝑝𝐻 (�̄�) − 𝑝𝐻 (𝑤𝐻 )∥𝑎 ≤ 𝐶𝐻𝜅−
1
2

0 ∥�̄�∥𝐻1 (Ω) , (21)

∥𝑝 − 𝑝𝐻 (𝑤𝐻 )∥𝑎 ≤ 𝐶𝐻Λ−
1
2 𝜅
− 1

2
0 (∥�̄�∥𝐻1 (Ω) + ∥𝑦𝑑 ∥𝐿2 (Ω) ). (22)

Lemma 4 The following variational inequalities are necessary and sufficient for the
optimality of the unique solutions of (1)-(4) and (14):

(𝑝 + 𝜈�̄�, 𝑢 − �̄�)𝐿2 (Ω) ≥ 0 ∀𝑢 ∈ 𝑈𝑎𝑑 , (23)

(𝑝𝐻 (�̄�𝐻 ) + 𝜈�̄�𝐻 , 𝜁𝐻 − �̄�𝐻 )𝐿2 (Ω) ≥ 0 ∀𝜁𝐻 ∈ 𝑈𝑎𝑑𝐻 . (24)

Now, we derive a variational inequality for the function 𝑤𝐻 . We define a new
function 𝑝 by

𝑝(𝑥) =
∫
𝑇𝑖
𝑝(𝑥) 𝑑𝑥∫
𝑇𝑖

1 𝑑𝑥
, where 𝑥 ∈ 𝑇𝑖 ∈ 𝑇𝐻 .

Then, using (23), we obtain

(𝑝 + 𝜈𝑤𝐻 , �̄�𝐻 − 𝑤𝐻 )𝐿2 (Ω) ≥ 0. (25)

Moreover, we can test inequality (24) with the function 𝑤𝐻 and get

(𝑝𝐻 (�̄�𝐻 ) + 𝜈�̄�𝐻 , 𝑤𝐻 − �̄�𝐻 )𝐿2 (Ω) ≥ 0. (26)

Combining the results, we have

𝜈∥𝑤𝐻 − �̄�𝐻 ∥2𝐿2 (Ω) ≤ (𝑝 − 𝑝𝐻 (�̄�𝐻 ), �̄�𝐻 − 𝑤𝐻 )𝐿2 (Ω) . (27)

The right-hand side of (27) can be written as

(𝑝 − 𝑝𝐻 (�̄�𝐻 ), �̄�𝐻 − 𝑤𝐻 )𝐿2 (Ω) = (𝑝𝐻 (𝑤𝐻 ) − 𝑝𝐻 (�̄�𝐻 ), �̄�𝐻 − 𝑤𝐻 )𝐿2 (Ω)
+ (𝑝 − 𝑝𝐻 (𝑤𝐻 ), �̄�𝐻 − 𝑤𝐻 )𝐿2 (Ω)
+ (𝑝 − 𝑝, �̄�𝐻 − 𝑤𝐻 )𝐿2 (Ω) . (28)

Next we estimate these three terms. The first term on the right hand side of (28) can
be estimated as

(𝑝𝐻 (𝑤𝐻 ) − 𝑝𝐻 (�̄�𝐻 ), �̄�𝐻 − 𝑤𝐻 )𝐿2 (Ω)
= (𝑦𝐻 (𝑤𝐻 ) − 𝑦𝐻 (�̄�𝐻 ), 𝑦𝐻 (�̄�𝐻 ) − 𝑦𝐻 (𝑤𝐻 ))𝐿2 (Ω)
≤ 0.

(29)

The second term on the right hand side of (28) can be estimated using (22):
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(𝑝 − 𝑝𝐻 (𝑤𝐻 ), 𝑢𝐻 − 𝑤𝐻 )𝐿2 (Ω)

≤ 𝐶𝐻Λ− 1
2 𝜅
− 1

2
0 (∥�̄�∥𝐻1 (Ω) + ∥𝑦𝑑 ∥𝐿2 (Ω) ) · ∥𝑤𝐻 − 𝑢𝐻 ∥𝐿2 (Ω) .

(30)

The third term represents a formula for the numerical integration. Using that 𝑢𝐻 and
𝑤𝐻 are constant on each triangle 𝑇𝑖 ,

(𝑝 − 𝑝, �̄�𝐻 − 𝑤𝐻 )𝐿2 (Ω) =
∑︁
𝑖

∫
𝑇𝑖

((𝑝(𝑥) − 𝑝(𝑥)) (�̄�𝐻 (𝑥) − 𝑤𝐻 (𝑥)) 𝑑𝑥

=
∑︁
𝑖

(�̄�𝐻 (𝑥) − 𝑤𝐻 (𝑥))
∫
𝑇𝑖

(𝑝(𝑥) − 𝑝(𝑥)) 𝑑𝑥

=
∑︁
𝑖

(�̄�𝐻 (𝑥) − 𝑤𝐻 (𝑥)) (
∫
𝑇𝑖

𝑝(𝑥) 𝑑𝑥 −
∫
𝑇𝑖

𝑝(𝑥) 𝑑𝑥)

= 0. (31)

Using (29)-(31) in (28), we get

(𝑝 − 𝑝𝐻 (�̄�𝐻 ), �̄�𝐻 − 𝑤𝐻 )𝐿2 (Ω)

≤ 𝐶𝐻Λ− 1
2 𝜅
− 1

2
0 (∥�̄�∥𝐻1 (Ω) + ∥𝑦𝑑 ∥𝐿2 (Ω) ) · ∥𝑤𝐻 − �̄�𝐻 ∥𝐿2 (Ω) .

Note that, by the standard finite element interpolation theory, we have

∥�̄�𝐻 − �̄�∥𝐿2 (Ω) ≤ ∥�̄�𝐻 − 𝑤𝐻 ∥𝐿2 (Ω) + ∥�̄� − 𝑤𝐻 ∥𝐿2 (Ω)

≤ 𝐶𝐻Λ− 1
2 𝜅
− 1

2
0 𝜈−1 (∥�̄�∥𝐻1 (Ω) + ∥𝑦𝑑 ∥𝐿2 (Ω) ).

By Lemma 2 and Lemma 3, we have

∥ �̄�𝐻 − �̄�∥𝑎
≤ ∥ �̄�𝐻 − 𝑦𝐻 (𝑤𝐻 )∥𝑎 + ∥𝑦𝐻 (𝑤𝐻 ) − 𝑦(𝑤𝐻 )∥𝑎 + ∥𝑦(𝑤𝐻 ) − �̄�∥𝑎
≤ 𝐶𝐻Λ− 1

2 𝜅
− 1

2
0 ∥�̄�∥𝐻1 (Ω) + 𝐶𝐻Λ−

1
2 ∥𝜅− 1

2𝑤𝐻 ∥𝐿2 (Ω) + 𝐶𝐻Λ−
1
2 𝜅
− 1

2
0 ∥�̄�𝐻 ∥𝐻1 (Ω)

≤ 𝐶𝐻Λ− 1
2 .

Similarly, we have ∥𝑝𝐻 − 𝑝∥𝑎 ≤ 𝐶𝐻Λ− 1
2 . This proves Theorem 1.

3 Numerical results

In this section, we will present some numerical tests to validate the convergence
of the method. The optimization problems are solved numerically by a primal-dual
active set strategy; see, for instance, [5]. The primal-dual active set strategy will be
presented here. For this purpose we introduce the active and inactive sets for the
solution and define
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𝐴∗+ = {𝑥 ∈ Ω : 𝑢∗ (𝑥) = 𝑏}, 𝐴∗− = {𝑥 ∈ Ω : 𝑢∗ (𝑥) = 𝑎},

and 𝐼∗ = {𝑥 ∈ Ω : 𝑎 < 𝑢∗ (𝑥) < 𝑏}.
Here and below, the set theoretic definitions are understood in the almost everywhere
sense. Given (𝑢𝑛−1, 𝜆𝑛−1), the active sets for the new iterate are chosen according to

𝐴+𝑛 =
{
𝑥 ∈ Ω : 𝑢𝑛−1 (𝑥) + 𝜆𝑛−1 (𝑥)

𝑐
> 𝑏

}
, (32)

𝐴−𝑛 =

{
𝑥 ∈ Ω : 𝑢𝑛−1 (𝑥) + 𝜆𝑛−1 (𝑥)

𝑐
< 𝑎

}
, (33)

where 𝑐 > 0. The update strategies for 𝐴+𝑛 and 𝐴−𝑛 are the key ingredients of the
proposed algorithm. The complete algorithm is specified in Algorithm 1.

Algorithm 1 Primal-dual Active Set Strategy.
1: Initialization: Choose 𝑢0 and 𝜆0, and set 𝑛 = 1 .
2: Determine the active sets according to (32)-(33), and set 𝐼𝑛 = Ω \ (𝐴+𝑛 ∪ 𝐴−𝑛) .
3: If 𝑛 ≥ 2 , 𝐴+𝑛 = 𝐴+𝑛−1, 𝐴

−
𝑛 = 𝐴−𝑛−1, and 𝐼𝑛 = 𝐼𝑛−1, then STOP.

4: Else, find (𝑦𝑛 , 𝑝𝑛) ∈ 𝑉𝐻 × 𝑉𝐻 such that∫
Ω
𝜅∇𝑦𝑛 · ∇𝑣𝐻 𝑑𝑥 =

∫
Ω
𝑢𝑛𝑣𝐻 𝑑𝑥 ∀𝑣𝐻 ∈ 𝑉𝐻∫

Ω
𝜅∇𝑝𝑛 · ∇𝑣𝐻 𝑑𝑥 =

∫
Ω
(𝑦𝑛 − 𝑦𝑑)𝑣𝐻 𝑑𝑥 ∀𝑣𝐻 ∈ 𝑉𝐻

where

𝑢𝑛 (𝑥) =



𝑏 if 𝑥 ∈ 𝐴+𝑛,
𝑎 if 𝑥 ∈ 𝐴−𝑛,
−

∫
𝑇
𝑝𝑛 𝑑𝑥

𝜈
∫
𝑇

1 𝑑𝑥 if 𝑥 ∈ 𝐼𝑛 ∩ 𝑇 , where 𝑇 ∈ 𝑇𝐻 .
5: Set 𝜆𝑛 = −𝑝𝑛 − 𝜈𝑢𝑛, update 𝑛 := 𝑛 + 1, and goto 2.

In our simulations, we take the medium parameter 𝜅 shown in Fig. 2, and the
contrast is 104. Note that, the state equation is given by

−div(𝜅∇𝑦) = 𝑢 in Ω,
𝑦 = 0 on Γ (34)

Define 𝑢 𝑓 (𝑥1, 𝑥2) = 2𝜋𝑥1 (1 − 𝑥1)2 sin(𝜋𝑥2). We construct the exact optimal
control �̄�

�̄�(𝑥1, 𝑥2) =


𝑎 if 𝑢 𝑓 (𝑥1, 𝑥2) < 𝑎,
𝑢 𝑓 (𝑥1, 𝑥2) if 𝑢 𝑓 (𝑥1, 𝑥2) ∈ [𝑎, 𝑏],
𝑏 if 𝑢 𝑓 (𝑥1, 𝑥2) > 𝑏

We also denote the optimal state �̄� by solving (34). For the optimal adjoint state 𝑝,
we find
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Fig. 2: The high contrast medium 𝜅 .

𝑝(𝑥1, 𝑥2) = −2𝜋𝜈𝑥1 (1 − 𝑥1)2 sin(𝜋𝑥2)
The desired state is given by

𝑦𝑑 (𝑥1, 𝑥2) = �̄� + div(𝜅∇𝑝).

It is easy to see that these functions fulfill the necessary and sufficient first order
optimality conditions. Also, we take 𝑐 = 2 and 𝜈 = 1.
The solution �̄� is calculated by the reference solution using a 200×200 fine mesh.

We need 6 iterations to stop the primal-dual active set strategy. Also, if we solve the
problem on the fine mesh, we need to solve problems with 2 × 201 × 201 unknowns
in one iteration but in our approach, we only need 9600 unknowns even for the finest
case 𝐻 = 1

40 . Fig. 3 and Fig. 4 show the numerical solutions �̄�𝐻 for 𝐻 = 0.05 and
𝐻 = 0.025 respectively. Table 1 shows the relative 𝐿2-norm error for �̄� − �̄�𝐻 . The
order of the 𝐿2-error is about 1. Table 2 shows the same result with one more number
of basis per coarse element.

Fig. 3: �̄�𝐻 using 𝐻 = 0.05. Fig. 4: �̄�𝐻 using 𝐻 = 0.025.
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Table 1: 𝐿2 error with 3 basis functions per coarse element

number of basis 𝐻 # oversample layers
∥�̄�𝐻−�̄�∥𝐿2 (Ω)
∥�̄�∥𝐿2 (Ω)

3 1/5 3 23.8716%
3 1/10 3 9.6973%
3 1/20 4 4.3582%
3 1/40 5 1.6717%

Table 2: 𝐿2 error with 4 basis functions per coarse element

number of basis 𝐻 # oversample layers
∥�̄�𝐻−�̄�∥𝐿2 (Ω)
∥�̄�∥𝐿2 (Ω)

4 1/5 3 21.9864%
4 1/10 3 9.6987%
4 1/20 4 4.3463%
4 1/40 5 1.6782%
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Several Ways to Achieve Robustness When
Solving Wave Propagation Problems

Niall Bootland, Victorita Dolean, Pierre Jolivet, Frédéric Nataf, Stéphane Operto,
and Pierre-Henri Tournier

1 Motivation and challenges

Why do we need robust solution methods for wave propagation problems? Very
often in applications, as for example in seismic inversion, we need to reconstruct the
a priori unknown physical properties of an environment from given measurements.
From a mathematical point of view, this means solving inverse problems by applying
an optimisation algorithm to a misfit functional between the computation and the
data. At each iteration of this algorithm we need to solve a boundary value problem
involving the Helmholtz equation

−Δ𝑢 − 𝜔
2

𝑐2 𝑢 = 𝑓 , (1)

where 𝑐 =
√︃
𝜌𝑐2
𝑃 , 𝜌 is the density of the medium and 𝑐𝑃 is the speed of longitudinal

waves. Here, 𝜔 is usually given as being the frequency of a localised source and we
wish to reconstruct 𝑐 = 1

𝑛 from the measured data (here, 𝑛 is also called the refraction

Niall Bootland
University of Strathclyde, Dept. of Maths and Stats, e-mail: niall.bootland@strath.ac.uk

Victorita Dolean
University of Strathclyde, Dept. of Maths and Stats and University Côte d’Azur, CNRS, LJAD
e-mail: work@victoritadolean.com

Pierre Jolivet
University of Toulouse, CNRS, IRIT, e-mail: pierre.jolivet@enseeiht.fr

Frédéric Nataf
Sorbonne Université, CNRS, LJLL, e-mail: frederic.nataf@sorbonne-universite.fr

Stéphane Operto
University Côte d’Azur, CNRS, Géoazur, e-mail: stephane.operto@geoazur.unice.fr

Pierre-Henri Tournier
Sorbonne Université, CNRS, LJLL e-mail: tournier@ann.jussieu.fr

15



16 Dolean et al.

Fig. 1 Dispersion curves for
finite elements and spectral
elements of order 2 and 3:
normalised phase velocity (the
ratio between the numerical
wave speed and the physical
one) as a function of the
reciprocal number of points
per wavelength 1

𝐺 = 𝜔ℎ
2𝜋

for different discretisations.
Notice that the use of higher
order elements minimises
dispersion even for a low
value of 𝐺.
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index). The Helmholtz equation is also known as the reduced wave equation or time-
harmonic wave equation. Solving this equation is mathematically difficult, especially
for high wave number 𝑘 = 𝜔

𝑐 , as the solution is oscillatory and becomesmore so with
increasing 𝑘 . Note that the notion of a high frequency problem is to be understood
relative to the size of the computational domain: meaning how many wavelengths
are present in the latter. In geophysics, the typically large size of the domain, and
therefore the presence of hundreds of wavelengths, makes the problem difficult.

1.1 Why the time-harmonic problem in mid and high frequency is hard

What happens if one wants to approximate this problemwith a numerical method? A
simple computation in the one-dimensional case shows that the numerical refraction
index is different from the physical one and the error depends on the product between
the spacing of the grid ℎ and the frequency 𝜔, in other words numerical waves travel
at a different speed to physical waves and this is also reflected in the size of error. This
is also called the pollution effect and was first highlighted in the seminal paper [3].
For quasi optimality in the finite element sense we require that ℎ𝑝𝜔𝑝+1 be bounded,
where 𝑝 is the order or the precision of the method, as shown in [21]. To summarise,
the high-frequency solution 𝑢 oscillates at a scale 1

𝜔 , therefore the mesh size should
be chosen as at least ℎ ∼ 1

𝜔 leading to a large number of degrees of freedom. The
pollution effect requires ℎ ≪ 1

𝜔 , namely ℎ ∼ 𝜔−1− 1
𝑝 , therefore in practice one needs

an even larger number of degrees of freedom. Note that in order to get a bounded
finite element error the constraint is weaker, being ℎ ∼ 𝜔−1− 1

2𝑝 , as shown in [14].
A trade-off should be found between the number of points per wavelength (ppwl)
𝐺 = 𝜆

ℎ = 2𝜋
𝜔ℎ and the polynomial degree 𝑝 in order to minimise pollution and this

is usually the object of dispersion analysis [1]. This is illustrated in Figure 1, where
we see that the best dispersion properties are achieved when we increase the order
of the discretisation or we increase 𝐺.
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Suppose now that we have discretised the equation following the previous rules.
We end up with a huge linear system (for a typical application we should expect
millions of unknowns) whose size increases with 𝜔 very quickly, especially with
more spatial dimensions. The matrix is symmetric and non-Hermitian which makes
this system difficult to solve by standard iterative methods, as shown in review paper
by Ernst and Gander [15] or the most recent one by Gander and Zhang [16]. Our
aim should be to find the solution in optimal time for large frequencies and our
algorithms should not only have good parallel properties but they should also be
robust with respect to heterogeneities.
It is well-known that direct solvers, while being robust, have twomain drawbacks:

their high memory storage and poor parallel properties. On the other hand, iterative
methods are not robust but very easy to parallelise. For this reason we consider
hybrid methods, such as the naturally parallel compromise of domain decomposition
methods, to obtain the best of both worlds. However, how large is truly large? In
real applications, problems do not need to be over-resolved (for example, 4 ppwl are
enough to perform Full Waveform Inversion with a finite-difference scheme that is
specifically tuned to minimise numerical dispersion for this discretisation rule [2])
and time-harmonic Helmholtz equations with 50 million degrees of freedom were
solved by a parallel direct method [20]. On the other side, when we consider much
larger domains (for example via the use of a separate network of nodes rather than
with cables) and that the number of nodes is limited, we must switch to iterative
or hybrid methods of domain decomposition type. The methods we develop are not
only motivated by the current trend in seismic imaging, meaning the development
of sparse node devices (OBN) for data acquisition in the oil industry [4], but in the
last decades, since the seminal work of Després [9], they have become the method
of choice when solving the discretised Helmholtz equations.

2 What is the best coarse space for Helmholtz?

Consider the decomposition of the computational domain Ω into 𝑁 overlapping
subdomains Ω 𝑗 . The construction of these domains is explained later in Section 2.2
and illustrated in Figure 3. We usually solve the system 𝐴u = b stemming from the
finite element discretisation of (1) by a preconditioned GMRES method, e.g., in the
form 𝑀−1𝐴u = 𝑀−1b with

𝑀−1 =
𝑁∑︁
𝑗=1

𝑅𝑇𝑗 𝐷 𝑗𝐵
−1
𝑗 𝑅 𝑗 , (2)

where 𝑅 𝑗 : Ω → Ω 𝑗 is the restriction operator, 𝑅𝑇𝑗 : Ω 𝑗 → Ω the prolongation
operator and 𝐷 𝑗 corresponds to the partition of unity, i.e., it is chosen such that∑𝑁
𝑗=1 𝑅

𝑇
𝑗 𝐷 𝑗𝑅 𝑗 = 𝐼. Note also that local matrices 𝐵 𝑗 are stiffness matrices of local

Robin boundary problems
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(−Δ − 𝑘2) (𝑢 𝑗 ) = 𝑓 in Ω 𝑗 ,(
𝜕

𝜕𝑛 𝑗
+ 𝑖𝑘

)
(𝑢 𝑗 ) = 0 on 𝜕Ω 𝑗 \ 𝜕Ω.

We call (2) the one-level preconditioner, in particular it is the ORAS preconditioner.
Conventional wisdom in domain decomposition, backed by the definitions of

strong and weak scaling, says that one-level preconditioners are not scalable (i.e.,
their behaviour deteriorates with the number of subdomains 𝑁). The crucial idea
is to add a second level: that is, coarse information that is cheap to compute and
immediately available to all subdomains/processors. Suppose that the coarse space
is spanned by a matrix Z, then 𝐸 = 𝑍∗𝐴𝑍 is the coarse matrix and 𝐻 = 𝑍𝐸−1𝑍∗

is the coarse space correction. This coarse space correction can be combined with
the one-level preconditioner in an additive or hybrid manner via projectors 𝑃 and 𝑄
(𝑃 = 𝑄 = 𝐼 for additive while 𝑃 = 𝐼 − 𝐴𝐻, 𝑄 = 𝐼 − 𝐻𝐴 provides a hybrid variant)

𝑀−1
2 = 𝑄𝑀−1𝑃 + 𝐻.

This coarse correction can be understood as a solution of a coarser problem on
a geometrical grid with a larger spacing for example. For time-harmonic wave
propagation problems, the size of the coarse grid is, however, constrained by the
wave number. The theory of the grid CS (coarse space) has been introduced by
Graham et al. [17] for a two-level approach to the Helmholtz problem using an
equivalent problem with absorption; it has since been extended to the time-harmonic
Maxwell equations [5]. This preconditioner is based on local Dirichlet boundary
value problems within the one-level method. An extension to Robin transmission
conditions was recently provided in [18].
The questions we would like to answer are the following: Is the grid coarse space

the best choice for heterogeneous problems? Note also that the definition of the
coarse space does not have to be geometrical, we can build more sophisticated coarse
spaces based on solving eigenvalue problems. Can we further improve performance
by extending the idea of spectral coarse spaces to Helmholtz problems? And, if yes,
what kind of modes should be included in the coarse space?

2.1 Spectral coarse spaces for Helmholtz

There are already now a few spectral versions of two-level preconditioners and these
are DtN, H-GenEO and Δ-GenEO. For the first two there is no theory available and,
while a theory has been developed for the latter, this preconditioner works mainly
for low frequency and mildly non-symmetric problems.
The idea of the DtN coarse space was first introduced in [22] for elliptic problems,

further analysed in [13], and extended to the Helmholtz equation in [8]. Let 𝐷 ⊂ Ω
with internal boundary Γ𝐷 = 𝜕𝐷 \ 𝜕Ω and 𝑣Γ𝐷 : Γ𝐷 → C. Then the DtN operator
is defined as DtN𝐷 (𝑣Γ𝐷 ) = 𝜕𝑣

𝜕𝑛 |Γ𝐷 where 𝑣 : 𝐷 → C is the Helmholtz extension of



Several Ways to Achieve Robustness When Solving Wave Propagation Problems 19

𝑣Γ𝐷 (the solution to a local boundary value problem with Dirichlet value 𝑣Γ𝐷 on
Γ𝐷). The DtN coarse space (introduced in [13]) is based on eigenvalue problems of
the DtN operator local to each subdomain: find (𝑢Γ 𝑗 , 𝜆) ∈ 𝑉 (Γ 𝑗 ) × C such that

DtNΩ 𝑗 (𝑢Γ 𝑗 ) = 𝜆𝑢Γ 𝑗 .

To provide the modes in the coarse space we use the Helmholtz extension 𝑣. We
choose only eigenfunctions with 𝜆 such that Re(𝜆) < 𝑘 𝑗 where 𝑘 𝑗 = max𝑥∈Ω 𝑗 𝑘 (𝑥).
Note that this criterion depends on the local heterogeneity in the problem and is
purely heuristic (as explained in detail in [8]). In practice, finding the coarse space
vectors amounts to solving local problems depending on Schur complements and
mass matrices on the interfaces. By a local Helmholtz extension, we obtain vectors
that, after multiplication by the partition of unity and extension by zero, form the
matrix 𝑍 . We do this in each subdomain and combine to give the global coarse space.
The GenEO (Generalised Eigenproblems in the Overlap) coarse space was first

developed in [24] for SPD problems with heterogeneous coefficients, where the
heterogeneities do not align with the subdomain decomposition. More precisely, in
each Ω 𝑗 we solve discrete eigenproblems with local Dirichlet matrices 𝐴 𝑗 weighted
by the partition of unity on one side and the local Neumann matrix 𝐴 𝑗 on the other:

𝐷 𝑗𝐴 𝑗𝐷 𝑗𝑢 = 𝜆𝐴 𝑗𝑢. (3)

We then choose only eigenfunctions with eigenvalue 𝜆 such that 𝜆 > 𝜆min. Note that
if we try to replicate this exactly for Helmholtz, the method will fail. For this reason,
we need to make some adaptations. The first idea is to use a nearby positive problem
to build the coarse space and then use these modes for Helmholtz. This approach is
called Δ-GenEO and it is amenable to theory. The second idea is more Helmholtz
related in the sense that we only modify the right-hand side of the generalised
eigenvalue problem (3) and thus the wave number 𝑘 is included in the eigenproblem:

𝐷 𝑗𝐿 𝑗𝐷 𝑗𝑢 = 𝜆𝐴 𝑗𝑢,

where 𝐿 𝑗 corresponds to the Laplacian part of the problem and 𝐴 𝑗 is the Neumann
matrix for the Helmholtz operator. Eigenvectors associated to the eigenvalues with
Re(𝜆) > 𝜆min are now those put into the coarse space.We call this methodH-GenEO.

2.2 Comparison of coarse spaces

We show how these three two-level methods (grid CS, DtN and H-GenEO) compare
on the Marmousi1 problem [25] (see also Figure 2), which is a 2D geophysical
benchmark problem consisting of propagation of seismic waves in a heterogeneous
medium from a point source situated towards the surface. This problem is high

1 https://reproducibility.org/RSF/book/data/marmousi/paper_html/node2.html
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Fig. 2:The real part of the solution to theMarmousi problem at 20Hz. The domain is 9.2 km×3 km.

Fig. 3: Left to right: (a) the coarse mesh, (b) use of minimum overlap (refine the non-overlapping
decomposition) and (c) use of coarse overlap (refine the coarse overlapping mesh directly).

frequency because of the large number of wavelengths in the domain. For more
extensive results and comparative performance tests with these methods on other
benchmark problems, see [6].
From the practical point of view, a coarse mesh is generated (fromwhich we build

the grid coarse space) and this coarsemesh is refined to give the finemesh; see Figure
3. Alternatively, we can refine on the underlying non-overlapping decomposition
and then take minimum overlap. For the discretisation by finite elements (here P2
Lagrange finite elements), we have used FreeFEM. For the domain decomposition
and solver we use the FreeFEM library ffddm along with HPDDM and PETSc.2
Note that the grid CS is applied naturally to the configuration (c) (with coarse

overlap), whereas for the one-level and spectral methods we can choose between
minimum and coarse overlap. In the following tables we report the best results for
each method in the most favourable configuration (overlap and number of modes for
the spectral coarse spaces). These are the iteration counts of the GMRES method
applied to the preconditioned problem with the two-level domain decomposition
preconditioner in order to achieve a relative residual tolerance of 10−6. We consider
two scenarios: theunder-resolved casewith a discretisation of 5 points perwavelength
(Table 1) and the over-resolved case with a discretisation of 10 points per wavelength
(Table 2) and vary the frequency and the number of subdomains. Low resolution
is motivated by applications where high precision is not needed, especially when
solving inverse problems by FWI (Full Waveform Inversion). In this case, since the
test cases are large, one needs to find a good trade-off between precision and the size
of the system to be solved. We refer the reader to the references [11, 12] where a

2 Software available at FreeFem-sources/examples/ffddm (ffddm) within FreeFEM, https:
//github.com/hpddm/hpddm (HPDDM), and https://www.mcs.anl.gov/petsc (PETSc).
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Table 1: Results using the one-level and coarse grid methods for the Marmousi problem when
using 5 points per wavelength, varying the frequency 𝑓 and the number of subdomains 𝑁 .

One-level Coarse grid H-Geneo DtN

𝑓 #dofs \ 𝑁 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160
1 4 × 103 26 39 47 64 − 15 18 19 20 − 9 11 17 21 − 6 7 9 6 −
5 1 × 105 53 76 105 154 213 26 29 28 29 31 15 17 26 37 56 7 19 10 8 19
10 5 × 105 68 102 158 212 302 32 35 41 40 42 33 40 45 56 73 18 19 21 48 29
20 2 × 106 82 125 178 248 347 34 35 42 43 44 64 83 121 134 157 43 75 77 61 35

Table 2: Results using the one-level and coarse grid methods for the Marmousi problem when
using 10 points per wavelength, varying the frequency 𝑓 and the number of subdomains 𝑁 .

One-level Coarse grid H-Geneo DtN

𝑓 #dofs \ 𝑁 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160
1 2 × 104 30 43 63 97 − 16 18 19 21 − 7 8 8 13 − 4 7 5 6 −
5 5 × 105 58 87 126 175 246 29 29 34 34 36 10 9 10 10 12 10 11 12 17 24
10 2 × 106 78 124 172 251 346 35 41 43 46 45 20 16 14 13 13 19 23 25 25 24
20 8 × 106 92 142 198 272 389 39 47 48 49 49 45 40 34 25 19 35 46 48 56 59

more extensive numerical study was performed. We notice that in the first scenario
the grid CS outperforms the spectral methods (with a slight advantage over the DtN
method) whereas in the second scenario the H-GenEO method displays the best
performance.
We conclude this comparison by noting that there is no clear advantage in one

method over another, all depends on the frequency and precision desired. We have
not sought an optimal implementation and the grid CS is the finest possible (which
is in principle very expensive), in this sense the timings are not relevant, even if the
cost per iteration might be different. In the case of multiple right-hand sides, spectral
coarse spaces may have an advantage, although we have not studied this aspect here.
For large-scale geophysical example problems, we have explored extensively the

performance of the grid coarse space in [10, 11]. A few conclusions are stated below:

• The use of higher order finite elements allow us to minimise dispersion with
a minimum number of ppwl, as shown in Figure 1. A good compromise is the
choice of P3 finite elements for which, with 5 ppwl on unstructured meshes, we
note a reduction by a factor 2 in the number of degrees of freedom with respect
to a finite difference discretisation on uniform meshes.

• Local solves in domain decomposition methods are usually done by direct meth-
ods such as Cholesky factorisation, which is part of the setup phase ahead of
the application of the GMRES method. We can already improve performance
by replacing the Cholesky method with incomplete Cholesky factorisation.

• Precision is also important in the parsimony of the computation and the use of
single precision highly decreases both the setup and solution times.
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3 Can we improve on the auxiliary subspace preconditioner?

Let us consider the positive (or time-discretised) Maxwell equations

∇ × (𝜇−1
𝑟 ∇ × u) + 𝛼𝜀𝑟u = f in Ω,

u × n = 0 on 𝜕Ω.

Here u is the vector-valued electric field, f is the source term, 𝛼 > 0 is a constant
(e.g., stemming from the time discretisation), and 𝜇𝑟 and 𝜀𝑟 are electromagnetic
parameters which are uniformly bounded and strictly positive but which we allow to
be heterogeneous. We suppose Ω is a polyhedral computational domain and n is the
outward normal to 𝜕Ω. After discretisation by Nédélec elements we obtain

𝐴U := (𝐾 + 𝛼𝑀)U = b, (4)

where 𝐾 ∈ R𝑛×𝑛 represents the discretisation of the curl–curl operator ∇× (𝜇−1
𝑟 ∇×)

and 𝑀 ∈ R𝑛×𝑛 is the 𝜀𝑟 -weighted mass matrix computed in the edge element space.
Note that matrix 𝐾 has a huge kernel (all the gradients of 𝐻1 functions are part of the
kernel of the curl operator) so designing efficient preconditioners for this problem
can be challenging.
There is a well-established preconditioner in the literature known as the (nodal)

auxiliary space preconditioner (ASP) [19] which is based on a splitting of the
space, here H(curl), by isolating the kernel. The auxiliary space then uses a nodal
(Lagrangian) discretisation. The preconditioner is given as

M−1
𝐴𝑆𝑃 = diag(𝐴)−1 + 𝑃( �̃� + 𝛼�̃�)−1𝑃𝑇 + 𝛼−1𝐶𝐿−1𝐶𝑇 ,

where �̃� is the nodal discretisation of the 𝜇−1
𝑟 -weighted vector Laplacian operator,

�̃� is the nodal 𝜀𝑟 -weighted vector mass matrix, 𝑃 is the matrix form of the nodal
interpolation operator between the Nédélec space and nodal element space, and 𝐶 is
the “gradient matrix”, which is exactly the null space matrix of 𝐴 here.
The spectral condition number 𝜅2 (M−1

𝐴𝑆𝑃𝐴) of the preconditioned problem is
independent of the mesh size but might depend on any heterogeneities present. The
natural question is then whether we can improve upon this preconditioner in the case
of heterogeneous Maxwell problems?
In order to do this, we use extensively the fictitious space lemma (FSL) of

Nepomnyaschickh, which can be considered the Lax–Milgram theorem of domain
decomposition [23].

Lemma 1 (Nepomnyaschickh, 1991) Consider two Hilbert spaces𝐻 and𝐻𝐷 along
with positive symmetric bilinear forms 𝑎 : 𝐻 × 𝐻 → R and 𝑏 : 𝐻𝐷 × 𝐻𝐷 → R. The
operators 𝐴 and 𝐵 are defined as follows

• 𝐴 : 𝐻 → 𝐻 such that (𝐴𝑢, 𝑣) = 𝑎(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝐻;
• 𝐵 : 𝐻𝐷 → 𝐻𝐷 such that (𝐵𝑢𝐷 , 𝑣𝐷)𝐷 = 𝑏(𝑢𝐷 , 𝑣𝐷) for all 𝑢𝐷 , 𝑣𝐷 ∈ 𝐻𝐷 .

Suppose we have a linear surjective operator R : 𝐻𝐷 → 𝐻 verifying the properties
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• Continuity: ∃𝑐𝑅 > 0 such that ∀𝑢𝐷 ∈ 𝐻𝐷 we have

𝑎(R𝑢𝐷 ,R𝑢𝐷) ≤ 𝑐𝑅𝑏(𝑢𝐷 , 𝑢𝐷).

• Stable decomposition: ∃𝑐𝑇 > 0 such that ∀𝑢 ∈ 𝐻 ∃𝑢𝐷 ∈ 𝐻𝐷 with R𝑢𝐷 = 𝑢 and

𝑐𝑇𝑏(𝑢𝐷 , 𝑢𝐷) ≤ 𝑎(R𝑢𝐷 ,R𝑢𝐷) = 𝑎(𝑢, 𝑢).

Consider the adjoint operator R∗ : 𝐻 → 𝐻𝐷 given by (R𝑢𝐷 , 𝑢) = (𝑢𝐷 ,R∗𝑢)𝐷 for
all 𝑢𝐷 ∈ 𝐻𝐷 and 𝑢 ∈ 𝐻. Then for all 𝑢 ∈ 𝐻 we have the spectral estimate

𝑐𝑇𝑎(𝑢, 𝑢) ≤ 𝑎
(
R𝐵−1R∗𝐴𝑢, 𝑢

)
≤ 𝑐𝑅𝑎(𝑢, 𝑢).

Thus, the eigenvalues of the preconditioned operator R𝐵−1R∗𝐴 are bounded from
below by 𝑐𝑇 and from above by 𝑐𝑅.

In this lemmawe have a few ingredients: twoHilbert spaceswith the associated scalar
products (that are linked by the surjective operator R) and two symmetric positive
bilinear forms. The first of each comes from our problem while the second is for the
preconditioner. Under the assumptions of continuity and stable decomposition, the
spectral estimate tells us that the spectral condition number of the preconditioned
problem is bounded solely in terms of the constants 𝑐𝑅 and 𝑐𝑇 .
Discretised problems which are perturbations of a singular operator, such as the

Maxwell problem in (4) when 𝛼 is small, have a huge near-kernel 𝐺 ⊂ R𝑛 of 𝐴,
given by the gradient of all 𝐻1 (Ω) functions for example. This near-kernel will
be within a space 𝑉𝐺 ⊂ R𝑛, which is the vector space spanned by the sequence
(𝑅𝑇𝑖 𝐷𝑖𝑅𝑖𝐺)1≤𝑖≤𝑁 so that 𝐺 ⊂𝑉𝐺 . These spaces may not be equal due to the fact
that not all the elements of 𝑅𝑇𝑖 𝐷𝑖𝑅𝑖𝐺 are in 𝐺, for example, corresponding to the
degrees of freedom for which 𝐷𝑖 is not locally constant. Nevertheless, since the 𝐷𝑖
are related to a partition of unity, we guarantee the inclusion. The space 𝑉𝐺 can
now serve as a “free” coarse space. We denote the coarse space 𝑉0 := 𝑉𝐺 and let
𝑍 ∈ R𝑛0×𝑛 be a rectangular matrix whose columns are a basis of 𝑉0. The coarse
space matrix is then defined in the usual way by 𝐸 = 𝑍𝑇 𝐴𝑍 .
We now need to define all the other ingredients in the FSL. The second Hilbert

space is the product space of vectors stemming, for example, from the 𝑛𝑖 degrees of
freedom on the local subdomains Ω𝑖 and the 𝑛0 coarse space vectors

𝐻𝐷 := R𝑛0 ×
𝑁∏
𝑖=1
R𝑛𝑖 .

The bilinear form 𝑏 for the preconditioner is given by the sum of local bilinear forms
𝑏𝑖 and the coarse space contribution

𝑏(U,V) := (𝐸U0,V0) +
𝑁∑︁
𝑖=1

𝑏𝑖 (U𝑖 ,V𝑖), 𝑏𝑖 (U𝑖 ,V𝑖) := (𝑅𝑖𝐴𝑅𝑇𝑖 U𝑖 ,V𝑖),
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forU = (U0, (U𝑖)1≤𝑖≤𝑁 ) ∈ 𝐻𝐷 ,V = (V0, (V𝑖)1≤𝑖≤𝑁 ) ∈ 𝐻𝐷 . Finally, the surjective
operator R𝐴𝑆 : 𝐻𝐷 −→ 𝐻 corresponding the additive Schwarz method is given by

R𝐴𝑆 (U) := 𝑍U0 + (𝐼 − 𝑃0)
𝑁∑︁
𝑖=1

𝑅𝑇𝑖 U𝑖 ,

where 𝑃0 is the 𝐴-orthogonal projection on the coarse space 𝑉0. By applying the
FSL we obtain a spectral condition number estimate 𝜅(𝑀−1

𝐴𝑆𝐴) ≤ 𝐶, with a bound
𝐶 that can be large due to heterogeneities in the problem.
How can we improve this preconditioner in this case in order to be robust? We

simply build a GenEO space from local generalised eigenproblems in the orthogonal
complement of the “free” coarse space: find (V 𝑗𝑘 , 𝜆 𝑗𝑘) ∈ R𝑛 𝑗 \ {0} × R such that

(𝐼 − 𝜉𝑇0 𝑗 )𝐷 𝑗𝑅 𝑗𝐴𝑅
𝑇
𝑗 𝐷 𝑗 (𝐼 − 𝜉0 𝑗 )V 𝑗𝑘 = 𝜆 𝑗𝑘𝐴 𝑗V 𝑗𝑘 ,

where 𝜉0 𝑗 denotes the 𝑏 𝑗 -orthogonal projection from R𝑛 𝑗 on 𝐺 𝑗 = 𝑅 𝑗𝐺 and 𝐴 𝑗 is
the local Neumann matrix for the problem. We define𝑉 𝜏𝑗,𝑔𝑒𝑛𝑒𝑜 ⊂ R𝑛 to be the vector
space spanned by the family of vectors (𝑅𝑇𝑗 𝐷 𝑗 (𝐼 − 𝜉0 𝑗 )V 𝑗𝑘)𝜆 𝑗𝑘>𝜏 corresponding
to eigenvalues larger than a chosen threshold parameter 𝜏. Now, collecting over all
subdomains 𝑗 , we let 𝑉 𝜏𝑔𝑒𝑛𝑒𝑜 be the span of all (𝑉 𝜏𝑗,𝑔𝑒𝑛𝑒𝑜)1≤ 𝑗≤𝑁 , which will lead to
a new coarse space

𝑉0 := 𝑉𝐺 +𝑉 𝜏𝑔𝑒𝑛𝑒𝑜 .

Applying the FSL now yields a spectral condition number estimate of the resulting
two-level Schwarz method which is independent of the heterogeneity in the problem.
Several other variants of this approach can be formulated, including with the use

of inexact coarse solves in order to more efficiently handle the large coarse space;
these theoretical advances can be found in our recent preprint [7].

4 General conclusions

In this short paper we have offered a brief overview of the main difficulties and
some recent solution methods now available to solve Helmholtz equations in the
mid and high frequency regimes, which occur in many applications and especially
in geophysics. Although there is no established method as the go-to solver, we have
proposed a number of different strategies based on two-level domain decomposition
methods where the second level comes from the solution of local spectral problems.
Indeed, spectral coarse spaces have shown excellent theoretically-proven results for
symmetric positive definite problems and currently offer very promising directions
to explore for the Helmholtz equation and other wave propagation problems.
The discretisation here is also intertwined with the solution method as solvability

and accuracy are very important for wave propagation problems. However, problems
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in applications do not need to be over-resolved (for example, in full waveform
inversion for a discretisation by a finite difference method minimising dispersion
4 ppwl are enough) as this can lead to increasingly large problems whose size is
not fully justified by practical reasons. Further, multi-frontal direct solvers based on
block low rank approximations have been developed in recent years and problems as
large as 50 million unknowns can be tackled successfully by these methods. In this
sense, domain decomposition solvers need to be designed with the idea to go beyond
these limits while keeping the applicative context in mind.
Last but not least, while not of the same nature, positive Maxwell’s equations

present different challenges.Here, the auxiliary space preconditioner has successfully
been applied to problems where the underlying operator has an infinite dimensional
kernel. By exploiting the idea of subspace decomposition together with spectral
methods of GenEO type, a new generation of preconditioners, capable of tackling
heterogeneous problems, has been introduced. Future work includes an extensive
numerical exploration of such an approach on realistic example problems.
Wave propagation problems have been a key source of difficult problems not just

for domain decomposition but more widely in scientific computing. As large-scale
computing infrastructure continues to evolve and practitioners become ever more
ambitious, often driven by industrial challenges, robustness will remain a central
theme when designing algorithms for the future. Our work here then contributes
some of the most recent ideas towards achieving such desired robustness for domain
decomposition methods applied to challenging applications in wave propagation.
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Boundary Variational Inequalities

Zdeněk Dostál, Tomáš Brzobohatý, David Horák, Jakub Kružík and Oldřich Vlach

1 Introduction

Variants of the FETI (finite element tearing and interconnecting) methods introduced
by Farhat and Roux [8] belong to the most powerful methods for the massively paral-
lel solution of large discretized elliptic partial differential equations. The basic idea
is to decompose the domain into subdomains connected by Lagrange multipliers
and then eliminate the primal variables to get a small coarse problem and local
problems that can be solved in parallel. If applied to variational inequalities, the
procedure simultaneously transforms the general inequality constraints into bound
constraints. This simple observation and development of specialized quadratic pro-
gramming algorithms [2] with optimal convergence rate have been at the heart of
the generalization of the classical scalability results to variational inequalities [4].
The algorithms have been applied to solve contact problems discretized by billions
of nodal variables [6].
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The bottleneck of the original FETI is caused by the coarse problem,which has the
dimension which is proportional to the number of subdomains. The coarse problem
is typically solved by a direct solver – its cost is negligible for a small number of
subdomains. However, it starts to dominate when the number of subdomains is large,
currently some tens of thousands of subdomains.
Here we introduce a model problem, the semi-coercive scalar variational in-

equality, describe its discretization and decomposition into subdomains and clusters,
reduce the problem by duality to bound and equality constrained problems, give re-
sults on numerical scalability of the algorithms, and demonstrate their performance
by numerical experiments. The analysis uses recently proved bounds on the spectrum
of the Schur complements of the clusters interconnected by edge/face averages. The
bounds for 2D and 3D scalar problems have been published in [5] and [3]; the de-
velopment of the theory for elasticity is in progress. The results extend the scope of
scalability of powerful massively parallel algorithms for the solution of variational
inequalities [6] and show the unique efficiency of H-TFETI-DP coarse grid split
between the primal and dual variables. We illustrate the analysis on a simple model
problem but also include numerical experiments with 3D elastic contact problem
with the clusters interconnected by average face rigid body motions.
Throughout the paper, we use the following notation. For any matrix A ∈ R𝑚×𝑛

and subsets I ⊆ {1, . . . , 𝑚} and J ⊆ {1, . . . , 𝑛}, we denote by AIJ a submatrix
of A with the rows 𝑖 ∈ I and columns 𝑗 ∈ J . If 𝑚 = 𝑛 and A = A𝑇 , then 𝜆𝑖 (A),
𝜆min (A), 𝜆max (A) denote the eigenvalues of A,

𝜆max (A) = 𝜆1 (A) ≥ 𝜆2 (A) ≥ · · · 𝜆𝑛 (A) = 𝜆min (A).

The smallest nonzero eigenvalue of A is denoted by 𝜆min (A). The Euclidean norm
and zero vector a denoted by ∥ . ∥ and o, respectively.

2 Model problem

For simplicity, we shall reduce our analysis to a simple model problem, but
our reasoning is also valid for more general cases. Let Ω = Ω1 ∪Ω2, where
Ω1 = (0, 1) × (0, 1) andΩ2 = (1, 2) × (0, 1) denote square domains with the bound-
aries Γ1, Γ2; their parts Γ𝑖𝑢, Γ𝑖𝑓 , Γ

𝑖
𝑐 are formed by the sides of Ω𝑖 , 𝑖 = 1, 2, as in

Fig. 1.
Let 𝐻1 (Ω𝑖), 𝑖 = 1, 2, denote the subspace of 𝐿2 (Ω𝑖) of elements with the first

derivatives in 𝐿2 (Ω𝑖). Let

𝑉 𝑖 =
{
𝑣𝑖 ∈ 𝐻1 (Ω𝑖) : 𝑣𝑖 = 0 on Γ𝑖𝑢

}
denote closed subspaces of 𝐻1 (Ω𝑖), letH = 𝐻1 (Ω1) × 𝐻1 (Ω2), and let

𝑉 = 𝑉1 ×𝑉2 and K =
{(𝑣1, 𝑣2) ∈ 𝑉 : 𝑣2 − 𝑣1 ≥ 0 on Γ𝑐

}
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Fig. 1: Coercive model problem (left) and boundary conditions (right)

denote a closed subspace and a closed convex subset ofH , respectively. The relations
on the boundaries are in terms of traces. OnH , we define a symmetric bilinear form

𝑎(𝑢, 𝑣) =
2∑︁
𝑖=1

∫
Ω𝑖

(
𝜕𝑢𝑖

𝜕𝑥

𝜕𝑣𝑖

𝜕𝑥
+ 𝜕𝑢

𝑖

𝜕𝑦

𝜕𝑣𝑖

𝜕𝑦

)
dΩ

and a linear form

ℓ(𝑣) =
2∑︁
𝑖=1

∫
Ω𝑖
𝑓 𝑖𝑣𝑖dΩ,

where 𝑓 𝑖 ∈ 𝐿2 (Ω𝑖), 𝑖 = 1, 2, are nonzero and nonpositive. Thus we can define a
problem to find

min 𝑞(𝑢) = 1
2
𝑎(𝑢, 𝑢) − ℓ(𝑢) subject to 𝑢 ∈ K . (1)

The solution of the model problem can be interpreted as the displacement of
two membranes under the traction 𝑓 . The left edge of the right membrane cannot
penetrate below the right edge of the left membrane.

3 Domain decomposition and discretization

To enable efficient application of domain decomposition methods, we optionally
decompose each Ω𝑖 into 𝑝 = 1/𝐻𝑠 × 1/𝐻𝑠 , 𝑖 = 1, 2, square subdomains. Misusing a
little the notation, we assign to each subdomain ofΩ1 a unique number 𝑖 ∈ {1, . . . , 𝑝}
and to each subdomain of Ω2 a unique number 𝑖 ∈ {𝑝 + 1, . . . , 𝑠}, 𝑠 = 2𝑝, as in
Fig. 2. We call 𝐻𝑠 a decomposition parameter.
To get a variational formulation of the decomposed problem, let

𝑉 𝑖𝐷 =
{
𝑣𝑖 ∈ 𝐻1 (Ω𝑖) : 𝑣𝑖 = 0 on Γ𝑈 ∩ Γ𝑖

}
, 𝑖 = 1, . . . 𝑠,

denote the closed subspaces of 𝐻1 (Ω𝑖), and let
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Fig. 2: Domain decomposition and discretization

𝑉𝐷 = 𝑉1
𝐷 × · · · ×𝑉 𝑠𝐷 ,

K𝐶𝐷 =
{
𝑣 ∈ 𝑉𝐷 : 𝑣 𝑗 − 𝑣𝑖 ≥ 0 on Γ1

𝐶 ∩ Γ2
𝐶 , 𝑖 ≤ 𝑝 < 𝑗

}
,

K𝐷 =
{
𝑣 ∈ K𝐶𝐷 : 𝑣𝑖 = 𝑣 𝑗 on Γ𝑖 𝑗

}
, Γ𝑖 𝑗 = Γ

𝑖 ∩ Γ
𝑗
, 𝑖, 𝑗 ≤ 𝑝 or 𝑖, 𝑗 > 𝑝.

On 𝑉𝐷 , we define the scalar product

(𝑢, 𝑣)𝐷 =
𝑠∑︁
𝑖=1

∫
Ω𝑖
𝑢𝑖𝑣𝑖dΩ,

and the forms

𝑎𝐷 (𝑢, 𝑣) =
𝑠∑︁
𝑖=1

∫
Ω𝑖

(
𝜕𝑢𝑖

𝜕𝑥1

𝜕𝑣𝑖

𝜕𝑥1
+ 𝜕𝑢

𝑖

𝜕𝑥2

𝜕𝑣𝑖

𝜕𝑥2

)
dΩ and ℓ𝐷 (𝑣) = ( 𝑓 , 𝑣)𝐷 .

Using the above notation, it is a standard exercise [6, Sect. 10.2] to prove that (1) is
equivalent to the problem to find 𝑢 ∈ K𝐷 such that

𝑞𝐷 (𝑢) ≤ 𝑞𝐷 (𝑣), 𝑞𝐷 (𝑣) = 1
2
𝑎𝐷 (𝑣, 𝑣) − ℓ𝐷 (𝑣), 𝑣 ∈ K𝐷 . (2)

After introducing regular grids with the discretization parameter ℎ in the subdo-
mains Ω𝑖 (see Fig. 2), and using Lagrangian finite elements for the discretization,
we get the discretized version of problem (2) with auxiliary domain decomposition

min
1
2

u𝑇Ku − f𝑇u s.t. B𝐼u ≤ o and B𝐸u = o. (3)

In (3), K ∈ R𝑛×𝑛 denotes a block diagonal SPS (symmetric positive semidefinite)
stiffness matrix, the full rank matrices B𝐼 and B𝐸 describe the non-penetration and
interconnecting conditions, respectively, and f represents the discretized linear form
ℓ𝐷 (𝑢). We can write the stiffness matrix and the vectors in the block form
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K =



K1 O . . . O
O K2 . . . O
. . . . . . . . . . . .
O O . . . K𝑠


, u =


u1
. . .
u𝑠


, f =


f1
. . .
f𝑠


, 𝑠 = 2𝑝.

After a suitable scaling of the rows of B = [B𝑇𝐸 ,B𝑇𝐼 ]𝑇 , we can achieve BB𝑇 = I.

4 TFETI problem

To reduce the problem to the subdomain boundaries using duality theory, let us
introduce the Lagrangian associated with problem (3) by

𝐿 (u, 𝜆𝐼 , 𝜆𝐸) = 1
2

u𝑇Ku − f𝑇u + 𝜆𝑇𝐼 B𝐼u + 𝜆𝑇𝐸B𝐸u, (4)

where 𝜆𝐼 and 𝜆𝐸 are the Lagrange multipliers associated with the inequalities and
equalities, respectively. Introducing the notation

𝜆 =

[
𝜆𝐼
𝜆𝐸

]
and B =

[
B𝐼
B𝐸

]
,

we can observe that B ∈ R𝑚×𝑛 is a full rank matrix and write the Lagrangian as

𝐿 (u, 𝜆) = 1
2

u𝑇Ku − f𝑇u + 𝜆𝑇Bu.

The solution satisfies the KKT conditions, including

Ku − f + B𝑇𝜆 = o. (5)

Equation (5) has a solution if and only if f − B𝑇𝜆 ∈ ImK, which can be expressed
by means of a matrix R the columns of which span the null space of K as

R𝑇 (f − B𝑇𝜆) = o. (6)

The matrix R can be formed directly, and R𝑇B𝑇 is non-singular.
Now assume that 𝜆 satisfies (6), so that we can evaluate 𝜆 from (5) by means of

any (left) generalized inverse matrix K+ which satisfies KK+K = K.We can verify
directly that if u solves (5), then there is a vector 𝛼 such that

u = K+ (f − B𝑇𝜆) + R𝛼. (7)

After eliminating the primal variables u, we can find 𝜆 by solving

min 𝜃 (𝜆) s.t. 𝜆I ≥ o and R𝑇 (f − B𝑇𝜆) = o, (8)



32 Zdeněk Dostál, Tomáš Brzobohatý, David Horák, Jakub Kružík and Oldřich Vlach

where
𝜃 (𝜆) = 1

2
𝜆𝑇BK+B𝑇𝜆 − 𝜆𝑇BK+f. (9)

Once the solution 𝜆 of (8) is known, û (3) can be evaluated by (7) and

𝛼 = −(R𝑇 B̂𝑇 B̂R)−1R𝑇 B̃𝑇 B̂K+ (f − B𝑇𝜆), (10)

where B̂ = [B̂𝑇𝐼 ,B𝑇𝐸]𝑇 , and the matrix B̂𝐼 is formed by the rows b𝑖 of B𝐼 that
correspond to the positive components of the solution 𝜆𝐼 characterized by 𝜆𝑖 > 0.
A more effective procedure avoiding manipulation with B̂ can be found in [9].
To proceed further, let us denote

F = BK+B𝑇 = B̃S+B̃𝑇 , d̃ = BK+f,
G̃ = R𝑇B𝑇 , ẽ = R𝑇 f,

and let T denote a matrix that defines orthonormalization of the rows of G̃ so that
the matrix G = TG̃ has orthonormal rows. After introducing e = T̃e, problem (8)
reads

min
1
2
𝜆𝑇F𝜆 − 𝜆𝑇 d̃ s.t. 𝜆𝐼 ≥ o and G𝜆 = e. (11)

After homogenization of the equality constraints and introducing orthogonal projec-
tors, problem (11) turns into

min 𝜃 𝜚 (𝜆) s.t. G𝜆 = o and 𝜆𝐼 ≥ −𝜆𝐼 , (12)

where 𝜚 is a positive constant, G𝜆𝐼 = e, and

𝜃 𝜚 (𝜆) = 1
2
𝜆𝑇H𝜚𝜆 − 𝜆𝑇Pd, H𝜚 = PFP + 𝜚Q, Q = G𝑇G, P = I −Q.

The matrices P and Q are the orthogonal projectors onto KerG and ImG𝑇 , respec-
tively. It has been proved (see, e.g., Brenner [1] or Pechstein [16]) that there are
constants 0 < 𝑐 < 𝐶 that depend neither on ℎ nor 𝐻 such that

𝑐 ≤ 𝜆min (H𝜚) ≤ max{𝐶𝐻/ℎ, 𝜚}.

5 Connecting subdomains into clusters

The bottleneck of classical FETI methods is the rank 𝑑 of the projector Q which is
equal to the defect of stiffness matrix K, in our case 𝑑 = 𝑠. To reduce the rank of Q,
we use the idea of Klawonn and Rheinbach [11] to interconnect some subdomains
on the primal level into clusters so that the defect of the stiffness matrix of the cluster
is equal to the defect of one of the subdomain stiffness matrices.
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For example, to couple adjacent subdomainswith common corners x, y ∈ Ω𝑖 ∩Ω 𝑗
,

we can transform the nodal variables associated with Ω̃𝑞 = Ω
𝑖 ×Ω 𝑗

by the expansion
matrix L𝑞 obtained by replacing two columns of the identity matrix associated with
x, y by one column obtained as a normalized sum of the columns associated with
the displacements of nodes x and y. Feasible variables u𝑞 of the cluster are related
to global variables ũ𝑞 by u𝑞 = L𝑞ũ𝑞 and the stiffness matrix K̃𝑞 of such cluster in
global variables can be obtained by

K̃𝑞 = (L𝑞)𝑇diag(K𝑖 ,K 𝑗 )L𝑞 .

Let us denote by e and e the vectors with all components equal to 1 and 1/∥e∥,
respectively. To describe the coupling by averages, we use the transformation of bases
proposed by Klawonn and Widlund [12], see also Klawonn and Rheinbach [10] and
Li and Widlund [14]. The basic idea is a rather trivial observation that if

[C e] = [c1, . . . , c𝑝−1, e], e =
1√
𝑝

e,

denote an orthonormal basis ofR𝑝 , then the last coordinate of a vector x ∈ R𝑝 in this
basis is given by 𝑥𝑝 = e𝑇x. If we apply the transformation to the variables associated
with the interiors of adjacent edges, we can join them by the expansion mapping L
as above.
The procedure can be generalized to specify the feasible vectors of any cluster

connected by the edge averages of adjacent edges. Using a proper numbering of
variables by subdomains, in each subdomain setting first the variables that are not
affected by the interconnecting, then the variables associated with the averages
ordered by edges, we get the matrix Z with orthonormal columns the range of which
represents the feasible displacements of the cluster,

Z =
[

C E
]
, C = diag(C1, . . .C𝑠), E = 1/

√
2



. . .

. e𝑖 𝑗 .

. . .

. e 𝑗𝑖 .

. . .


, (𝑖, 𝑗) ∈ C. (13)

In (13), C denotes a set of ordered couples of indices (𝑖, 𝑗), 𝑖 < 𝑗 , 𝑠 here denotes the
number of subdomains in the cluster, and e𝑖 𝑗 denotes the basis vectors associated
with the edge averages. Each couple (𝑖, 𝑗) ∈ C defines the connection of the adjacent
edges of Ω𝑖 and Ω 𝑗 by averages. The procedure is very similar to that described in
the introduction of this section; the only difference is that we replace the expansion
matrix L𝑞 by the basis of feasible displacements of the cluster Z𝑞 . The feasible
variables of the cluster are related to global variables ũ𝑞 by

u𝑞 = Z𝑞ũ𝑞
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and the Schur complement S̃𝑞 of such a cluster in global variables can be obtained
by

S̃𝑞 = (Z𝑞)𝑇diag(S𝑖 , S 𝑗 , . . . , Sℓ)Z𝑞 .
Assuming that the set of all subdomains is decomposed into 𝑐 clusters inter-

connected by the edge averages, we can use the global transformation matrix with
orthonormal columns

Z = diag(Z1, · · · ,Z𝑐)
to connect the groups of 𝑚 × 𝑚 subdomains into clusters to get the stiffness matrix

S̃ = Z𝑇SZ = diag(S̃1, · · · S̃𝑐)

and the matrices

B̃, R̃ = diag (̃e1, . . . , ẽ𝑐), G̃ = TR̃𝑇 B̃𝑇 ,

where B̃ denotes a matrix that enforces interconnecting constraints that are not
enhanced on the primal level and T denotes an orthogonalization matrix so that
G̃G̃𝑇 = I. It is easy to achieve that

B̃B̃𝑇 = I. (14)

Notice that B̃ enforces both constraints that connect subdomains into clusters and
those connecting the clusters. Moreover, KerB̃ =KerBZ, but BZ need not have
orthonormal rows. Using the above transformation, we reduced problem (12) to

min �̃� 𝜚 (𝜆) s.t. G̃𝜆 = o and 𝜆𝐼 ≥ −𝜆𝐼 , (15)

where 𝜚 is a positive constant and

�̃� 𝜚 (𝜆) = 1
2
𝜆𝑇H̃𝜚𝜆 − 𝜆𝑇 P̃d̃, (16)

H̃𝜚 = P̃F̃P̃ + 𝜚Q̃, Q̃ = G̃𝑇G̃, P̃ = I − Q̃ F̃ = B̃S̃+B̃𝑇 .

P̃ and Q̃ are the orthogonal projectors onto KerG̃ and ImG̃𝑇 , respectively.

Notice that the number of the rows of G is 𝑚2 times larger that that of G̃, so
that the cost of (G𝑇G)−1 is about 𝑚4 times larger than that of (G̃G̃)−1.

6 Bounds on the spectrum of ˜H𝝔 and optimality

Using that ImP̃ and ImQ̃ are invariant subspaces of H̃𝜚 , it is easy to check that
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min{𝜆min (P̃F̃P̃), 𝜚} ≤ 𝜆𝑖 (H̃𝜚) ≤ max{∥F̃∥, 𝜚}. (17)

Applying standard arguments (see, e.g., [5, Lemma 3.1]), it is easy to reduce the
problem of finding bounds on the spectrum of H̃𝜚 to the problem of finding bounds
on the spectrum of S̃𝑖 . Some bounds were proved recently (see [5]):

Theorem 1 For each integer𝑚 > 1, let S̃ denote the Schur complement of the cluster
with the side-length 𝐻𝑐 comprising 𝑚 × 𝑚 square subdomains of the side-length
𝐻𝑠 = 𝐻𝑐/𝑚. Let the subdomains be discretized by a regular grid with the step-
length ℎ and interconnected by the edge averages. Let 𝜆min (S) denote the smallest
nonzero eigenvalue of

S = diag(S1, . . . , S𝑚2 ),
where S𝑖 denote the Schur complements of the subdomain stiffness matrices K𝑖 ,
𝑖 = 1, . . . , 𝑚2, with respect to the interior variables. Then

∥S∥ = 𝜆max (S) ≥ 𝜆max (S̃), (18)

𝜆min (S) ≥ 𝜆min (S̃) ≥ 2𝑛𝑒
𝑛𝑠
𝜆min (S) sin2

( 𝜋
2𝑚

)
≈ 1

2
𝜆min (S)

( 𝜋
2𝑚

)2
. (19)

The spectrum of S can be bounded in terms of the decomposition and discretiza-
tion parameters 𝐻𝑠 and ℎ, respectively – there are positive constants 𝑐, 𝐶 such that

𝑐ℎ/𝐻𝑠 ≤ 𝜆min (S) ≤ ∥S∥ ≤ 𝐶. (20)

For the proof, see Pechstein [16, Lemma 1.59] or Brenner [1]. Since there are
algorithms that can solve (15) with the rate of convergence that depends on the
bounds on the spectrum of H̃𝜚 , we can formulate the following theorem.

Theorem 2 Let 𝜚 ≈ ∥F̃∥ and let the parameters 𝐻𝑠 , 𝑚, and ℎ specify problem (15).
Then there are constants 𝑐, 𝐶 > 0 independent of 𝐻𝑠 , 𝑚, ℎ such that

𝑐 ≤ 𝜆min (H̃𝜚) ≤ ∥H̃𝜚 ∥ ≤ 𝐶𝑚𝐻𝑠/ℎ. (21)

Moreover, there is a constant 𝑀max such that if 𝐶1 > 2 is an arbitrary constant and

𝑚𝐻𝑠/ℎ ≤ 𝐶1,

then the SMALBE-M algorithm [6, Chap. 9] with the inner loop implemented by
MPRGP [6, Chap. 8] can find an approximate solution of any problem (15) generated
with the parameters 𝐻𝑠 , 𝑚, ℎ in at most 𝑀max matrix–vector multiplications.

The proof is similar to the proof of optimality of TFETI for a variational inequality
[6, Sect. 10.8] or contact problems [6, Sect. 11.10].
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7 Numerical experiments

We carried out some numerical experiments to check the bounds and compare
H-TFETI-DPwith TFETI for both linear and non-linear problems. In all experiments,
we use the relative precision stopping criterion with 𝜀 = 10−4.

7.1 Comparing estimate and experiments

To compare estimates (19) with the real values, we have computed [5] the bounds on
the extreme nonzero eigenvalues of the Schur complements of 𝑚 ×𝑚 clusters joined
by edge averages using 𝑚 ∈ {2, 4, 8, 16}, 𝐻𝑐 = 1, 𝐻𝑠 = 1/𝑚, and ℎ = 1/64. Some
of the results are in Table 1. The results comply with those carried out by Klawonn
and Rheinbach [11] and Lee [13].

Table 1: Regular condition number and extreme nonzero eigenvalues – edge averages

𝑚 2 4 8 16

𝐻𝑠/ℎ 32 16 8 4
𝜆max (S̃) 2.8235 2.8098 2.7638 2.6843
𝜆min (S̃) 0.0173 0.093 0.047 0,0022
𝜆

est
min (S̃) 0.0104 0.059 0.029 0.0012

7.2 Comparing linear unpreconditioned H-TFETI-DP and TFETI

We compared H-TFETI-DP with standard TFETI on the unit square Poisson bench-
mark discretized by Q1 finite elements on regular grid with parameters ℎ and 𝐻𝑠 ,
𝐻𝑠/ℎ = 100 [5]. We used the ESPRESO (ExaScale PaRallel FETI SOlver) pack-
age [15] developed at the Czech National Supercomputing Center in Ostrava. The
domain was decomposed into 𝑛𝑐 × 𝑛𝑐 clusters, 𝑛𝑐 = 6, 18, 54, each cluster compris-
ing 15 × 15 square subdomains joined by edge averages. Notice that H-TFETI-DP
outperforms TFETI due to the small coarse problem and cheap iterations.

Table 2: Billion variables Poisson - unpreconditioned H-TFETI-DP and TFETI, m=15, see [5]

Clusters Subdomains Cores Unknowns H-TFETI-DP (iter/sec) TFETI (iter/sec)

36 8,100 108 81,018,001 117/26.0 45/14.5
324 72,900 972 729,054,001 118/27.7 42/40.2
2,916 656,100 8.748 6,561,162,001 116/28.0 41/61.0
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7.3 Model variational inequality and elastic body on rigid obstacle

We used the above procedure to get the discretized H-TFETI-DP QP problem (12)
that we solved by a combination of the SMALBE-M (semimonotonic augmented
Lagrangian) [6, Chap. 9] algorithmwith the inner loop resolved byMPRGP (modified
proportioning with reduced gradient projection) [6, Chap. 8]. We implemented both
algorithms in the PETSc based package PERMON [7] developed at the Department
of AppliedMathematics of the VSB-Technical University of Ostrava and the Institute
of Geonics of the Czech Acadamy of Science.

Table 3: Semicoercive variational inequality, primal dimension 20,480,000, inequalities 3169

𝑚= 1 2 4 8

outer iter 52 25 16 12
matrix × vector 243 252 186 218

coarse problem dimension 2048 512 128 32

Our final benchmark is a clamped cube over a sinus-shape obstacle as in Fig. 3,
loaded by own weight, decomposed into 4 × 4 × 4 clusters, 𝐻𝑠/ℎ = 14, using the
ESPRESO [15] implementation of H-TFETI-DP for contact problems. We can see
that TFETI needs a much smaller number of iterations, but H-TFETI-DP is still
faster due to 64-times smaller coarse space and better exploitation of the node-core
memory organization. In general, if we use 𝑚 × 𝑚 × 𝑚 clusters, the hybrid strategy
reduces the dimension and the cost of the coarse problem by𝑚3 and𝑚6, respectively.

Table 4: Clamped elastic cube over the sinus-shaped obstacle, 𝑚 = 4, 𝐻𝑠/ℎ = 14

Clusters Subdomains Cores Unknowns (106) H-TFETI-DP (iter/sec) TFETI (iter/sec)

64 4,096 192 13 169/23.9 117/24.9
512 72,900 1536 99 208/30.2 152/115.1
1,000 656,100 3000 193 206/42.6 173/279.9

Acknowledgements This work was supported by the Ministry of Education, Youth and Sports of
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Fundamental Coarse Space Components for
Schwarz Methods with Crosspoints

François Cuvelier, Martin J. Gander, and Laurence Halpern

1 Introduction

Historically, coarse spaces for domain decomposition methods were based on a
coarse grid, like in geometric multigrid methods, see e.g. [17, page 36]: “The sub-
space 𝑉0 is usually related to a coarse problem, often built on a coarse mesh”. More
recently, a wealth of research has been devoted to design new coarse spaces for high
contrast problems: after first steps in [3, 13], where volume eigenfunctions were used,
see also [2], a coarse space using the eigenfunctions of the Dirichlet-to-Neumann
maps on the boundary of each subdomain was developed in [15, 1]. This then led
to the GenEO coarse space [16], and also motivated the ACMS based coarse space
[11], all seminal for many further developments: for FETI, see for example [14], or
for the GDSW coarse space, see [12]. A different idea for new coarse spaces is to
first define an optimal coarse space, which makes the method a direct solver [6, 7],
and then to approximate it, which led to the SHEM coarse space [8, 9, 10, 4].
Our new idea here is to design a coarse space based on insight from the eigenmodes

of the parallel Schwarz iteration operator that converge most slowly. We start with a
numerical experiment for Laplace’s equation on the unit square divided into 4 × 4
subdomains using the classical parallel Schwarz method of Lions with minimal
overlap1. In Figure 1 we observe that the error in the iteration, after an initial
transient phase, forms two typical distinct modes which converge most slowly: for
the constant initial guess we see a continuous mode consisting of affine (harmonic)

François Cuvelier
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1 With minimal overlap (and only then) this is equivalent to Additive Schwarz without Conjugate
Gradient acceleration.
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Fig. 1: Error for the parallel Schwarz method of Lions with 4×4 subdomains at iteration 0, 1, 10, 20
from top to bottom. Left: constant initial error, Right: random initial error.

functions in each subdomain, whereas for the random initial guess these functions
seem to be discontinuous across subdomains. Our goal is to understand this behavior
by studying the eigenmodes of the continuous parallel Schwarz iteration operator,
and to deduce from this study a very effective new coarse space for Schwarzmethods.
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Ω̃11 Ω̃1𝑁

Ω̃𝑖 𝑗 Ω̃𝑖 𝑗+1
Ω̃𝑖+1 𝑗 Ω̃𝑖+1 𝑗+1

Ω̃𝑀1 Ω̃𝑀𝑁

Fig. 2: Left: general decomposition of a rectangle into 𝑀 × 𝑁 subrectangles Ω̃𝑖 𝑗 . Right: adding
2𝐿 overlap to obtain the subdomains Ω𝑖 𝑗 .

2 Modal analysis of the Schwarz iteration map

We consider a general decomposition of a rectangle into 𝑀 × 𝑁 smaller overlapping
rectangles Ω𝑖 𝑗 , as indicated in Figure 2. We denote by (𝑥 𝑗 , 𝑦𝑖) the crosspoints of the
nonoverlapping decomposition. The parallel Schwarz iteration from

∏
𝐻1 (Ω𝑖 𝑗 ) into

itself maps the old error iterate 𝑢 = {𝑢𝑖 𝑗 } which is harmonic in the subdomains, into
a new error 𝑣 = {𝑣𝑖 𝑗 }, also harmonic in the subdomains. We allow in our analysis
the more general Robin transmission conditions, which on the vertical interfaces are

𝜕𝑥𝑣𝑖 𝑗 + 𝑝𝑣𝑖 𝑗 = 𝜕𝑥𝑢𝑖 𝑗+1 + 𝑝𝑢𝑖 𝑗+1, 𝑥 = 𝑥 𝑗 + 𝐿,
−𝜕𝑥𝑣𝑖 𝑗+1 + 𝑝𝑣𝑖 𝑗+1 = −𝜕𝑥𝑢𝑖 𝑗 + 𝑝𝑢𝑖 𝑗 , 𝑥 = 𝑥 𝑗 − 𝐿,

and similarly on the horizontal interfaces at 𝑦𝑖 ± 𝐿. For 𝑝 = +∞ and 𝐿 > 0,
our results will correspond to the classical parallel Schwarz method of Lions with
Dirichlet transmission conditions. If 0 < 𝑝 < +∞ and 𝐿 ≥ 0, our results will
correspond to a possibly non-overlapping optimized parallel Schwarz method.
An eigenmode of the iteration map associated to an eigenvalue 𝜆 is defined by

𝑣 = 𝜆𝑢, 𝜆 being the convergence factor of this mode. For simplicity, we study the
case where all underlying nonoverlapping subdomains are squares of equal sides 𝐻.
The error function 𝑢𝑖 𝑗 in the subdomain Ω𝑖 𝑗 is harmonic, and we use separation of
variables,

𝑢𝑖 𝑗 = (𝑎𝑖 𝑗 sin 𝜁 (𝑥−𝑥 𝑗−1) +𝑎′𝑖 𝑗 sin 𝜁 (𝑥−𝑥 𝑗 )) (𝑏𝑖 𝑗 sinh 𝜁 (𝑦−𝑦𝑖−1) +𝑏′𝑖 𝑗 sinh 𝜁 (𝑦−𝑦𝑖))

for the oscillatory modes in 𝑥. Exchanging 𝑥 and 𝑦 gives the oscillatory modes in 𝑦.
Affine modes are obtained by replacing sin 𝜁 (𝑥 − 𝑥 𝑗−1) by (𝑥 − 𝑥 𝑗−1) for instance.
By a lengthy, technical computation, we obtain

Theorem 1 (Eigenvalue-Frequency Relation)
Defining for each 𝜁 ≠ 0 the quantities

𝑍− := 𝜁 cos 𝜁 (𝐻−𝐿)−𝑝 sin 𝜁 (𝐻−𝐿), 𝑍−ℎ := 𝜁 cosh 𝜁 (𝐻−𝐿)−𝑝 sinh 𝜁 (𝐻−𝐿),
𝑍+ := 𝜁 cos 𝜁 (𝐻+𝐿)+𝑝 sin 𝜁 (𝐻+𝐿), 𝑍+ℎ := 𝜁 cosh 𝜁 (𝐻+𝐿)+𝑝 sinh 𝜁 (𝐻+𝐿),
𝑍0 := 𝜁 cos 𝜁𝐿 + 𝑝 sin 𝜁𝐿, 𝑍0

ℎ := 𝜁 cosh 𝜁𝐿 + 𝑝 sinh 𝜁𝐿,
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the eigenvalue 𝜆, the angular frequency 𝜁 and the coefficients of the eigenmode are
related by

𝜆(𝑍+ + 𝛿 ( 𝑗)𝑥 𝑍0)𝑎𝑖 𝑗𝑏𝑖 𝑗 = (𝑍0 + 𝛿 ( 𝑗+1)𝑥 𝑍−)𝑎𝑖 𝑗+1𝑏𝑖 𝑗+1,
𝜆(𝑍0 + 𝛿 ( 𝑗+1)𝑥 𝑍+)𝑎𝑖 𝑗+1𝑏𝑖 𝑗+1 = (𝑍− + 𝛿 ( 𝑗)𝑥 𝑍0)𝑎𝑖 𝑗𝑏𝑖 𝑗 ,

𝜆(𝑍+ℎ + 𝛿
(𝑖)
𝑦 𝑍

0
ℎ)𝑎𝑖 𝑗𝑏𝑖 𝑗 = (𝑍0

ℎ + 𝛿
(𝑖+1)
𝑦 𝑍−ℎ )𝑎𝑖+1 𝑗𝑏𝑖+1 𝑗 ,

𝜆(𝑍0
ℎ + 𝛿

(𝑖+1)
𝑦 𝑍+ℎ)𝑎𝑖+1 𝑗𝑏𝑖+1 𝑗 = (𝑍−ℎ + 𝛿

(𝑖)
𝑦 𝑍

0
ℎ)𝑎𝑖 𝑗𝑏𝑖 𝑗 ,

(1)

where the numbers 𝛿 ( 𝑗)𝑥 :=
𝑎′𝑖 𝑗
𝑎𝑖 𝑗

and 𝛿 (𝑖)𝑦 :=
𝑏′𝑖 𝑗
𝑏𝑖 𝑗

for 𝑗 = 1, . . . 𝑁−1 and 𝑖 = 1, . . . 𝑀−1.

The dispersion relation (equation for the modes) is obtained from (1) by multiplying
pairwise the equations, which leads to

Theorem 2 (Eigenvalues of the 𝑀 × 𝑁 Schwarz iteration map)

𝜆2 =
𝑍− + 𝛿 ( 𝑗)𝑥 𝑍0

𝑍+ + 𝛿 ( 𝑗)𝑥 𝑍0

𝑍0 + 𝛿 ( 𝑗+1)𝑥 𝑍−

𝑍0 + 𝛿 ( 𝑗+1)𝑥 𝑍+
, 𝑗 = 1 . . . 𝑁 − 1,

𝜆2 =
𝑍−ℎ + 𝛿

(𝑖)
𝑦 𝑍

0
ℎ

𝑍+ℎ + 𝛿
(𝑖)
𝑦 𝑍

0
ℎ

𝑍0
ℎ + 𝛿

(𝑖+1)
𝑦 𝑍−ℎ

𝑍0
ℎ + 𝛿

(𝑖+1)
𝑦 𝑍+ℎ

, 𝑖 = 1 . . . 𝑀 − 1.
(2)

With Theorem 1 and Theorem 2, we thus have a complete characterization of the
eigenmodes of the classical and optimized parallel Schwarz iteration map for de-
compositions of the form in Figure 2 for squares. The affine modes, some of which
we observed in the numerical experiment in Figure 1, are obtained by letting 𝜁 go to
zero in (2), and we obtain by a direct calculation

Corollary 1 (Existence of affine Eigenmodes) For 𝑁 × 𝑁 subdomains, there are
2(𝑁 − 1) affine modes. There are no affine modes when 𝑀 ≠ 𝑁 .

For our initial experiment setting, 𝑁 = 𝑀 = 4, there are 6 affine eigenmodes,
shown in Figure 3 for 𝑝 = 1015 to emulate classical parallel Schwarz, and overlap
𝐿 = 0.1. We clearly recognize on the top left the slowest eigenmode we saw in
the numerical experiment in Figure 1 on the left. We also see a corresponding
discontinuous eigenmode just below on the left in Figure 3, responsible for the same
slow convergence in our numerical experiment in Figure 1 on the right, since their
eigenvalues are equal in modulus. It is therefore important for a good coarse space for
Schwarz methods to contain both continuous and discontinuous harmonic functions
per subdomain.

3 The special case of 2 × 2 subdomains

For a 2× 2 domain decomposition, the relation (2) between 𝜆 and 𝜁 takes the simple
form
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Fig. 3: Affine eigenmodes for 4 × 4 subdomains.
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Fig. 4: Functions 𝜑 in red, 𝜑ℎ in green and −𝜑ℎ in blue. Left: classical parallel Schwarz method
of Lions. Middle: overlapping optimized Schwarz. Right: Nonoverlapping optimized Schwarz.

𝜆2 = (𝜑(𝜁))2 = (𝜑ℎ (𝜁))2 , 𝜑(𝜁) = 𝑍−

𝑍+
(𝜁), 𝜑ℎ (𝜁) =

𝑍−ℎ
𝑍+ℎ
(𝜁). (3)

Then 𝜁 is determined by either choosing the positive or negative sign,

𝜑(𝜁) = 𝜑ℎ (𝜁), 𝜑(𝜁) = −𝜑ℎ (𝜁). (4)

Each of these equations has a sequence of solutions we denote by 𝜁 𝑘1 (𝑝, 𝐻, 𝐿) and
𝜁 𝑘2 (𝑝, 𝐻, 𝐿). We show in Figure 4 these functions of 𝜁 , and intersections represent
thus solutions of (4). We chose subdomain length 𝐻 = 1, and, if present, for the
overlap 𝐿 = 0.1 and the Robin parameter 𝑝 = 10. The frequencies 𝜁 𝑘1 (𝑝, 𝐻, 𝐿)
are at the intersection between the red and the green curve, while the frequencies
𝜁 𝑘2 (𝑝, 𝐻, 𝐿) are at the intersection between the red and the blue curve. The value of
any of the functions at those points represents a corresponding eigenvalue 𝜆 of the
Schwarz iteration map.
In Figure 5 we show the two affine eigenmodes, at the top the continuous and

the bottom the discontinuous ones, corresponding to 𝜁 = 0 in (4), together with the



44 François Cuvelier, Martin J. Gander, and Laurence Halpern

0

2

0.2

0.4

1.5 2

0.6

=0 =0.81818

1.5

y

0.8

1

x

1

1
0.5

0.5
0 0

0

2

0.2

0.4

1.5 2

0.6

=0 =0.18467

1.5

y

0.8

1

x

1

1
0.5

0.5
0 0

0

2

0.2

0.4

1.5 2

0.6

=0 =0.6972

1.5

y

0.8

1

x

1

1
0.5

0.5
0 0

-1

2

-0.5

1.5 2

0

=0 =-0.81818

1.5

0.5

y

1

x

1

1
0.5

0.5
0 0

-1

2

-0.5

1.5 2

0

=0 =-0.18467

1.5

0.5

y

1

x

1

1
0.5

0.5
0 0

-1

2

-0.5

1.5 2

0

=0 =-0.6972

1.5

0.5

y

1

x

1

1
0.5

0.5
0 0

Fig. 5: Slowest, affine eigenmodes. Left: classical parallel Schwarz method of Lions. Middle:
overlapping optimized Schwarz. Right: nonoverlapping optimized Schwarz.

corresponding 𝜆 for all three Schwarz variants. These are the most slowly converging
modes, and their corresponding eigenvalues in modulus show that the three different
parallel Schwarz variants have very different convergence speeds: classical parallel
Schwarzmethod of Lions on the left convergesmost slowly, while optimized Schwarz
with overlap in the middle is the fastest, followed by optimized Schwarz without
overlap. The affine eigenmodes in Figure 5 look however very similar for all three
Schwarz variants, an observation which is the basis for our new coarse space for
Schwarz methods.

4 A new coarse space for parallel Schwarz methods

The affine eigenmodes in Figure 5 do not only look very similar, they are asymptot-
ically the same, and the following theorem shows that they are the basis to assemble
such affine eigenfunctions for more general 𝑁 .

Theorem 3 (Asymptotic Assembly Theorem) When the overlap 𝐿 is small, and/or
the Robin parameter 𝑝 is large, the affine modes for 𝑁 × 𝑁 subdomains are asymp-
totically special linear combinations of the two limiting affine functions Θ𝑐 and Θ𝑑

from the 2 × 2 decomposition modulo translations.

For our initial 4 × 4 subdomain example, the precise asymptotic formulas, with
respect to 𝑋 = 𝐻

𝐿 (classical parallel Schwarzmethod of Lions) or 𝑋 = 𝑝𝐻 (optimized
Schwarz), are for the eigenvalues, with 𝜀 = ±1,

𝜆 (1) , 𝜀 ∼ 𝜀(1 − 2 +
√

2
𝑋
), 𝜆 (2) , 𝜀 ∼ 𝜀(1 − 2

𝑋
), 𝜆 (3) , 𝜀 ∼ 𝜀(1 − 2 −

√
2

𝑋
),
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Fig. 6: Our new coarse space assembly for 4 × 4 subdomains. Top: continuous functions Θ𝑐𝑖 𝑗 .
Bottom: discontinuous functions Θ𝑑𝑖 𝑗 .

and for the corresponding six eigenfunctions shown in Figure 3 we have

𝑢 (1) ,1 ∼ Θ𝑐11 + Θ𝑐13 + Θ𝑐31 + Θ𝑐33 +
√

2(Θ𝑐12 + Θ𝑐21 + Θ𝑐23 + Θ𝑐32) + 2Θ𝑑22,

𝑢 (1) ,−1 ∼ Θ𝑑11 + Θ𝑑13 + Θ𝑑31 + Θ𝑑33 −
√

2(Θ𝑑12 + Θ𝑑21 + Θ𝑑23 + Θ𝑑32) + 2Θ𝑑22,

𝑢 (2) ,1 ∼ Θ𝑐11 − Θ𝑐13 − Θ𝑐31 + Θ𝑐33,
𝑢 (2) ,−1 ∼ Θ𝑑11 − Θ𝑑13 − Θ𝑑31 + Θ𝑑33,

𝑢 (3) ,1 ∼ Θ𝑐11 + Θ𝑐13 + Θ𝑐31 + Θ𝑐33 −
√

2(Θ𝑐12 + Θ𝑐21 + Θ𝑐23 + Θ𝑐32) + 2Θ𝑐22,

𝑢 (3) ,−1 ∼ Θ𝑑11 + Θ𝑑13 + Θ𝑑31 + Θ𝑑33 +
√

2(Θ𝑑12 + Θ𝑑21 + Θ𝑑23 + Θ𝑑32) + 2Θ𝑑22.

We therefore propose a new coarse space for Schwarz methods, based on assembling
the continuous and discontinuous ’hat’ functions Θ𝑐𝑖 𝑗 and Θ

𝑑
𝑖 𝑗 from the 2 × 2 subdo-

main decomposition, as illustrated for our example in Figure 6. We allow our new
two-level Schwarz methods also to perform more than just 𝜈 = 1 domain decompo-
sition iteration or smoothing step, since the new coarse space is so effective that it
does not need to be used at every iteration, as we will see in the next section.
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Fig. 7: Left: finite element setting for our 4 × 4 model problem. Right: convergence comparison of
the one- and two-level optimized Schwarz methods.

Fig. 8: Left: finite element example obtained from METIS. Right: convergence comparison of the
one- and two-level optimized Schwarz methods.

5 Numerical experiments

We start with a numerical experiment for our 4×4 example, running a nonoverlapping
optimized Schwarz method (OSM) to solve Laplace’s equation using now a finite
element discretization, as indicated in Figure 7 on the left.
On the right, we show how the error decreases, both for the one-level OSM and

2-level-OSM with two different numbers of smoothing steps 𝜈 = 1, 4. We see that it
is sufficient to use a coarse correction with our new coarse space only every fourth
Schwarz iteration with a two-level optimized parameter 𝑝opt = 50.3, and this value
is very different from the one-level optimized parameter 𝑝opt = 14.1, as one can see
from the one-level convergence curves, see also Section 6.
We next show a numerical experiment for a more general decomposition ob-

tained by METIS, shown in Figure 8. Here we constructed our new coarse space by
generating harmonic functions in the subdomains from edge solutions of the Laplace-
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Fig. 9: Left: one-level OSM after 70 iterations. Right: two-level OSMwith 𝜈 = 1 after 60 iterations
(since macheps is already reached).

Beltrami operator, and we span both continuous and discontinuous ’hat’ functions as
in the rectangular decomposition. For cross points with an even number of incoming
edges, we need again two functions, one continuous and one discontinuous, like in
the rectangular case, and for cross points with an odd number of incoming edges,
we need three functions, one continuous and two discontinuous ones, except when
only 3 edges are incoming, for which case one continuous coarse function suffices!
We see again a similar behavior in the convergence of the optimized new two-level
Schwarz method, and a coarse correction every fourth iteration suffices with our new
coarse space.

6 A note on the optimized Robin parameter

From the literature on optimized Schwarzmethods, the optimized choice of theRobin
parameter is known from two subdomain analysis [5], e.g. in the non-overlapping
case 𝑝∗ ∼ 𝜋√

𝐻ℎ
. In the case with cross points, there are no results available so far.

We first show a numerical experiment for our 4 × 4 original model problem from
Figure 7 running the method for many values of the parameter 𝑝, and plotting the
error as a function of 𝑝, see Figure 9. We clearly see that in both cases there is a best
parameter 𝑝∗. This parameter is 𝑝∗1 = 14.1 for the one-level method, and 𝑝∗2 = 50.3
for the two-level method, also used in Figure 7.
In order to better understand this optimized choice, we return to the optimization

of the convergence factor for 2 × 2 subdomains. Recall that the relevant frequencies
𝜁 𝑘𝑗 are a discrete set, defined in (4). We show in Figure 10 the convergence factor,

|𝜆 | =
��� 𝑍−ℎ𝑍+
ℎ

��� as a function of 𝜁 , for our optimized Schwarz method, 𝐻 = 1/2 and three
different fine mesh parameters ℎ. Best performance in optimized Schwarz methods
is obtained by equioscillation in the convergence factor [5], in the non-overlapping
case between the lowest and highest frequency (green curves in Figure 10). Since
our new coarse space with affine modes removes the lowest frequency, the best
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Fig. 10: Convergence factors |𝜑ℎ (𝜁 ) | of our optimized Schwarz methods for ℎ = 1/24, 1/25, 1/26

from left to right. Green-star: one level, magental-circle: two level method

parameter choice now only needs to equioscillate with the second lowest and the
highest frequency (magenta curves in Figure 10), which explains why 𝑝∗ for the two-
level method with our new coarse space is larger than 𝑝∗ for the one-level method.
One can show that for given 𝐻 and ℎ, the highest frequency index is 𝑘0 = 1

2
𝐻
ℎ + 1,

and equating the values of |𝜑ℎ (𝜁) | at 𝜁 = 0 and 𝜁 = 𝜁2 (𝑘0, 𝑝) gives the optimized
parameter 𝑝∗1 for the one-level method. For the two-level method, equating the values
of |𝜑ℎ (𝜁) | at 𝜁 = 𝜁2 (1, 𝑝) and 𝜁 = 𝜁2 (𝑘0, 𝑝) yields the optimized value 𝑝∗2 for the
two-level method. An asymptotic analysis gives

𝑝∗1 ∼
√︂

𝜋

2𝐻ℎ
, 𝑝∗2 ∼ 𝜋

√︂
coth 𝜋
2𝐻ℎ

, 𝑝∗ ∼ 𝜋
√︂

coth 𝜋
𝐻ℎ

, (5)

where 𝑝∗ is the best parameter obtained for two subdomains. Naturally we can enrich
our new coarse space with the next, non-affine modes that come in the Schwarz
iteration spectrum, which we show in Figure 11 (the corresponding ones exchanging
𝑥 and 𝑦 are not shown), and then the optimized parameter would again increase
further when an OSM is used. We see that these modes are very similar to the
SHEM modes, but again they come in pairs, thus reducing the SHEM coarse space
dimension by a factor of two. We see however also specific new modes appear, like
the ones in the top row of Figure 11 which form a tip at the cross point, and were not
in the spectral sine decomposition of the SHEM coarse space, an issue which merits
further investigation.

7 Conclusion

We designed a new coarse space for Schwarz methods, based on a spectral analysis
of the parallel Schwarz iteration operator. Our new coarse space is assembled from
continuous and discontinuous hat functions obtained from the eigenfunctions of
local 2 × 2 subdomain decompositions. The new coarse space components are the
same for the classical parallel Schwarz method of Lions, and overlapping and non-
overlapping optimized Schwarz. We showed numerically that our new coarse space
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Fig. 11: First non affine modes to enrich our new coarse space.

is also very effective on more general decompositions, like the ones obtained by
METIS, and that using a coarse space modifies in an important way the optimized
parameter in the Robin transmission conditions of the optimized Schwarz methods.
Further enrichment is possible with known oscillatory enrichment functions, again
from the analysis of local 2 × 2 subdomain decompositions.
Clearly our work is just a first step for the construction of such type of new coarse

spaces. Our approach can be used to detect good coarse space components for other
types of partial differential equations, like problems with high contrast, advection
diffusion problems, or also themuch harder case of time harmonic wave propagation.
This is possible also for situations where there is no general convergence theory for
the associated Schwarz method available, since it is based on a direct spectral study
of the Schwarz iteration operator in a simplified setting.
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Nonoverlapping Domain Decomposition
Methods for Time Harmonic Wave Problems

Xavier Claeys, Francis Collino, Patrick Joly, and Emile Parolin

The domain decomposition method (DDM) initially designed, with the celebrated
paper of Schwarz in 1870 [24] as a theoretical tool for partial differential equations
(PDEs) has become, since the advent of the computer and parallel computing tech-
niques, a major tool for the numerical solution of such PDEs, especially for large
scale problems. Time harmonic wave problems offer a large spectrum of applications
in various domains (acoustics, electromagnetics, geophysics, ...) and occupy a place
of their own, that shines for instance through the existence of a natural (possibly
small) length scale for the solutions: the wavelength. Numerical DDMs were first
invented for elliptic type equations (e.g. the Laplace equation), and even though the
governing equations of wave problems (e.g. the Helmholtz equation) look similar,
standard approaches do not work in general.

The objective of this work is to make a rapid, but hopefully pedagogical, survey of
the research ledmainly at INRIA (in the teamsONDES then POEMS andALPINES)
since 1990, on non overlapping domain decomposition methods for time harmonic
wave propagation problems, based on the notion of impedance transmission con-
ditions. Our point of view, and we consider that this sets us apart from the rest of
the wave DDM community, is theory driven: we proposed and progressively devel-
oped a unified framework that guarantees the well-posedness and convergence of
the related iterative algorithms in themost general cases (geometry, variable coef-
ficients, boundary conditions. . . ). This researchwas punctuated by four Phd theses.

• The PhD thesis of B. Després [10] (1991) is definitely a pioneering work which
constitutes a decisive step. It is worthwhile mentioning that P. L. Lions [18]
(1988), [19] (1990) wrote his papers on the theory of DDMs for elliptic prob-
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lems at the same period.

• With the PhD thesis of S. Ghanemi [15], at CERFACS in 1996, we developed our
general theoretical framework, proposed using second order local transmission
conditions and initiated non-local transmission conditions [7] (after [16, 21]).

Then there was a big pause (about 15 years) in our activity, during which a
huge literature was devoted to Optimized Schwarz Methods (OSMs) associated
to local impedance operators (see also Section 2), up to the opportunity of a
contract with CEA (French Nuclear Agency) which started the second phase of
our activity.

• The PhD thesis of M. Lecouvez [17] (2015), in collaboration with CEA, permit-
ted us to develop the notion of non-local transmission operators.

• The PhD thesis of E. Parolin [22] (2020) supported by the ANR Project Non-
localDD which closes a chapter of the story with the notion of elliptic DtN
operators, the treatment of Maxwell’s equations and a solution to the cross
points issue [3].

1 Elliptic equations versus Helmholtz equation

In this section, we expose the general ideas, more formalism will be introduced in
Section 2. To emphasize the difference of status between the two types of equations
w.r.t. DDM, let us simply consider the equation with constant coefficients

−Δ𝑢 + 𝑘2𝑢 = 𝑓 , in R𝑑 , 𝑘 ∈ C, where (1)

- if 𝑘 ∈ R+: in this case (1) is of (strongly) elliptic nature
- if 𝑘 = 𝑖𝜔, 𝜔 ∈ R+ (Helmholtz) : one models waves with frequency 𝜔.
The distinction is important for DDMs : for instance, the classical overlapping
Schwarz method converges (linearly in most case) in the elliptic case but does not
converge for the Helmholtz equation. In fact, in the elliptic case, the boundary value
problems (BVPs) associated with (1) enjoy many nice properties including the 𝐻1-
coercivity of 𝑎(𝑢, 𝑣) =

∫
(∇𝑢 · ∇𝑣 + 𝑘2 𝑢 𝑣), the associated bilinear form, and their

solutions are often interpreted as the solutions of convex minimization problems.
With this point of view, P.L. Lions gave a general proof of convergence of the
Schwarz method by interpreting the error at each step of the algorithm as the result
of successive orthogonal projections on two (with two subdomains) supplementary
subspaces of 𝐻1 [18]. These problems also benefit from the maximum principle,
which also provides another way for proving the convergence of the Schwarzmethod.

On the contrary, if 𝑘 = 𝑖𝜔, 𝑎(𝑢, 𝑣) =
∫
(∇𝑢 · ∇𝑣 − 𝜔2 𝑢 𝑣), the natural bilinear form

for Helmholtz, is no longer coercive and there is no underlying variational principle
for the corresponding BVPs. Also, there is no maximum principle: the (complex
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valued) solutions naturally oscillate with the wavelength 𝜆 = 2𝜋/𝜔.
Fortunately, good news comes from the boundary: if 𝑢 satisfies −Δ𝑢 − 𝜔2 𝑢 = 0 in
a bounded domain Ω with boundary Γ and outgoing normal 𝜈 then (multiply the
equation by 𝑢, integrate over Ω, apply Green’s formula and take the imaginary part)

I𝑚
∫
Γ
𝜕𝜈𝑢 𝑢 = 0, i. e. I𝑚 〈

𝜕𝜈𝑢, 𝑢
〉
Γ = 0, (2)

with ⟨· , ·⟩Γ the inner product in 𝐿2 (Γ) ≡ 𝐿2 (Γ;C). This leads to the following
isometry result, where ∥ · ∥Γ denotes the 𝐿2 (Γ)-norm

∥ 𝜕𝜈𝑢 + 𝑖𝜔 𝑢 ∥2Γ = ∥ 𝜕𝜈𝑢 − 𝑖𝜔 𝑢 ∥2Γ, (3)

(simply note that the difference of the two sides of (3) is proportional toI𝑚 ⟨𝜕𝜈𝑢, 𝑢⟩Γ
which is 0 by (2)). One obtains many other isometry results by playing with identity
(2): introducing a "boundary operator" Λ (understand that it transforms a function
defined on Γ into another function defined on Γ), supposed to be bijective (between
appropriate spaces) with (formal) adjoint Λ∗, we remark that

I𝑚 〈
𝜕𝜈𝑢, 𝑢

〉
Γ = 0 ⇔ I𝑚 〈

𝜕𝜈𝑢,Λ
−1Λ𝑢

〉
Γ = 0 ⇔ I𝑚 〈(Λ∗)−1𝜕𝜈𝑢,Λ𝑢

〉
Γ = 0,

from which we deduce the other isometry result

∥ (Λ∗)−1𝜕𝜈𝑢 + 𝑖𝜔Λ𝑢 ∥2Γ = ∥ (Λ∗)−1𝜕𝜈𝑢 − 𝑖𝜔Λ𝑢 ∥2Γ . (4)

Introducing the positive definite self-adjoint boundary operator 𝑇 = Λ∗Λ (called
impedance operator in the sequel) and the associated norm

(𝜑, 𝜓) :=
〈
𝜓,𝑇−1𝜑

〉
Γ,

𝜑2 :=
〈
𝜑,𝑇−1𝜑

〉
Γ, (5)

so that (4) rewrites ∥ 𝜕𝜈𝑢 + 𝑖𝜔𝑇𝑢 ∥2 = ∥ 𝜕𝜈𝑢 − 𝑖𝜔𝑇𝑢 ∥2. (6)

This is one of the reasons which led us, in the context of iterative overlapping DDMs,
denoting {Ω 𝑗 } the subdomains (with outgoing normals 𝜈 𝑗 ), to propose

𝜕𝜈 𝑗𝑢
𝑛
𝑗 + 𝑖𝜔𝑇𝑢𝑛𝑗 = (𝑟ℎ𝑠)𝑛−1, 𝑢𝑛𝑗 = 𝑢

𝑛 |Ω 𝑗 , (7)

as a boundary condition inΩ 𝑗 , where (𝑟ℎ𝑠)𝑛−1 is a quantity, depending on the previ-
ous iteration and the adjacent subdomain, providing the good continuity conditions
at convergence (Section 2). An important consequence of the properties of 𝑇 (sym-
metric positive definite) is that (7) is of absorbing nature so that the local problem in
Ω 𝑗 is automaticallywell posed. Moreover, as we shall see in Section 2, the isometry
result (6) can be exploited to prove the convergence of the iterative algorithm.
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Fig. 1: The subdomains Ω1 and Ω2 (left). The scattering operators 𝑆1 ans 𝑆2 (center). The layers
𝐶1 and 𝐶2, cf Section 5 (right)

2 Impedance based transmission conditions and related DDM

Presentation of the method on a simple model. Let (𝐵𝑉𝑃) consist in solving the
Helmholtz equation in aΩ⊂R𝑑 , bounded, with a perfectly reflecting inner boundary
Γ1 and absorbing outer boundary Γ2:
(𝐵𝑉𝑃) − Δ𝑢 − 𝜔2 𝑢 = 𝑓 , in Ω, 𝑢 = 0, on Γ1, 𝜕𝜈𝑢 + 𝑖 𝜔 𝑢 = 0, on Γ2.

Introducing an interface Σ that splits Ω into two subdomains Ω1 (interior) and Ω2
(exterior), see Figure 1 (left picture), (𝐵𝑉𝑃) is equivalent to a transmission problem
(𝐿𝑃)+ (𝑇𝐶) (local problem + transmission conditions) where, with obvious notation
(in particular, 𝜈 𝑗 is the unit normal vector to Σ, outgoing w. r. t. Ω 𝑗 )

(𝐿𝑃)


−Δ𝑢 𝑗 − 𝜔2 𝑢 𝑗 = 𝑓 , in Ω 𝑗 , 𝑗 =1, 2
𝑢1 = 0, on Γ1,

𝜕𝜈𝑢2 + 𝑖 𝜔 𝑢2 = 0, on Γ2,

(𝑇𝐶)
{
(n) 𝑢1 = 𝑢2, on Σ,
(d) 𝜕𝜈1𝑢1 + 𝜕𝜈2𝑢2 = 0, on Σ.

Given 𝑠 ∈ [0, 1/2], we introduce an impedance operator 𝑇 with the property that
𝑇 ∈ L (

𝐻𝑠 (Σ), 𝐻−𝑠 (Σ)) is a positive and self-adjoint isomorphism. (8)

With this choice, the normdefined by (5) (with Γ replaced byΣ, and ⟨·, ·⟩Σ understood
as a duality bracket) is a Hilbert space norm in 𝐻−𝑠 (Σ).
Next, we rewrite (𝑇𝐶) in an equivalent way (thanks to the injectivity of 𝑇) by
considering the two independent linear combinations (𝑇𝐶) (n) ± 𝑖𝜔 (𝑇𝐶) (d), i. e.{

𝜕𝜈1𝑢1 + 𝑖 𝜔𝑇𝑢1 = −𝜕𝜈2𝑢2 + 𝑖 𝜔𝑇𝑢2, (1)
𝜕𝜈2𝑢2 + 𝑖 𝜔𝑇𝑢2 = −𝜕𝜈1𝑢1 + 𝑖 𝜔𝑇𝑢1, (2) (9)

where (9)-(j) is seen here as a boundary condition for 𝑢 𝑗 . The iterative DDM algo-
rithm consists in applying a fixed point procedure (with relaxation) to (9). Precisely,
we construct inductively two sequences 𝑢𝑛𝑗 ∈ 𝐻1 (Ω 𝑗 ), 𝑗 = 1, 2, by imposing, at each
step n, the local equations (𝐿𝑃) completed by the following boundary conditions on
Σ (where 𝑟 ∈ ]0, 1[ is the relaxation parameter)
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𝜕𝜈1𝑢

𝑛
1 + 𝑖 𝜔𝑇𝑢𝑛1 = 𝑟

(− 𝜕𝜈2𝑢
𝑛−1
2 + 𝑖 𝜔𝑇𝑢𝑛−1

2 ) + (1 − 𝑟)
(
𝜕𝜈1𝑢

𝑛−1
1 + 𝑖 𝜔𝑇𝑢𝑛−1

1
)
,

𝜕𝜈2𝑢
𝑛
2 + 𝑖 𝜔𝑇𝑢𝑛2 = 𝑟

(− 𝜕𝜈1𝑢
𝑛−1
1 + 𝑖 𝜔𝑇𝑢𝑛−1

1 ) + (1 − 𝑟)
(
𝜕𝜈2𝑢

𝑛−1
2 + 𝑖 𝜔𝑇𝑢𝑛−1

2
)
.
(10)

The reader will notice that, by construction, the local problems in (𝑢𝑛1 , 𝑢𝑛2 ) are well
posed, and can be solved in parallel.

A functional analytic observation. It is insightful to look at the quantities in (9) for
the two extreme values for 𝑠 ∈ [0, 1/2]. Given 𝑢 𝑗 ∈ 𝐻1 (Ω 𝑗 ) with Δ𝑢 ∈ 𝐿2 (Ω 𝑗 ) :

• if 𝑠 = 0, for instance 𝑇 = 𝐼, the identity : the combination 𝜕𝜈𝑢 𝑗 ± 𝑖 𝜔 𝑢 𝑗 are not
well balanced since 𝑢 naturally belongs to 𝐻1/2 (Σ) while 𝜕𝜈𝑢 only belongs to
𝐻−1/2 (Σ),

• if 𝑠 = 1/2 : the presence of 𝑇 ∈ L (
𝐻1/2 (Σ), 𝐻−1/2 (Σ)) re-equilibrates the

combination as a sum of two terms in 𝐻−1/2 (Σ).
In fact, a misfit is present as soon as 𝑠 ≠ 1/2 and one can thus anticipate that the
best option should be 𝑠 = 1/2. This will be confirmed by the analysis (Section 3).

A rapid guided tour into the bibliography. A lot of literature has been devoted to
DDMs based on transmission written in impedance form.

• In the original work of B. Després [10] (or [11] for Maxwell), 𝑇 = 𝛼 𝐼 where 𝛼
is a bounded strictly positive function, which fits (8) with 𝑠 = 0.

• Since the mid 90’s a huge literature has been devoted to "local" operators 𝑇 as
rational functions of the Laplace-Beltrami operator ΔΣ [16, 21, 13, 2], with a
great filiation with local absorbing conditions (Remark 1). These often do not
satisfy (8) and a general theory (existence for local problems and convergence)
is missing.

• In [8], we promote the use of non-local impedance operators 𝑇 fitting (8) with
𝑠 = 1

2 in particular boundary integral operators issued from potential theory.

Some optimized Schwarz methods, for instance Boubendir-Antoine-Geuzaine’s one,
perform very well in practice (despite examples of failure, see [8], Section 8.2.3).
However, they cannot lead to linear convergence (see [8], Thm 4.6).

Remark 1 : There is an ideal choice of transmission conditions with two (not one)
operators, 𝜕𝜈1𝑢1+𝑖𝜔𝑇1𝑢1=−𝜕𝜈2𝑢2+𝑖𝜔𝑇1𝑢2 and 𝜕𝜈2𝑢2+𝑖 𝜔𝑇2𝑢2=−𝜕𝜈1𝑢1+𝑖 𝜔𝑇2𝑢1:
take 𝑇1 (resp. 𝑇2) as the DtN operator, when it exists, associated to Ω2 (resp. Ω1)
(see [8] Section 1.3.2 and [14]). Then Algorithm (10) with 𝑟 = 1 converges in
two iterations. In general, finding 𝑇1 or 𝑇2 is almost as difficult as the original
problem. For two homogeneous half-spaces (plane interface), 𝑇1 = 𝑇2 with symbol
𝑖𝜔

√︁
1 − |𝜉 |2/𝜔2, (𝜉 is the space Fourier variable) whose rational approximations

(Taylor, Padé, continued fraction expansions) give local operators, as for ABCs.
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3 Convergence analysis

Interface formulation. For both the implementation and the analysis of our method,
it is useful to reinterpret the problem and the algorithm on the interface Σ. To do
so we introduce the interface auxiliary unknowns (where traces on Σ are implicitly
considered), i. e. the outgoing traces 𝑥 𝑗 and incoming traces 𝑦 𝑗 :

𝑥 𝑗 := 𝜕𝜈 𝑗𝑢 𝑗 + 𝑖 𝜔𝑇 𝑢 𝑗 , 𝑦 𝑗 := −𝜕𝜈 𝑗𝑢 𝑗 + 𝑖 𝜔𝑇 𝑢 𝑗 , in 𝐻−𝑠 (Σ). (11)

Given 𝑥1 and 𝑥2, 𝑢1 and 𝑢2 can be seen as the solutions of the local problems



−Δ𝑢1 − 𝜔2 𝑢1 = 𝑓 , in Ω1,

𝑢1 = 0, on Γ1,

𝜕𝜈1𝑢1 + 𝑖 𝜔𝑇 𝑢1 = 𝑥1, on Σ,



−Δ𝑢2 − 𝜔2 𝑢2 = 𝑓 , in Ω2,

𝜕𝜈𝑢2 + 𝑖 𝜔𝑢2 = 0, on Γ2,

𝜕𝜈2𝑢2 + 𝑖 𝜔𝑇 𝑢2 = 𝑥2, on Σ,
(12)

and, exploiting the linearity of (12), the incoming traces 𝑦 𝑗 can be rewritten as

𝑦1 = 𝑆1 𝑥1 + �̃�1, 𝑦2 = 𝑆2 𝑥2 + �̃�2, (13)

where, in an obvious manner, the source terms �̃� 𝑗 are due to 𝑓 (they are issued from
(12) with 𝑥 𝑗 = 0) and the scattering operators 𝑆 𝑗 are constructed from the local
problems (12) with 𝑓 = 0. Next, the transmission conditions simply rewrite

𝑦2 = 𝑥1, 𝑦1 = 𝑥2, (14)

and the transmission problem (𝐿𝑃,𝑇𝐶) is equivalent to the system (13, 14) in
x = (𝑥1, 𝑥2) and y = (𝑦1, 𝑦2): (13) takes account of local problems and (14) of
transmission conditions. Eliminating y then leads to a problem in x:

Find x ∈ V := 𝐻−𝑠 (Σ) × 𝐻−𝑠 (Σ) / (I − A) x = g, g = 𝚷 g̃, (15)

with the (𝑇-dependent ) scattering operator S and the exchange operators 𝚷:

S :=
(
𝑆1 0
0 𝑆2

)
, 𝚷 :=

(
0 𝐼
𝐼 0

)
, thus I − A :=

(
𝐼 −𝑆2
−𝑆1 𝐼

)
. (16)

Mathematical properties. In the following, we equip the Hilbert space V with the
(𝑇-dependent) norm naturally inherited from the 𝐻−𝑠-norm defined by (5), that we
still denote ∥ · ∥ for simplicity. From (8), it is clear that the operators 𝚷 and S are
continuous in V. Obviously, 𝚷 is an isometry while, from the identity (6) (applied
in Ω1 and Ω2), we immediately infer that, for any (𝑥1, 𝑥2) ∈ V,

(𝑎) ∥𝑆1 𝑥1∥ = ∥𝑥1∥, (𝑏) ∥𝑆2 𝑥2∥ ≤ ∥𝑥2∥. (17)

where the inequality in (17)-(b) is due to the absorbing condition on Γ2 for 𝑢2 in
(12). As a consequence, the operator S, thus the operator A, is contractant in V.
Concerning the invertibility of I − A, algebraic manipulations show that
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z = (I − A) x ⇔ 𝑥 𝑗 = 𝜕𝜈 𝑗𝑤 𝑗 + 𝑖 𝜔𝑇𝑤 𝑗 on Σ, 𝑗 = 1, 2, (18)

where, denoting 𝜈 the normal to Σ pointing towards Ω2 and [·]Σ the jump across Σ,
𝑤 ∈ 𝐻1 (Ω1 ∪Ω2) satisfies (H) −Δ𝑤 −𝜔2 𝑤 = 𝑓 in Ω1 ∪Ω2, (BC) : 𝑤 = 0 on Γ1 and
𝜕𝜈𝑤+𝑖 𝜔 𝑤 = 0 on Γ2 and the "jump conditions", with [z] = 𝑧1−𝑧2, {z} = 1

2 (𝑧1+𝑧2):

[𝑤]Σ = 1
2𝑖𝜔 𝑇

−1 [z], [𝜕𝑛𝑣]Σ = {z}. (19)

The injectivity of I − A is due to the uniqueness of a solution 𝑤 of (H, BC, 19):
this results from the uniqueness for the original problem. The surjectivity is related
to the existence of 𝑣. Trace theorems require {z} ∈ 𝐻−1/2 (Σ), which holds since
𝑠 ≤ 1/2, and 𝑇−1 [z] ∈ 𝐻1/2 (Σ). However, (8) only ensures 𝑇−1 [z] ∈ 𝐻𝑠 (Σ) : we
recover the misfit mentioned in Section 1 unless 𝑠 = 1/2:
Theorem 1 The operator I − A is injective in V and it is surjective if and only if
𝑠 = 1/2. In this case, by Banach theorem, there exists 𝛿 > 0 such that
∀ x ∈ V, ∥(I − A) x∥ ≥ 𝛿 ∥x∥, (with 𝛿 ≤ 2 because A is contractant). (20)

Theorem 1 implies that, when 𝑠 = 1/2, the interface problem (15) is a nice coercive
problem in V (the lack of 𝐻1-coercivity - emphasized in Section 1 - is hidden in the
definition of A). Indeed, from Ax = x − (I − A) x, we get (take the square norms)
∥Ax∥2 = ∥x∥2 + ∥(I−A) x∥2 − 2R𝑒 ((I−A) x, x). Since ∥Ax∥2 ≤ ∥x∥2, we deduce

∀ x ∈ V, R𝑒 ((I − A) x, x) ≥ (1/2) ∥(I − A) x∥2 ≥ (𝛿2/2) ∥x∥2. (21)

Convergence. We go back to the iterative method (𝐿𝑃) + (10). If x𝑛 := (𝑥𝑛1 , 𝑥𝑛2 )
with 𝑥𝑛𝑗 := 𝜕𝜈 𝑗𝑢𝑛𝑗 + 𝑖 𝜔𝑇 𝑢𝑛𝑗 , one easily sees that x𝑛 satisfies the following Richardson
algorithm (or relaxed Jacobi in reference with the block form (16) of I − A):

x𝑛 = (1 − 𝑟) x𝑛−1 + 𝑟 A x𝑛−1 + g. (22)

The error e𝑛 = x𝑛 − x satisfies e𝑛 = (1 − 𝑟) e𝑛−1 + 𝑟 A e𝑛−1 (∗). From the identity
∥(1 − 𝑟) x + 𝑟 y∥2 = (1 − 𝑟) ∥x∥2 + 𝑟 ∥y∥2 − 𝑟 (1 − 𝑟) ∥x − y∥2, we thus get�����

∥e𝑛∥2 = (1 − 𝑟) ∥e𝑛−1∥2 + 𝑟 ∥Ae𝑛−1∥2 − 𝑟 (1 − 𝑟) ∥(I − A) e𝑛−1∥2

≤ ∥e𝑛−1∥2 − 𝑟 (1 − 𝑟) ∥(I − A) e𝑛−1∥2, (contractivity of A).
(23)

Thus ∥e𝑛∥ decreases and ∥(I −A) e𝑛∥ → 0. By weak compactness in V, at least for
a subsequence, e𝑛 ⇀ e (weakly) in V. So (I − A) e = 0 thus (injectivity of I − A)
e = 0. This being true for any such subsequence, the whole sequence e𝑛 converges
and it is easy to infer that (𝑢𝑛1 , 𝑢𝑛2 ) → (𝑢1, 𝑢2) in 𝐿2 (Ω1) × 𝐿2 (Ω2).
However, in the case 𝑠 = 1/2, we have better since, using (20) again in (23)

∥e𝑛∥ ≤ 𝜏𝑛 ∥e0∥, 𝜏 :=
√︁

1 − 𝑟 (1 − 𝑟) 𝛿2 < 1, (24)

i. e. the iterative algorithm converges linearly provided 𝑠 = 1/2 and 0 < 𝑟 < 1.
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GMRES algorithm.One can of course use more sophisticated algorithms than (22)
to update the interface unknowns x𝑛 (from which (𝑢𝑛1 , 𝑢𝑛2 ) are still reconstructed via
the local problems (12)). This includes nonlinear algorithms such as GMRES [23], in
which x𝑛 is computed by minimizing y ↦→ ∥(I − A) y − g∥2, the square V-norm of
the residue, over the Krylov subspace generated by the 𝑛 first iterates x𝑘 , 𝑘 ≤ 𝑛 − 1
[9] . As a consequence, the corresponding error e𝑛 is such that(I − A) e𝑛

 = min
𝑝∈P𝑛

(I − A) 𝑝(A) e0, P𝑛 = { polynomials of degree ≤ 𝑛}

Considering the polynomial 𝑃(𝑎) = (1−𝑟 +𝑟 𝑎)𝑛, which corresponds to the Jacobi’s
algorithm (22), we deduce from Theorem 1, (24) and ∥I − A∥ ≤ 2 that, if 𝑠 = 1/2,

∥e𝑛∥ ≤ (2/𝛿)
(I − A) e𝑛

 ≤ (2/𝛿) 𝜏𝑛 with 𝜏 as in (24),

which means that the convergence rate of the GMRES algorithm if necessarily better
than with (22). Numerical evidence show that it is strictly better and that it is
worthwhile using GMRES despite the larger computational cost for each iteration.

4 Construction of appropriate impedance operators

According to what precedes, the question is to construct an impedance operator 𝑇
satisfying (8) with 𝑠 = 1/2, i. e. a positive self-adjoint pseudo-differential operator of
order 1. A first mathematical fact is that such an operator cannot be a local operator
in the sense of Section 2: this is clearly demonstrated in 2D circular geometries [8]
with a Fourier modal expansion in the azimuthal variable 𝜃 . On the other hand, there
exist many ways to construct good nonlocal operators. Let us describe some of them
(see also [17], [8], [22]).

From Sobolev norms (A). The operator 𝑇 is entirely defined by the scalar product
(5), which is used for finite elements. A first choice is the following (if Ω ⊂ R3):

𝛼

∫
Σ
𝜑 𝜓 𝑑𝜎 + 𝛽

𝜔

∫∫
Σ
𝜒
( |𝑥 − 𝑦 |

𝐿

) (
𝜑(𝑥) − 𝜑(𝑦)) (𝜓(𝑥) − 𝜓(𝑦))

|𝑥 − 𝑦 |3 𝑑𝜎𝑥𝑑𝜎𝑦 (25)

with 𝛼, 𝛽 > 0, 𝜒(𝑟) ≥ 0 a 𝐶1 cut off function with support in [0, 1] and 𝜒(𝑟) = 1
for 𝑟 < 1/2, and 𝐿 > 0. If 𝐿 = +∞, 𝑇 is fully nonlocal and one recovers the usual
Gagliardo-Niremberg norm in 𝐻1/2 (Σ) if 𝛼 = 𝛽 = 1. If not, 𝑇 only couples points
at a distance less than 𝐿 and the (discretized) impedance condition is less costly.

From potential theory (B). An automatic way to build a good impedance operator
is to take 𝑇 = Λ∗Λ, with Λ an isomorphism from 𝐻1/2 (Σ) in 𝐿2 (Σ) provided by a
Riesz-type potential : given 𝑎, 𝑏 > 0, the associated bilinear form is given by

𝑎

∫
Σ
𝜑 𝜓 𝑑𝜎 + 𝑏√

𝜔

∫∫
Σ
𝜒
( |𝑥 − 𝑦 |

𝐿

) rotΣ𝜑(𝑥) · rotΣ𝜓(𝑦)
|𝑥 − 𝑦 |1/2 𝑑𝜎𝑥𝑑𝜎𝑦 (26)

where rotΣ denotes the usual tangential curl operator onΣ. Such operators are familiar
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to specialists of boundary integral equations, except the non standard exponent 1/2
which ensures thatΛ is of order 1/2. Contrary to (A), Alternative (B) can be extended
to Maxwell’s equations [22]. In separable geometries, the convergence of (22) for
(A) or (B) can be precisely quantified via a modal decomposition. This analysis also
permits us to show that a good choice for 𝐿 is 𝐿 ∼ 𝜆/2 [8].
From local elliptic DtN operators (C).Amore recently investigated option consists
in building 𝑇𝜑 from the solution 𝑣𝜑 of an auxiliary elliptic problem posed in a layer
𝐶1 ∪𝐶2 surrounding the interface Σ (Figure 1): given 𝐵 = 𝐼, 𝜕𝜈 or 𝐼 +𝜔−1 𝜕𝜈 (it can
be shown [22] that the Robin operator 𝐼 + 𝜔−1 𝜕𝜈 is the best choice)



𝑇𝜑 := 1

2
(
𝜕𝜈1𝑣

𝜑
1 + 𝜕𝜈2𝑣

𝜑
2
)

𝑣
𝜑
1 = 𝑣𝜑 |Ω1 , 𝑣

𝜑
2 = 𝑣𝜑 |Ω2

where



−Δ𝑣 + 𝜔2 𝑣𝜑 = 0, in 𝐶1 ∪ 𝐶2,

𝑣𝜑 = 𝜑, on Σ,
𝐵 𝑣𝜑 = 0 on Σ 𝑗 , 𝑗 =1, 2

(27)

One advantage of such a DtN operator is that it is perfectly adapted to variable
coefficients and other types of equations. Moreover it gives very good performances
in practice. Let us consider the experiment of the scattering of a plane wave by a
circular disk (see Figure 3) : the interface is a circle of radius 𝑅 and 𝜔 𝑅 = 9. We
use 𝑃1 finite elements on a meshstep ℎ = 2𝜋/(40𝜔) and 0 as the initial guess. In
Figure 2, we show the evolution of the relative 𝐻1 (Ω1 ∪ Ω2) norm of the error
𝑢𝑛ℎ − 𝑢ℎ, 𝑢ℎ being the solution of the undecomposed discrete problem, as a function
of 𝑛 for 𝑇 = 𝐼 and 𝑇 given by (B) or (C) with 𝐶1 = Ω1 (red domain) 𝐶2 = Ω2
(blue domain). This clearly shows the interest non local versus local and the one
of the strategy (C) with respect to (B). The picture on the right shows that, with
nonlocal operators, the number of iterations needed for reaching a given tolerance
is independent of ℎ (this can be proven, see [4] and reflects the linear convergence
for the continuous problem) while, if 𝑇 = 𝐼 (or more generally any local operator) it
increases when one refines the mesh. In Figure 3, we show the spatial structure of the
error after 80 iterations (be careful the scales are different in the two pictures). With
𝑇 = 𝐼, the error concentrates near the interface and highly oscillates (from one mesh
point to the other) along the interface. This is representative of the incapacity of
local operators to produce linear convergence at the continuous level and explained
in circular geometry by the Fourier azimuthal analysis : the modal convergence rate
𝜏𝑚 for the 𝑚𝑡ℎ mode in 𝜃 tends to 1 for large 𝑚. With the DtN operator, the error
does not concentrate and oscillates, as explained again by the modal analysis, at the
(quasi)-resonant mode : observe the 𝑚 = 9 lobes⇔ 𝜔𝑅 = 9.

5 The problem of cross points

Consider now a partition ofΩ into 𝑁 ≥ 2 subdomainsΩ 𝑗 , where, for simplicity,Ω𝑁
is an exterior layer, with the possibility that more than 2 boundaries 𝜕Ω 𝑗 meet at a so
called cross point. Such points raise theoretical and practical questions for DDMs,
that deserve a special treatment [1, 20, 12]. Denoting Σ𝑖 𝑗 the interface 𝜕Ω𝑖 ∪ 𝜕Ω 𝑗
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Fig. 2: Convergence histories (left and center). Iteration count versus mesh size (right)

Fig. 3: Left : the experiment. Center, right : the errors after 80 iterations (the color bars differ !)

(possibly empty), the most naïve generalization of the transmission condition (9)
consists in writing a transmission problem for {𝑢 𝑗 } with the transmission conditions{

𝜕𝜈𝑖𝑢𝑖 + 𝑖 𝜔𝑇𝑖 𝑗 𝑢𝑖 = −𝜕𝜈 𝑗𝑢 𝑗 + 𝑖 𝜔𝑇𝑖 𝑗 𝑢 𝑗 , 𝜈𝑖 outgoing w.r.t. Ω𝑖 ,
𝜕𝜈 𝑗𝑢 𝑗 + 𝑖 𝜔𝑇𝑖 𝑗 𝑢 𝑗 = −𝜕𝜈𝑖𝑢𝑖 + 𝑖 𝜔𝑇𝑖 𝑗 𝑢𝑖 , 𝜈 𝑗 outgoing w.r.t. Ω 𝑗 ,

(28)

where, aiming at achieving linear convergence, 𝑇𝑖 𝑗 would be a positive definite
self-adjoint operator from 𝐻1/2 (Σ𝑖 𝑗 ) in 𝐻−1/2 (Σ𝑖 𝑗 ). In this way, defining 𝑥𝑖 𝑗 on
Σ𝑖 𝑗 similarly as (𝑥1, 𝑥2) in (11) and x the collection of the {𝑥𝑖 𝑗 }, the transmission
problem can be rewritten in an abstract form (15) with a natural generalization of the
operator A. The convergence of the DDM algorithm (22) is still guaranteed but the
linear convergence faces the problem of the surjectivity of I − A that relies on the
existence of a solution to a generalized jump problem in Ω coupling the Helmholtz
equation in each Ω 𝑗 with the inhomogeneous jump conditions :[
𝑤
]
Σ𝑖 𝑗

= 𝑇−1
( 𝑧𝑖 𝑗 − 𝑧 𝑗𝑖

2𝑖𝜔

)
,

[
𝜕𝑛𝑤

]
Σ𝑖 𝑗

= 𝑧𝑖 𝑗−𝑧 𝑗𝑖 , given (𝑧𝑖 𝑗 , 𝑧 𝑗𝑖) ∈ 𝐻−1/2 (Σ𝑖 𝑗 ). (29)

Unfortunately, the inclusion of T := { 𝛾𝐽𝑣 := [𝑣]Σ𝑖 𝑗/𝑣𝑖 ∈ 𝐻1 (Ω𝑖)} in Π 𝐻1/2 (Σ𝑖 𝑗 )
is strict, with infinite codimension, if cross points exist [25]. This defect of surjec-
tivity of the jump operator 𝛾𝐽 is an obstacle to the first condition in (29): we meet
again a functional misfit as for the two domains case when 𝑠 < 1/2 in (8).
In [3], a new paradigm was proposed, abandoning the interfaces Σ𝑖 𝑗 to the profit of
the boundaries Σ𝑖 = 𝜕Ω𝑖 (𝑖 < 𝑁) and Σ𝑁 == 𝜕Ω𝑁 \ 𝜕Ω and the skeleton 𝚺 =∪Σ𝑖 .
This uses the concept of multi-traces developed for multi-domain boundary inte-
gral equations[5]: let Ω𝚺 := Ω \ 𝚺 and (𝛾𝐷 , 𝛾𝑁 ) the two surjective (multi)-trace
operators
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𝑢 ∈ 𝐻1 (Ω𝚺) ↦→ 𝛾𝐷𝑢 = {𝑢𝑖 |Σ𝑖 } ∈ M𝐷 (𝚺) := Π 𝐻

1
2 (Σ𝑖),

v ∈ 𝐻 (div,Ω𝚺) ↦→ 𝛾𝑁v = {v𝑖 · 𝜈𝑖 |Σ𝑖 } ∈ M𝑁 (𝚺) := Π 𝐻−
1
2 (Σ𝑖).

(30)

Note thatM𝑁 (𝚺) is the dual space ofM𝐷 (𝚺) and we shall denote ⟨·, ·⟩𝚺 the natural
duality bracket that extends the 𝐿2 (𝚺) inner product. As 𝐻1 (Ω) ⊂ 𝐻1 (Ω𝚺) and
𝐻 (divΩ) ⊂ 𝐻 (divΩ𝚺), we can define

S𝐷 (𝚺) := 𝛾𝐷
[
𝐻1 (Ω)] ⊂M𝐷 (𝚺), S𝑁 (𝚺) := 𝛾𝑁

[
𝐻 (div,Ω)] ⊂M𝑁 (𝚺).

The idea is to reformulate the classical Dirichlet and Neumann transmission condi-
tions for 𝑢 = {𝑢𝑖} ∈ 𝐻1 (Ω𝚺), namely [𝑢]Σ𝑖 𝑗 = 0 and [𝜕𝜈𝑢]Σ𝑖 𝑗 = 0, in a non standard
form expressed in terms of the traces 𝛾𝐷𝑢 and 𝛾𝑁 (∇𝑢) that writes

−Δ𝑢𝑖 − 𝜔2 𝑢𝑖 = 𝑓 , (D) 𝛾𝐷𝑢 ∈ S𝐷 (𝚺), (N) 𝛾𝑁 (∇𝑢) ∈ S𝑁 (𝚺).
To recover the framework of Section 3, we first express (D) and (N) in an impedance
form. To do so, we introduce positive self-adjoint impedance operators associated
to the Σ𝑖’s (and no longer the Σ𝑖 𝑗 ’s), 𝑇𝑖 ∈ L(𝐻1/2 (Σ𝑖), 𝐻−1/2 (Σ𝑖)), where each 𝑇𝑖 is
an isomorphism, so that, if T = diag 𝑇𝑖 ∈ L(M𝐷 (𝚺),M𝑁 (𝚺)),

(𝝋,𝝍) := ⟨𝝋,T−1 𝝍⟩𝚺 is an Hilbert inner product in V :=M𝑁 (𝚺). (31)

Mimicking (11), we set (𝑆) : x := 𝛾𝑁∇𝑢 + 𝑖 𝜔T𝛾𝐷𝑢 and y := −𝛾𝑁∇𝑢 + 𝑖 𝜔T𝛾𝐷𝑢,
the skeleton unknowns inV. Let S = diag 𝑆𝑖 ∈ L(M𝑁 (𝚺)) where each 𝑆𝑖 is defined
as in (12) (in Ω𝑖 and 𝑇𝑖 instead of 𝑇). Each 𝑆𝑖 is isometric for the 𝑇𝑖-norm - (5) for
𝑇 = 𝑇𝑖 - except S𝑁 which is contractant. The Helmholtz equations in Ω𝑖 rewrites as
(13), namely y = Sx + g̃. It then remains to account for (D) and (N). This relies on
a key result of [5] characterizing S𝐷 (𝚺) and S𝑁 (𝚺) as "orthogonal" to each other:
Lemma 1 [5] Let 𝝋 ∈ M𝐷 (𝚺) and 𝝍 ∈ M𝑁 (𝚺)). Then

(𝑖) 𝝋 ∈ S𝐷 (𝚺) ⇐⇒ ⟨𝝍𝑁 , 𝝋⟩𝚺 = 0, ∀ 𝝍𝑁 ∈ S𝑁 (𝚺),
(𝑖𝑖) 𝝍 ∈ S𝑁 (𝚺) ⇐⇒ ⟨𝝍, 𝝋𝐷⟩𝚺 = 0, ∀ 𝝋𝐷 ∈ S𝐷 (𝚺).

This lemma is a direct consequence of Green’s identity, in which the left hand side
vanishes if 𝑢 ∈ 𝐻1 (R𝑑) or v ∈ 𝐻 (div,R𝑑) (below R𝑑𝚺 = R𝑑 \ 𝚺):
∀ (𝑢, v) ∈ 𝐻1 (R𝑑𝚺) × 𝐻 (div,R𝑑𝚺),

∑︁
𝑖

∫
Ω𝑖
(∇𝑢𝑖 · v𝑖 + 𝑢𝑖 div v𝑖) = ⟨𝛾𝑁v, 𝛾𝐷𝑢⟩Σ .

Theorem 2 [3] Let P𝑁 the orthogonal projector (inM𝑁 (𝚺) equipped with (31))
on S𝑁 (𝚺). The transmission conditions (D) and (N) are satisfied if and only if the
unknowns x and y are related by y = 𝚷 x where 𝚷 = I − 2 P𝑁 .
Proof Let 𝝋 := 𝛾𝐷𝑢 and 𝝍 := 𝛾𝑁𝑢. By (𝑆), (N) is equivalent to y − x ∈ S𝑁 (𝚺)
while (D) is equivalent to T−1 (x + y) ∈ S𝐷 (𝚺) that is to say, by Lemma 1 and (31),
to (y + x,𝝍𝑁 ) = 0, ∀ 𝝍𝑁 ∈ S𝑁 (𝚺). Thus, writing y + x = (y − x) + 2x, this gives((y − x) + 2x,𝝍𝑁

)
= 0, ∀ 𝝍𝑁 ∈ S𝑁 (𝚺). (32)

Since y − x ∈ S𝑁 (𝚺), this is nothing but y − x = P𝑁 (−2x). □
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Proceeding as in Section 3 to eliminate y, the problem in x rewrites as in (15),
with V := M𝑁 (𝚺) and A = 𝚷S, the exchange operator (16) being replaced by
𝚷 = I − 2 P𝑁 . The reader will notice that, as the exchange operator, 𝚷 is isometric
and involutive. As a consequence, A is contractant. The invertibility of I − A is
linked to a generalized jump problem across the skeleton (instead of (29)) whose
existence of a solution is ensured by the surjectivity of 𝛾𝐷 and 𝛾𝑁 (30): the misfit
due to the defect of surjectivity of the operator 𝛾𝐽 in the interface approach, has been
eliminated. The conditions for linear convergence of (22) are thus satisfied.

It isworthwhilementioning that the evaluation of𝚷x amounts to solving the (coercive
and T dependent) variational problem (32) on 𝚺 for y − x. Even though each 𝑇𝑖 is
local to Σ𝑖 , being posed inS𝑁 (𝚺), the problem is non local over 𝚺. Thus,𝚷x couples
all Σ𝑖’s : rather than an exchange across interfaces, it is a communication operator
(but without cross point a "natural" choice for 𝑇𝑖 gives back the exchange). Working
in V =M𝑁 (𝚺) means that the Neumann condition (N) is handled in a strong sense
while the Dirichlet one (D) is handled weakly via (32). The (dual) opposite choice
is possible, see [6]. In our case, the space discretization of the problem uses a finite
element space 𝑉ℎ (Ω) for 𝐻 (div,Ω) and a natural candidate for an approximation
space of S𝑁 (𝚺) is Sℎ𝑁 (𝚺) := 𝛾𝑁 [𝑉ℎ (Ω)]. In Figure 4, we demonstrate that the
developments of this section are not only a question of mathematical beauty. On the
model problem of Section 4 and a partition of Ω into 10 subdomains with one cross
point, we compare Després’s condition (a), non local interface operators 𝑇𝑖 𝑗 (b) and
finally the multi-trace method (c) showing the error after 10 iterations. In case (b),
we see that the non local interface operators solve most of the problems with 𝑇 = 𝐼
but produce an important error (the big peak) concentrated around the cross point,
error which is eliminated with the multi-trace strategy !

Fig. 4: Left : the 10 subdomains with one cross point (the arrow). Right : the errors after 10
iterations
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Quantitative Analysis of Nonlinear Multifidelity
Optimization for Inverse Electrophysiology

Fatemeh Chegini, Alena Kopaničáková, Martin Weiser, Rolf Krause

Abstract The electric conductivity of cardiac tissue determines excitation propa-
gation and is important for quantifying ischemia and scar tissue and for building
personalized models. Estimating conductivity distributions from endocardial map-
ping data is a challenging inverse problem due to the computational complexity of
the monodomain equation, which describes the cardiac excitation.
For computing a maximum posterior estimate, we investigate different optimization
approaches based on adjoint gradient computation: steepest descent, limited mem-
ory BFGS, and recursive multilevel trust region methods using mesh hierarchies or
heterogeneous model hierarchies.We compare overall performance, asymptotic con-
vergence rate, and pre-asymptotic progress on selected examples in order to assess
the benefit of our multifidelity acceleration.

1 Introduction

Reliable cardiac excitation predictions depend not only on accurate geometric and
physiological models, usually formulated as PDEs, and our ability to solve those
faithfully, but also on the model’s correct parameterization. One critical parameter is
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the tissue conductivity. Its correct identification from measurement data can provide
valuable information about the location and size of scars, which would be beneficial
for diagnosis and treatment of several heart diseases [13].
One approach to parameter identification in electrocardiography isminimizing the

mismatch between simulated andmeasured voltages on the heart’s inner surface [28].
This inverse problem can be formulated as a PDE constrained optimization problem
and has, e.g., been addressed by using BFGS for a reduced problem formulation [32].
A related general framework for multilevel parameter optimization can be found in,
e.g., [23].
Solving this optimization problem is, however, a major computational challenge,

since the forward models describing the electrical excitation of the heart exhibit very
different temporal and spatial scales and therefore require the use of fine meshes and
short time steps. Together with a considerable number of optimization iterations, the
resulting computational complexity is a major hurdle for widespread practical appli-
cation. Consequently, several attempts have been made to reduce the computational
effort, including model reduction by proper orthogonal decomposition and empir-
ical interpolation [33], Gaussian process surrogate models [11], and topological
derivative formulations [2].
A nonlinear multilevel approach based on heterogeneous model hierarchies has

recently been proposed by the authors [6]. In the present study, we analyze the
performance benefits and relative merits of different hierarchies quantitatively, and
obtain insights concerning the behaviour of nonlinear multilevel approaches applied
to the inverse problem at hand.
The remainder of the paper is organized as follows. Mathematical models for

cardiac electrophysiology are briefly recalled in Section 2, while Section 3 formalizes
the inverse problem under consideration. In Section 4, the recursive multilevel trust-
region (RMTR) method and the model hierarchies are described. Section 5 contains
the numerical results for single-level trust-region, RMTRwith multigrid, and RMTR
with heterogeneous model hierarchies, using limited memory BFGS.

2 Electrophysiological models

Excitation of cardiac tissue occupying the domainΩ ⊂ R𝑑 in terms of the transmem-
brane voltage 𝑣 between intracellular and extracellular domain is usually described
by the bidomain model or its monodomain and eikonal simplifications [9]. For
simplicity, we will consider only monodomain and eikonal models here.
The monodomain system consists of a nonlinear parabolic reaction-diffusion

equation for the transmembrane voltage 𝑣 : Ω → R and a system of ordinary
differential equations (ODEs) describing the dynamics of the ion channels, which
regulate the transmembrane current, in terms of gating variables 𝑤 : Ω→ R:
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div(𝜎∇𝑣) = 𝜒(𝐶𝑚 ¤𝑣 + 𝐼ion (𝑣, 𝑤)) in Ω × [0, 𝑇]
¤𝑤 = 𝑓 (𝑣, 𝑤) in Ω × [0, 𝑇]

𝒏𝑇𝜎∇𝑣 = 0 on 𝜕Ω × [0, 𝑇]
𝑣 |𝑡=0 = 𝑣0 in Ω
𝑤 |𝑡=0 = 𝑤0 in Ω.

(1)

Here, 𝒏 is the unit outer normal vector toΩ, 𝜎 a symmetric positive definite conduc-
tivity tensor, 𝜒 the membrane surface area per unit volume, and 𝐶𝑚 the membrane
capacity per unit area. 𝐼ion denotes the transmembrane current density and 𝑓 the
gating dynamics, both defined by an electrophysiological membrane model (2).
Many different membrane models have been developed [19, 17]. Here, we use the

modified Fitzhugh-Nagumo (FHN) model by [31],

𝐼ion (𝑣, 𝑤) = 𝜂0𝑣

(
1 − 𝑣

𝑣th

) (
1 − 𝑣

𝑣pk

)
+ 𝜂1𝑣𝑤

𝑓 (𝑣, 𝑤) = 𝜂2

(
𝑣

𝑣pk
− 𝜂3𝑤

)
,

(2)

with positive coefficients 𝜂0, 𝜂1, 𝜂2, 𝜂3, 𝑣𝑡ℎ, 𝑣𝑝𝑘 . In particular, peak and threshold
potential are given by 𝑣pk > 𝑣th, respectively.
Eikonalmodels derived from bidomain ormonodomainmodels [7, 29, 8] consider

only the activation time 𝑢(𝑥) of the tissue at a particular spatial position 𝑥, and recover
the transmembrane voltage by the travelling wave ansatz

𝑣(𝑥, 𝑡) = 𝑣𝑚 (𝑡 − 𝑢(𝑥)) , (3)

which depends on some fixed activating front shape 𝑣𝑚 of usually hyperbolic tangent
or sigmoid structure. This ansatz results in a nonlinear elliptic equation for the
activation time,

𝑐0
√
∇𝑢 · 𝜎∇𝑢 − ∇ · (𝜎∇𝑢) = 𝜏𝑚 on Ω, (4)

where 𝑐0 and 𝜏𝑚 are parameters used for fitting the eikonal model to mono- or
bidomain models.
As the eikonal equation is stationary and activation times are significantly

smoother than the transmembrane voltage, eikonal solutions can be obtained much
faster and on coarser grids than monodomain solutions. Nevertheless, they are a
rather good approximation of the more involved models in many cases.

3 Inverse problem of Conductivity Identification

Here we turn to the prototypical inverse problem of estimating a scalar conductivity
𝜎 ∈ 𝐻1 (Ω) from 𝑁𝜎 voltages �̂�𝑖 given at disjoint open surface patches Γ𝑖 ⊂ 𝜕Ω
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by minimizing the mismatch between simulated voltages 𝑣 |Γ𝑖 and measurements.
Writing Γ =

⋃
𝑖 Γ𝑖 , the resulting optimization problem reads

min
𝑣,𝜎

𝐽 (𝑣, 𝜎) = 1
2
∥𝑣 − �̂�∥2

𝐿2 (Γ×[0,𝑇 ]) + 𝑅(𝜎, 𝛽)
subject to 𝐶 (𝑣, 𝜎) = 0

𝜎 ∈ F = {𝑠 ∈ 𝐿2 (Ω) | 𝜎min ≤ 𝑠 ≤ 𝜎max}.
(5)

𝐶 (𝑣, 𝜎) is the monodomain model (1), and 𝜎min and 𝜎max are the lower and upper
bounds of the conductivity. As the problem is ill-posed, a regularization term 𝑅 is
added [30] in order to reduce high-frequent solution components amplified by mea-
surement noise. Here, we choose 𝑅(𝜎, 𝛽) = 1

2 ∥𝛽1 (𝜎 − 𝜎)∥2𝐿2 (Ω) + 1
2 ∥𝛽2∇𝜎∥2𝐿2 (Ω) ,

where 𝜎 is an a priori reference conductivity. The regularization parameters 𝛽𝑖 can
be determined, e.g., by the L-curve method [5] or Morozov’s discrepancy principle.
For a more detailed discussion of modeling aspects we refer to [6].

Reduced problem

In order to avoid a large 4D discretization of the space-time problem resulting from
the first order necessary optimality conditions, we resort to the reduced problem by
eliminating the transmembrane voltage 𝑣 explicitly as 𝑣(𝜎) satisfying𝐶 (𝑣(𝜎), 𝜎) =
0, and obtain

min
𝜎∈𝐻1 (Ω)

𝐽 (𝜎) = 𝐽 (𝑣(𝜎), 𝑠)

subject to 𝜎 ∈ F .
(6)

This bound-constrained problem can then be solved by gradient type algorithms such
as steepest descent or quasi-Newton methods. The gradient of the reduced objective
𝐽 with respect to 𝜎 can be obtained efficiently by solving the adjoint equation

−𝜒𝐶𝑚 ¤𝜆 = div(𝜎∇𝜆) − 𝜒𝐼ion,𝑣 (𝑣, 𝑤)𝜆 − 𝑓𝑣 (𝑣, 𝑤)𝜂
− ¤𝜂 = 𝜒𝐼ion,𝑤 (𝑣, 𝑤)𝜆 + 𝑓𝑤 (𝑣, 𝑤)𝜂

(7)

with terminal and boundary conditions

𝜆(𝑇) = 0, 𝜂(𝑇) = 0
𝒏𝑇𝜎∇𝜆 = 0 on (𝜕Ω\Γ) × [0, 𝑇]
𝒏𝑇𝜎∇𝜆 = �̂� − 𝑣 on Γ × [0, 𝑇]

backwards in time and then computing

∇𝐽 =
∫ 𝑇

0
∇𝜆𝑇∇𝑣 𝑑𝑡 + ∇𝑅. (8)
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Since the state 𝑣, 𝜂 enters as data into the adjoint equation, the whole 4D trajectory
still needs to be stored. This can be done efficiently by error-controlled lossy data
compression [14].When using the eikonal equation for describing cardiac excitation,
the reduced gradient ∇𝐽 can be computed analogously. Conveniently, the adjoint
equation is then again a single and much simpler stationary equation.

Discretization

For the spatial discretization of the conductivity 𝜎, the transmembrane voltage 𝑣,
the gating variables 𝑤, and the adjoint states 𝜆 and 𝜂, and the activation time 𝑢
we employ standard linear finite elements on a simplicial grid covering the domain
Ω. The time integration is done by a common equidistant implicit-explicit Euler
scheme with operator splitting for both the monodomain problem (1) and adjoint
equation (7).
Denoting by 𝒙 ∈ R𝑁 the coefficient vector of the conductivity 𝜎, we obtain thus,

with a slight abuse of notation, the discretized version of (6) as

min
𝒙∈R𝑁

𝐽 (𝒙)
subject to 𝒙 ∈ F .

(9)

Due to the use of Lagrangian finite elements, the continuous feasible set F for
𝜎 translates into component-wise bounds on 𝒙, such that (9) is again a bound-
constrained problem.

4 Multilevel Quasi-Newton Trust-region Method

In this section, we discuss how to minimize (9) using a multilevel solution strat-
egy, namely the recursive multilevel trust-region (RMTR) method [15]. The RMTR
method combines the global convergence properties of the trust-region method with
the efficiency of multilevel methods. In this work, we consider three different ap-
proaches for obtaining the multilevel hierarchy: i) multi-resolution, ii) multi-model,
and iii) combined (multi-resolution and multi-model) approach.

Quasi-Newton trust-region method

A trust-region method (TR) is an iterative method, which generates a sequence {𝒙𝑖}
of iterates converging to a first-order critical point [10]. At each iteration 𝑖, the TR
method approximates the objective function 𝐽 by a quadratic model

𝑚𝑖 (𝒙𝑖 + p) = 𝐽 (𝒙𝑖) + 𝐽 ′(𝒙𝑖)p + 1
2

p𝑇H𝑖p
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around the current iterate 𝒙𝑖 . For theHessian approximationH𝑖 weemploy amemory-
efficient quasi-Newton approach known as the L-BFGS(𝑚) [4, 3], where only the
𝑚 most recent gradients are taken into account in order to update the Hessian H𝑖 ≈
𝐽 (𝒙𝑖) ′′ recursively using a rank-two update formula [24]. For 𝑚 ≪ 𝑛, significantly
less storage is needed compared to dense Hessian approximations used in [32].
Being based on a Taylor-like approximation, the model 𝑚𝑖 is considered to be

an adequate representation of the objective 𝐽 only in a certain region, called the
trust-region. The trust-region B𝑖 := {𝒙𝑖 + p ∈ R𝑛 | ∥p∥ ≤ Δ𝑖} is defined around
the current iterate, with a size prescribed by the trust-region radius Δ𝑖 > 0 and a
shape defined by the choice of norm. Here, we employ the maximum norm ∥ · ∥∞,
which simplifies the step computation in bound-constrained problems compared
to the Euclidean norm. The trial step p𝑖 is determined by solving the constrained
minimization problem

min
p𝑖 ∈R𝑛

𝑚𝑖 (𝒙𝑖 + p𝑖) subject to 𝒙𝑖 + p𝑖 ∈ F ,

∥p𝑖 ∥∞ ≤ Δ𝑖 .
(10)

The first constraint in (10) ensures the feasibility of the iterates throughout the
solution process, while the second constraint restricts the size of the trial step p𝑖 .
Both constraints are defined component-wise, such that (10) is a bound-constrained
problem with easily computable bounds.
To ensure global convergence, it is sufficient to solve the trust-region subprob-

lems (10) approximately, such that an approximate solution p𝑖 of (10) satisfies the so
called sufficient decrease condition (SDC), see [10]. An obtained step p𝑖 is accepted,
if the actual decrease in the objective, 𝐽 (𝒙𝑖) − 𝐽 (𝒙𝑖 + p𝑖), agrees sufficiently well
with the predicted decrease 𝑚𝑖 (𝒙𝑖) − 𝑚𝑖 (𝒙𝑖 + p𝑖). This is quantified in terms of the
trust-region ratio

𝜌𝑖 =
𝐽 (𝒙𝑖) − 𝐽 (𝒙𝑖 + p𝑖)
𝑚𝑖 (𝒙𝑖) − 𝑚𝑖 (𝒙𝑖 + p𝑖) . (11)

If 𝜌𝑖 is close to unity, there is a good agreement between the objective 𝐽 and the
model 𝑚𝑖 and it is therefore safe to accept the step p𝑖 . More precisely, the step p𝑖 is
accepted, only if 𝜌𝑖 > 𝜂1, where 0 < 𝜂1 < 1. In addition, the trust-region radius has
to be adjusted accordingly.

Remark 1 It is important to update the approximation H𝑖 even if the trial step p𝑖 is
rejected, since the rejection might indicate that the current H𝑖 is not an adequate
approximation of the true Hessian 𝐽 ′′(𝒙𝑖).

Remark 2 Using the L-BFGS method, the implementation of the trust-region algo-
rithm can be realized in a matrix-free way. The operations involvingH𝑖 , or its inverse
(H𝑖)−1, can be implemented using the approach proposed in [25] and the two-loop
recursion algorithm developed in [27], respectively.
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Recursive multilevel trust-region method

The computational cost of the trust-region method is dominated by evaluating the
objective in (11) and the reduced gradient 𝐽 ′(𝒙𝑖) via (8), which incurs the solution of
at least two parabolic equations per accepted trial step. Reducing the computational
effort requires a decrease of the number of steps, which in turn is only possible if the
quadratic models 𝑚𝑖 of the objective are replaced or complemented by models 𝐽−𝑖
that approximate 𝐽 on larger trust-regions, but are nevertheless significantly cheaper
to minimize than the original objective. Approximate models that we consider here
are (i) the monodomain equation on coarser grids and (ii) an eikonal model.
These models can be defined on the same discretization, i.e. approximation space,

for𝜎 of size 𝑛, or on a coarser one of size 𝑛− < 𝑛, in which case a transfer between the
original problem and the model is necessary. This affects the transfer of the current
iterate 𝒙𝑖 (projection) and the gradient ∇𝐽 (restriction) to the model 𝐽−𝑖 , and the
transfer of the model’s minimizer back to the original problem (prolongation). Note
that, if the models 𝐽−𝑖 are formulated on the same discretization, all these transfers are
trivial. Otherwise, we define both the prolongation I : R𝑛− → R𝑛 and the projection
P : R𝑛 → R𝑛− as pseudo-𝐿2-projection, as proposed in [18] and successfully applied
in [21]. We assemble these transfer operators using the library MOONoLith [22].
As usual, the restriction is defined as the adjoint of the prolongation, i.e. R = I𝑇 .
Naturally, we intend 𝐽−𝑖 to approximate 𝐽 well. Therefore, we enforce first-order

consistency between both models i.e., the gradients of both models shall coincide
locally as far as possible. As common for nonlinear multilevel schemes, the model
functions 𝐽−𝑖 can be defined in terms of some computationally cheaper/coarse ap-
proximation 𝑗− of the objective 𝐽 by means of the additive approach [26] as

𝐽−𝑖 (𝒙−) = 𝑗− (𝒙−) + (𝒙− − P𝒙𝑖)𝑇 (R∇𝐽 (𝒙𝑖) − ∇ 𝑗− (P𝒙𝑖)). (12)

Alternatively, we can exploit a multiplicative approach [1, 20] and define the models

𝐽−𝑖 (𝒙−) = 𝛽(𝒙𝑖 , 𝒙−) 𝑗− (𝒙−) (13)

with

𝛽(𝒙, 𝒙−) = 𝐽 (𝒙)
𝑗− (P𝒙) + (𝒙

− − P𝒙)𝑇
(

1
𝑗− (P𝒙)R∇𝐽 (𝒙) −

𝐽 (𝒙)
( 𝑗− (P𝒙))2∇ 𝑗

− (P𝒙)
)
.

Both approaches employ a so called coupling term (underlined), which takes into ac-
count the difference between restricted original gradient R∇𝐽 (𝒙𝑖) and initial coarse
gradient ∇ 𝑗− (P𝒙𝑖). The use of this coupling term guarantees that the first-order
behavior of 𝐽 and 𝐽− is locally coherent in the neighborhood of 𝒙𝑖 and P𝒙𝑖 , respec-
tively [26].
At each iteration 𝑖, the trial step p𝑖 ∈ R𝑛− is obtained either by approximately

solving the quadratic trust-region subproblem (10) or the coarse subproblem
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min
p∈R𝑛−

𝐽−𝑖 (P𝒙𝑖 + p), subject to 𝒙𝑖 + Ip ∈ F ,

∥Ip𝑖 ∥∞ ≤ Δ𝑖 .
(14)

As common for trust-region methods, it is not necessary to solve the problem (14)
exactly. Indeed, it is sufficient that an approximate minimizer p of (14) satisfies the
SDC condition. Here, we solve the nonlinear problem (14) iteratively by employing
few steps of the trust-region method. This gives rise to a recursive multilevel trust-
region (RMTR) scheme [16]. A line search-based alternative would be the multilevel
model correction (MMC) method [23].
Potentially, we can utilize a hierarchy of multiple coarse models { 𝑗 𝑙}𝐿𝑙=1, where

𝐿 > 1, which gives rise to a truly multilevel method. In this work, we obtain models
{ 𝑗 𝑙}𝐿𝑙=1 by exploring the following alternatives:

1. Multi-resolution:We uniformly coarsen finite element grids (by factor of 2) in
order to discretize the monodomain equation entering the reduced objective 𝐽.
Consequently, the coarse-level models are computationally cheaper to optimize.
Note that a certain mesh resolution is required to reasonably resolve the mon-
odomain model, such that mesh coarsening is limited.

2. Multi-model: The eikonal model is used instead of monodomain on coarser
grids. This model is significantly cheaper and a better global approximation
model for the monodomain model compared to the standard quadratic model.

3. Combined:Combinations of multi-resolution and multi-model variants are also
possible. For instance, one can obtain a hierarchy of models { 𝑗 𝑙}𝑙=𝐿𝑙=1 by first
coarsening the spatial-resolution and then changing the model complexity.

At the end, we highlight the fact that the overall efficiency of the multilevel
algorithm is determined by how many times the respective coarse and fine level
models are minimized. For instance, in the multi-resolution approach, it is crucial
to alternate between both models, such that the components of the error associated
with a given level are effectively eliminated.

5 Numerical results

Here, we focus on numerical results for different algorithmic configurations on a
simple 2D geometry. For the numerical tests, different synthetic transmembrane
voltage data �̂� have been created by simulations on a finer mesh. For illustration, we
also present some reconstruction results for scar tissue on a 3D ventricular geometry.
For a more detailed discussion of reconstruction quality we refer to [6].
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5.1 Patient-specific geometry

As an example from clinical practice, we use the ventricular geometry of a patient
with a nontransmural scar located on the left endocardium. In Fig. 1, scar tissue is
shown in blue, sparse endocardial measurement locations by yellow spheres, and
the reconstructed conductivity color-coded on the right. The reconstruction quality
depends on the quantity and location of available cardiac mapping data. Due to the
stability of excitation propagation, reliable results can in general only be expected in
the vicinity of measurement locations. In this case, the small number of measured
data on the left endocardium is not enough to reconstruct the scar shape accurately.

Fig. 1: Left:Target conductivity with markedmeasured data.Right: Solution with markedmeasured
data.

5.2 Convergence study

In this section, we compare the convergence behavior of single-level trust-region
methods with several RMTR variants on a simpler idealized 2D cross-section of
a left ventricle. We use L-BFGS(𝑚) with 𝑚 = 1 or 𝑚 = 8 secant pairs, and a
termination criterion ∥P (𝒙 − ∇𝐽 (𝒙)) − 𝒙∥ < 10−4 based on the projected gradient
expressed in terms of an orthogonal projectionP onto the feasible setF . The arising
quadratic trust-region subproblems (10) are solved using the MPRGP method [12].
The RMTR method is configured with additive coarse level models (12) for multi-
resolution variants, while multiplicative coarse level models (13) are employed for
multi-model variants. Solution strategies are implemented as part of the open-source
library UTOPIA [34], while the implementation of inverse problems, including
monodomain and eikonal models, is part of our framework HEART. All simulations
have been run using 10 nodes (XC50, 12 cores) of the Piz Daint supercomputer
(CSCS, Switzerland).
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To provide a more robust insight, four different sets of simulated measurement
data �̂� have been used: generated with monodomain on a finer mesh, with additional
Gaussian noise, with slightly changed membrane area 𝜒 per volume, and generated
with eikonal on a finer grid. We provide averaged iteration counts and run times
in Tab. 1 for single level trust-region with different L-BFGS memory size, and for
RMTR with two or three levels of monodomain on coarser grids or eikonal models.
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Fig. 2: The convergence history in terms of the projected gradient (left) and the objective function
𝐽 . The measurement data were generated using the monodomain model on a finer mesh.

The convergence results suggest that both monodomain multigrid and heteroge-
neous monodomain-eikonal multilevel methods lead to a significant reduction of
iteration count by a factor between 3 and 6. For the used grid resolution, mon-
odomain multigrid is more effective by a factor 1.5 to 2 in reducing iteration counts.
Since the coarse level subproblems are more expensive to solve, the heterogeneous
multilevel approach is almost as efficient. We can also observe a slight convergence
rate deterioration of the heterogeneous approach in the asymptotic phase, probably
due to a less accurate Hessian approximation of the eikonal model. The three-level
multigrid approach appears to be less effective than the two-level method, probably
because the monodomain model deteriorates quickly for coarser grids.

6 Conclusion

Identifying tissue conductivities using monodomain models from surface measure-
ments is computationally expensive and calls for acceleration. Multilevel methods
can be effective in two ways: First, classical multigrid based on a Galerkin pro-
jection of the Hessian improves the convergence rate of steepest descent or similar
smoothers, which suffer from ill-conditioning. Second, nonlinear multilevel methods
aim at improving the objective reduction also in the pre-asymptotic phase, where the
progress of first or second order methods is limited due to high nonlinearity.
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models meshes 𝑚 # its/cycles time (minutes)

TR mono (TR-m1) T 3 1 179 ± 29 149 ± 35
mono (TR-m8) T 3 8 148 ± 19 127 ± 44

RMTR

mono-mono (RMTR-MM) T 3, T 2 8 26 ± 5∗ 80 ± 49
mono-mono-mono (RMTR-MMM) T 3, T 2, T 1 8 31 ± 11∗ 88 ± 56
mono-eiko (RMTR-ME) T 3, T 3 8 51 ± 6 97 ± 35
mono-eiko-eiko (RMTR-MEE) T 3, T 3, T 2 8 47 ± 8 85 ± 32

Table 1: The average computational cost required by trust-region and RMTR method. The results
are obtained by averaging over four datasets. The symbol ∗ indicates that for one dataset the
termination criterion was not satisfied within 500 cycles.

The numerical results suggest that the RMTR method used here is effective in
both regimes and leads to a clear reduction of iterations. Due to the overhead of the
subproblems, the reduction of run time is not as large, but still significant.
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Adaptive Space-Time Finite Element and
Isogeometric Analysis

Ulrich Langer

1 Introduction

The traditional approaches to the numerical solution of initial-boundary value prob-
lems (IBVP) for parabolic or hyperbolic Partial Differential Equations (PDEs) are
based on the separation of the discretization in time and space leading to time-
stepping methods; see, e.g., [20]. This separation of time and space discretizations
comes along with some disadvantages with respect to parallelization and adaptiv-
ity. To overcome these disadvantages, we consider completely unstructured finite
element (fe) or isogeometric (B-spline or NURBS) discretizations of the space-
time cylinder and the corresponding stable space-time variational formulations of
the IBVP under consideration. Unstructured space-time discretizations considerably
facilitate the parallelization and the simultaneous space-time adaptivity. Moving
spatial domains or interfaces can easily be treated since they are fixed in the space-
time cylinder. Beside initial-boundary value problems for parabolic PDEs, we will
also consider optimal control problems constrained by linear or non-linear parabolic
PDEs. Here unstructured space-time methods are especially suited since the reduced
optimality system couples two parabolic equations for the state and adjoint state that
are forward and backward in time, respectively. In contrast to time-steppingmethods,
one has to solve one big linear or non-linear system of algebraic equations. Thus,
the memory requirement is an issue. In this connection, adaptivity, parallelization,
and matrix-free implementations are very important techniques to overcome this
bottleneck. Fast parallel solvers like domain decomposition and multigrid solvers
are the most important ingredients of efficient space-time methods.
This paper is partially based on joint works with Svetlana Kyas (Matculevich) and
Sergey Repin on adaptive space-time IGA based on functional a posteriori error es-
timators [10, 11], Martin Neumüller and Andreas Schafelner on adaptive space-time
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4040 Linz, Austria, e-mail: ulanger@numa.uni-linz.ac.at
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FEM [13, 14], and Olaf Steinbach, Fredi Tröltzsch and Huidong Yang on space-time
FEM for optimal control problems [15, 16].

2 Space-Time Variational Formulations

Let us consider the parabolic IBVP, find 𝑢 such that

𝜕𝑡𝑢 − div𝑥 (𝛼 ∇𝑥𝑢) = 𝑓 + div𝑥 (f) in 𝑄, 𝑢 = 0 on Σ, 𝑢 = 𝑢0 := 0 on Σ0, (1)

as a typical model problem, where 𝑄 = Ω × (0, 𝑇), Σ = 𝜕Ω × (0, 𝑇), Σ0 = Ω × {0},
Ω ⊂ R𝑑 , 𝑑 = 1, 2, 3, denotes the spatial domain that is assumed to be bounded and
Lipschitz, 𝑇 > 0 is the terminal time, 𝑓 ∈ 𝐿2 (𝑄) and f ∈ 𝐿2 (𝑄)𝑑 are given sources,
and 𝛼 ∈ 𝐿∞ (𝑄) is a given uniformly bounded and positive coefficient (matrix) that
may discontinuously depend on the spatial variable 𝑥 = (𝑥1, . . . , 𝑥𝑑) and the time
variable 𝑡 (non-autonomous case). The standard variational formulation of the IBVP
(1) in Bochner spaces reads as follows [17]: Find 𝑢 ∈ 𝑈0 := {𝑣 ∈ 𝑈 := {𝑤 ∈ 𝑉 :=
𝐿2 (0, 𝑇 ;𝐻1

0 (Ω)) : 𝜕𝑡𝑤 ∈ 𝑉∗ := 𝐿2 (0, 𝑇 ;𝐻−1 (Ω))} : 𝑣 = 0 on Σ0} such that

𝑎(𝑢, 𝑣) = ℓ(𝑣) ∀𝑣 ∈ 𝑉, (2)

where the bilinear form 𝑎(·, ·) and the linear form ℓ(·) are defined by the identities

𝑎(𝑢, 𝑣) :=
∫
𝑄
[𝜕𝑡𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡) + 𝛼(𝑥, 𝑡)∇𝑥𝑢(𝑥, 𝑡) · ∇𝑥𝑣(𝑥, 𝑡)] 𝑑𝑄 and

ℓ(𝑣) :=
∫
𝑄
[ 𝑓 (𝑥, 𝑡)𝑣(𝑥, 𝑡) − f (𝑥, 𝑡) · ∇𝑥𝑣(𝑥, 𝑡)] 𝑑𝑄, respectively.

We note that 𝑈 = 𝑊 (0, 𝑇) is continuously embedded into 𝐶 ( [0, 𝑇], 𝐿2 (Ω)); see
[17]. Alternative space-time variational formulations of the IBVP (1) in anisotropic
Sobolev spaces on 𝑄 are discussed in [9]. The textbook proof of existence and
uniqueness of a weak solution is based on Galerkin’s method and a priori estimates;
see, e.g., [17] and [9]. Alternatively one can use the Banach-Nečas-Babuška (BNB)
theorem (see, e.g., [3, Theorem2.6]) that provides sufficient and necessary conditions
for the well-posedness of variational problems like (2). Indeed, Steinbach proved in
[19] for 𝛼 = 1 that the bilinear form 𝑎(·, ·) fulfills the following three conditions:
(BNB1) boundedness: |𝑎(𝑢, 𝑣) | ≤

√
2 ∥𝑢∥𝑈 ∥𝑣∥𝑉 , ∀𝑢 ∈ 𝑈0, 𝑣 ∈ 𝑉 ,

(BNB2) inf-sup condition: inf𝑢∈𝑈0\{0} sup𝑣∈𝑉\{0},
𝑎 (𝑢,𝑣)
∥𝑢∥𝑈 ∥𝑣 ∥𝑉 ≥ 1/(2

√
2),

(BNB3) injectivity of 𝐴∗: For every 𝑣 ∈ 𝑉 \{0}, there exists 𝑢 ∈ 𝑈0: 𝑎(𝑢, 𝑣) ≠ 0,

which are sufficient and necessary for the well-posedness of (2), in other words, the
operator 𝐴 : 𝑈0 → 𝑉∗, defined by 𝑎(·, ·), is an isomorphism. Moreover, ∥𝑢∥𝑈0 ≤
2
√

2 ∥ℓ∥𝑉∗ . The norms in the spaces𝑈0,𝑈, and 𝑉 are defined as follows:

∥𝑢∥2𝑈0
= ∥𝑢∥2𝑈 := ∥𝑢∥2𝑉 + ∥𝜕𝑡𝑢∥2𝑉∗ = ∥∇𝑥𝑢∥2𝐿2 (𝑄) + ∥∇𝑥𝑤𝑢∥

2
𝐿2 (𝑄) ,



Adaptive Space-Time Finite Element and Isogeometric Analysis 79

where 𝑤𝑢 ∈ 𝑉 such that
∫
𝑄
∇𝑥𝑤𝑢 · ∇𝑥𝑣 𝑑𝑄 = ⟨𝜕𝑡𝑢, 𝑣⟩𝑄 for all 𝑣 ∈ 𝑉 . Here,

⟨·, ·⟩𝑄 := ⟨·, ·⟩𝑉∗×𝑉 denotes the duality product on 𝑉∗ ×𝑉 .
In the following two sections, maximal parabolic regularity plays an important

role when deriving locally stabilized isogeometric and finite element schemes. Let
us assume that f = 0 and that the coefficient 𝛼 = 𝛼(𝑥, 𝑡) fulfills additional conditions
(see, e.g., [2]) such that the solution 𝑢 ∈ 𝑈0 of (2) belongs to the space

𝐻𝐿,10 (𝑄) = {𝑣 ∈ 𝑉 : 𝜕𝑡𝑣, 𝐿𝑥𝑣 := div𝑥 (𝛼∇𝑥𝑢) ∈ 𝐿2 (𝑄)}.

Hence, the PDE 𝜕𝑡𝑢 − 𝐿𝑥𝑢 = 𝑓 holds in 𝐿2 (𝑄). The maximal parabolic regularity
even remains true for inhomogeneous initial data 𝑢0 ∈ 𝐻1

0 (Ω). We also refer the
reader to the classical textbook [9], where the case 𝛼 = 1 was considered.

3 Space-Time Isogeometric Analysis

Let us assume that f = 0 and that 𝛼 fulfills conditions such that maximal parabolic
regularity holds, i.e. the parabolic PDE (1) can be treated in 𝐿2 (𝑄). The time variable
𝑡 can be considered as just another variable, say, 𝑥𝑑+1, and the term 𝜕𝑡𝑢 can be viewed
as convection in the direction 𝑥𝑑+1. Thus, we can multiply the parabolic PDE (1) by
a time-upwind test function 𝑣ℎ + 𝜆𝜕𝑡𝑣ℎ in order to derive stable discrete schemes,
where 𝑣ℎ is a test function from some finite-dimensional test space𝑉0ℎ, and 𝜆 ≥ 0 is
an appropriately chosen scaling parameter. This choice of test functions is motivated
by the famous SUPG method, introduced by Hughes and Brooks for constructing
stable fe schemes for stationary convection-diffusion problems [4], and which was
later used by Johnson and Saranen [7] for transient problems; see also [6] for the
related Galerkin Least-Squares finite element methods. Instead of fe spaces 𝑉0ℎ, we
can also use IGA (B-splines, NURBS) spaces that have some advantages over the
more classical fe spaces; see [5] where IGA was introduced. In particular, in the
single patch case, one can easily construct IGA spaces 𝑉0ℎ ⊂ 𝐶𝑘−1 (𝑄) of (𝑘 − 1)-
times continuously differentiable B-splines of underlaying polynomial degree 𝑘 .
These B-splines of highest smoothness have asymptotically the best approximation
properties per degree of freedom. In [12], we used such IGA spaces to derive stable
space-time IGA schemes provided that 𝜆 = 𝜃ℎ with a fixed constant 𝜃 > 0, where ℎ
denotes the mesh-size.
In order to construct stable adaptive space-time IGA schemes, we replaced the

global scaling parameter 𝜆 by a local scaling function 𝜆(𝑥, 𝑡) that is changing on the
mesh according to the local mesh sizes [10, 11]. Let us describe the construction of
these locally stabilized space-time IGAmore precisely. In IGA,we use the same basis
functions for describing both the geometry and IGA spaces 𝑉0ℎ. Thus, we assume
that the physical computational domain 𝑄 = Φ(𝑄) is the image of the parameter
domain 𝑄 := (0, 1)𝑑+1 using the geometrical mapping Φ(𝜉) = ∑

𝑖∈I 𝐵𝑖,𝑘 (𝜉) P𝑖 ,
where {P𝑖}𝑖∈I ⊂ R𝑑+1 are the control points, and 𝐵𝑖,𝑘 , 𝑖 ∈ I, are the multivariate
B-Splines or NURBS. Now we can define the finite-dimensional space
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𝑉0ℎ = {𝑣ℎ ∈ 𝑉ℎ : 𝑣ℎ = 0 on Σ ∪ Σ0} = span{𝜑𝑖 : 𝑖 ∈ I0} (3)

by means of the same basis functions, i.e.,

𝑉ℎ = S𝑘ℎ = S𝑘𝑘−1,ℎ = span{𝜑𝑖 = �̂�𝑖 ◦Φ−1 : 𝑖 ∈ I},

where �̂�𝑖 (𝜉) = 𝐵𝑖,𝑘 (𝜉), 𝑖 ∈ I. We now test the PDE 𝜕𝑡𝑢 − 𝐿𝑥𝑢 = 𝑓 restricted to a
mesh element 𝐾 from the set of all mesh elements Kℎ = {𝐾 = Φ(𝐾)}, into which
𝑄 is decomposed, by 𝑣ℎ + 𝜆𝐾𝜕𝑡𝑣ℎ, yielding(

𝜕𝑡𝑢 − 𝐿𝑥𝑢, 𝑣ℎ + 𝜆𝐾 𝜕𝑡𝑣ℎ
)
𝐿2 (𝐾) = ( 𝑓 , 𝑣ℎ + 𝜆𝐾 𝜕𝑡𝑣ℎ)𝐿2 (𝐾) ∀𝑣ℎ ∈ 𝑉0ℎ .

Summing up over all 𝐾 ∈ Kℎ, and integrating by parts, we get the variational
consistency identity

𝑎ℎ (𝑢, 𝑣ℎ) = ℓℎ (𝑣ℎ) ∀𝑣ℎ ∈ 𝑉0ℎ, (4)

where the bilinear form and the linear form are defined by the identities

𝑎ℎ (𝑢, 𝑣ℎ) =(𝜕𝑡𝑢, 𝑣ℎ)𝐿2 (𝑄) + (𝛼∇𝑥𝑢,∇𝑥𝑣ℎ)𝐿2 (𝑄)

+
∑︁
𝐾 ∈Kℎ

𝜆𝐾

(
(𝜕𝑡𝑢, 𝜕𝑡𝑣ℎ)𝐿2 (𝐾) − (𝐿𝑥𝑢, 𝜕𝑡𝑣ℎ)𝐿2 (𝐾)

)
(5)

and
ℓℎ (𝑣ℎ) := ( 𝑓 , 𝑣ℎ)𝐿2 (𝑄) +

∑︁
𝐾 ∈Kℎ

𝜆𝐾 ( 𝑓 , 𝜕𝑡𝑣ℎ)𝐿2 (𝐾) ,

respectively. Now, the corresponding consistent IGA scheme reads as follows: Find
𝑢ℎ ∈ 𝑉0ℎ such that

𝑎ℎ (𝑢ℎ, 𝑣ℎ) = ℓℎ (𝑣ℎ) ∀𝑣ℎ ∈ 𝑉0ℎ . (6)

The following three properties are fundamental for the derivation of error estimates:

1. Galerkin orthogonality: 𝑎ℎ (𝑢 − 𝑢ℎ, 𝑣ℎ) = 0 ∀ 𝑣ℎ ∈ 𝑉0ℎ,
2. 𝑉0ℎ-coercivity: 𝑎ℎ (𝑣ℎ, 𝑣ℎ) ≥ 𝜇𝑐 ∥𝑣ℎ∥2ℎ ∀ 𝑣ℎ ∈ 𝑉0ℎ,
3. Extended boundedness: |𝑎ℎ (𝑢, 𝑣ℎ) | ≤ 𝜇𝑏∥𝑢∥ℎ,∗ ∥𝑣ℎ∥ℎ ∀𝑢 ∈ 𝑉0ℎ,∗, 𝑣ℎ ∈ 𝑉0ℎ,

provided that 𝜆𝐾 = 𝜃𝐾 ℎ𝐾 with 𝜃𝐾 = 𝑐−2
𝐾 𝛼
−1
𝐾 ℎ𝐾 , where ℎ𝐾 = diam(𝐾) de-

notes the local mesh-size, 𝛼𝐾 is an upper bound of 𝛼 on 𝐾 , and 𝑐𝐾 is the com-
putable constant (upper bound) in the local inverse inequality ∥div𝑥∇𝑥𝑣ℎ∥𝐿2 (𝐾) ≤
𝑐𝐾 ℎ

−1
𝐾 ∥∇𝑥𝑣ℎ∥𝐿2 (𝐾) . Then we get 𝜇𝑐 = 1/2. The boundedness constant 𝜇𝑏 can also

be computed; see [10, 11]. The norms ∥ · ∥ℎ and ∥ · ∥ℎ,∗ are defined as follows:

∥𝑣 ∥2ℎ :=
∑︁
𝐾 ∈Kℎ

[
∥𝛼1/2∇𝑥𝑣 ∥2𝐿2 (𝐾) + 𝜆𝐾 ∥𝜕𝑡𝑣 ∥

2
𝐿2 (𝐾)

]
+ 1

2
∥𝑣 ∥2𝐿2 (Σ𝑇 ) , (7)

∥𝑣∥2ℎ,∗ := ∥𝑣∥2ℎ +
∑︁
𝐾 ∈Kℎ

[
𝜆−1
𝐾 ∥𝑣∥2𝐿2 (𝐾) + 𝜆𝐾 ∥div𝑥 (𝛼∇𝑥𝑣)∥2𝐿2 (𝐾)

]
. (8)
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Wemention that both norms are not only well defined on the IGA space𝑉0ℎ but also
on the extended space 𝑉0ℎ,∗ = 𝑉0ℎ + 𝐻𝐿,10 (𝑄) to which the solution 𝑢 belongs in the
maximal parabolic regularity setting considered here. The Galerkin orthogonality
directly follows from subtracting (6) from (4). The proof of the other two properties
is also elementary; see [10, 11].
From the𝑉0ℎ-coercivity of the bilinear form 𝑎ℎ (·, ·), we conclude that the solution

𝑢ℎ of the IGA scheme (6) is unique, and, therefore, it exists. In other words, the
corresponding linear system of IGA equations

𝐾ℎ𝑢ℎ = 𝑓
ℎ

(9)

has a unique solution 𝑢ℎ = (𝑢𝑖)𝑁ℎ𝑖=1 ∈ R𝑁ℎ= |I0 | . The coefficients (control points) 𝑢𝑖
then uniquely define the solution 𝑢ℎ =

∑𝑁ℎ
𝑖=1 𝑢𝑖𝜑𝑖 of the IGA scheme (6). The system

matrix 𝐾ℎ is non-symmetric, but positive definite due to the 𝑉0ℎ-coercivity.
The following best-approximation estimate directly follows from properties 1. -

3. given above:

Theorem 1 Let 𝑢 ∈ 𝑈0 ∩𝐻𝐿,10 (𝑄) be the solution of the IBVP (2), and 𝑢ℎ ∈ 𝑉0ℎ the
solution of space-time IGA schemes (6). Then the best-approximation estimate

∥𝑢 − 𝑢ℎ∥ℎ ≤ inf
𝑣ℎ ∈𝑉0ℎ

(
∥𝑢 − 𝑣ℎ∥ℎ + 𝜇𝑏

𝜇𝑐
∥𝑢 − 𝑣ℎ∥ℎ,∗

)
(10)

holds.
The best-approximation estimate (10) finally yields convergence rate estimates in
terms of ℎ respectively the local mesh-sizes ℎ𝐾 , 𝐾 ∈ Kℎ, provided that 𝑢 has some
additional regularity; see [10, 11].
In practical application, the use of adaptive IGA schemes is more attractive

than uniform mesh refinement. In order to drive adaptivity, we need local error
indicators, a marking strategy, and the possibility to refine the mesh locally. In IGA,
which starts from a tensor-product setting, local mesh refinement is more involved
than in the FEM. However, nowadays, several refinement techniques are available;
see [10] and the references given therein. Local error indicators 𝜂𝐾 (𝑢ℎ), 𝐾 ∈ Kℎ,
should be derived from a posteriori error estimators. We here consider functional
error estimators that provide an error bound for any conform approximation 𝑣 to the
solution 𝑢 of (2). Of course, we are interested in the case 𝑣 = 𝑢ℎ ∈ 𝑉0ℎ. We get the
following functional error estimator for a special choice of parameters from [18]:

|||𝑢 − 𝑢ℎ |||2 ≤ 𝔐
2 (𝛽, 𝑢ℎ, y) :=

∑︁
𝐾 ∈Kℎ

𝜂2
𝐾 (𝛽, 𝑢ℎ, y), (11)

where the norm is defined by |||𝑤 |||2 := ∥√𝛼∇𝑥𝑤∥2𝐿2 (𝑄) + ∥𝑤∥
2
𝐿2 (Σ𝑇 ) , 𝛽 is a fixed pos-

itive scaling parameter (function [18]), and y ∈ 𝐻 (div𝑥 , 𝑄) is a suitable flux recon-
struction. The local error indicator 𝜂2

𝐾 (𝛽, 𝑢ℎ, y) := 𝜂2
𝐾,flux (𝛽, 𝑢ℎ, y)+𝜂2

𝐾,pde (𝛽, 𝑢ℎ, y)
consists of the parts

𝜂2
𝐾,flux (𝛽, 𝑢ℎ, y) :=

∫
𝐾
(1 + 𝛽) |y − 𝛼∇𝑥𝑢ℎ |2𝑑𝐾 and (12)
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𝜂2
𝐾,pde (𝛽, 𝑢ℎ, y) := 𝑐2

𝐹Ω

∫
𝐾

(
1 + 𝛽
𝛽
| 𝑓 − 𝜕𝑡𝑢ℎ + div𝑥y|2

)
𝑑𝐾 (13)

evaluating the errors in the flux and in the residual of the PDE, where 𝑐𝐹Ω denotes the
constant in the inequality ∥𝑣∥𝐿2 (𝑄) ≤ 𝑐𝐹Ω ∥

√
𝛼∇𝑥𝑣∥𝐿2 (𝑄) for all 𝑣 ∈ 𝑉 . For 𝛼 = 1,

𝑐𝐹Ω is nothing but the Friedrichs constant in 𝐻1
0 (Ω). In contrast to the FEM (see

Sect. 4), the IGA flux 𝛼∇𝑥𝑢ℎ belongs to 𝐻 (div𝑥 , 𝑄) provided that 𝛼 is sufficiently
smooth, and𝑉0ℎ ⊂ 𝐶1 (𝑄) that is ensured for 𝑘 ≥ 2. Then we can choose y = 𝛼∇𝑥𝑢ℎ
yielding 𝜂𝐾,flux (𝛽, 𝑢ℎ, y) = 0 and, therefore, 𝜂𝐾 (𝛽, 𝑢ℎ, y) = 𝜂𝐾,pde (𝛽, 𝑢ℎ, y). A
more sophisticated flux reconstruction was proposed by Kleiss and Tomar for elliptic
boundary value problems in [8]. Following this idea, we also propose to reconstruct
the flux y from the minimization of the majorant 𝔐2 (𝛽, 𝑢ℎ, y) in an IGA space
(S𝑙𝑙−1,𝐻 )𝑑 on a coarser mesh with some mesh-size 𝐻 ≥ ℎ and with smoother splines
of the underlying degree 𝑙 ≥ 𝑘 . In [10, 11], we present and discuss the results of
many numerical experiments showing the efficiency of this technique for constructing
adaptive space-time IGA methods using different marking strategies. Here we only
show an example from [1] with the manufactured solution 𝑢(𝑥, 𝑡) = 𝑥5/2 (1 − 𝑥)𝑡3/4
of (1) with𝑄 = (0, 1) × (0, 2), 𝛼 = 1, and f = 0. The uniformmesh refinement yields
𝑂 (ℎ3/4) in the ∥ · ∥ℎ norm for 𝑘 = 2, whereas the adaptive version with THB-splines
recovers the full rate 𝑂 (ℎ2), where ℎ = 𝑁−2

ℎ and 𝑘 = 2; see Fig. 1.

4 Space-Time Finite Element Analysis

We can construct locally stabilized space-time finite element schemes in the same
way as in the IGA case replacing the IGA space (3) by the finite element space

𝑉0ℎ = {𝑣ℎ ∈ 𝐶 (𝑄) : 𝑣ℎ (𝑥𝐾 (·)) ∈ P𝑘 (�̂�), ∀𝐾 ∈ Kℎ, 𝑣ℎ = 0 on Σ∩Σ0}, (14)
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Fig. 1: Solution 𝑢(𝑥, 𝑡) (right), mesh after 6 (middle) and 8 (right) adaptive refinement levels.
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where Kℎ is a shape regular decomposition of the space-time cylinder 𝑄 into sim-
plicial elements, i.e., 𝑄 =

⋃
𝐾 ∈Kℎ 𝐾 , and 𝐾 ∩ 𝐾 ′ = ∅ for all 𝐾 and 𝐾 ′ from Kℎ

with 𝐾 ≠ 𝐾 ′ (see, e.g., [3] for details), 𝑥𝐾 (·) denotes the map from the reference
element �̂� (unit simplex) to the finite element 𝐾 ∈ Kℎ, and P𝑘 (�̂�) is the space of
polynomials of the degree 𝑘 on the reference element �̂� . For the space-time finite
element solution 𝑢ℎ ∈ 𝑉0ℎ of (6), we can derive the same best-approximation esti-
mate as given in Theorem 1, from which we get convergence rate estimates under
additional regularity assumptions; see [13, Theorem 13.3]. The case of special dis-
tributional sources f, the divergence of which exists in 𝐿2 (𝑄𝑖) on subdomains 𝑄𝑖 of
a non-overlapping domain decomposition of the space-time cylinder 𝑄 =

⋃𝑚
𝑖=1𝑄𝑖 ,

and the case of low-regularity solutions are investigated in [14]. In [13] and [14], we
also present numerical results for different benchmark examples exhibiting different
features in space and time. We compare uniform and adaptive refinement. In the
finite element case, the corresponding system (9) of algebraic equations is always
solved by a parallel AMG preconditioned GMRES. We use BoomerAMG, provided
by the linear solver library hypre1, to realize the AMG preconditioner. The adaptive
version can be based on different local error indicators; see [13, 14]. Below we show
an example where we compare uniform refinement with the adaptive refinement that
is based on Repin’s first functional error estimate (11). It was already mentioned
in Sect. 3 that, in the FEM, we cannot take y = 𝛼∇𝑥𝑢ℎ because the finite element
flux does not belong to 𝐻 (div𝑥 , 𝑄). Therefore, we first recover an appropriate flux
yℎ = 𝑅ℎ (𝛼∇𝑥𝑢ℎ) ∈ (𝑉ℎ)𝑑 ⊂ 𝐻 (div𝑥 , 𝑄) by nodal averaging à la Zienkiewicz and
Zhu (ZZ). One can use this yℎ as y, or one can improve this yℎ by preforming some
CG minimization steps on the majorant𝔐

2 (𝛽, 𝑢ℎ, y) in (𝑉ℎ)𝑑 with the initial guess
yℎ. Finally, one minimizes with respect to 𝛽. We mention that the local ZZ-indicator
is nothing but 𝜂𝐾,flux (0, 𝑢ℎ, 𝑅ℎ (𝛼∇𝑥𝑢ℎ)).
Let us now consider the parabolic NISTBenchmarkMoving Circular Wave Front2

for testing our adaptive locally stabilized space-time femethod.We again consider the
parabolic IBVP (1) with the following data: 𝑑 = 2,𝑄 = (0, 10) × (−5,−5) × (0, 𝑇) ⊂
R3, 𝑇 = 10, 𝛼 = 1, f = 0, and the manufactured exact solution

𝑢(𝑥, 𝑡) = (𝑥1 − 0) (𝑥1 − 10) (𝑥2 + 5) (𝑥2 − 5) tan−1 (𝑡)
( 𝜋

2
− tan−1 (𝜁 (𝑟 − 𝑡))

)
/𝐶

with 𝑟 =
√︁
(𝑥1 − 𝑥1𝑐)2 + (𝑥2 − 𝑥2𝑐)2, where the parameters (𝑥1𝑐, 𝑥2𝑐) and 𝜁 describe

the center and the steepness of the circular wave front, respectively. We choose
(𝑥1𝑐, 𝑥2𝑐) = (0, 0) and 𝜁 = 20 (mild wave front). The scaling parameter 𝐶 is
equal to 10000. The space-time adaptivity is driven by the local error indicators
𝜂𝐾,flux (𝛽, 𝑢ℎ, yℎ) using Dörfler’s marking. Fig. 2 shows the adaptive meshes after
a cut through the space-time cylinder 𝑄 at 𝑡 = 0, 2.5, 5, 7.5, and 10. In Fig. 3,
we compare the convergence history for uniform and adaptive refinements for the
polynomial degrees 𝑘 = 1, 2, 3. In the adaptive case, we use Dörfler’s marking with
the bulk parameter 0.25. The solution has steep gradients in the neighborhood of

1 https://computing.llnl.gov/projects/hypre
2 https://math.nist.gov/cgi-bin/amr-display-problem.cgi
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the wave front that is perfectly captured by the adaptive procedure. This adaptive
procedure quickly leads to the optimal rates 𝑂 (ℎ𝑘), and dramatically reduces the
error in the ∥ · ∥ℎ norm, where ℎ = (𝑁ℎ)−1/(𝑑+1) = 𝑁−1/3

ℎ in the adaptive case. Fig. 4
shows the corresponding efficiency indices 𝐼eff = 𝜂flux (0, 𝑢ℎ, yℎ)/∥𝑢 − 𝑢ℎ∥ℎ, where
𝜂2
flux (𝛽, 𝑢ℎ, yℎ) =

∑
𝐾 ∈Kℎ 𝜂

2
𝐾,flux (𝛽, 𝑢ℎ, yℎ).

5 Space-Time Optimal Control

The optimal control of evolution equations turns out to be interesting from both
a mathematical and a practical point of view. Indeed, there are many important
applications in technical, natural, and life sciences. Let us first consider the following
space-time tracking optimal control problem: For a given target function 𝑢𝑑 ∈ 𝐿2 (𝑄)
(desired state) and for some appropriately chosen regularization (cost) parameter
𝜚 > 0, find the state 𝑢 ∈ 𝑈0 and the control 𝑧 ∈ 𝑍 minimizing the cost functional

𝐽 (𝑢, 𝑧) = 1
2

∫
𝑄
|𝑢 − 𝑢𝑑 |2 d𝑄 + 𝜚

2
𝑅(𝑧) (15)

t = 0 t = 2.5 t = 5

t = 7.5 t = 10

Fig. 2: Adaptive space-time meshes at the cuts 𝑡 = 0, 2.5, 5, 7.5, and 10 through 𝑄 ⊂ R3.
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Fig. 3: Comparison of uniform and adaptive refinements for 𝑘 = 1, 2, 3.
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Fig. 4: Efficiency indices 𝐼eff for Dörfler’s marking with bulk parameter 0.25

subject to the linear parabolic IBVP (1) respectively its variational formulation (2).
The regularization term 𝑅(𝑧) is usually chosen as the 𝐿2 (𝑄)-norm ∥𝑧∥2𝐿2 (𝑄) , and,
thus, 𝑍 = 𝐿2 (𝑄), whereas the control 𝑧 acts as right-hand side 𝑓 in (1) respectively
(2), and f = 0. Since the state equation (2) has a unique solution 𝑢 ∈ 𝑈0, one
can reason the existence of a unique control 𝑧 ∈ 𝑍 minimizing the quadratic cost
functional 𝐽 (𝑆(𝑧), 𝑧), where 𝑆 is the solution operator mapping 𝑧 ∈ 𝑍 to the unique
solution 𝑢 ∈ 𝑈0 of (2); see, e.g., [17] and [21]. On the other side, the solution of the
quadratic optimization problem min𝑧∈𝑍 𝐽 (𝑆(𝑧), 𝑧) is equivalent to the solution of
the first-order optimality system. After eliminating the control 𝑢 from the optimality
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system by means of the gradient equation 𝑝 + 𝜚𝑧 = 0, we arrive at the reduced
optimality system: Find the state 𝑢 ∈ 𝑈0 and the adjoint state 𝑝 ∈ 𝑃𝑇 such that

𝜚

∫
𝑄

[
𝜕𝑡𝑢 𝑣 + 𝛼 ∇𝑥𝑢 · ∇𝑥𝑣

]
𝑑𝑄 +

∫
𝑄
𝑝 𝑣 𝑑𝑄 = 0,

−
∫
𝑄
𝑢 𝑞 𝑑𝑄 +

∫
𝑄

[
− 𝜕𝑡 𝑝 𝑞 + 𝛼 ∇𝑥 𝑝 · ∇𝑥𝑞

]
𝑑𝑄 = −

∫
𝑄
𝑢𝑑 𝑞 𝑑𝑄,

(16)

holds for all 𝑣, 𝑞 ∈ 𝑉 , where 𝑃𝑇 := {𝑝 ∈ 𝑊 (0, 𝑇) : 𝑝 = 0 on Σ𝑇 }. Now the
well-posedness of (16) can again be proved by means of the BNB theorem verifying
the corresponding conditions (BNB1) – (BNB3); see [16, Theorem 3.3]. In the same
paper, we analyze the finite element Galerkin discretization of the reduced optimality
system: Find (𝑢ℎ, 𝑝ℎ) ∈ 𝑈0ℎ × 𝑃𝑇ℎ such that

𝐵(𝑢ℎ, 𝑝ℎ; 𝑣ℎ, 𝑞ℎ) = −(𝑢𝑑 , 𝑞ℎ)𝐿2 (𝑄) ∀(𝑣ℎ, 𝑞ℎ) ∈ 𝑉0ℎ ×𝑉𝑇ℎ, (17)

where the bilinear form 𝐵(·, ·) results from adding the left-hand sides of (16).
The finite element subspace spaces 𝑈0ℎ = 𝑉0ℎ = 𝑆𝑘ℎ (𝑄) ∩ 𝑈0 and 𝑃𝑇ℎ = 𝑉𝑇ℎ =
𝑆𝑘ℎ (𝑄) ∩𝑃𝑇 are defined on a shape-regular decomposition of the space-time cylinder
𝑄 in simplicial elements as usual; cf. Section 4. Of course, we can here also use IGA
instead of FEM as discretization method; cf. Section 3. In [16], we show a discrete
inf-sup condition which leads to a best-approximation error estimate of the form√︃

𝜚∥𝑢 − 𝑢ℎ∥2𝑉 + ∥𝑝 − 𝑝ℎ∥2𝑉 ≤ 𝑐 inf
(𝑣ℎ ,𝑞ℎ) ∈𝑈0ℎ×𝑃𝑇ℎ

√︃
∥𝑢 − 𝑣ℎ∥2𝑈0

+ ∥𝑝 − 𝑞ℎ∥2𝑃𝑇 (18)

for the case 𝛼 = 1, where 𝑐 = 1 + 2
√

2𝑐𝐵 (𝜚) and 𝑐𝐵 (𝜚) is the boundedness constant
of the bilinear form 𝐵(·, ·). If 𝑢 and 𝑝 have additional regularity, we easily get
convergence rate estimates, e.g., 𝑂 (ℎ) if 𝑢, 𝑝 ∈ 𝐻2 (𝑄); see [16, Theorem 3.5].
In some applications, one wants to restrict the action of the control 𝑧 in space

and time. Thus, in the case of partial control, we have to replace the right-hand
side 𝑓 = 𝑧 by 𝑓 = 𝜒𝑄𝑐 𝑧, where 𝜒𝑄𝑐 is the characteristic function of the space-time
control domain 𝑄𝑐 ⊂ 𝑄. Then we can again derive the reduced optimality system,
and solve it by means of the space-time finite element method. Let us consider a
concrete example. In this example, we consider the spatial domain Ω = (0, 1)2 and
the terminal time 𝑇 = 1. Therefore, we have 𝑄 = (0, 1)3. The control subdomain is
given as 𝑄𝑐 = (0.25, 0.75)2 × (0, 𝑇). A smooth target 𝑢𝑑 = sin(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑡)
is used, and the regularization (cost) parameter 𝜚 = 10−5. Fig. 5 presents the state
𝑢ℎ and the control 𝑧ℎ for partial (up) and full (down) distributed controls. We
use continuous, piecewise linear finite element approximations on a quasi-uniform
decomposition of 𝑄 into tetrahedral elements.
Finally, we mention that, in [15], we introduce and investigate the space-time

energy regularization 𝑅(𝑧) = ∥𝑧∥2
𝐿2 (0,𝑇;𝐻−1 (Ω)) , and compare it to the 𝐿2 (𝑄) and the

sparse regularization. Furthermore, the space-time approach can easily be general-
ized to other observations like terminal time observation, the control via boundary
conditions, the control via initial conditions (inverse heat conduction problem), and,
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last but not least, the control of non-linear parabolic IBVP with box constraints
imposed on the control [16].
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Nonoverlapping Domain Decomposition
Methods for Saddle Point Problems

Jing Li1 and Xuemin Tu2

1 Introduction

Domain decomposition methods have been applied extensively for the saddle point
problems arising from themixed finite element discretizations. Overlappingmethods
are studied by many researchers such as [15, 6, 7, 4, 3, 1]. Some of these algorithms
can be applied for both continuous and discontinuous pressure discretizations, how-
ever, the convergence analyses are available only for the methods with discontinuous
pressure, to the best of our knowledge.
Most nonoverlapping domain decomposition methods are based on the benign

subspace idea which is successfully used by [21] for the Stokes problem, followed
by [10, 16, 18, 24, 26, 11, 22, 14, 12] for different nonoverlapping domain de-
composition algorithms and different saddle point problems. In this approach, the
original saddle point problems can be reduced to positive definite problems in the
benign subspace with subdomain interface velocity and constant subdomain pressure
variables. Therefore a conjugate gradient method (CG) can be used to accelerate the
convergence.Most above-mentioned applications and analyses require discontinuous
pressures to be used in the discretization. Several domain decomposition algorithms
allow the use of continuous pressures such as [23, 2, 13], but the convergence rate
analyses of those approaches are not available. [17, 27, 28] have proposed and
analyzed a FETI-DP algorithm for solving incompressible Stokes equation, which
allowed the use of both discontinuous and continuous pressures in the discretization.
There, the Lagrange multipliers are introduced to enforce the continuity of the veloc-
ity variables across the subdomain interface. Recently, this FETI-DP algorithm has
been applied to almost incompressible elasticity with isogeometric discretization by
[32].
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In this paper, we show for both BDDC and FETI-DP algorithms how the original
saddle point problems can be reduced to positive definite problems using either
primal or dual variable approaches, outline their analyses, and make the connections
between these two approaches.
The rest of this paper is organized as follows. The saddle problems are described

in Section 2. In Section 3, the domain decomposition is introduced and the original
system is reduced to Schur complements or a system of the Lagrange multiples
and pressure. The positive definite formulations are discussed in Section 4 and the
condition number estimates are outlined in Section 5. Finally, we summarize some
differences and connections of these two methods in Section 6.

2 Problem setting

We consider the following saddle point problem: find uℎ ∈ W and 𝑝ℎ ∈ 𝑄, such
that, {

𝑎(uℎ, vℎ) + 𝑏(vℎ, 𝑝ℎ) = (fℎ, vℎ), ∀ vℎ ∈W,

𝑏(uℎ, 𝑞ℎ) = (𝑔ℎ, 𝑞ℎ), ∀ 𝑞ℎ ∈ 𝑄,
(1)

whereW and 𝑄 are finite element spaces. The continuous bilinear forms 𝑎(uℎ, vℎ)
and 𝑏(uℎ, 𝑞ℎ) can come from the variational formulation of the Stokes equation or the
Darcy problem. We call uℎ velocity variables and 𝑝ℎ pressure variable, respectively.
The system (1) can be written as[

𝐴 𝐵𝑇

𝐵 0

] [
u
𝑝

]
=

[
f
𝑔

]
. (2)

Here 𝐴 is symmetric positive definite but 𝐵 is rank deficient. 𝐾𝑒𝑟 (𝐵𝑇 ), the kernel of
𝐵𝑇 , includes all constant pressures in 𝑄. 𝐼𝑚(𝐵), the range of 𝐵, includes all vectors
in 𝑄 with zero average. We note that 𝐼𝑚(𝐵) is orthogonal to 𝐾𝑒𝑟 (𝐵𝑇 ). Under the
assumption that 𝑔 ∈ 𝐼𝑚(𝐵), i.e., 𝑔 has zero average, the solution of (2) is uniquely
determined if the pressure is restricted to the quotient space 𝑄/𝐾𝑒𝑟 (𝐵𝑇 ).
We assume that W and 𝑄 are inf-sup stable: there exists a positive constant 𝛽,

independent of ℎ, such that

sup
w∈W

⟨𝑞, 𝐵w⟩2
⟨w, 𝐴w⟩ ≥ 𝛽

2 ⟨𝑞, 𝑍𝑞⟩ , ∀𝑞 ∈ 𝑄/𝐾𝑒𝑟 (𝐵𝑇 ), (3)

where 𝑍 is the so called mass matrix on 𝑄, i.e., ∥𝑞∥2
𝐿2 = ⟨𝑞, 𝑍𝑞⟩, ∀𝑞 ∈ 𝑄.
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3 Domain decomposition

We decompose the domain Ω into 𝑁 nonoverlapping polygonal/polyhedral subdo-
mains Ω𝑖 , 𝑖 = 1, 2, ..., 𝑁 . We assume that each subdomain is a union of a bounded
number of elements, with typical diameter of 𝐻. The subdomain interface nodes
Γ = (∪𝜕Ω𝑖)\𝜕Ω. Γ includes the subdomain faces, which are open sets and shared
by two subdomains, the subdomain edges, which are open sets and shared by more
than two subdomains; and the subdomain vertices, which are end points of edges.
Denote the subdomain interior velocity spaces by W(𝑖)

𝐼 and subdomain interior
pressure spaces by 𝑄 (𝑖)𝐼 , respectively. The subdomain boundary velocity space is
denoted by WΓ, which is shared by neighboring subdomains, while 𝑄Γ contains
the subdomain boundary pressure degrees of freedom shared by neighboring subdo-
mains. Let

W𝐼 =
𝑁⊕
𝑖=1

W(𝑖)
𝐼 , 𝑄𝐼 =

𝑁⊕
𝑖=1

𝑄 (𝑖)𝐼 .

We decompose the velocity and pressure finite element spaces W and 𝑄 into the
subdomain interior and interface subspaces,

W = W𝐼

⊕
WΓ, 𝑄 = 𝑄𝐼

⊕
𝑄Γ,

respectively, and write (2) as



𝐴𝐼 𝐼 𝐵
𝑇
𝐼𝐼 𝐴𝐼Γ 𝐵𝑇Γ𝐼

𝐵𝐼 𝐼 0 𝐵𝐼Γ 0
𝐴𝑇𝐼Γ 𝐵

𝑇
𝐼Γ 𝐴ΓΓ 𝐵

𝑇
ΓΓ

𝐵Γ𝐼 0 𝐵ΓΓ 0





u𝐼
𝑝𝐼
uΓ

𝑝Γ


=



f𝐼
𝑔𝐼
fΓ
𝑔Γ


, (4)

which can be assembled from the subdomain problems, defined as below



𝐴(𝑖)𝐼 𝐼 𝐵 (𝑖)
𝑇

𝐼 𝐼 𝐴(𝑖)𝐼Γ 𝐵 (𝑖)
𝑇

Γ𝐼

𝐵 (𝑖)𝐼 𝐼 0 𝐵 (𝑖)𝐼Γ 0
𝐴(𝑖)

𝑇

𝐼Γ 𝐵 (𝑖)
𝑇

𝐼Γ 𝐴(𝑖)ΓΓ 𝐵
(𝑖)𝑇
ΓΓ

𝐵 (𝑖)Γ𝐼 0 𝐵 (𝑖)ΓΓ 0





u(𝑖)𝐼
𝑝 (𝑖)𝐼
u(𝑖)Γ
𝑝 (𝑖)Γ


=



f (𝑖)𝐼
𝑔 (𝑖)𝐼
f (𝑖)Γ
𝑔 (𝑖)Γ


. (5)

We note that the blocks corresponding to u𝐼 and 𝑝𝐼 in (4) can be arranged in
subdomain wise. As long as 𝑝Γ contains at least one pressure variables from each
subdomain, we can eliminate u𝐼 and 𝑝𝐼 by solving independent subdomain problems
and obtain the following global Schur complement system[

𝑆Γ 𝑇𝑇ΓΓ
𝑇ΓΓ −𝐶ΓΓ

] [
uΓ

𝑝Γ

]
=

[
f𝑠
𝑔𝑠

]
, (6)

where
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𝑆Γ = 𝐴ΓΓ − [𝐴Γ𝐼 𝐵
𝑇
𝐼Γ]

[
𝐴𝐼 𝐼 𝐵

𝑇
𝐼𝐼

𝐵𝐼 𝐼 0

]−1 [
𝐴𝐼Γ
𝐵𝐼Γ

]
, (7)

𝐶ΓΓ = [𝐵Γ𝐼 0]
[
𝐴𝐼 𝐼 𝐵

𝑇
𝐼𝐼

𝐵𝐼 𝐼 0

]−1 [
𝐵𝑇Γ𝐼
0

]
, (8)

𝑇ΓΓ = 𝐵ΓΓ − [𝐵Γ𝐼 0]
[
𝐴𝐼 𝐼 𝐵

𝑇
𝐼𝐼

𝐵𝐼 𝐼 0

]−1 [
𝐴𝐼Γ
𝐵𝐼Γ

]
, (9)

and [
f𝑠
𝑔𝑠

]
=

[
fΓ
𝑔Γ

]
−

[
𝐴𝑇𝐼Γ 𝐵

𝑇
𝐼Γ

𝐵Γ𝐼 0

] [
𝐴𝐼 𝐼 𝐵

𝑇
𝐼𝐼

𝐵𝐼 𝐼 0

]−1 [
f𝐼
𝑔𝐼

]
.

We note that 𝑆Γ can be assembled from the local subdomain Schur complements
𝑆 (𝑖)Γ defined from (5) as:


𝐴(𝑖)𝐼 𝐼 𝐵 (𝑖)

𝑇

𝐼 𝐼 𝐴(𝑖)𝐼Γ
𝐵 (𝑖)𝐼 𝐼 0 𝐵 (𝑖)𝐼Γ
𝐴(𝑖)

𝑇

𝐼Γ 𝐵 (𝑖)
𝑇

𝐼Γ 𝐴(𝑖)ΓΓ




u(𝑖)𝐼
𝑝 (𝑖)𝐼
u(𝑖)Γ


=


0
0

𝑆 (𝑖)Γ u(𝑖)Γ


. (10)

We call (6) the primal approach. To formulate the preconditioners of (6) and in-
troduce the domain decomposition algorithms using the dual approach, we introduce
a partially sub-assembled interface velocity space

W̃Γ = WΠ

⊕
WΔ = WΠ

⊕ (
𝑁⊕
𝑖=1

W(𝑖)
Δ

)
.

Here,WΠ is the continuous coarse level velocity space, whose elements are shared
by neighboring subdomains. The complimentary space WΔ is the direct sum of
subdomain remaining interface velocity spacesW(𝑖)

Δ , whose elements vanish at the
primal degrees of freedom. In general the functions wΔ in WΔ are not continuous
across the subdomain interface Γ and we need to introduce Lagrange multipliers
to enforce their continuity. We construct a boolean matrix 𝐽Δ such that 𝐽ΔwΔ = 0
implies the continuity of wΔ cross subdomain interface, see [8, 9] for details. We
choose 𝐽Δ to have full row rank and denote the range of 𝐽Δ applied onWΔ by Λ.
The original fully assembled linear system (2) is equivalent to: find

(u𝐼 , 𝑝𝐼 , uΔ, uΠ , 𝑝Γ, 𝜆) ∈W𝐼

⊕
𝑄𝐼

⊕
WΔ

⊕
WΠ

⊕
𝑄Γ

⊕
Λ, such that



𝐴𝐼 𝐼 𝐵
𝑇
𝐼𝐼 𝐴𝐼Δ 𝐴𝐼Π 𝐵𝑇Γ𝐼 0

𝐵𝐼 𝐼 0 𝐵𝐼Δ 𝐵𝐼Π 0 0
𝐴Δ𝐼 𝐵

𝑇
𝐼Δ 𝐴ΔΔ 𝐴ΔΠ 𝐵𝑇ΓΔ 𝐽

𝑇
Δ

𝐴Π𝐼 𝐵
𝑇
𝐼Π 𝐴ΠΔ 𝐴ΠΠ 𝐵𝑇ΓΠ 0

𝐵Γ𝐼 0 𝐵ΓΔ 𝐵ΓΠ 0 0
0 0 𝐽Δ 0 0 0





u𝐼
𝑝𝐼

uΔ

uΠ

𝑝Γ

𝜆



=



f𝐼
𝑔𝐼

fΔ
fΠ
𝑔Γ

0



, (11)
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which can be reduced to

𝐺

[
𝑝Γ

𝜆

]
= 𝑔𝑔, (12)

where

𝐺 = 𝐵𝐶𝐴
−1𝐵𝑇𝐶 , 𝑔𝑔 = 𝐵𝐶𝐴

−1 𝑓 −
[
𝑔Γ

0

]
, (13)

𝐴 =



𝐴𝐼 𝐼 𝐵
𝑇
𝐼𝐼 𝐴𝐼Δ 𝐴𝐼Π

𝐵𝐼 𝐼 0 𝐵𝐼Δ 𝐵𝐼Π

𝐴Δ𝐼 𝐵
𝑇
𝐼Δ 𝐴ΔΔ 𝐴ΔΠ

𝐴Π𝐼 𝐵
𝑇
𝐼Π 𝐴ΠΔ 𝐴ΠΠ


, 𝐵𝐶 =

[
𝐵Γ𝐼 0 𝐵ΓΔ 𝐵ΓΠ

0 0 𝐽Δ 0

]
, 𝑓 =



f𝐼
0
fΔ
fΠ


. (14)

Since (12) is a system related to the Lagrange multipliers 𝜆, we call it the dual
approach.

4 Positive definite formulations

We have reduced the original saddle point problem into two systems: the primal
system (6) and the dual system (12). Even though none of them is positive definite,
they can be reduced to positive definite problems in certain special subspaces.

4.1 The primal system (6)

For a general pressure space 𝑄, it is not easy to formalate the Schur complement
system (6) as a positive definition system. However, when𝑄 is a discontinuous finite
element space, one can decompose 𝑄 properly and make (6) positive definite in a
special subspace.
When 𝑝 is discontinuous, subdomains do not share any pressure degrees of

freedom on the subdomain boundary. We can take 𝑄Γ as the subspace of 𝑄 with
constant values 𝑝 (𝑖)0 , which is the average of the pressure in the subdomain Ω𝑖 and
satisfy

∑𝑁
𝑖=1 𝑝

(𝑖)
0 𝑚 (Ω𝑖) = 0, where 𝑚 (Ω𝑖) is the measure of the subdomain Ω𝑖 . The

elements of 𝑄 (𝑖)𝐼 are the restrictions of the pressure variables to Ω𝑖 which satisfy∫
Ω𝑖
𝑝 (𝑖)𝐼 = 0. Since 𝑝Γ is a constant pressure on each subdomain, 𝐵Γ𝐼 = 0. Using this

fact in (8) and (9), we have 𝐶ΓΓ = 0 and 𝑇ΓΓ = 𝐵ΓΓ and therefore the system (6) can
be simplified as [

𝑆Γ 𝐵𝑇ΓΓ
𝐵ΓΓ 0

] [
uΓ

𝑝Γ

]
=

[
f𝑠
𝑔𝑠

]
. (15)

For the applications with 𝑔𝑠 ≠ 0, one can find a special u∗Γ such that 𝐵ΓΓ
(
uΓ − u∗Γ

)
=

0, see [25, Section 4.8] for details. From now on we assume 𝑔𝑠 = 0.
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The system matrix of (6) is positive definite in the space with 𝐵ΓΓuΓ = 0. Since
𝑝Γ contains pressure variables which are constant in each subdomain, to make
𝐵ΓΓuΓ = 0, we only need require

∫
𝜕Ω𝑖

u(𝑖)Γ · n = 0, where n is the normal direction
to 𝜕Ω𝑖 .
We still need to construct a preconditioner to solve (6). Let 𝑅 (𝑖)Γ map W̃Γ to

W(i)
𝚫

⊕
W(i)

𝚷 and 𝑅Γ is a direct sum of 𝑅
(𝑖)
Γ . We can define

𝑆Γ = 𝑅
𝑇
Γdiag

(
𝑆 (1)Γ , · · · , 𝑆 (𝑁 )Γ

)
𝑅Γ .

𝐵ΓΓ is defined on W̃Γ and is assembled from 𝐵 (𝑖)ΓΓ given in (5). The BDDC precon-
ditioned system of (6) can be written as

𝑀−1
𝐵 𝑆

[
uΓ

𝑝Γ

]
= 𝑀−1

𝐵

[
f𝑠
𝑔𝑠

]
, (16)

where 𝑀−1
𝐵 =

[
𝑅𝐷,Γ 0

0 𝐼

]𝑇 [
𝑆Γ 𝐵𝑇ΓΓ
𝐵ΓΓ 0

]−1 [
𝑅𝐷,Γ 0

0 𝐼

]
, 𝑆 =

[
𝑆Γ 𝐵𝑇ΓΓ
𝐵ΓΓ 0

]
, 𝑅Γ mapsW𝚪 to

W̃Γ and 𝑅𝐷,Γ is scaled operator obtained from 𝑅Γ with the scaling 𝐷. The matrix
𝐷 should provide a partition of unity:

𝑅𝑇𝐷Γ𝑅Γ = 𝑅𝑇Γ𝑅𝐷Γ = 𝐼 .

See [5, 19, 18] for more details about the construction of the BDDC preconditioners.
See [33, 34, 20, 31] for different scaling options.
We define two subspaces ofW𝚪 and W̃Γ, respectively, as

WΓ,𝐵 = {uΓ ∈WΓ | 𝐵ΓΓuΓ = 0}, W̃Γ,𝐵 = {uΓ ∈ W̃Γ | 𝐵ΓΓuΓ = 0}.

They are called benign subspaces.
It is easy to see that the BDDC preconditioned system (16) is positive definite in

the benign subspace WΓ,𝐵. In order to use the conjugate gradient method (CG) to
solve (16), we need to ensure all CG iterates inWΓ,𝐵 with any initial guess inWΓ,𝐵.
We can choose a properWΠ such that∫

𝜕Ω𝑖
w(𝑖)Δ · n = 0 (17)

is satisfied for allw(𝑖)Δ ∈W(𝑖)
Δ . By [18, Lemma 6.2], all CG iterates will stay inWΓ,𝐵

if the initial initial guess lies inWΓ,𝐵.
The choice of WΠ to satisfy (17) depends on the original problem (1) and the

finite element spacesW, namely the discretization methods. See [18, Section 7] for
incompressible Stokes problems; [29] for Stokes with the weak Galerkin discretiza-
tion and [30] for the hybridizable discontinuous Galerkin discretizations; [24, 34]
for Darcy problem.
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4.2 The dual system (12)

Similar to (6), (12) can be positive definite in a special subspace.
If 𝐴, defined in (14), is nonsingular, by the Sylvester law of inertia, we know that

𝐺 is symmetric positive semi-definite. Let 1𝑣 denote the constant vector 1which has
the same dimension as 𝑣 and 𝐽Δ,𝐷 is obtained by scaling 𝐽Δ with the scaling matrix
𝐷. The null space of 𝐺 is given by(

1𝑝Γ , −𝐽Δ,𝐷 [𝐵𝑇𝐼Δ 𝐵𝑇ΓΔ]
[

1𝑝𝐼
1𝑝Γ

] )
.

Let 𝑋 = 𝑄Γ
⊕

Λ and 𝐼𝑚(𝐺) be the range space of 𝐺, which is a subspace of 𝑋 .
𝐼𝑚(𝐺) is orthogonal to the null space of 𝐺 and can be written as

𝐼𝑚(𝐺) =
{[
𝑔𝑝Γ

𝑔𝜆

]
∈ 𝑋 : 𝑔𝑇𝑝Γ1𝑝Γ − 𝑔𝑇𝜆

(
𝐽Δ,𝐷 [𝐵𝑇𝐼Δ 𝐵𝑇ΓΔ]

[
1𝑝𝐼
1𝑝Γ

] )
= 0

}
. (18)

The restriction of 𝐺 to its range space 𝐼𝑚(𝐺) is positive definite. By [27], we know
𝑔𝑔, defined in (13), belongs to 𝐼𝑚(𝐺). All CG iterates will be in 𝐼𝑚(𝐺) if the CG
method is used to solve (12) with zero initial guess.
Block preconditioners, proposed in [17, 27, 28], are used to solve (12). The

preconditioned system can be written as

𝑀−1
𝐹 𝐺

[
𝑝Γ

𝜆

]
= 𝑀−1

𝐹 𝑔𝑔, 𝑀−1
𝐹 =

[
𝑀−1
𝑝

𝑀−1
𝜆

]
. (19)

𝑀−1
𝑝 = 1

ℎ𝑛 𝐼𝑝Γ for the Stokes problem and 𝑀
−1
𝜆 can be either lumped or Dirichlet

preconditioners for 𝜆. [32] defines 𝑀−1
𝑝 to be a BDDC preconditioner for isogeomet-

ric discretization for almost incompressible elasticity and deluxe scaling is used. All
these additional techniques ensure the algorithms robust in the presence of discontin-
uous material parameters, which is not considered for the algorithms in [17, 27, 28]
for the Stokes problem. In [34], deluxe scaling and local generalized eigenvalue
problems are also used to further enhance the performance of algorithms for (16).
However, some special designs of these techniques are needed to make sure these
additional primal variables lie in the benign subspace.
We note that for (12), we do not require that the pressure be discontinuous for

the positive definite formulation. Moreover, we do not need to choose proper primal
spaceWΠ to ensure the CG iterates in the subspace. The choices ofWΠ for (12) only
ensure the nice bound for the condition number of the preconditioned operator. This
fact makes the algorithms much simpler, especially for three dimensional problems.
However, we do need to define a subspace 𝑉0 for the convergence analysis only,

which plays a similar role as the benign subspaces. Let 𝑉 = W𝐼

⊕
𝑄𝐼

⊕
W̃Γ and

its subspace
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𝑉0 =
{
𝑣 = (w𝐼 , 𝑝𝐼 , wΔ, wΠ) ∈ 𝑉

�� 𝐵𝐼 𝐼w𝐼 + 𝐵𝐼ΔwΔ + 𝐵𝐼ΠwΠ = 0
}
. (20)

For any 𝑣 ∈ 𝑉0, ⟨·, ·⟩𝐴 defines a semi-inner product on 𝑉0, see [28] for details.

5 Condition number estimates

Since both (16) and (19) are symmetric positive definite in the special subspaces,
we can use the CG methods to solve them. For the convergence analysis of the CG
methods, we only need to bound the maximum and minimum eigenvalues of the
preconditioned operators. Here we only outline the analyses, see, for example, [18]
and [28] for details.
We first define two useful operators 𝐸𝐷 and 𝑃𝐷 . Different from the 𝐸𝐷 and

𝑃𝐷 defined for elliptic problems in [19], our 𝐸𝐷 and 𝑃𝐷 are defined on different
subspaces. The matrix 𝑆 in (16) are defined with 𝑆Γ and 𝐵ΓΓ, which is for the
variables uΓ and 𝑝Γ. The matrix 𝐺 in (19) are defined with 𝐴, which is for the
variables u𝐼 , 𝑝𝐼 , and uΓ.
𝐸𝐷 is an averaging operator, defined by

𝐸𝐷 = 𝑅𝑅𝑇𝐷 =

[
𝑅Γ

𝐼

] [
𝑅𝑇𝐷,Γ

𝐼

]
.

It maps W̃Γ×𝑄Γ to itself and computes a weighted average for the velocity across the
subdomain interface Γ, and then distributes the average back to the original degree
of freedoms on the interfaces while keeping the pressure variables unchanged.
Similarly, 𝑃𝐷 is a jump operator, which maps 𝑉 to itself. Here we only define the

jump operator related to solving a Dirichlet problem on each subdomain. For any
given 𝑣 = (w𝐼 , 𝑝𝐼 , wΔ, wΠ) ∈ 𝑉 , 𝑃𝐷𝑣 = (u𝐼 , 0, uΔ, 0) ∈ 𝑉 , where each u(𝑖)𝐼 is
the harmonic extension, with given subdomain boundary velocity u(𝑖)Δ = 𝐽 (𝑖)

𝑇

Δ,𝐷 𝐽ΔwΔ

and u(𝑖)Π = 0 . Here 𝐽 (𝑖)
𝑇

Δ,𝐷 represents restriction of 𝐽
𝑇
Δ,𝐷 on subdomain Ω𝑖 and is a

map from Λ toW(𝑖)
Δ .

We assume that the interface averaging operator 𝐸𝐷 and the jump operator 𝑃𝐷
satisfy the following bounds:

|𝐸𝐷w|2
𝑆
≤ 𝐶𝐸𝐷 (𝐻, ℎ) |w|2𝑆 , ∀ w = (uΓ, 𝑞0) ∈ W̃Γ, 𝐵 ×𝑄Γ, (21)

and
|𝑃𝐷𝑣 |2𝐴 ≤ 𝐶𝑃𝐷 (𝐻, ℎ) |𝑣 |

2
𝐴
, ∀ 𝑣 ∈ 𝑉0, (22)

where𝐶𝐸𝐷 (𝐻, ℎ) and𝐶𝑃𝐷 (𝐻, ℎ) are positive constants dependent on the subdomain
size 𝐻 and mesh size ℎ.

Theorem 1 For any w = (uΓ, 𝑝Γ) ∈WΓ,𝐵 ×𝑄Γ,
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⟨w, w⟩𝑆 ≤
〈
w, 𝑀−1

𝐵 𝑆w
〉
𝑆
≤ 𝐶𝐸𝐷 ⟨w, w⟩𝑆 ,

where 𝐶𝐸𝐷 (𝐻, ℎ) is the bound of the average operator, given in (21).

Theorem 2 For any 𝑥 in the range of 𝑀−1
𝐹 𝐺,

𝑐(𝛽) ⟨𝑀𝐹𝑥, 𝑥⟩ ≤ ⟨𝐺𝑥, 𝑥⟩ ≤ (𝐶𝐶𝑃𝐷 (𝐻, ℎ)) ⟨𝑀𝐹𝑥, 𝑥⟩ ,

where 𝑐(𝛽) is a function of the inf-sup constan 𝛽, defined in (3), 𝐶 is a positive
constant, and 𝐶𝑃𝐷 is the bound of the jump operator, given in (22).

6 Connections and differences

One of the big advantages of using (19) is that the formulation can be applied to
both continuous and discontinuous pressure discretizations. The algorithms can be
applied to the problems discretized with widely used Taylor-Hood finite elements
and isogeometric discretizations. Moreover, since the formulation does not put any
constraints on velocity variable u for its positive definite formulation, we can relax
the divergence free constraints defined in (17), which can be quite complicated to be
enforced, see [18, Section 7]. The coarse problem resulting from (19) can be positive
definite, which can be the same as those for simple elliptic problems.
Both (16) and (19) can be applied to discontinuous pressures. When 𝑄 is discon-

tinuous, there are two choices of 𝑝Γ in (19), as discussed in details in [27]. When 𝑝Γ
is taken as an empty set, (19) become a system for the Lagrange multiplier 𝜆 only. If
the Stokes extension is used in the jump operator 𝑃𝐷 instead of harmonic extension,
the divergence free condition will be required and it has been proved in [18, Theorem
8.1] that both (16) and (19) have the same nonzero eigenvalues with the possible
exception of 1. However, the Stokes extension and divergence free condition are not
necessary for (19). Harmonic extension will make the algorithms more efficient.
From the analysis point of view, if (16) can be applied, the minimal eigenvalues

of the preconditioned operator is always 1 as stated in Theorem 1. One only needs to
estimate the bound𝐶𝐸𝐷 of the average operator 𝐸𝐷 , defined in (21). For the analysis
of (19), one needs to estimate the bound 𝐶𝑃𝐷 of the jump operator 𝑃𝐷 , defined in
(22), which is similar to the estimate of 𝐸𝐷 . Moreover, the lower bound in Theorem
2 has to be established, which is not as easy as for (16).
There are many discretizations with discontinuous pressure spaces such as the

family of discontinuous Galerkin methods. (16) has been applied in [29, 30] for some
of these discretizations, where the primal constraints, required by the bound of 𝐸𝐷 ,
also ensure the divergence free conditions, which makes the algorithms simpler than
those with standard finite element discretizations, especially in three dimensions.
The difficulty for those applications is to estimate the bound for the average operator
𝐸𝐷 , where properties of the discretizations have to be explored carefully.
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Local Residual Minimization Smoothing for
Improving Convergence Behavior of Space-Time
Domain Decomposition Method

Hanyu Li and Mary F. Wheeler

Abstract Space-time domain decomposition approaches are showing promising
results in providing significant computational speedup by distributing computa-
tional resources based on error estimation. This paper develops a robust approach
to improve the Newtonian convergence behavior by smoothing residuals during the
pre-processing step. Our space-timemethod for nonlinear problems uses geometrical
multigrid Newtonian continuation procedure to approach the true solution, for which
the linear prolongation of the unknowns generates high frequency residuals, that hin-
ders the global convergence. The smoothing algorithm searches for subdomains with
high frequency residuals and solves a local problem with a fixed boundary condi-
tions. By removing high frequency residuals before continuing the Newton method,
the iterations start quadratic convergence sooner and approaches the true solution
more efficiently.

1 Introduction

Complex multiphase flow and reactive transport in subsurface porous media is math-
ematically modeled by systems of nonlinear equations. Due to significant nonlinear-
ity, solving such systems with Newton’s method requires small time steps for stable
numerical convergence, resulting in significant computational load. Our space-time
domain decomposition method addresses this difficulty by allowing different time
scales for different spatial subdomains of the system, thus distributing computing
resources according to load requirements.
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Fig. 1: High frequency residual after linear interpolation of multigrid method for rough coefficient
cases

Many space-time domain decomposition approaches have been proposed in the
past. To mention a few works, such as [1, 8, 9], space-time finite elements were intro-
duced for elastodynamics with discontinuous Galerkin (DG) in time. The space-time
method has also been applied to other systems such as reaction-diffusion problems,
with different time discretization schemes [3, 10, 11, 12]. Regarding flow in porous
media, [7] focused on linear single phase flow and transport problems where flow
is naturally decoupled from advection-diffusion transport. In [17] a space-time ap-
proach for nonlinear coupled multiphase flow and transport problems on a static
grid using an enhanced velocity method is formulated, a MFE variant [2, 18, 20],
where the continuity of fluxes at non-matching space-time interfaces was strongly
enforced.
Although space-time domain decomposition methods can provide tremendous

computational speedup, initiating such system properly has always been a challenge,
especially for nonlinear problems with rough coefficients. The main issue is, for
subdomains with local time steps being solved in parallel, initiating all the local
time steps with the solution at the previous space-time slab, which is similar to the
procedure in traditional time-stepping schemes, frequently leads to non-convergence.
In [13] a geometric multigrid type of approach was adopted, which starts solving
each space-time slab with the coarsest resolution and sequentially refines the mesh
in certain subdomains to the finest resolution. After each refinement, the unknowns
on the finer mesh are generated by linear interpolation (prolongation) of the solution
on the coarse mesh and the Newton iteration continues. The sequential refinement
provides an initial guess of the unknowns close enough to the true solution to prevent
convergence failure. However, like all multigrid methods, the linear interpolation
causes high frequency residuals to appear sporadically throughout the entire domain,
especially for problems with rough coefficients. An example is shown in Fig.1.
Here a flow in subsurface porous media problem with channelized permeability as
coefficients is presented. The discontinuity of the permeability is clearly observed at
the channel boundary. On the right hand side, we demonstrate the initial residual of
a typical space-time slab after the prolongation step. The high frequency residuals
colored in red appear sporadically throughout the system, typically on the channel
boundary. As the Newton’s method continues, the first few iterations focuses on
reducing such high frequency residuals while not much effort is devoted to the rest
of the system. Therefore, it is critical to remove these high frequency residuals before
continuing the Newton iteration, to harness the full potential of space-time domain
decomposition.
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In this paper, we introduce a local residual minimization algorithm to improve
Newtonian convergence behavior of space-time geometric multigrid method. In
Section 2, we present the model problem followed by the smoothing algorithm in
Section 3. Results from numerical experiment using the proposed algorithm are
discussed in Section 4. Summary of our findings follows in Section 5.

2 Flow model problem

We use miscible multiphase flow in porous media as the model problem due to
its extensive nonlinearity imposing significant numerical convergence challenges.
Since miscible flow involves multiple component coexisting in a single fluid phase,
therefore we need to write the governing equation of the model in component form.
A simplified version of such model is the black-oil model widely accepted in the
petroleum engineering industry, which we use to demonstrate our numerical results.
To start off, assuming no dispersion, the conservation equation of a component

existing in a given fluid phase is stated as follow

𝜕

𝜕𝑡
(𝜑𝜌𝛼𝜉𝑐𝛼𝑠𝛼) + ∇ · (𝜉𝑐𝛼𝒖𝛼) = 𝑞𝑐𝛼 + 𝑟𝑐𝛼 . (1)

Here, 𝜑 is the porosity. 𝜌𝛼, 𝑠𝛼 and 𝒖𝛼 are the density, saturation and velocity of
the fluid phase. 𝜉𝑐𝛼 is the fraction of component 𝑐 included in phase 𝛼, in either
mass or molar basis. 𝑞𝑐𝛼 is the source/sink and 𝑟𝑐𝛼 is the increase/decrease rate
of component 𝑐 in phase 𝛼 due to phase changes. The rate of phase change and
mass/molar fraction of component 𝑐 obeys the following constrain.∑︁

𝛼

𝑟𝑐𝛼 = 0 , (2)

∑︁
𝑐

𝜉𝑐𝛼 = 1, 𝜉𝑐𝛼 ≥ 0 . (3)

We sum Eqn.(1) over the total number of phases (𝑁𝑝) to acquire the component
mass conservation equation as

𝜕

𝜕𝑡

(
𝜑
∑︁
𝛼

𝜌𝛼𝜉𝑐𝛼𝑠𝛼

)
+ ∇ ·

(∑︁
𝛼

𝜉𝑐𝛼𝒖𝛼

)
=

∑︁
𝛼

𝑞𝑐𝛼 . (4)

To simplify the notation, let us define the component concentration and flux in
a given phase by 𝑛𝑐𝛼 = 𝜌𝛼𝜉𝑐𝛼𝑠𝛼 and 𝒖𝑐𝛼 = 𝜉𝑐𝛼𝒖𝛼 while the total component
concentration as 𝑁𝑐 =

∑
𝛼 𝑛𝑐𝛼. Then we can rewrite Eqn.(4) as

𝜕

𝜕𝑡

(
𝜑
∑︁
𝛼

𝑛𝑐𝛼

)
+ ∇ ·

(∑︁
𝛼

𝒖𝑐𝛼

)
=

∑︁
𝛼

𝑞𝑐𝛼 . (5)
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The boundary and initial conditions are

𝒖𝛼 · 𝝂 = 0 𝑜𝑛 𝜕Ω × 𝐽 , (6){
𝑝𝛼 = 𝑝0

𝛼

𝑁𝑐 = 𝑁
0
𝑐

𝑎𝑡 Ω × {𝑡 = 0} , (7)

where 𝐽 = (0, 𝑇] is the time domain of interest and Ω is the spatial domain. The
phase velocity is given by Darcy’s law as

𝒖𝛼 = −𝐾𝜌𝛼 𝑘𝑟 𝛼
𝜇𝛼
(∇𝑝𝛼 − 𝜌𝛼𝒈) , (8)

in which 𝐾 is the absolute permeability while 𝑘𝑟 𝛼, 𝜇𝛼 and 𝑝𝛼 are relative perme-
ability, viscosity and pressure for the given fluid phase. The relative permeability
and capillary pressure are functions of phase saturations.
In complex compositional simulations, the saturations are estimated by concen-

trations after finding the equilibrium hydrocarbon component distribution. This pro-
cedure is called flash vaporization calculation and readers can refer to [16] for details.
In this paper, we avoid such complexity and use the black-oil model as the simplified
compositional model to further introduce our concept. The black-oil model allows a
maximum number of three phases in the system, namely oleic, aqueous and gaseous.
The components contained within are water, hydrocarbon oil which mainly consists
of heavy non-volatile molecules and hydrocarbon gas which mostly includes light
volatile molecules. Consequently the hydrocarbon gas can exist as either free gas
or dissolved gas in the oleic phase. This results in the following relations on the
component fractions:

𝜉1𝑜 + 𝜉3𝑜 = 1, 𝜉2𝑜 = 0
𝜉1𝑤 = 0, 𝜉2𝑤 = 1, 𝜉3𝑤 = 0
𝜉1𝑔 = 0, 𝜉2𝑔 = 0, 𝜉3𝑔 = 1.

(9)

𝜉3𝑜 is commonly referred to as the solution gas-oil ratio and is usually a function
of pressure, but it remains constant after the oleic phase reaches the bubble point
pressure. We remark that if the hydrocarbon oil component also contains some
medium weight molecules and thus is able to vaporize into the gaseous phase, then
we obtain the volatile oil model. The dissolved gas causes the oleic phase to swell thus
decreasing its density. Considering the hydrocarbon oil component itself is slightly
compressible, such swelling effect can be described by the following equation:

𝜌𝑜 = 𝜌𝑜,𝑠𝑡𝑑 · (𝑒−𝑐𝑜 𝑝𝑜 + 𝛽𝜉3𝑜)−1 . (10)

The aqueous and gaseous phase, which contain only water and the hydrocarbon gas
component, are slightly compressible and fully compressible, respectively. There-
fore, the two phase densities are given as follow:

𝜌𝑤 = 𝜌𝑤,𝑠𝑡𝑑 · 𝑒𝑐𝑤 𝑝𝑤 , (11)
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𝜌𝑔 = 𝜌𝑔,𝑠𝑡𝑑 · 𝑐𝑔𝑝𝑔 . (12)

Then saturations can be related to concentrations by




𝑠𝑜 =
𝑁1

𝜌𝑜 (1 − 𝜉3𝑜)
𝑠𝑤 =

𝑁2
𝜌𝑤

𝑠𝑔 =
1
𝜌𝑔

(
𝑁3 − 𝑁1

𝜉3𝑜
1 − 𝜉3𝑜

) , (13)

with the following constrain ∑︁
𝛼

𝑠𝛼 = 1, 𝑠𝛼 ≥ 0 . (14)

Let𝑽 = 𝐻 (𝑑𝑖𝑣;Ω), 𝑊 = 𝐿2 (Ω) with𝑽ℎ and𝑊ℎ be the finite dimensional subspaces.
Let 𝐽𝑛 = (𝑡𝑛, 𝑡𝑛+1] be the nth partition of the time domain of interest. Then for each
space-time slab 𝐽𝑛 ×Ω, we define velocity and pressure/saturation spaces as, for any
element 𝐸 = 𝐹𝐸 × 𝑇𝐸

𝑽𝑛ℎ =

{
𝒗 ∈ 𝐿2

(
𝐽𝑛;𝐻 (𝑑𝑖𝑣;Ω)

)
: 𝒗(·, 𝒙)

���
𝐹𝐸
∈ 𝑽ℎ, 𝒗(𝑡, ·)

���
𝑇𝐸

=
𝑙∑︁
𝑎=1

𝒗𝑎𝑡
𝑎 & 𝒗𝑎 ∈ 𝑽ℎ

}
,

𝑊𝑛
ℎ =

{
𝑤 ∈ 𝐿2

(
𝐽𝑛; 𝐿2 (Ω)

)
: 𝑤(·, 𝒙)

���
𝐹𝐸
∈ 𝑊ℎ, 𝑤(𝑡, ·)

���
𝑇𝐸

=
𝑙∑︁
𝑎=1

𝑤𝑎𝑡
𝑎 & 𝑤𝑎 ∈ 𝑊ℎ

}
.

Functions in 𝑽𝑛ℎ and 𝑊
𝑛
ℎ along time dimension are represented by polynomials

with degrees up to 𝑙. We formulate the space-time enhanced velocity variational
formulation as: find 𝒖𝑛𝛼,ℎ, �̃�

𝑛
𝛼,ℎ ∈ 𝑽𝑛ℎ and 𝑝𝑛𝛼,ℎ, 𝑠𝑛𝛼,ℎ, 𝜉𝑛𝑐𝛼,ℎ ∈ 𝑊𝑛

ℎ such that∫
𝐽𝑛

∫
Ω
𝜕𝑡

(
𝜑
∑︁
𝛼

𝑛𝑛𝑐𝛼,ℎ,𝜏

)
𝑤 +

∫
𝐽𝑛

∫
Ω

(
∇ ·

∑︁
𝛼

𝒖𝑛𝑢𝑝,𝑐𝛼,ℎ

)
𝑤 (15)

=
∫
𝐽𝑛

∫
Ω

(∑︁
𝛼

𝑞𝑐𝛼

)
𝑤 ∀𝑤 ∈ 𝑊𝑛

ℎ ,

∫
𝐽𝑛

∫
Ω
𝐾−1�̃�𝑛𝛼,ℎ · 𝒗 =

∫
𝐽𝑛

∫
Ω
𝑝𝑛𝛼,ℎ∇ · 𝒗 ∀𝒗 ∈ 𝑽𝑛ℎ , (16)

∫
𝐽𝑛

∫
Ω
𝒖𝑛𝛼,ℎ · 𝒗 =

∫
𝐽𝑛

∫
Ω
𝜆𝛼�̃�

𝑛
𝛼,ℎ · 𝒗 ∀𝒗 ∈ 𝑽𝑛ℎ . (17)

The phase mobility ratio in Eqn.(17) is defined as

𝜆𝛼 = 𝜌𝛼
𝑘𝑟 𝛼
𝜇𝛼

, (18)
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Fig. 2: Coarse and refined partition of subdomain 𝐼𝑖 × Ω𝑖 with boundary interpolation nodes (red
circles)

and 𝒖𝑛𝑢𝑝,𝛼,ℎ, 𝒖
𝑛
𝑢𝑝,𝑐𝛼,ℎ are the upwind velocities calculated by∫

𝐽𝑛

∫
Ω
𝒖𝑛𝑢𝑝,𝛼,ℎ · 𝒗 =

∫
𝐽𝑛

∫
Ω
𝜆∗𝛼�̃�

𝑛
𝛼,ℎ · 𝒗 ∀𝒗 ∈ 𝑽𝑛ℎ , (19)

∫
𝐽𝑛

∫
Ω
𝒖𝑛𝑢𝑝,𝑐𝛼,ℎ · 𝒗 =

∫
𝐽𝑛

∫
Ω
𝜉∗𝑐𝛼𝒖

𝑛
𝑢𝑝,𝛼,ℎ · 𝒗 ∀𝒗 ∈ 𝑽𝑛ℎ . (20)

The additional auxiliary phase fluxes �̃�𝑛𝛼,ℎ is used to avoid inverting zero phase
relative permeability [15]. Calculation of the upwind properties (𝜆∗𝛼, 𝜉∗𝑐𝛼) is done by
using saturations and component fractions from the grid cell on the upwind direction
of the pressure gradient. We choose pressure and saturations as primary unknowns
to solve. In case of phase disappearance, the solution gas-oil ratio (𝜉3𝑜) needs to
replace gaseous phase saturation (𝑠𝑔) as the new primary unknown and vice versa.

3 Local residual minimization

Previous work regarding residual smoothing mainly involved linear problems with
rough coefficients. Such pre-processing serves as a preconditioner for iterative linear
solvers, such as the conjugate gradient method, and reduces their iteration counts
significantly. In [19], an energy minimization method was introduced, which solves
for a coarse basis function that minimizes the energy functional on the fine grid.
However, direct application of such approach on nonlinear transport is problematic
since no energy functional can be constructed due to the degenerate coefficients.
Therefore we propose the local residual minimization approach.
Consider 𝐽𝑛 × Ω as an union of some non-overlapping subdomains

{
𝐼𝑖 × Ω𝑖

}
,

namely 𝐽𝑛 ×Ω = ∪𝑖
(
𝐼𝑖 ×Ω𝑖

)
, where 𝐼𝑖 = (𝜏𝑖 , 𝜏𝑖+1] is a sub-interval of 𝐽𝑛 = (𝑡𝑛, 𝑡𝑛+1]

andΩ𝑖 is a subdomain ofΩ. Now let T𝑖,𝐻 be a coarse rectangular partition of 𝐼𝑖 ×Ω𝑖 ,
𝐸𝑚𝑖,𝐻 = 𝑇𝑚𝑖 × 𝐹𝑚𝑖 be a space-time element in such partition with 𝑇𝑚𝑖 = (𝜏𝑚𝑖,0, 𝜏𝑚𝑖,1].
Consider T𝑖,𝐻 to be partially refined that results in a finer rectangular partition
T𝑖,ℎ with elements 𝐸𝑛𝑖,ℎ. We define the linear interpolation of a piecewise constant
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function (pressure and saturation) in space-time slab as 𝑓𝜁 . We then construct the
local problem as follow:∫

𝐸𝑚𝑖,𝐻

∑︁
𝛼

(
𝜕𝑡

(
𝜑𝑛𝑛𝑐𝛼,ℎ,𝜏

)
+ ∇ · 𝒖𝑛𝑢𝑝,𝑐𝛼,ℎ − 𝑞𝑐𝛼

)
𝑤 = 0 (21)

∀𝐸𝑚𝑖,𝐻 = ∪𝐸𝑛
𝑖,ℎ
⊊𝐸𝑚𝑖,𝐻

𝐸𝑛𝑖,ℎ ,

subject to {
𝑝𝛼 = 𝑝𝛼,𝜁
𝑠𝛼 = 𝑠𝛼,𝜁

𝑜𝑛 𝜕𝐸𝑚𝑖,𝐻 . (22)

Fig.2 demonstrates the two partitions and the boundary interpolation nodes necessary
for solving the local system. The boundary nodes appear on the top of the time level
due to the discontinuous Galerkin of order zero discretization scheme.
If the interpolated pressure and saturations on the boundary is exact, then Eqn.(21)

is well-posed and provides an unique solution that matches the global solution on
the local subdomain. Unfortunately, providing exact boundary saturations by linear
interpolation of the coarse solution is hardly achievable in nonlinear transport. The
main reason being the transport and advection-diffusion process are closely coupled,
making the variations of the pressure field across different grid resolutions to have a
strong influence on transport flow equation. Therefore, the local problem tends to be
ill-posed. In response, we rewrite Eqn.(21) into a minimization problem as follow:

min
𝑝𝛼,ℎ ,𝑠𝛼,ℎ

{
∫
𝐸𝑚𝑖,𝐻

∑︁
𝛼

(
𝜕𝑡

(
𝜑𝑛𝑛𝑐𝛼,ℎ,𝜏

)
+ ∇ · 𝒖𝑛𝑢𝑝,𝑐𝛼,ℎ − 𝑞𝑐𝛼

)
𝑤


∞

}
(23)

∀𝐸𝑚𝑖,𝐻 = ∪𝐸𝑛
𝑖,ℎ
⊊𝐸𝑚𝑖,𝐻

𝐸𝑛𝑖,ℎ .

Since the goal of the minimization is only to remove the high frequency residuals
(smoothing), to prevent over-working the problem, the algorithm is stopped once
reaching the average background residual instead of the absolute minimum.
Like solving the global problem, we use Newton’s method to reduce the high

frequency local residual. However, with a reduced problem size providing less con-
straint on the system, a “soft” Jacobian is likely to produce a solution outside the
acceptable range (eg. saturations must be in [0, 1]). Therefore, we apply the line
search algorithm introduced in [14] to prevent divergence during the Newton itera-
tion. Line search scales back the update when the Jacobian appears to be too “soft”,
by setting the update direction orthogonal to the post update residual.

4 Numerical results

We apply the SPE10 dataset [4] to conduct our numerical experiments. The fluid
data are listed in Table.1. The solution gas-oil ratio is estimated by
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Fig. 3: Relative permeability (left) and capillary pressure (right) curve for numerical experiment

Table 1: Fluid data for numerical experiment

Parameter Value Unit

Gas compressibility (𝑐𝑔) 5.0 × 10−2 psi−1

Oil compressibility (𝑐𝑜) 1.0 × 10−4 psi−1

Water compressibility (𝑐𝑤) 3.0 × 10−6 psi−1

Gas viscosity (𝜇𝑔) 0.03 cp
Oil viscosity (𝜇𝑜) 3.0 cp
Water viscosity (𝜇𝑤) 1.0 cp
Gas standard density (𝜌𝑔,𝑠𝑡𝑑) 0.1 lb/ft3
Oil standard density (𝜌𝑜,𝑠𝑡𝑑) 53 lb/ft3
Water standard density (𝜌𝑤,𝑠𝑡𝑑) 64 lb/ft3
Solution gas-oil ratio exponent (𝑛𝑟𝑠) −1.5 × 10−4

Bubble point pressure (𝑝𝑏) 3000.0 psi

𝜉3𝑜 =

{
1 − 𝑒𝑛𝑟𝑠 𝑝𝑜 𝑖 𝑓 𝑝𝑜 < 𝑝𝑏

1 − 𝑒𝑛𝑟𝑠 𝑝𝑏 𝑖 𝑓 𝑝𝑜 ≥ 𝑝𝑏
, (24)

with 𝑛𝑟𝑠 and 𝑝𝑏 being the exponent and bubble point pressure respectively. We
take 𝛽 = 2 for Eqn.(10) to calculate oil density. For nonlinear transport, we use
Brooks-Corey model illustrated in Fig.3 for both relative permeability and capillary
pressure, which is described by Eqn.(25) and (26):




𝑘𝑟𝑔 = 𝑘
0
𝑟𝑔

(
𝑠𝑔 − 𝑠𝑔𝑟

1 − 𝑠𝑔𝑟 − 𝑠𝑜𝑟 − 𝑠𝑤𝑟

)𝑛𝑔

𝑘𝑟𝑜 = 𝑘0
𝑟𝑜

(
𝑠𝑜 − 𝑠𝑜𝑟

1 − 𝑠𝑔𝑟 − 𝑠𝑜𝑟 − 𝑠𝑤𝑟

)𝑛𝑜

𝑘𝑟𝑤 = 𝑘0
𝑟𝑤

(
𝑠𝑤 − 𝑠𝑤𝑟

1 − 𝑠𝑔𝑟 − 𝑠𝑜𝑟 − 𝑠𝑤𝑟

)𝑛𝑤
, (25)
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Fig. 4: Channelized fine scale permeability (left) and porosity (right) distribution
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Fig. 5:Difference between saturation initial guess and solution without local residual minimization




𝑝𝑐𝑔𝑙 = 𝑝𝑒𝑛,𝑐𝑔𝑙

(
1 − 𝑠𝑜𝑟 − 𝑠𝑤𝑟

𝑠𝑜 + 𝑠𝑤 − 𝑠𝑜𝑟 − 𝑠𝑤𝑟

) 𝑙𝑐𝑔𝑙

𝑝𝑐𝑜𝑤 = 𝑝𝑒𝑛,𝑐𝑜𝑤

(
1 − 𝑠𝑤𝑟
𝑠𝑤 − 𝑠𝑤𝑟

) 𝑙𝑐𝑜𝑤 . (26)

The endpoint values for relative permeability are 𝑘0
𝑟𝑔 = 0.7, 𝑘0

𝑟𝑜 = 0.9, 𝑘0
𝑟𝑤 = 0.8,

𝑠𝑔𝑟 = 0.05, 𝑠𝑜𝑟 = 0.1, 𝑠𝑤𝑟 = 0.15 and the exponents are 𝑛𝑔 = 2.5, 𝑛𝑜 = 2.0,
𝑛𝑤 = 1.8. There are capillary pressures on both water-oil and gas-liquid interfaces.
The entry pressures are 𝑝𝑒𝑛,𝑐𝑜𝑤 = 10 𝑝𝑠𝑖, 𝑝𝑒𝑛,𝑐𝑔𝑙 = 5 𝑝𝑠𝑖 and the exponents are
𝑙𝑐𝑜𝑤 = 0.25, 𝑙𝑐𝑔𝑙 = 0.15. The reservoir size is 56 𝑓 𝑡 × 216 𝑓 𝑡 × 1 𝑓 𝑡. We place a
water rate specified injection well at the bottom left corner and a pressure specified
production well at the upper right corner. The water injection rate is 1 𝑓 𝑡3/𝑑𝑎𝑦 and
production pressure is 2000 𝑝𝑠𝑖. Furthermore, the initial pressure, gas saturation and
water saturation are set to be 2000 𝑝𝑠𝑖, 0.25 and 0.15 respectively.
The experiment uses the bottom layer of the SPE10 dataset as petrophysical

property input. The fine scale data are shown in Fig.4 with clear discontinuity at the
channel boundary. We use the algorithm described in [13] to solve the system. The
number of refinement levels is set to three in both space and time and the refinement
ratio is set to 2 uniformly. A numerical homogenization algorithm introduced in [5]
and [6] is used to compute coarse resolution data.
The main cause of high frequency residual is the inaccurate initial estimate of sat-

urations due to the discontinuous nature of the solution. An sample snapshot during
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Fig. 6: Difference between saturation initial guess and solution with and without local residual
minimization
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Fig. 7: 𝑙∞ and 𝑙2 norm of initial residual with and without local residual minimization

the numerical experiment is shown in Fig.5. Here, the initial guess of the saturations
is compared to their respective final solutions and the difference between the two is
calculated. We observe major discrepancies along the channel boundary since the
saturation solution is discontinuous in such regions while the linear interpolation
of the coarse solution provides a continuous transition. Now we apply the local
residual minimization algorithm as a pre-processing step and compare the saturation
difference to the same quantity without smoothing. The result is illustrated in Fig.6.
We observe that the discrepancies along the channel boundary has been reduced
significantly. Most part of the system shows no sign of inconsistency between the
initial guess and the solution. Some mismatch still exist, typically in regions with
complex channel structure. Minimizing local residuals in these regions is unstable
since a clear flow direction cannot be determined when only a small subdomain
of the system is provided. Applying an oversampling technique could improve the
stability of the minimization process.
We also quantifies the reduction in initial residual when the Newton iteration

continues after grid refinement and the result is demonstrated in Fig.7. We observe
that by applying the minimization algorithm as a smoothing pre-process, the initial
residual has been reduced by approximately two orders of magnitude. As a result, the
global system enters quadratic convergence region sooner during Newton iteration
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and therefore improves convergence behavior. The number of iterations required to
achieve convergence is reduced by roughly 40%.

5 Conclusions

In this paper, a space-time compositional model has been considered and we are
unaware of any such computations. We introduce the local residual minimization
algorithm as a pre-processing step for geometric multigrid type methods to remove
high frequency residuals after grid refinement. The minimization is approached by
solving the same global physical system using Newton’s method in the local subdo-
main with boundary conditions set to linear interpolation of the coarse scale solution
before mesh refinement. The iteration is terminated once the residual in the subdo-
main reaches global background residual instead of the absoluteminimum, to prevent
over-working the ill-posed local problem. Results from numerical experiment using
a black-oil model is presented. We observe that after residual smoothing, the differ-
ence between saturation initial guess and solution is diminished significantly. The
initial residual norm has been reduced by approximately 2 orders of magnitude. Such
improvement facilitates the Newton’s method to enter quadratic convergence region
and therefore cuts the number of iterations required to achieve nonlinear convergence
by 40%. The algorithm performance in regions with complex coefficient structure is
sub-optimal, which can be improved by applying over-sampling techniques.
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Part II
Talks in Minisymposia





GenEO Coarse Spaces for Heterogeneous
Indefinite Elliptic Problems

Niall Bootland, Victorita Dolean, Ivan G. Graham, Chupeng Ma, and Robert
Scheichl

1 Introduction and motivations

For domain decomposition preconditioners, the use of a coarse correction as a second
level is usually required to provide scalability (in the weak sense), such that the
iteration count is independent of the number of subdomains, for subdomains of fixed
dimension. In addition, it is desirable to guarantee robustness with respect to strong
variations in the physical parameters. Achieving scalability and robustness usually
relies on sophisticated tools such as spectral coarse spaces [5, 4]. In particular, we
can highlight the GenEO coarse space [9], which has been successfully analysed and
applied to highly heterogeneous positive definite elliptic problems. This coarse space
relies on the solution of local eigenvalue problems on subdomains and the theory
in the SPD case is based on the fact that local eigenfunctions form an orthonormal
basis with respect to the energy scalar product induced by the bilinear form.
Ourmotivation here is to gain a better insight into the good performance of spectral

coarse spaces even for highly indefinite high-frequency Helmholtz problems with
absorbing boundary conditions, as observed in [3] (for the Dirichlet-to-Neumann
coarse space) and more recently in [2] for coarse spaces of GenEO type. While a
rigorous analysis for Helmholtz problems still lies beyond reach (see also [6] for the
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challenges), we present here numerical results, showing the benefits of GenEO-type
coarse spaces for the heterogeneous symmetric indefinite elliptic problem

−∇ · (𝐴(𝒙)∇𝑢) − 𝜅𝑢 = 𝑓 in Ω , subject to 𝑢 = 0 on 𝜕Ω , (1)

in a bounded domain Ω with homogeneous Dirichlet boundary conditions on 𝜕Ω,
thus extending the results of [9] to this case. The coefficient function 𝐴 in (1) is a
symmetric positive-definite matrix-valued function on Ω → R𝑑×𝑑 (where 𝑑 is the
space dimension) with highly varying but bounded values (𝑎min |𝜉 |2 ≤ 𝐴(𝒙)𝜉 · 𝜉 ≤
𝑎max |𝜉 |2, 𝒙 ∈ Ω, 𝜉 ∈ R𝑑) and 𝜅 is an 𝐿∞ (Ω) function which can have positive or
negative values. We assume throughout that problem (1) is well-posed and that there
is a unique weak solution 𝑢 ∈ 𝐻1

0 (Ω), for all 𝑓 ∈ 𝐿2 (Ω).
We propose two types of spectral coarse spaces, one built from local spectra of

the whole indefinite operator on the left-hand side of (1), and the other built using
only the second-order operator in (1). For the latter, the analysis in [1] will apply,
while the better performance of the former for large ∥𝜅∥∞ provides some insight into
the good performance of theH -GenEOmethod introduced in [2] for high-frequency
Helmholtz problems, even though it is not amenable to the theory in [1].
The problem (1) involves a Helmholtz-type operator (although this term would

normally be associated with the case when 𝜅 has a positive sign and (1) would
normally be equipped with an absorbing boundary condition rather than the Dirichlet
condition here). In the special case 𝐴 = 𝐼, 𝜅 = 𝑘2 with 𝑘 constant, the assumption
of well-posedness of the problem is equivalent to the requirement that 𝑘2 does not
coincide with any of the Dirichlet eigenvalues of the operator −Δ in the domain Ω.
In this case, for large 𝑘2, the solution of (1) will be rich in modes corresponding
to eigenvalues near 𝑘2 and thus will have oscillatory behaviour, increasing as 𝑘
increases. The Helmholtz problem with 𝐴 = 𝐼 and 𝜅 = 𝜔2𝑛 (with 𝜔 real and 𝑛 a
function), together with an absorbing far-field boundary condition appears regularly
in geophysical applications; here 𝑛 is the refractive index or ‘squared slowness’ of
waves and 𝜔 is the angular frequency.
To solve discretisations of (1), we consider an additive Schwarz (AS) method with

a GenEO-like coarse space and study the performance of this solver methodology for
some heterogeneous test cases. GenEO coarse spaces have been shown theoretically
and practically to be very effective for heterogeneous positive definite problems.
Here, our main focus is to investigate how this approach performs in the indefinite
case (1). We now review the underlying numerical methods that are used.

2 Discretisation and domain decomposition solver

We suppose that the domainΩ is a bounded Lipschitz polygon/polyhedron in 2D/3D.
To discretise the problem we use the Lagrange finite element method of degree 𝑝
on a conforming simplicial mesh 𝑇ℎ of Ω. Denote the finite element space by
𝑉ℎ ⊂ 𝐻1

0 (Ω). The finite element solution 𝑢ℎ ∈ 𝑉ℎ satisfies the weak formulation
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𝑏(𝑢ℎ, 𝑣ℎ) = 𝐹 (𝑣ℎ), for all 𝑣ℎ ∈ 𝑉ℎ, where

𝑏(𝑢, 𝑣) =
∫
Ω
(𝐴(𝒙)∇𝑢 · ∇𝑣 − 𝜅𝑢𝑣) d𝒙 and 𝐹 (𝑣) =

∫
Ω
𝑓 𝑣 d𝒙. (2)

Using the standard nodal basis for 𝑉ℎ we can represent the solution 𝑢ℎ through its
basis coefficients 𝒖 and reduce the problem to solving the symmetric linear system

𝐵𝒖 = 𝒇 (3)

where 𝐵 comes from the bilinear form 𝑏(·, ·) and 𝒇 from the linear functional 𝐹 (·).
Note that 𝐵 is symmetric but generally indefinite. For sufficiently small fine-mesh
diameter ℎ, problem (3) has a unique solution 𝒖; see [8]. To solve (3), we utilise a
two-level domain decomposition preconditioner within a Krylov method.
Consider an overlapping partition {Ω 𝑗 }1≤ 𝑗≤𝑁 ofΩ, where eachΩ 𝑗 is assumed to

have diameter 𝐻 𝑗 and 𝐻 denotes the maximal diameter of the subdomains. For each
𝑗 we define 𝑉 𝑗 = {𝑣 |Ω 𝑗 : 𝑣 ∈ 𝑉ℎ}, 𝑉 𝑗 = {𝑣 ∈ 𝑉 𝑗 : supp(𝑣) ⊂ Ω 𝑗 }, and for 𝑢, 𝑣 ∈ 𝑉 𝑗

𝑏 𝑗 (𝑢, 𝑣) :=
∫
Ω 𝑗
(𝐴(𝒙)∇𝑢 · ∇𝑣 − 𝜅𝑢𝑣) d𝒙 and 𝑎 𝑗 (𝑢, 𝑣) :=

∫
Ω 𝑗
𝐴(𝒙)∇𝑢 · ∇𝑣d𝒙.

Let R𝑇𝑗 : 𝑉 𝑗 → 𝑉ℎ, 1 ≤ 𝑗 ≤ 𝑁 , denote the zero-extension operator, let 𝑅𝑇𝑗 denote
its matrix representation with respect to the nodal basis and set 𝑅 𝑗 = (𝑅𝑇𝑗 )𝑇 . The
classical one-level additive Schwarz preconditioner is

𝑀−1
AS =

𝑁∑︁
𝑗=1

𝑅𝑇𝑗 𝐵
−1
𝑗 𝑅 𝑗 , where 𝐵 𝑗 = 𝑅 𝑗𝐵𝑅

𝑇
𝑗 . (4)

It is well-known that one-level additive Schwarz methods are not scalable with
respect to the number of subdomains in general, since information is exchanged
only between neighbouring subdomains. Thus, we introduce the two-level additive
Schwarz method with GenEO coarse space first proposed in [9]. To this end, for
1 ≤ 𝑗 ≤ 𝑁 , let {𝜑 𝑗1, . . . , 𝜑

𝑗
�̃� 𝑗
} be a nodal basis of 𝑉 𝑗 , where �̃� 𝑗 = dim(𝑉 𝑗 ).

Definition 1 (Partition of unity)
Let dof(Ω 𝑗 ) denote the internal degrees of freedom (nodes) on subdomain Ω 𝑗 .

For any degree of freedom 𝑖, let 𝜇𝑖 denote the number of subdomains Ω 𝑗 for which
𝑖 is an internal degree of freedom, i.e., 𝜇𝑖 := #{ 𝑗 : 1 ≤ 𝑗 ≤ 𝑁, 𝑖 ∈ dof(Ω 𝑗 )}. Then,
for 1 ≤ 𝑗 ≤ 𝑁 , the local partition of unity operator Ξ 𝑗 : 𝑉 𝑗 → 𝑉 𝑗 is defined by

Ξ 𝑗 (𝑣) :=
∑︁

𝑖∈dof(Ω 𝑗 )

1
𝜇𝑖
𝑣𝑖𝜑

𝑗
𝑖 , for all 𝑣 =

�̃� 𝑗∑︁
𝑖=1

𝑣𝑖𝜑
𝑗
𝑖 ∈ 𝑉 𝑗 . (5)

The operators Ξ 𝑗 form a partition of unity, i.e.,
∑𝑁
𝑗=1 𝑅

𝑇
𝑗 Ξ 𝑗 (𝑣 |Ω 𝑗 ) = 𝑣, ∀𝑣 ∈ 𝑉ℎ [9].
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For each 𝑗 , we define the following generalised eigenvalue problems:

find 𝑝 ∈ 𝑉 𝑗\{0}, 𝜆 ∈ R : 𝑎 𝑗 (𝑝, 𝑣) = 𝜆 𝑎 𝑗 (Ξ 𝑗 (𝑝),Ξ 𝑗 (𝑣)), for all 𝑣 ∈ 𝑉 𝑗 , (6)
find 𝑞 ∈ 𝑉 𝑗\{0}, 𝜆 ∈ R : 𝑏 𝑗 (𝑞, 𝑣) = 𝜆 𝑎 𝑗 (Ξ 𝑗 (𝑞),Ξ 𝑗 (𝑣)), for all 𝑣 ∈ 𝑉 𝑗 , (7)

where Ξ 𝑗 is the local partition of unity operator from Definition 1.

Definition 2 (Δ-GenEO andH -GenEO coarse spaces)
For each 𝑗 , 1 ≤ 𝑗 ≤ 𝑁 , let (𝑝 𝑗𝑙 )

𝑚 𝑗
𝑙=1 and (𝑞

𝑗
𝑙 )
𝑚 𝑗
𝑙=1 be the eigenfunctions of the

eigenproblems (6) and (7) corresponding to the𝑚 𝑗 smallest eigenvalues, respectively.
Then we define the Δ-GenEO andH -GenEO coarse spaces, respectively, by

𝑉0
Δ := span{R𝑇𝑗 Ξ 𝑗 (𝑝 𝑗𝑙 ) : 𝑙 = 1, . . . , 𝑚 𝑗 ; 𝑗 = 1, . . . , 𝑁} and (8)

𝑉0
H := span{R𝑇𝑗 Ξ 𝑗 (𝑞 𝑗𝑙 ) : 𝑙 = 1, . . . , 𝑚 𝑗 ; 𝑗 = 1, . . . , 𝑁}. (9)

Note that here and subsequently, the subscript Δ refers to the GenEO coarse space
(8) based on (6), the eigenproblemwith respect to the ‘Laplace-like’ operator induced
by the bilinear form 𝑎 𝑗 , while the subscriptH refers to theH -GenEO coarse space
(9) based on (7), with the ‘Helmholtz-like’ operator appearing in 𝑏 𝑗 .
Since 𝑉0

Δ, 𝑉
0
H ⊂ 𝑉ℎ, we can introduce the natural embeddings R𝑇0,Δ : 𝑉0

Δ → 𝑉ℎ

and R𝑇0,H : 𝑉0
H → 𝑉ℎ, with matrix representations 𝑅𝑇0,Δ and 𝑅

𝑇
0,H , respectively, and

set 𝑅0,Δ = (𝑅𝑇0,Δ)𝑇 and 𝑅0,H = (𝑅𝑇0,H)𝑇 to obtain the following two-level extensions
of the one-level additive Schwarz method (4):

𝑀−1
AS,Δ = 𝑀−1

𝐴𝑆 + 𝑅𝑇0,Δ𝐵−1
0,Δ𝑅0,Δ and 𝑀−1

AS,H = 𝑀−1
𝐴𝑆 + 𝑅𝑇0,H𝐵−1

0,H𝑅0,H , (10)

where 𝐵0,Δ := 𝑅0,Δ𝐵𝑅
𝑇
0,Δ and 𝐵0,H := 𝑅0,H𝐵𝑅𝑇0,H .

3 Theoretical results

The theoretical properties of the preconditioner𝑀−1
AS,Δ are studied in the forthcoming

paper [1]. There, the PDE studied is a generalisation of (1), which also allows the
inclusion of a non-self-adjoint first order convection term. The important parameters
in the preconditioner are the coarse mesh diameter 𝐻 and the ‘eigenvalue tolerance’

Θ := max
1≤ 𝑗≤𝑁

(
𝜆
𝑗
𝑚 𝑗+1

)−1
,

where {𝜆 𝑗𝑚 : 𝑚 = 1, 2, . . .} are the eigenvalues of the generalised eigenproblem (6),
given in non-decreasing order. We now highlight a special case of the results in [1].

Theorem 1 Let the fine-mesh diameter ℎ be sufficiently small. Then there exist
thresholds 𝐻0 > 0 and Θ0 > 0 such that, for all 𝐻 ≤ 𝐻0 and Θ ≤ Θ0: the matrices
𝐵 𝑗 and 𝐵0,Δ appearing in (4) and (10) are non-singular. Moreover, if problem (3)
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is solved by GMRES with left preconditioner 𝑀−1
AS,Δ and residual minimisation in

the energy norm ∥𝑢∥𝑎 :=
( ∫

Ω
∇𝑢 · 𝐴∇𝑢)1/2, then there exists a constant 𝑐 ∈ (0, 1),

which depends on 𝐻0 and Θ0 but is independent of all other parameters, such that
we have the robust GMRES convergence estimate

∥𝑟ℓ ∥2𝑎 ≤
(
1 − 𝑐2

)ℓ
∥𝑟0∥2𝑎 , (11)

for ℓ = 0, 1, . . . , where 𝑟ℓ denotes the residual after ℓ iterations of GMRES.

In fact, the paper [1] will investigate in detail how the thresholds 𝐻0 and Θ0 depend
on the heterogeneity and indefiniteness of (1). For example, if the problem is scaled
so that 𝑎min = 1, then as ∥𝜅∥∞ grows, 𝐻0 and Θ0 have to decrease to maintain the
convergence rate of GMRES:

𝐻0 ≲ ∥𝜅∥−1
∞ and Θ0 ≲ 𝐶

−2
stab∥𝜅∥−4

∞ , (12)

where 𝐶stab = 𝐶stab (𝐴, 𝜅) denotes the stability constant for problem (1), i.e., the
solution 𝑢 satisfies ∥𝑢∥𝐻1 (Ω) ≤ 𝐶stab∥ 𝑓 ∥𝐿2 (Ω) for all 𝑓 ∈ 𝐿2 (Ω) and the hidden
constants are independent of ℎ, 𝐻, 𝑎max and 𝜅. Thus, as ∥𝜅∥∞ gets smaller, the
indefiniteness diminishes and the requirements on 𝐻0 and Θ0 are relaxed.

4 Numerical results

We give results for a more efficient variant of the preconditioner described in §2.
Instead of (10), we here use the restricted additive Schwarz (RAS) method, with the
GenEO coarse space incorporated using a deflation approach, yielding:

𝑀−1 = 𝑀−1
RAS (𝐼 − 𝐵𝑄0) +𝑄0, where 𝑀−1

RAS =
𝑁∑︁
𝑗=1

𝑅𝑇𝑗 𝐷 𝑗𝐵
−1
𝑗 𝑅 𝑗 . (13)

Here, 𝐷 𝑗 is the matrix form of the partition of unity operator Ξ 𝑗 . Moreover, we have
𝑄0 = 𝑅𝑇0 𝐵

−1
0 𝑅0 with 𝐵0 = 𝑅0𝐵𝑅

𝑇
0 and either 𝑅0 = 𝑅0,Δ or 𝑅0 = 𝑅0,H , depending

on whether we use Δ-GenEO orH -GenEO. We include all eigenfunctions 𝑝 𝑗𝑙 or 𝑞
𝑗
𝑙

in 𝑉0
Δ or 𝑉

0
H corresponding to eigenvalues 𝜆

𝑗
𝑙 < 𝜆max, for Δ-GenEO or H -GenEO,

respectively. InH -GenEO this includes all eigenfunctions corresponding to negative
eigenvalues. Unless otherwise stated, the eigenvalue threshold is 𝜆max = 1

2 .
As a model problem, we consider (1) on the unit square Ω = (0, 1)2, take 𝜅

constant, and define 𝐴 to model various layered media, as depicted in Fig. 1. The
right-hand side 𝑓 is taken to be a point source at the centre ( 1

2 ,
1
2 ). To discretise, we

use a uniform square grid with 𝑛glob points in each direction and triangulate along
one set of diagonals to form P1 elements. We further use a uniform decomposition
into 𝑁 square subdomains and throughout use minimal overlap (non-overlapping
subdomains are extended by adding only the fine-mesh elements which touch them).
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(a) Alternating layers (b) Diagonal layers (c) Inclusions (𝑁 = 9)

Fig. 1: Piecewise constant profiles 𝑎 (𝒙) , where 𝐴(𝒙) = 𝑎 (𝒙) 𝐼 . For the darkest shade 𝑎 (x) = 1
while for the lightest shade 𝑎 (x) = 𝑎max. Profiles (a) and (b) are fixed while in (c) the interfaces of
𝑎 are the same per subdomain, although the value of 𝑎 depends on height (case 𝑁 = 32 is shown).

Our computations are performed using FreeFem (http://freefem.org/), in
particular using the ffddm framework.We use preconditioned GMRESwith residual
minimisation in the Euclidean norm and a relative residual tolerance of 10−6. We
have assumed 𝑎min = 1; otherwise a rescaling will ensure this. The indefiniteness
is controlled by 𝜅, taken here to be a positive constant. Although estimate (11)
describesGMRES implemented in the energy inner product, we use here the standard
Euclidean implementation and prove in [1, §4] that (for quasi-uniform meshes) the
latter algorithm requires at most O(log(𝑎max/ℎ)) more iterations than the former
to achieve the same residual reduction. Experiments for Helmholtz problems in [7]
showed that the two approaches performed almost identically.
In Table 1 we provide GMRES iteration counts for Δ-GenEO and H -GenEO as

𝑁 varies in two cases: in case (i), on the left, we use profile (a) and increase 𝑎max
while in case (ii), on the right, we use profile (c) and increase 𝑛glob = ℎ−1. In (i)
we see clear robustness to increasing the contrast parameter 𝑎max. In (ii) we observe
robustness to decreasing ℎ, with markedly better performance forH -GenEO. In (ii),
the coefficient 𝑎(𝒙) (and hence the problem itself) becomes more complicated as 𝑁
increases since the geometry of the coefficient remains identical in each subdomain.
In Table 2 we illustrate the effect of increasing 𝜅, giving iteration counts and (in

brackets) coarse space sizes. Here we see the substantial advantage of H -GenEO
over Δ-GenEO: much better iteration counts are obtained, yet the coarse space size
increases only modestly. As 𝑁 increases, although the dimension of the coarse space
grows, the number of eigenfunctions per subdomain decreases. For very large 𝜅,
neither method is fully robust while, for small 𝜅, both methods perform similarly.
This leads to the interesting question of whether robustness to 𝜅 can be gained by
taking more eigenfunctions in the coarse space. Table 3 gives results for a sequence
of increasing values of 𝜅 for the diagonal layers problem, in which we simultaneously
increase 𝜆max, indicating (apparent almost) robustness with respect to 𝜅.
These observations align with the fact that eigenfunctions appear qualitatively

similar for Δ-GenEO and H -GenEO when 𝜅 is small. As seen in Fig. 2, once 𝜅
increases theH -GenEO eigenfunctions change: the type of eigenfunctions produced
byΔ-GenEO remain, albeit perturbed, but nowwe have further eigenfunctions which
include more oscillatory behaviour in the interior of the subdomain; such features are
not found with Δ-GenEO where higher oscillations only appear near the boundary.
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Table 1: GMRES iteration counts with 𝜆max = 1
2 . Left-hand table: Alternating layers problem,

varying 𝑎max > 1 and 𝑁 , with fixed 𝜅 = 100 and 𝑛glob = 400. Right-hand table: Inclusions
problem, varying 𝑛glob and 𝑁 , with fixed 𝜅 = 1000 and 𝑎max = 50.

Δ-GenEO H-GenEO
𝑎max \ 𝑁 16 36 64 100 16 36 64 100
10 10 9 9 10 9 9 9 9
50 9 9 9 9 9 9 9 9
200 9 9 9 9 9 9 9 9
1000 9 9 9 9 9 9 9 9

Δ-GenEO H-GenEO
𝑛glob \ 𝑁 16 36 64 100 16 36 64 100
200 24 16 26 22 10 10 10 11
400 23 14 19 18 8 9 9 8
600 21 14 18 19 8 9 8 10
800 22 14 19 20 9 9 9 10

Table 2: GMRES iteration counts and (in brackets) coarse space dimension for the diagonal layers
problem with 𝜆max = 1

2 , varying 𝜅 and 𝑁 , with fixed 𝑎max = 5 and 𝑛glob = 600.

Δ-GenEO H-GenEO
𝜅 \ 𝑁 16 36 64 100 16 36 64 100
10 9 (627) 9 (1050) 9 (1468) 9 (1804) 9 (627) 9 (1050) 9 (1468) 9 (1804)
100 10 (627) 9 (1050) 9 (1468) 9 (1804) 9 (627) 9 (1052) 9 (1473) 9 (1814)
1000 36 (627) 43 (1050) 35 (1468) 28 (1804) 13 (674) 11 (1083) 9 (1520) 10 (1877)
10000 215 (627) 339 (1050) 437 (1468) 506 (1804) 27 (1256) 33 (1651) 40 (2139) 18 (2549)

Table 3: GMRES iteration counts and (in brackets) coarse space dimension for H-GenEO for the
diagonal layers problem, varying 𝑁 , with fixed 𝑛glob = 600 and 𝑎max = 5 and increasing eigenvalue
threshold 𝜆max as 𝜅 increases, aiming to control iteration counts as 𝜅 increases.

H−GenEO
𝜆max 𝜅 \ 𝑁 16 36 64 100
0.1 10 23 (108) 23 (199) 25 (214) 23 (324)
0.1 100 23 (111) 24 (201) 28 (223) 27 (324)
0.2 1000 19 (265) 27 (418) 20 (574) 20 (684)
0.6 10000 24 (1430) 25 (2129) 28 (2680) 15 (3252)

5 Conclusions

In this work we have summarised how the forthcoming analysis in [1] can be applied
to a GenEO-type coarse space for heterogeneous indefinite elliptic problems. We
provide numerical evidence supporting these results and a comparison with a more
effective GenEO-type method for highly indefinite problems but for which no theory
is presently available. For mildly indefinite problems these two approaches perform
similarly, providing the first theoretical insight towards explaining the good behaviour
of theH -GenEO method for challenging heterogeneous Helmholtz problems.
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Δ-GenEO H-GenEO H-GenEO H-GenEO
𝜅 = 1000 𝜅 = 10000 𝜅 = 10000
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𝜆 = 0.057 𝜆 = −0.003 𝜆 = −3.220 𝜆 = −0.004
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𝜆 = 0.057 𝜆 = −0.014 𝜆 = −3.460 𝜆 = −0.052

Fig. 2: Example eigenfunctions on the central subdomain when 𝑁 = 25 and 𝑛glob = 800: In the first
three columns, we plot qualitatively similar eigenfunctions, computed (left-to-right) by Δ-GenEO,
H-GenEO when 𝜅 = 1000, and H-GenEO when 𝜅 = 10000. This illustrates how eigenfunctions
of (7) are affected by the indefiniteness in 𝑏 𝑗 , relative to the size of 𝜅 . In addition, as 𝜅 increases
the H-GenEO eigenproblem enriches the coarse space with “wave-like” eigenfunctions that are not
seen for Δ-GenEO; one of the many examples when 𝜅 = 10000 is plotted in the final column. While
the top row explores the homogeneous case, the bottom row demonstrates the effect of heterogeneity
in 𝑎 (𝒙) for the diagonal layers problem: For 𝑁 = 25, 𝑎 (𝒙) = 𝑎max = 10 in the upper-left triangle
(𝑥2 > 𝑥1) and 𝑎 (𝒙) = 𝑎min = 1 in the lower-right triangle (𝑥2 < 𝑥1) of the central subdomain.
Note that variation in the eigenfunctions is mainly confined to the low coefficient region.
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Inexact Subdomain Solves Using Deflated
GMRES for Helmholtz Problems

N. Bootland, V. Dwarka, P. Jolivet, V. Dolean, and C. Vuik

1 Introduction

In recent years, domain decomposition based preconditioners have become popular
tools to solve the Helmholtz equation. Notorious for causing a variety of convergence
issues, theHelmholtz equation remains a challenging PDE to solve numerically. Even
for simple model problems, the resulting linear system after discretisation becomes
indefinite and tailored iterative solvers are required to obtain the numerical solution
efficiently. At the same time, the mesh must be kept fine enough in order to prevent
numerical dispersion ‘polluting’ the solution [4]. This leads to very large linear
systems, further amplifying the need to develop economical solver methodologies.
Domain decomposition (DD) techniques combined with Krylov solvers provide

a way to deal with these large systems [6]. While the use of two-level deflation
and DD techniques have been explored before, their expedience has primarily been
measured in terms of providing a way to add a coarse space to obtain a two-level DD
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preconditioner [1, 2].Without a coarse space, DDmethods typically do not scale with
the number of subdomains. Moreover, subdomain sizes need to be relatively small
in order to optimally use local memory and direct solution methods on subdomains.
In this work we focus on the subdomain solves. Instead of using a direct solution

method, we solve the local systems using GMRES preconditioned by a two-level
deflation approach. As a result, similar to the inclusion of a coarse space on the
fine-level, we obtain a two-level method on each subdomain as well. The inexact
solve on the subdomains will allow for larger subdomains by reducing computing
and memory requirements, especially in 3D. In order to allow for inexact subdomain
solves we require a flexible wrapper for the outer iteration—the application of the
DD preconditioner—and so we will use FGMRES. Our local subdomain solves will
then employ a preconditioned GMRES iteration. It is well known that the cost of
GMRES increases with each iteration. Thus, in order to mitigate the number of
iterations at the subdomain level, we use a two-level deflation preconditioner [8, 5].
The techniques proposed here will feature as the topic of future research on large-

scale 3D applications using pollution-free meshes. In this work we introduce the key
ideas and begin an initial exploration by considering a simple 2D model problem.

2 Model problem, discretisation and preconditioning strategies

Our model problem consists of the Helmholtz equation posed on the unit square:

−Δ𝑢 − 𝑘2𝑢 = 𝑓 in Ω = (0, 1)2, (1a)
𝑢 = 0 on 𝜕Ω. (1b)

Here, the parameter 𝑘 denotes the wave number. Problem (1) is well-posed so long
as 𝑘2 is not a Dirichlet eigenvalue of the corresponding Laplace problem. Solving
the problem with Dirichlet conditions provides a more robust test for the solver, as
there is no shift keeping the spectrum away from the origin [3, 8]. In this work we
will assume the problem, and any sub-problems, are well-posed. To discretise (1)
we use piecewise linear (P1) finite elements on a uniform grid with mesh spacing
given by ℎ = 2𝜋𝑘−1𝑛−1

ppwl, where 𝑛ppwl is the number of (grid) points per wavelength
(hereinafter referred to as “ppwl”). To test the solver performance we initially ensure
𝑛ppwl ≈ 10. We then double this to approximately 20 ppwl to obtain more accurate
numerical solutions. Letting 𝑉ℎ ⊂ 𝐻1

0 (Ω) denote the space of piecewise linear
functions on our finite element mesh 𝑇ℎ ofΩ, our discrete solution 𝑢ℎ ∈ 𝑉ℎ satisfies
the weak formulation 𝑎(𝑢ℎ, 𝑣ℎ) = 𝐹 (𝑣ℎ) ∀ 𝑣 ∈ 𝑉ℎ, where

𝑎(𝑢, 𝑣) =
∫
Ω

(
∇𝑢 · ∇𝑣 − 𝑘2𝑢𝑣

)
dx and 𝐹 (𝑣) =

∫
Ω

𝑓 𝑣 dx. (2)

With the standard basis for 𝑉ℎ, we can write the weak formulation as finding the
solution to the linear system 𝐴u = f. We now consider how to solve such systems.
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The global matrix 𝐴 is preconditioned by a one-level domain decomposition
method. To construct the decomposition, we define an overlapping partition

{
Ω 𝑗

}𝑁
𝑗=1

of Ω together with a restriction operator 𝑅 𝑗 to move from the global level to the
subdomain level. We only consider Cartesian (rectangular) subdomains. Using this
decomposition, the restricted additive Schwarz (RAS) preconditioner is defined by

𝑀−1
𝑅𝐴𝑆 =

𝑁∑︁
𝑗=1

𝑅𝑇𝑗 𝐷 𝑗𝐴
−1
𝑗 𝑅 𝑗 , (3)

where𝐷 𝑗 are diagonal matrices representing a partition of unity (
∑𝑁
𝑗=1 𝑅

𝑇
𝑗 𝐷 𝑗𝑅 𝑗 = 𝐼)

and 𝐴 𝑗 = 𝑅 𝑗𝐴𝑅
𝑇
𝑗 are the local Dirichlet matrices. Each subdomain solve requires

the solution of a local auxiliary linear system, which we denote by 𝐴 𝑗 ũ 𝑗 = f̃ 𝑗 as a
general case. We solve these systems using a two-level deflation approach, that is,
deflation is used to accelerate the convergence of GMRES by removing the near-zero
eigenvalues. For normal matrices it has been shown that convergence can be directly
related to the behaviour of these near-zero eigenvalues [7].
The two-level deflation preconditioner is defined as a projection operator 𝑃 𝑗

which leads to solving 𝑃 𝑗𝐴 𝑗 ũ 𝑗 = 𝑃 𝑗 f̃ 𝑗 , where

𝑃 𝑗 = 𝐼 − 𝐴 𝑗𝑄 𝑗 with 𝑄 𝑗 = 𝑍 𝑗𝐸
−1
𝑗 𝑍

𝑇
𝑗 and 𝐸 𝑗 = 𝑍

𝑇
𝑗 𝐴 𝑗𝑍 𝑗 . (4)

The rectangular matrix 𝑍 𝑗 in this particular setting is called the deflation matrix
and its columns span the deflation space. The choice of 𝑍 𝑗 strongly dictates the
overall convergence behaviour. Here, we use quadratic rational Bézier curves, as
they have been shown to provide satisfactory convergence [5]. Consequently, if we
let �̃�𝑖𝑗 represent the 𝑖-th degree of freedom (DOF) on subdomain Ω 𝑗 , then in 1D 𝑍 𝑗
maps these nodal approximations onto their coarse-grid counterpart as follows

[
𝑍 𝑗 �̃� 𝑗

] 𝑖
=

1
8

(
�̃�2𝑖−2
𝑗 + 4 �̃�2𝑖−1

𝑗 + 6 �̃�2𝑖
𝑗 + 4 �̃�2𝑖+1

𝑗 + �̃�2𝑖+2
𝑗

)
. (5)

As such, 𝑍 𝑗 can be constructed using the following 1D stencil 1
8

[
1 4 6 4 1

]
. The

dimension of 𝑍 𝑗 will then be 𝑛 𝑗 × 𝑛 𝑗
2 , where 𝑛 𝑗 is the size of the local 1D system.

In 2D on Cartesian grids this can be naturally extended by using the Kronecker
product. For a rectangular subdomain, letting 𝑍 𝑥𝑗 denote the 1D deflation matrix in
the 𝑥-direction and 𝑍 𝑦𝑗 that in the 𝑦-direction, the 2D deflation matrix is given by

𝑍 𝑗 = 𝑍
𝑦
𝑗 ⊗ 𝑍 𝑥𝑗 , (6)

assuming lexicographic ordering running through 𝑥 coordinates first.
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3 Numerical results

We now provide numerical results for our model problem on the unit square. We
take the right-hand side 𝑓 to be given by a point-source at the centre of the domain.
Unless stated otherwise, 10 ppwl are used to construct the mesh and we let 𝑛glob be
the number of DOFs along each edge of the square. For the domain decomposition,
we use a uniform decomposition into 𝑁 (square) subdomains. Overlap is added by
appending one layer of mesh elements in a Cartesian manner (note that this means
subdomains touching only one edge of Ω are rectangular rather than square).
For the outer solve we use preconditioned FGMRES with the one-level RAS

preconditioner (3). The tolerance for the relative residual has been set at 10−6. For
the inner solve on the subdomain level we use preconditioned GMRES with the two-
level deflation preconditioner (4) instead of a direct solver. Note that subdomains
systems are decoupled and so can be solved locally in parallel. We will vary the
inner tolerance for the relative residual between 10−10 and 10−2 in order to assess
an appropriate level of accuracy needed when solving the subdomain problems.
The solver is equipped to deal with both symmetric (Dirichlet) and non-symmetric
systems (Sommerfeld), as we use the RAS preconditioner together with GMRES,
which do not require symmetry.
All matrices are constructed using FreeFem (http://freefem.org/) while the solvers

are then implemented using PETSc (http://www.mcs.anl.gov/petsc/). Computations
are carried out on a laptop with an i7-10850H processor having 6 cores (12 threads).

3.1 Direct subdomain solves

We start by constructing a benchmark where we use a direct solution method for the
subdomain solves, namely via an 𝐿𝑈-decomposition. Table 1 shows that the number
of iterations does not scale as the number of subdomains 𝑁 increases, in agreement
with the literature. The number of iterations also rapidly increases with the wave
number 𝑘 . The inclusion of a coarse space to improve both 𝑘– and 𝑁–scalability on
top of inexact subdomain solves will be explored in future research. An interesting
observation is that increasing 𝑛ppwl leads to a higher iteration count. The opposite
effect has been observed when using a two-level deflation preconditioner [8, 5].
There, a finer mesh leads to a smaller number of iterations as the mapping of the
eigenvectors from the fine- and coarse-grid becomes more accurate.

3.2 Inexact subdomain solves

The direct subdomain solves remain feasible for medium-size problems. Once we
move to high-frequency 3D problems the subdomain systems become larger and the
direct solver will start to become inefficient and consume more computing power
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Table 1: FGMRES iteration counts using the one-level RAS preconditioner with direct subdomain
solves.

10 ppwl
𝑁

𝑘 𝑛glob 4 9 16 25
20 30 20 27 48 45
40 60 31 60 85 101
80 120 64 133 191 216
160 240 159 262 365 495

20 ppwl
𝑁

𝑘 𝑛glob 4 9 16 25
20 60 20 40 42 59
40 120 37 66 89 115
80 240 76 131 189 255
160 480 130 289 398 520

and memory. In order to assess the feasibility of inexact solves, we will use the
benchmarks from Section 3.1 and compare with our iterative method. The aim of
these experiments is twofold. First, we want to examine the scalability with respect to
the number of subdomains once we substitute the direct solution method. Secondly,
we want to observe what level of accuracy is needed at the subdomain level such
that the outer number of iterations remains within a satisfactory range.

High-tolerance: 10−10

We start with a tolerance of 10−10 with results given in Table 2. This case is the
closest to the use of a direct solver (see Table 1). Comparing, we observe that
the results are almost identical when using 4 subdomains. Once we increase the
number of subdomains 𝑁 , the number of FGMRES iterations increases for both 10
and 20 ppwl. However, the increase is more noticeable when using 10 ppwl. For
example, when 𝑘 = 160 and 𝑁 = 9 a direct solver on the subdomains leads to 262
iterations while the inexact approach converges in 301 outer iterations. However,
when we double 𝑛ppwl to 20, we go from 289 to 292 outer iterations. In all cases,
as expected, the number of outer iterations increases with the wave number 𝑘 . A
similar yet slower increase in iteration counts is observed for the average number
of inner iterations required by the deflated GMRES approach on the subdomains.
As mentioned previously, the deflation preconditioner becomes more efficient on
finer meshes. This can also be observed in our results: while the number of outer
FGMRES iterations (using RAS) increases when moving from 10 ppwl to 20 ppwl,
the number of inner GMRES iterations (using two-level deflation) decreases as the
local subdomain systems become larger. Additionally, in this case, the number of
inner iterations appears to be scaling better with the wave number 𝑘 .
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Table 2: FGMRES iteration counts using the one-level RAS preconditioner with subdomain prob-
lems solved inexactly to a relative tolerance of 10−10 using GMRES with a two-level deflation
preconditioner. In parentheses we display the average number of GMRES iterations per subdomain
solve.

10 ppwl
𝑁

𝑘 𝑛glob 4 9 16 25
20 30 20 (23) 27 (25) 56 (24) 46 (21)
40 60 32 (35) 62 (29) 86 (26) 101 (25)
80 120 65 (45) 137 (32) 192 (32) 221 (29)
160 240 160 (63) 301 (58) 373 (36) 518 (33)

20 ppwl
𝑁

𝑘 𝑛glob 4 9 16 25
20 60 20 (30) 43 (26) 42 (25) 59 (23)
40 120 37 (31) 66 (32) 93 (27) 112 (27)
80 240 75 (36) 132 (30) 191 (30) 268 (27)
160 480 131 (53) 292 (47) 407 (31) 530 (28)

Medium-tolerance: 10−5

In Table 3 we report the results when lowering the inner tolerance to 10−5. We
compare with the results reported in Table 2. A general observation is that as 𝑘
increases, so does the number of outer FGMRES iterations. Naturally, lowering the
inner tolerance ensures we require less iterations to converge on the subdomains.
For the largest wave number reported and 9 subdomains, we needed 262 outer

iterations when using a direct solver. For the inexact approach with tolerance 10−5

the number of outer iterations increases to 301, which is the same as when using a
tolerance of 10−10. However, for the finer mesh with 20 ppwl the number of outer
iterations goes up from 292 to 308. At the same time, the number of inner iterations
reduces accordingly: from 58 to 40 for 10 ppwl and from 47 to 31 for 20 ppwl.
If we increase the number of subdomains from 9 to 25, the outer number of

FGMRES iterations increases more rapidly. If we use 20 ppwl, the direct local solves
lead to 520 outer iterations. This goes up to 555 when we use the iterative approach
and a tolerance of 10−5. Note that the extra outer iterations compared to a tolerance
of 10−10 is surmountable as relaxing the tolerance by 5 orders of magnitude leads to
an increase of 25 iterations (from 530 to 555). Moreover, if we compare the number
of inner iterations, a finer mesh works better with two-level deflation preconditioned
GMRES on the subdomains, since we now need 15 iterations on average.
Similarly, on the finer mesh the number of inner iterations scales better with

increasing wave number 𝑘 by adding more subdomains. Contrary to the results for
𝑘 < 160, moving from 10 ppwl to 20 ppwl with 25 subdomains leads to less outer
iterations. Thus, for larger wave numbers, using a finer mesh with more subdomains
leads to a smaller number of outer and inner iterations. This effect is not observed
with respect to the direct solves on the subdomains and/or the use of the tolerance
10−10 (see Table 1 and Table 2): here as we go from 10 ppwl to 20 ppwl, the number
of outer iterations always increases.

Low-tolerance: 10−2

Finally, we reduce the inner tolerance to just 10−2 and report results in Table 4.While
the overall observations follow a similar trend to the previous case, the number of
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Table 3: FGMRES iteration counts using the one-level RAS preconditioner with subdomain prob-
lems solved inexactly to a relative tolerance of 10−5 using GMRES with a two-level deflation
preconditioner. In parentheses we display the average number of GMRES iterations per subdomain
solve.

10 ppwl
𝑁

𝑘 𝑛glob 4 9 16 25
20 30 20 (12) 27 (14) 65 (14) 46 (12)
40 60 34 (20) 76 (15) 95 (14) 122 (14)
80 120 72 (26) 154 (17) 210 (19) 262 (17)
160 240 175 (44) 301 (40) 398 (19) 572 (20)

20 ppwl
𝑁

𝑘 𝑛glob 4 9 16 25
20 60 20 (15) 50 (13) 43 (13) 59 (12)
40 120 37 (16) 76 (18) 104 (14) 118 (14)
80 240 86 (19) 148 (16) 218 (16) 314 (14)
160 480 144 (34) 308 (31) 431 (16) 555 (15)

inner iterations are reduced drastically. This comes at the expense of a higher number
of outer iterations as the wave number and number of subdomains increase.
The most noticeable result is again for the highest wave number, 𝑘 = 160. If we

use 20 ppwl, the direct local solves lead to 520 outer iterations. This goes up to
584 when we use the iterative approach with a tolerance of 10−2. The extra outer
iterations compared to a tolerance of 10−10 is again surmountable as relaxing the
tolerance by 8 orders of magnitude leads to an increase of 54 outer iterations (from
530 to 584). Meanwhile, the average inner iterations goes from 28 (for 10−10) to 15
(for 10−5), and finally to 6 iterations when using a tolerance of 10−2.
Analogous to the case where we set the tolerance to 10−5, we again observe that,

as an exception to the rule that increasing 𝑛ppwl leads to more outer iterations, the
number of outer iterations actually decreases when using 20 ppwl instead of 10
ppwl. This effect is only observed for the iterative approach on the subdomains in
combination with a sufficiently low tolerance, here 10−5 or 10−2.
An important take-away message here is that the outer iteration of the one-level

RAS preconditioned FGMRES method is able to reach convergence even when the
subdomain systems are solved only to a relatively low level of accuracy.

Table 4: FGMRES iteration counts using the one-level RAS preconditioner with subdomain prob-
lems solved inexactly to a relative tolerance of 10−2 using GMRES with a two-level deflation
preconditioner. In parentheses we display the average number of GMRES iterations per subdomain
solve.

10 ppwl
𝑁

𝑘 𝑛glob 4 9 16 25
20 30 20 (5) 27 (6) 73 (7) 50 (5)
40 60 42 (8) 87 (7) 109 (7) 126 (6)
80 120 84 (13) 172 (8) 241 (10) 298 (8)
160 240 211 (30) 332 (22) 451 (9) 1007 (8)

20 ppwl
𝑁

𝑘 𝑛glob 4 9 16 25
20 60 21 (7) 59 (5) 49 (5) 72 (5)
40 120 44 (7) 84 (8) 124 (6) 134 (6)
80 240 94 (9) 154 (7) 229 (8) 333 (6)
160 480 154 (20) 327 (19) 450 (7) 584 (6)

To provide some perspective on these results, we repeat the 10 ppwl experiment
but now use GMRES preconditioned by ILU(0) as the subdomain solution method
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(with tolerance 10−2). The results in Table 5 show that the average number of
inner iterations drastically increases. Further, for 𝑘 = 160 simulation run times were
noticeably increased. Note that, for 𝑘 = 160 and 𝑁 = 25, using the two-level deflation
preconditioner with 20 ppwl leads to both a lower inner and outer iteration count.

Table 5: FGMRES iteration counts using the one-level RAS preconditioner with subdomain prob-
lems solved inexactly to a relative tolerance of 10−2 using GMRES with an ILU(0) preconditioner.
In parentheses we display the average number of GMRES iterations per subdomain solve. Here we
use 10 ppwl.

𝑁

𝑘 𝑛glob 4 9 16 25
20 30 28 (21) 42 (12) 74 (10) 53 (7)
40 60 44 (64) 80 (36) 110 (25) 131 (17)
80 120 89 (250) 177 (121) 239 (83) 303 (55)
160 240 221 (983) 344 (502) 475 (260) 658 (199)

4 Conclusions

In this work we examined the utility of the one-level RAS preconditioner together
with FGMRES to solve the 2D homogeneous Helmholtz equation when using an
inexact solution method for the subdomain solves. Our results support the notion that
the direct solve can be substituted by an efficient iterative solver. By using two-level
deflation as a local preconditioner, we are able to keep the number of inner iterations
on the subdomains low and scalable with respect to the wave number 𝑘 .
The next step would be to include a coarse space and experiment with a two-

level RAS preconditioner combined with inexact solves on the subdomains. Adding
a coarse space would reduce the impact on the number of outer iterations when
substituting direct solves for inexact solves on the subdomains. The trade-off between
a higher number of outer iterations and a fast and memory efficient local subdomain
solve needs to be analysed in large-scale applications to determine the break-even
point in terms of wall-clock time, identifying where the iterative approach can be
beneficial. Especially in high-frequency 3D applications, the inclusion of the coarse
space can become a bottleneck. To reduce the outer iteration count, we either need to
solve with a large coarse space or on larger subdomains. Both options can be costly
when using a direct method and so an inexact solver is likely more suitable. Further,
in the iterative approach the inner Krylov solvers for the subdomain problems may
also benefit from the use of recycling techniques, which could further reduce the
number of inner iterations and increase efficiency.
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Non-Overlapping Domain Decomposition
Methods with Cross-Points and Padé
Approximants for the Helmholtz Equation

Yassine Boubendir and Tadanaga Takahashi

1 Introduction

We present a new non-overlapping domain decomposition method (NDDM) based
on the square-root transmission conditions and the utilization of an appropriate
technique dealing with the so-called cross-points problem in the context of nodal
finite element method (FEM). The square-root operator is localized using the Padé
Approximants technique. In addition,we use aKrylov solver to accelerate the iterative
procedure. Several numerical results are displayed to validate this new algorithm.

2 Model problem

Consider an obstacle 𝑆 with a smooth boundary condition Γ = 𝜕𝑆. We are solv-
ing for the scattered field 𝑢 solution of the Helmholtz equation equipped with the
Sommerfeld radiation condition




Δ𝑢 + 𝑘2𝑢 = 0 in R2\S
𝜕𝒏𝑆𝑢 = 𝑓 on Γ := 𝜕S

lim
|𝒙 |→∞

|𝒙 |1/2
(
∇𝑢 · 𝒙

|𝒙 | − i𝑘𝑢
)
= 0,

(1)
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where 𝒏𝑆 indicates the outward unit normal to Γ, 𝑓 is given in function of the plane
wave 𝑓 = −𝜕𝒏𝑆 𝑒−𝑖𝑘𝒅 ·𝒙 , with 𝒙 = (𝑥1, 𝑥2) ∈ R2 and i =

√
−1. The incidence angle 𝒅

is normalized on the unit sphere |𝒅 | = 1 and 𝑘 denotes the wavenumber.

Γ

Σ

Ω𝑖
Ω 𝑗

Σ𝑖 𝑗

n 𝑗 n𝑖

n
cross-points

Fig. 1: Sketch of a non-overlapping domain decomposition of the domain Ω.

To solve problem (1), we truncate the original computational domain using an
artificial interface Σ on which an absorbing boundary condition is posed, see Fig. 1.
Therefore, problem (1) is reduced to the following system



Δ𝑢 + 𝑘2𝑢 = 0 in Ω
𝜕𝒏𝑢 = 𝑓 on Γ
𝜕𝒏𝑢 − i𝑘𝑢 = 0 on Σ,

(2)

where 𝒏 represents the normal derivative pointing outward from Ω.

3 Non-overlapping domain decomposition algorithm

The first step of this method consists of splitting the domain Ω into 𝑁dom disjoint
subdomains Ω𝑖 , 𝑖 = 1, . . . , 𝑁dom such that:

• Ω =
⋃𝑁dom
𝑖=1 Ω𝑖 , 𝑖 = 1, . . . , 𝑁dom

• Ω𝑖 ∩Ω 𝑗 = ∅, ∀𝑖 ≠ 𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁dom
• 𝜕Ω𝑖 ∩ 𝜕Ω 𝑗 = Σ𝑖 𝑗 = Σ 𝑗𝑖 , 𝑖, 𝑗 = 1, . . . , 𝑁dom.

We define 𝑢𝑖 , Γ𝑖 , Σ𝑖 , 𝑓𝑖 to be their respective original definitions but restricted to Ω𝑖 .
Let n𝑖 be the outward unit normal to 𝜕Ω𝑖 and let Λ𝑖 be the set of all indices of
subdomains adjacent to Ω𝑖 . Following Després’ NDDM framework [5], we solve at
each step 𝑛 + 1 and for each subdomain 𝑖 = 1, . . . , 𝑁dom, the local problem:
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Δ𝑢 (𝑛+1)𝑖 + 𝑘2𝑢 (𝑛+1)𝑖 = 0 𝒙 ∈ Ω𝑖
𝜕𝒏𝑖𝑢

(𝑛+1)
𝑖 = 𝑓𝑖 𝒙 ∈ Γ𝑖

𝜕𝒏𝑖𝑢
(𝑛+1)
𝑖 − i𝑘𝑢 (𝑛+1)𝑖 = 0 𝒙 ∈ Σ𝑖

𝜕𝒏𝑖𝑢
(𝑛+1)
𝑖 + B𝑢 (𝑛+1)𝑖 = 𝑔 (𝑛)𝑖 𝑗 𝒙 ∈ Σ𝑖 𝑗 : 𝑗 ∈ Λ𝑖 ,

(3)

where 𝑔 (𝑛)𝑖 𝑗 represent the transmitting quantities along the common interfaces defined
by

𝑔 (𝑛)𝑖 𝑗 = −𝜕𝒏 𝑗𝑢 (𝑛)𝑗 + B𝑢 (𝑛)𝑗 = 2B𝑢 𝑗 (𝑛) − 𝑔 (𝑛−1)
𝑗𝑖 . (4)

Several methods have been proposed in the past regarding the choice of the
operator B in order to improve the convergence of the Després NDDM [2, 3, 4, 6, 8].
In this paper, we are interested in the following transmission operator

Bsq, 𝜀𝑢 = −i𝑘

√︄
1 + divS

(
1
𝑘2
𝜀

∇S
)
𝑢, (5)

where divS and ∇S represent the surface divergence and surface gradient of a
surface S, respectively, 𝜀 is a parameter which may depends on S, and 𝑘 𝜀 = 𝑘 + i𝜀
is its corresponding complexified wavenumber. Operator (5) is non-local but it can
be localized using Padé approximants. The approximate square-root transmission
operator of order 𝑁p has the form

B𝑁p ,𝛼,𝜀𝑢𝑖 = −i𝑘 ©«
𝐶0𝑢𝑖 +

𝑁p∑︁
ℓ=1

𝐴ℓ divS
(

1
𝑘2
𝜀

∇S𝜑𝑖,ℓ
)ª®¬
, (6)

where the auxiliary unknowns 𝜑𝑖,ℓ for ℓ = 1, . . . , 𝑁p satisfy(
1 + 𝐵ℓ divS

(
1
𝑘2
𝜀

∇S
))
𝜑𝑖,ℓ = 𝑢𝑖 . (7)

The 𝐶0, 𝐴ℓ , 𝐵ℓ are complex Padé coefficients depending on a branch cut rotation
parameter 𝛼. We refer to [2] for the details of this operator.

4 Nodal FEM-NDDM and the cross-points problem

The algorithm developed in [4] is based on the modification of the Padé transmission
conditions introduced in [2]. The main goal of these modified conditions resides in
reducing the cost of local problems because of the resolution of a series of equations
on the artificial interfaces related to the auxiliary functions 𝜑𝑖,ℓ (7) that are coupled to
each local problem. In addition, thismodification [4] leads to transmission conditions
where the transmitting operator B is a scalar. In this case, it is possible to use the
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approach dealing with the so-called cross-points problem developed for nodal FEM-
NDDM [3]. The main idea of this approach consists of preserving the finite element
equations at the level of these points, i.e., of taking a common value for the degree
of freedom located on the nodes at the junction of several subdomains. The novelty
of the method presented here consists of effectively extending this technique to the
original Padé algorithm [2], i.e, in the case where the transmitting operatorB is given
by (6). Cross-points are corner nodes shared by multiple domains. The remainder of
this section describes the steps of the nodal FEM-NDDM in [1, 3] adapted to (6)-(7).
Let T ℎ and 𝑋ℎ be, respectively, a global, non-degenerate triangular mesh of Ω

and its associated P1-continuous finite element space. The discrete formulation of
problem (2) is defined as follows

𝑎Ω
(
𝑢ℎ, 𝑣ℎ

)
= 𝐿𝑣ℎ, 𝑢ℎ ∈ 𝑋ℎ, ∀𝑣ℎ ∈ 𝑋ℎ (8)

where

𝑎Ω

(
𝑢ℎ, 𝑣ℎ

)
:=

∫
Ω

(
∇𝑢ℎ · ∇𝑣ℎ − 𝑘2𝑢ℎ𝑣ℎ

)
dΩ − i𝑘

∫
Σ
𝑢ℎ𝑣ℎ dΣ

𝐿𝑣ℎ :=
∫
Γ
𝑓 𝑣ℎ dΣ

(9)

and 𝑢ℎ is the FEM solution. Consider now the discrete solution to the local problem
(3). Let T ℎ𝑖 and 𝑋ℎ𝑖 be, respectively, a non-degenerate triangular mesh of Ω𝑖 and its
associated P1-continuous finite element space which conforms to the global mesh.
The discrete form of (3) with the Padé square root operator is

𝑢ℎ𝑖 ∈ 𝑋ℎ𝑖 , ∀𝑣ℎ𝑖 ∈ 𝑋ℎ𝑖

𝑎𝑖 (𝑢ℎ𝑖 , 𝑣ℎ𝑖 ) +

𝑁p∑︁
ℓ=1

𝑝𝑖,ℓ (𝜑ℎ𝑖,ℓ , 𝑣ℎ𝑖 ) = 𝐿𝑖 (𝑣ℎ𝑖 )

𝑞𝑖 (𝑢ℎ𝑖 , 𝑣ℎ𝑖 ) + 𝑟𝑖,ℓ (𝜑ℎ𝑖,ℓ , 𝑣ℎ𝑖 ) = 0 ∀ℓ = 1, . . . , 𝑁p,

(10)

where

𝑎𝑖 (𝑢𝑖 , 𝑣𝑖) =
∫
Ω𝑖
(∇𝑢𝑖 · ∇𝑣𝑖 − 𝑘2𝑢𝑖𝑣𝑖)d𝑥−i𝑘

∫
Σ𝑖
𝑢𝑖 𝑣𝑖d𝑠 − i𝑘𝐶0

∑︁
𝑗∈Λ𝑖

∫
Σ𝑖 𝑗
𝑢𝑖𝑣𝑖d𝑠

(11)

𝑝𝑖,ℓ (𝜑𝑖,ℓ , 𝑣𝑖) =
∑︁
𝑗∈Λ𝑖

𝐴ℓ
i𝑘
𝑘2
𝜀

∫
Σ𝑖 𝑗
∇Σ𝑖 𝑗𝜑𝑖,ℓ · ∇Σ𝑖 𝑗 𝑣𝑖 d𝑠 (12)

𝑞𝑖 (𝑢𝑖 , 𝑣𝑖) =
∑︁
𝑗∈Λ𝑖

∫
Σ𝑖 𝑗
𝑢𝑖𝑣𝑖 d𝑠 (13)

𝑟𝑖,ℓ (𝜑𝑖,ℓ , 𝑣𝑖) = −
∑︁
𝑗∈Λ𝑖

∫
Σ𝑖 𝑗
𝜑𝑖,ℓ𝑣𝑖 d𝑠 + 𝐵ℓ

𝑘2
𝜀

∫
Σ𝑖 𝑗
∇Σ𝑖 𝑗𝜑𝑖,ℓ · ∇Σ𝑖 𝑗 𝑣𝑖d𝑠 (14)
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𝐿𝑖 (𝑣𝑖) =
∫
Γ𝑖
𝑓𝑖 𝑣𝑖 d𝑠 +

∑︁
𝑗∈Λ𝑖

∫
Σ𝑖 𝑗
𝑔𝑖 𝑗𝑣𝑖 d𝑠. (15)

with 𝜑𝑖,ℓ = 0 on 𝜕Σ𝑖 𝑗 . The method proposed here consist in relating the discrete
original problem with the discrete local problems. We start by classifying the nodes
of our mesh as one of the following:

• Independent: these nodes are interior to Ω𝑖 , Σ𝑖 , and Γ𝑖 .
• Shared: these nodes are interior to Σ𝑖 𝑗 .
• Cross-points: these are points where any of the curves Γ𝑖 , Σ𝑖 𝑗 , or Σ𝑖 meet.

Any discrete local test function 𝑣ℎ𝑖 ∈ 𝑋ℎ𝑖 can be decomposed as follows:

𝑣ℎ𝑖 = 𝑣ℎ𝑖I +
∑︁
𝑗∈Λ𝑖

𝑣ℎ𝑖 𝑗 + 𝑣ℎc , (16)

where 𝑣ℎ𝑖I is supported only on independent nodes, 𝑣
ℎ
𝑖 𝑗 is supported only on shared

nodes, and 𝑣ℎc is supported only on cross-points. Let us introduce the broken space
𝑋ℎB defined as the span of the function

𝑣ℎ =
𝑁𝑑𝑜𝑚∑︁
𝑖=1

©«
𝑣ℎ𝑖I +

∑︁
𝑗∈Λ𝑖

𝑣ℎ𝑖 𝑗
ª®¬
+ 𝑣ℎc , (17)

see [1, 3] for more details.We are also defining the series of functions (𝜑ℎ𝑖,1, ..., 𝜑
ℎ
𝑖,𝑁p
)

in the space (Φℎ𝑖 )𝑁p where Φℎ𝑖 represents a subspace of 𝑋
ℎ
𝑖 supported only on the

shared nodes. Finally, using conditions (4), the decompositions (16) and (17), and
following a similar derivation to the algorithm described in [1], we can see that
problem (8) is reduced to solving the following system

𝑎𝑖

(
𝑢ℎ𝑖I +

∑
𝑗∈Λ𝑖 𝑢

ℎ
𝑖 𝑗 + 𝑢ℎc , 𝑣ℎ𝑖I

)
= 𝐿𝑖 (𝑣ℎ𝑖I), ∀𝑣ℎ𝑖I ∈ 𝑋ℎ𝑖

𝑎𝑖

(
𝑢ℎ𝑖I +

∑
𝑗∈Λ𝑖 𝑢

ℎ
𝑖 𝑗 + 𝑢ℎc , 𝑣ℎ𝑖 𝑗

)
+∑𝑁p

ℓ=1 𝑝𝑖,ℓ (𝜑ℎ𝑖,ℓ , 𝑣ℎ𝑖 𝑗 ) = 𝐿𝑖 (𝑣ℎ𝑖 𝑗 ),

𝑞𝑖 (𝑢ℎ𝑖 𝑗 , 𝑣ℎ𝑖 𝑗 ) + 𝑟𝑖,ℓ (𝜑ℎ𝑖,ℓ , 𝑣ℎ𝑖 𝑗 ) = 0, ∀ℓ = 1, . . . , 𝑁p,

∀𝑣ℎ𝑖 𝑗 ∈ 𝑋ℎ𝑖 , 𝑗 ∈ Λ𝑖




, 𝑖 = 1, . . . , 𝑁dom

𝑁∑︁
𝑖=1

𝑎𝑖
©«
𝑢ℎ𝑖I +

∑︁
𝑗∈Λ𝑖

𝑢ℎ𝑖 𝑗 + 𝑢ℎc , 𝑣ℎc ª®¬
=

𝑁∑︁
𝑖=1

𝐿𝑖 (𝑣ℎc ) ∀𝑣ℎc ∈ 𝑋ℎ𝑐 ,

(18)
and this system can be put in the matrix form (with 𝑁 subdomains) as follows
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𝐴11 𝑃1 𝐴1𝑐
𝑄1 𝑅1 0

. . .
...

𝐴𝑁𝑁 𝑃𝑁 𝐴𝑁𝑐
𝑄𝑁 𝑅𝑁 0

𝐴𝑐1 0 . . . 𝐴𝑐𝑁 0 𝐴𝑐𝑐





𝒖1
𝝋1
...

𝒖𝑵

𝝋𝑵

𝒖𝒄



=



𝒈1
0
...
𝒈𝑵
0
𝒈𝒄



(19)

with the quantities 𝒈𝑖 being computed from the equation (15) where 𝑔𝑖 𝑗 is updated
on Σ𝑖 𝑗 at each step (𝑛 + 1) as follows

𝑔 (𝑛+1)𝑖 𝑗 = −𝑔 (𝑛)𝑗𝑖 − 2i𝑘 ©«
𝐶0𝑢

(𝑛+1)
𝑖 +

𝑁p∑︁
ℓ=1

𝐴ℓ divΣ𝑖 𝑗

(
1
𝑘2
𝜀

∇Σ𝑖 𝑗𝜑𝑖,ℓ
)ª®¬
, (20)

where 𝜑𝑖,ℓ are the auxiliary functions corresponding to the solution 𝑢 (𝑛+1)𝑖 . The
system (19) is similar to the one numbered (21) in [3] obtained in the case where B
is a scalar. We use the same procedure (based on a Schur complement) described in
[3] to deal with (19). For that, one needs to change the notations in this description
and consider that each blocks 𝐴𝑖𝑖 is composed by the sub-blocks 𝐴𝑖𝑖 , 𝑃𝑖 ,𝑄𝑖 , and 𝑅𝑖 .

5 Numerical Results

This section is devoted to validating the proposed method through numerical sim-
ulations. We generate a triangular mesh controlled by 2 parameters: wavelength 𝜆
and points per wavelength 𝑛𝜆. We use both a Krylov subspace solver (Orthodir)
and successive approximation (Jacobi) methods to solve the iteration operator [7].
Because its performance, we choose to compare our new method (19) with the one
called evanescent mode damping algorithm (EMDA) [3] which consists of choosing
B = −i𝑘 (1 + iX). We evaluate the performance based on the number of iterations
until convergence (initial residue decreases by a factor of 10−6). For the Padé param-

Fig. 2: Geometries used for the numerical simulation: pie (left) and layered (right) configurations.
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eters, we chose [2] 𝛼 = 𝜋/4 and 𝜀 = 0.6𝑘1/3. For the EMDA, we chose X = 1/2.
These simulations are performed on the 2 geometries shown in Fig. 2.
In the pie configuration (left of Fig. 2), the annulus is split radially into 𝑁dom

equal subdomains. The inner radius is fixed 𝑟1 = 1 and the outer radius varies with
frequency 𝑟2 = 𝑟1 + 2𝜋/𝑘 . In the first experiment, we fixed 𝑁dom = 5, 𝑘 = 𝜋, varied
𝑛𝜆 = 12, 16, 20, 24, and Padé orders 𝑁p = 1, 2, 4, 8. Table 1 shows the obtained
results. In the second experiment, we determine how the wavenumber affects the

Table 1: Number of iterations till convergence with respect to points per wavelength 𝑛𝜆

Jacobi Orthodir
𝑛𝜆 EMDA Padé1 Padé2 Padé4 Padé8 EMDA Padé1 Padé2 Padé4 Padé8

12 105 33 25 25 25 28 18 15 14 14
16 136 44 28 24 24 32 20 17 14 14
20 159 52 34 23 23 35 22 18 15 15
24 192 63 42 23 23 38 24 20 16 15

convergence rate. Table 2 displays the results for fixed 𝑁dom = 5, 𝑛𝜆 = 16 and
wavenumber varied 𝑘 = 𝜋, 2𝜋, 3𝜋, 4𝜋. In the third experiment, we varied the number
of subdomains 𝑁dom = 2, 4, 6, 12 with fixed 𝑘 = 𝜋 and 𝑛𝜆 = 16. These results are
summarized in Table 3.

Table 2: Number of iterations till convergence with respect to wavelength 𝑘

Jacobi Orthodir
𝑘 EMDA Padé1 Padé2 Padé4 Padé8 EMDA Padé1 Padé2 Padé4 Padé8

𝜋 136 44 28 24 24 32 20 17 14 14
2𝜋 124 40 25 22 22 29 19 16 14 14
3𝜋 127 41 26 24 24 30 20 16 15 15
4𝜋 120 39 25 24 24 29 19 16 15 15

Table 3: Number of iterations till convergence with respect to number of subdomains 𝑁dom

Jacobi Orthodir
𝑁dom EMDA Padé1 Padé2 Padé4 Padé8 EMDA Padé1 Padé2 Padé4 Padé8

2 136 44 28 17 17 20 14 13 12 11
4 137 44 27 20 20 29 18 15 13 13
6 139 44 28 25 25 32 20 17 15 15
12 139 67 54 50 49 39 28 24 23 23
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Table 4: Results for the cross-point configuration experiments

Jacobi Orthodir
𝑛𝜆 EMDA Padé2 Padé4 EMDA Padé2 Padé4

12 110 60 59 36 24 24
16 123 70 68 40 25 25
20 144 76 73 43 27 26
24 165 81 79 46 29 27

Jacobi Orthodir
𝑘 EMDA Padé2 Padé4 EMDA Padé2 Padé4

𝜋 123 70 68 40 25 25
2𝜋 115 44 44 42 31 31
3𝜋 110 53 53 45 37 37
4𝜋 165 56 56 46 42 42

The layered configuration (right of Fig. 2) is a six-domain annulus in which
the radii 𝑟1 = 1, 𝑟2 = 3 and 𝑁dom are fixed. For this geometry, we first varied
𝑛𝜆 = 12, 16, 20, 24 with fixed 𝑘 = 𝜋. We then tested several wavenumbers 𝑘 =
𝜋, 2𝜋, 3𝜋, 4𝜋 with fixed 𝑛𝜆 = 16. All the obtained results are listed in Table 4.
These tests demonstrate the effectiveness of the combination of the square root

transmission operator, localized using Padé approximants, with the treatment of
the cross-points. We observe stability and consistency in terms of convergence, in
particular when the Krylov solver Orthodir is applied.

Acknowledgements Y. Boubendir’s work is supported by the NSF through Grants DMS- 1720014
and DMS-2011843.
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OSDS: A Sweeping Preconditioner for the
Helmholtz Equation

Nacime Bouziani and Frédéric Nataf

Domain decomposition algorithms have become popular in solving the Helmholtz
equation since the seminal Després paper [3]. Although it is known that the presence
of overlaps helps to speed up the convergence for domain decomposition methods,
nonoverlapping based methods are often used to avoid to deal with the construction
of the normal derivative of the solution. For decompositions into vertical strips, a
sweeping algorithm was first proposed and analyzed in [6] for convection-diffusion
operators. Recently, sweeping methods have gained interested due to their capability
to achieve nearly-linear asymptotic complexity, see e.g. the double sweep precondi-
tionner of Vion and Geuzaine for non overlapping decomposition with high order
interface conditions [8, 9], the PML-based sweep method of Stolk [2], and the
polarized traces method of Zepeda-Núñez and Demanet [10].
We consider a decomposition of the domain into layers where the local sub-

problems are equipped with interface conditions, also called absorbing boundary
conditions (ABC). In practice, the exact ABC (which are also the optimal interface
conditions, see [7]) procedure is tedious to implement and computationally expen-
sive. As a consequence, the boundary conditions at the interfaces produce spurious
reflected waves that significantly increase the number of iterations to converge, in
particular for heterogeneous media and high frequency regimes.
We propose to precondition the discrete Helmholtz system by an overlapping

splitting double-sweep algorithm that allows for overlapping subdomains and pre-
vents spurious interface reflections from hindering the convergence. Using overlap-
ping subdomains allows us to leverage its beneficial effect on the damping of high
frequency modes of the error, while splitting prevents its adversary effect on the con-
vergence of propagativemodes. This is highly beneficial since in the non-overlapping
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Frédéric Nataf
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approach [8, 9], the quality of the ABC is nearly the only way of impacting the con-
vergence of the algorithm, and when dealing with more complex problems such as
Maxwell equations high order ABCs are harder to handle.

1 Statement of the problem and some algorithms

We consider the Helmholtz equation in a bounded domain Ω ⊂ R2 with frequency
𝜔, velocity 𝑐 and wavenumber 𝑘 defined by 𝑘2 = 𝜔2/𝑐2:(−𝑘2 − Δ)

𝑢 = 𝑓 in Ω
+ appropriate boundary conditions on 𝜕Ω . (1)

We consider a layered decomposition of Ω into 𝑁 slices (Ω𝑖)1≤𝑖≤𝑁 , with or without
overlap, see Figure 1. More precisely, for each 1 ≤ 𝑖 ≤ 𝑁 , Ω \ Ω𝑖 is written as the
disjoint union of two open subsets Ω𝑖,𝑙 and Ω𝑖,𝑟 where Ω𝑖,𝑙 is on the left of Ω𝑖 and
Ω𝑖,𝑟 on its right. The boundary 𝜕Ω𝑖 \ 𝜕Ω is written as the disjoint union of Γ𝑖,𝑙 and
Γ𝑖,𝑟 where Γ𝑖,𝑙 is on the left of Ω𝑖 and Γ𝑖,𝑟 is on its right (Ω1,𝑙 = ∅ and Ω𝑁,𝑟 = ∅)
(see Figure 2). The outward normal from Ω𝑖 on Γ𝑖,𝑙 (resp. Γ𝑖,𝑟 ) is denoted by 𝒏𝑖,𝑙
(resp. 𝒏𝑖,𝑟 ). The problem (1) can be solved iteratively using a domain decomposi-

Fig. 1: Decomposition into vertical strips

tion method where we solve locally on each subdomain Ω𝑖 the equation (1) with
appropriate boundary conditions on the physical boundaries and interfaces [3]. The
method reads:

Solve in parallel:




(
−𝑘2 − Δ

)
𝑢𝑛+1𝑖 = 𝑓 in Ω𝑖 , 1 ≤ 𝑖 ≤ 𝑁

B𝑖,𝑙
(
𝑢𝑛+1𝑖

)
= B𝑖,𝑙

(
𝑢𝑛𝑖−1

)
on Γ𝑖,𝑙 , 2 ≤ 𝑖 ≤ 𝑁

B𝑖,𝑟
(
𝑢𝑛+1𝑖

)
= B𝑖,𝑟

(
𝑢𝑛𝑖+1

)
on Γ𝑖,𝑟 , 1 ≤ 𝑖 ≤ 𝑁 − 1

+ appropriate boundary conditions on 𝜕Ω ∩ 𝜕Ω𝑖 ,

(2)

where B𝑖,𝑙 and B𝑖,𝑟 are the interface conditions. For sake of simplicity, we consider
first-order ABC as interface conditions:
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B𝑖,𝑙 = 𝜕𝒏𝑖,𝑙 + 𝐼𝑘
B𝑖,𝑟 = 𝜕𝒏𝑖,𝑟 + 𝐼𝑘

(3)

where 𝐼2 = −1 and 𝒏𝑖,𝑟 (resp. 𝒏𝑖,𝑙) is the outward normal to domain Ω𝑖 on Γ𝑖,𝑟
(resp. Γ𝑖,𝑙). It is known that higher-order ABC lead to significant improvement of
the convergence speed, see e.g. [4, 1].
A more efficient variant of algorithm 2 was introduced in [6]. It consists in double

sweeps over the subdomains:

Left to right sweep:




(
−𝑘2 − Δ

)
𝑢𝑛+1/2𝑖 = 𝑓 in Ω𝑖 , 1 ≤ 𝑖 ≤ 𝑁

B𝑖,𝑙
(
𝑢𝑛+1/2𝑖

)
= B𝑖,𝑙

(
𝑢𝑛+1/2𝑖−1

)
on Γ𝑖,𝑙 , 2 ≤ 𝑖 ≤ 𝑁

B𝑖,𝑟
(
𝑢𝑛+1/2𝑖

)
= B𝑖,𝑟

(
𝑢𝑛𝑖+1

)
on Γ𝑖,𝑟 , 1 ≤ 𝑖 ≤ 𝑁 − 1

+ appropriate boundary conditions on 𝜕Ω ∩ 𝜕Ω𝑖 .

(4)

Right to left sweep:




(
−𝑘2 − Δ

)
𝑢𝑛+1𝑖 = 𝑓 in Ω𝑖 , 1 ≤ 𝑖 ≤ 𝑁

B𝑖,𝑙
(
𝑢𝑛+1𝑖

)
= B𝑖,𝑙

(
𝑢𝑛+1/2𝑖−1

)
on Γ𝑖,𝑙 , 2 ≤ 𝑖 ≤ 𝑁

B𝑖,𝑟
(
𝑢𝑛+1𝑖

)
= B𝑖,𝑟

(
𝑢𝑛+1𝑖+1

)
on Γ𝑖,𝑟 , 1 ≤ 𝑖 ≤ 𝑁 − 1

+ appropriate boundary conditions on 𝜕Ω ∩ 𝜕Ω𝑖 .

(5)

2 Overlapping Splitting double sweep

In this section, we define a variant of algorithm (4)-(5) which has a superior conver-
gence. Numerical results will show that it benefits better from the overlap and has
better parallelism. This algorithm is written in terms of the substructured problem
that we define first.

2.1 Substructuring

Substructuring algorithm (2), the iterative method can be reformulated considering
only surfacic unknowns on the interfaces:{

ℎ𝑛𝑖,𝑙 := B𝑖,𝑙
(
𝑢𝑛𝑖

)
, on Γ𝑖,𝑙 for 2 ≤ 𝑖 ≤ 𝑁 ,

ℎ𝑛𝑖,𝑟 := B𝑖,𝑟
(
𝑢𝑛𝑖

)
, on Γ𝑖,𝑟 for 1 ≤ 𝑖 ≤ 𝑁 − 1 .

(6)
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Considering the global vector ℎ𝑛 := (ℎ𝑛2,𝑙 , . . . , ℎ𝑛𝑁,𝑙 , ℎ𝑛𝑁−1,𝑟 , . . . , ℎ
𝑛
1,𝑟 )𝑇 , containing

first the local unknowns (ℎ𝑛𝑖,𝑙)2≤𝑖≤𝑁 and then in reverse order (ℎ𝑛𝑖,𝑟 )1≤𝑖≤𝑁−1, we
can reformulate the parallel Schwarz method (2) as a Jacobi algorithm on ℎ𝑛:
ℎ𝑛+1 := 𝒯(ℎ𝑛) + 𝐺, where the iteration operator 𝒯 can be written in the form
of an operator valued matrix and 𝐺 refers to the contribution of the right-hand side
𝑓 , see [7]. Therefore, we look for a vector ℎ such that

(𝐼𝑑 −𝒯) (ℎ) = 𝐺 . (7)

In order to define more precisely the operator𝒯, we introduce for each subdomain
an operator 𝑆𝑖 which takes three arguments, two surfacic functions ℎ𝑙 and ℎ𝑟 and a
volume function 𝑓 :

𝑆𝑖 (ℎ𝑖,𝑙 , ℎ𝑖,𝑟 , 𝑓 ) := 𝑣, (8)

where 𝑣 : Ω𝑖 ↦→ C satisfies:



(
−𝑘2 − Δ

)
𝑣 = 𝑓 in Ω𝑖

B𝑖,𝑙 (𝑣) = ℎ𝑖,𝑙 on Γ𝑖,𝑙 (2 ≤ 𝑖 ≤ 𝑁)
B𝑖,𝑟 (𝑣) = ℎ𝑖,𝑟 on Γ𝑖,𝑟 (1 ≤ 𝑖 ≤ 𝑁 − 1)

+ appropriate boundary conditions on 𝜕Ω ∩ 𝜕Ω𝑖 ,

(9)

for 1 < 𝑖 < 𝑁 (see Figure 2). For 𝑖 = 1, the definition of 𝑆1 is similar except
that it takes only the two arguments (ℎ1,𝑟 , 𝑓 ) since domain Ω1 has no left in-
terface and similarly operator 𝑆𝑁 takes only the two arguments (ℎ𝑁,𝑙 , 𝑓 ) since
domain Ω𝑁 has no right interface. As of now, for sake of simplicity and by abuse
of notation, 𝑆1 (ℎ1,𝑙 , ℎ1,𝑟 , 𝑓 ) (resp. 𝑆𝑁 (ℎ𝑁,𝑙 , ℎ𝑁,𝑟 , 𝑓 )) will refer to 𝑆1 (ℎ1,𝑟 , 𝑓 )
(resp. 𝑆𝑁 (ℎ𝑁,𝑙 , 𝑓 )).

Bi,l(ui) = hl Bi,r(ui) = hr

Ωi

L(ui) = f

Γi,l Γi,r

Γi−1,r Γi+1,l

Fig. 2: Local problem on the subdomain Ω𝑖

Next, we introduce the surfacic right hand-side 𝐺 by

𝐺𝑖+1,𝑙 := B𝑖+1,𝑙 (𝑆𝑖 (0, 0, 𝑓 )), 1 ≤ 𝑖 ≤ 𝑁 − 1 ,
𝐺𝑖−1,𝑟 := B𝑖−1,𝑟 (𝑆𝑖 (0, 0, 𝑓 )), 2 ≤ 𝑖 ≤ 𝑁 , (10)

and the substructured operator𝒯 by:
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𝒯(ℎ)𝑖+1,𝑙 := B𝑖+1,𝑙 (𝑆𝑖 (ℎ𝑖,𝑙 , ℎ𝑖,𝑟 , 0)), 1 ≤ 𝑖 ≤ 𝑁 − 1 ,
𝒯(ℎ)𝑖−1,𝑟 := B𝑖−1,𝑟 (𝑆𝑖 (ℎ𝑖,𝑙 , ℎ𝑖,𝑟 , 0)), 2 ≤ 𝑖 ≤ 𝑁 . (11)

We can now write the substructured form of the double sweep algorithm as:

Forward sweep

ℎ𝑛+1/2𝑖+1,𝑙 := B𝑖+1,𝑙 (𝑆𝑖 (ℎ𝑛+1/2𝑖,𝑙 , ℎ𝑛𝑖,𝑟 , 𝑓 )) ,
ℎ𝑛+1/2𝑖−1,𝑟 := B𝑖−1,𝑟 (𝑆𝑖 (ℎ𝑛+1/2𝑖,𝑙 , ℎ𝑛𝑖,𝑟 , 𝑓 )) ,

(12)

followed by a Backward sweep

ℎ𝑛+1𝑖+1,𝑙 := B𝑖+1,𝑙 (𝑆𝑖 (ℎ𝑛+1/2𝑖,𝑙 , ℎ𝑛+1𝑖,𝑟 , 𝑓 )) ,
ℎ𝑛+1𝑖−1,𝑟 := B𝑖−1,𝑟 (𝑆𝑖 (ℎ𝑛+1/2𝑖,𝑙 , ℎ𝑛+1𝑖,𝑟 , 𝑓 )) .

(13)

As for the Jacobi method, by introducing an operator 𝒯𝐷𝑆 , this algorithm can be
written in a compact form ℎ𝑛+1 = ℎ𝑛 + (𝐼 −𝒯𝐷𝑆)−1 (𝐺 − (𝐼 −𝒯) (ℎ𝑛)), see [6].

2.2 Overlapping Splitting Double Sweep preconditioner (OSDS)

We explain now the rationale behind the overlapping splitting double sweep precon-
ditioner that we define in this section. Note first that by linearity of the operators
(𝑆𝑖)1≤𝑖≤𝑁 , the contribution of each subdomain can be split into two contributions,
one for each of its two interfaces:

𝒯(ℎ)𝑖+1,𝑙 = B𝑖+1,𝑙 (𝑆𝑖 (ℎ𝑖,𝑙 , 0, 0)) + B𝑖+1,𝑙 (𝑆𝑖 (0, ℎ𝑖,𝑟 , 0)), 1 ≤ 𝑖 ≤ 𝑁 − 1 ,
𝒯(ℎ)𝑖−1,𝑟 = B𝑖−1,𝑟 (𝑆𝑖 (0, ℎ𝑖,𝑟 , 0)) + B𝑖−1,𝑟 (𝑆𝑖 (ℎ𝑖,𝑙 , 0, 0)), 2 ≤ 𝑖 ≤ 𝑁 .

(14)
Had we used exact absorbing (a.k.a transparent or non-reflecting) boundary condi-
tions (EABC) B𝐸𝐴𝐵𝐶 instead of the zero-th order ones (3) in equations (8)-(9), two
terms in (14) would vanish, namely:

B𝐸𝐴𝐵𝐶𝑖+1,𝑙 (𝑆𝐸𝐴𝐵𝐶𝑖 (0, ℎ𝑖,𝑟 , 0)) = 0, 1 ≤ 𝑖 ≤ 𝑁 − 1 ,
B𝐸𝐴𝐵𝐶𝑖−1,𝑟 (𝑆𝐸𝐴𝐵𝐶𝑖 (ℎ𝑖,𝑙 , 0, 0)) = 0, 2 ≤ 𝑖 ≤ 𝑁 . (15)

The corresponding operator in (14) would thus only contain one term then,

𝒯
𝐸𝐴𝐵𝐶 (ℎ)𝑖+1,𝑙 = B𝐸𝐴𝐵𝐶𝑖+1,𝑙 (𝑆𝐸𝐴𝐵𝐶𝑖 (ℎ𝑖,𝑙 , 0, 0)), 1 ≤ 𝑖 ≤ 𝑁 − 1 ,

𝒯
𝐸𝐴𝐵𝐶 (ℎ)𝑖−1,𝑟 = B𝐸𝐴𝐵𝐶𝑖−1,𝑟 (𝑆𝐸𝐴𝐵𝐶𝑖 (0, ℎ𝑖,𝑟 , 0)), 2 ≤ 𝑖 ≤ 𝑁 . (16)

Then thanks to our numbering of ℎ, the operator valued matrix𝒯𝐸𝐴𝐵𝐶 is 2 × 2
block diagonal matrix where each block is subdiagonal. As a consequence, for some
vector 𝐺, computing (𝐼 −𝒯

𝐸𝐴𝐵𝐶 )−1 𝐺 can be performed by two parallel forward
substitutions, which amounts to a single double sweep over the subdomains.
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In practice, the absorbing boundary conditions are non exact, therefore we have

B𝑖+1,𝑙 (𝑆𝑖 (0, ℎ𝑖,𝑟 , 0)) ≠ 0, 1 ≤ 𝑖 ≤ 𝑁 − 1 ,
B𝑖−1,𝑟 (𝑆𝑖 (ℎ𝑖,𝑙 , 0, 0)) ≠ 0, 2 ≤ 𝑖 ≤ 𝑁 , (17)

and we loose the block diagonal structure of𝒯. This led us to define a new operator
𝒯𝑂𝑆𝐷𝑆

𝒯𝑂𝑆𝐷𝑆 (ℎ)𝑖+1,𝑙 := B𝑖+1,𝑙 (𝑆𝑖 (ℎ𝑖,𝑙 , 0, 0)), 1 ≤ 𝑖 ≤ 𝑁 − 1 ,
𝒯𝑂𝑆𝐷𝑆 (ℎ)𝑖−1,𝑟 := B𝑖−1,𝑟 (𝑆𝑖 (0, ℎ𝑖,𝑟 , 0)), 2 ≤ 𝑖 ≤ 𝑁 , (18)

which by definition has the same structure than 𝒯
𝐸𝐴𝐵𝐶 . We propose to use this

newly defined operator to build a preconditioner for (7). The right-preconditioned
solves reads: Find ℎ̃ solution to

(𝐼𝑑 −𝒯) (𝐼𝑑 −𝒯𝑂𝑆𝐷𝑆 )−1 ( ℎ̃) = 𝐺 , (19)

followed by ℎ := (𝐼𝑑 −𝒯𝑂𝑆𝐷𝑆 )−1 ( ℎ̃).
More intuitively, the key idea is to cancel out the reverse contribution at the

interfaces that should not happen for the exact ABC case in order to prevent spu-
rious interface reflections from hindering the convergence. In fact, these boundary
conditions at the interfaces produce spurious reflected waves that significantly in-
crease the number of iterations to converge, in particular for heterogeneous media
and high frequency regimes. Note that for a non overlapping domain decomposition,
the OSDS algorithm is similar to the double sweep method of [8, 9]. Our approach
addresses the case of overlapping subdomains that benefits the convergence rate.

3 Numerical results

In this section, we present numerical results when solving the substructured equa-
tion (7) with the GMRES algorithm right preconditioned by 𝐼𝑑 (Jacobi method),
(𝐼𝑑−𝒯𝐷𝑆 )−1 (Double sweep algorithm) and (𝐼𝑑−𝒯𝑂𝑆𝐷𝑆 )−1 (Overlapping Splitting
Double sweep algorithm). Note that the Jacobi method requires 𝑁 subdomain solves
per iteration instead of 2 𝑁 for the sweeping methods. The Helmholtz equation is
discretized with a P1 finite element using FreeFem++ [5]. Note that we use a careful
variational discretisation of the normal derivative ensuring that the solution obtained
converges to the solution of the problem without domain decompositions.

3.1 Wedge test

We consider the classical test case of the wedge, see e.g. [8], a rectangular domain
[0, 600]×[0, 1000]with three different velocities in regions separated by non-parallel
boundaries (Fig. 3 left). Starting from the top, the velocities are 𝑐 = 2000, 𝑐 = 1500
and 𝑐 = 3000. Sommerfeld conditions are imposed on the bottom, right and left
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Fig. 3: Heterogeneous media: Wedge (Left: Velocity model, Right: Solution (real) for 𝜔 = 160𝜋)

boundaries. The abrupt variations of the wavenumber produce internal reflections in
different directions. A typical solution is shown in Figure 3 right.
Iteration counts are given in Table 1. The OSDS method is clearly superior to the

Jacobi and DS methods. When increasing the number of subdomains, the ratio in
favor of the OSDS method compared to the DS method increases up to reaching a
value of nearly 4 for a domain decomposition into 40 vertical strips. Interestingly, we
see that for a low tolerance on the residual (TOL=10−3), the OSDS iteration counts
are almost independent of the number of subdomains.

𝑁
𝜔 = 40𝜋 𝜔 = 60𝜋

Jacobi DS OSDS Jacobi DS OSDS
5 28 (17) 19 (11) 13 (6) 28 (15) 18 (10) 12 (5)
10 55 (31) 31 (16) 14 (7) 56 (30) 31 (15) 14 (6)
20 110 (55) 58 (29) 18 (8) 111 (53) 57 (28) 18 (7)
40 203 (88) 103 (47) 27 (9) 206 (85) 111 (55) 30 (9)

Table 1:Wedge, 𝜔 = 40𝜋 and 60𝜋, 𝛿 = 16ℎ, TOL=10−6 (10−3) , nppwl = 24 , P1

3.2 Influence of the overlap

We have also tested the effect of the width of the overlap on the convergence. We
considered two test cases: the homogeneous waveguide and the wedge (see Table 2)
that is defined in more detail in § 3.1. We observe that for the waveguide solved
by the Overlapping Splitting Double Sweep method, the iteration count decreases
significantly with increasing overlap. This monotonical decrease in the iteration
count contrasts with the behaviour of the other two methods. We see that for the
Jacobi and double sweep (DS) methods, the overlap has very little effect. For the
Jacobi method it improves slightly the iteration counts whereas for the DS method,
it might deteriorate the iteration count. For the wedge test case, all methods benefit
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𝛿
Homogeneous waveguide (𝜔 = 20) Wedge (𝜔 = 40𝜋)

Jacobi DS OSDS Jacobi DS OSDS
2 159 69 27 259 127 97
4 165 74 23 245 117 83
8 160 76 20 221 105 69
16 143 73 18 202 91 53

Table 2: Influence of the overlap, 𝛿 varies, TOL=10−6, nppwl = 24 , P1

monotonically from the size of the overlap but once again the reduction in the
iteration count is more pronounced for the Overlapping Splitting Double Sweep
method where the iteration count is reduced by a factor 1.83 when the overlap is
increased from 2ℎ to 16ℎ.

4 Conclusion

We have introduced an overlapping splitting double sweep algorithm which yields
improved convergence for various problems. Many aspects deserve further inves-
tigations: higher-order ABC instead of the zero-th order one considered here and
the introduction of a pipelining technique that can be applied to multiple right-hand
sides problems to improve parallelism and achieve significant speed-ups, see [9].
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Decomposition and Preconditioning of Deep
Convolutional Neural Networks for Training
Acceleration

Linyan Gu, Wei Zhang, Jia Liu, and Xiao-Chuan Cai

1 Introduction

Deep convolutional neural networks (DCNNs) [7] have brought significant improve-
ments to the field of computer vision for a wide range of problems [3, 7]. Larger
models and larger datasets have led to breakthroughs in accuracy; however, it re-
sults in much longer training time and memory intensity, which negatively impact
the development of CNNs [1, 9]. There are two ways to parallelize training: model
parallelism and data parallelism [1]. Model parallelism partitions the network into
pieces, and different processors train different pieces. In model parallelism, frequent
communication between different processors is needed since the calculation of the
next layer usually requires the outputs of the previous layer. In data parallelism, the
dataset is partitioned into parts stored in each processor which has a local copy of
the network with its parameters. However, scaling the training to a large number of
processors means an increase in the batch size, which results in poor generalization.
New training methods are developed to avoid this problem [1, 9].
In this paper, we propose a method to parallelize the training of DCNNs by

decomposing and preconditioning DCNNs motivated by the idea of domain decom-
position methods [8]. Domain decomposition methods are a family of highly parallel
methods for solving partial differential equations on large scale computers, which
is based on the divide and conquer philosophy for solving a problem defined on a
global domain by iteratively solving subproblems defined on smaller subdomains
[8]. The advantages of domain decomposition methods consist of the straightforward
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applicability for parallel computing [4] and the localized treatment for the specificity
of subdomain problems [8].
First, motivated by the domain decomposition methods, a DCNN (also called a

global network) is decomposed into sub-networks by partitioning the width of the
network while keeping the depth constant. All the sub-networks are individually
trained, in parallel without any interprocessor communication, with the correspond-
ing decomposition of the input samples. Then, following the idea of nonlinear pre-
conditioning of Newton’s method [5] that replaces the standard initial guess by an
initial guess that satisfies some of the constraints locally, we propose a sub-network
transfer learning strategy in which the weights of the trained sub-networks are com-
posed to initialize the global network, which is then further trained. There are some
differences between the proposed preconditioning of DCNNs and the standard non-
linear domain decomposition preconditioners. For example, we use the stochastic
gradient descent (SGD) method instead of Newton’s method. Besides, the nonlinear
preconditioner of DCNNs (i.e., compositing the sub-networks to initialize the global
network) is applied only once, while the nonlinear preconditioner is applied in every
iteration (or some iterations) in the nonlinear preconditioning of Newton’s method.
The rest of this paper is organized as follows. Section 2 proposes a new method

to parallelize the training of DCNNs by decomposing and preconditioning DCNNs.
Section 3 provides some experiments, followed by our conclusions in Section 4. Ad-
ditionally, we have submitted some parts of this work to a special issue of Electronic
Transaction on Numerical Analysis [2], where more details, additional theoretical
discussions and more experimental results are included.

2 Proposed approaches

In this section, we propose and study a new method to parallelize the training of
DCNNs by decomposing and preconditioning DCNNs. We consider a DCNN for
classification consisting of some convolutional layers and some fully connected (FC)
layers, followed by a classification module which is usually a softmax layer.

Notations. Denote a 𝐿-layer DCNN as 𝐹 (𝒙;Θ) with input 𝒙 and the set of
parameters Θ. The output of each layer is called feature map and is a 3D tensors,
where the third dimension of the tensors is the number of independent maps, and the
first and the second are the height and the width, respectively. The kernel of the 𝑙-th
layer is a 4D tensor and can be denoted by 𝒘𝑙 ∈ R𝑡𝑙1×𝑡𝑙2×𝑐𝑙in×𝑐𝑙out , where 𝑐𝑙in and 𝑐𝑙out
are the number of input and output channels, respectively, and 𝑡𝑙1, 𝑡

𝑙
2 are the kernel

widths. A FC layer can be regarded as a special case of a convolutional layer.
Assume 𝒙 ∈ R𝐻×𝑊×𝐷 is a 3D tensor with element 𝑥𝑖, 𝑗 ,𝑘 where (𝑖, 𝑗 , 𝑘) ∈ Ω,

Ω = [𝐻] × [𝑊] × [𝐷] with [𝐻] = {1, · · · , 𝐻}. Given a Cartesian product Ω̃ ⊂ Ω, we
call �̃� = DΩ̃ (𝒙) a subdomain of 𝒙 with element 𝑥𝑖, 𝑗 , �̃� = 𝑥𝑖, 𝑗 ,𝑘 for all (𝑖, 𝑗 , 𝑘) ∈ Ω̃,
where the elements of DΩ̃ (𝒙) remain order-preserving (cf. [2]). Given a set of
Cartesian products {Ω𝑘}𝐾𝑘=1 satisfying
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Fig. 1: Illustration of the decomposition of DCNN. The global network and input is uniformly
decomposed into 4 partitions. The architecture of VGG16 (top) and one of sub-networks (bottom);
cf. [2].

Ω𝑖 ∩Ω 𝑗 = ∅,
⋃𝐾

𝑘=1
Ω𝑘 = Ω,

we call {�̃�𝑘 = DΩ𝑘 (𝒙) | 𝑘 ∈ [𝐾]} a complete decomposition of 𝒙. Besides, given a
subdomain Ω̃ of the input, the activation field of Ω̃ in the 𝑙-th layer, which is denoted
by G𝐹,𝑙 (Ω̃), represents the largest subdomain of the output of this layer that only
responds to Ω̃; see [2] for more formal details.

2.1 Decomposing a DCNN into sub-networks

We consider a global network for a classification task with samples 𝑋 = {𝒙𝑖}𝑖 and
their corresponding labels. Given a set of Cartesian products {Ω𝑘}𝐾𝑘=1, the samples
are decomposed into 𝐾 subdomain denoted by 𝑋𝑘 = {DΩ𝑘 (𝒙𝑖)}𝑖 for 𝑘 ∈ [𝐾]. For a
natural RGB image (i.e., 𝐷 = 3), we decompose 𝒙𝑖 in the first and second dimensions
but not the third dimension. Correspondingly, a global network is decomposed
into 𝐾 sub-networks by partitioning the width (i.e., along the channel dimension)
of the network while keeping the depth constant; see more formal details in [2].
Then, the samples of each subdomain and their ground truth are used to train
the corresponding sub-network. The trainings of sub-networks can be performed
completely independently on parallel computers. Compared with existing distributed
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training methods for DCNNs, the parallel training of sub-networks is rather related
to model parallelism than to data parallelism. However, the sub-networks are trained
completely independently and the communication between different sub-networks in
the proposed approach only occurs in the initialization of the global network, which
is different from the current model parallelism that suffers from excessive inter-GPU
communication since the model part trained by one processor usually requires output
from a model part trained by another processor.
Fig. 1 shows the decomposition of VGG16 [7], where the VGG16 and the input

samples are uniformly decomposed into 𝐾 = 4 partitions; uniformly means that the
decomposition of inputs is a complete decomposition, and the channel number and
the input are partitioned uniformly.
The number of floating point operations (FLOPs) [6] is used to estimate the

computational complexity of a network, in which each multiplication or addition is
counted as one FLOP. Assume that the global network and the inputs are uniformly
decomposed into 𝐾 = 𝑛2 partitions. Generally, the FLOPs of each sub-network is
approximately 1/𝐾3 of that of the global network, since the convolutional layers
contain the vast majority of computations; see [2] for more details.

2.2 Preconditioning of DCNNs

We propose an algorithm for composing the trained sub-networks to initialize the
global network, which we call the sub-network transfer learning strategy, and then
the global network is further trained. In a reverse process of the decomposition, the
weights of the sub-networks are composed along the channel dimension but with
additional connections between the sub-networks initialized to zero. Taking VGG16
as an example, Fig. 2 shows how to compose 4 sub-networks into one global network.
More formally, denoting the weights in 𝑙-th layer of the global network and the 𝑘-th
sub-networks by 𝒘𝑙 and {𝒘𝑙𝑘}𝑘 , respectively, 𝒘𝑙 is initialized as follows (cf. [2]):

• For the first layer,

DΩ
′
𝑘
(𝒘1) = 𝒘1

𝑘 , for 𝑘 ∈ [𝐾 ],

Ω
′
𝑘 = [𝑡11 ] × [𝑡12 ] × [𝑐1

in ] × {1 +
∑︁𝑘−1

𝑖=1
𝑐1
𝑖,out :

∑︁𝑘

𝑖=1
𝑐1
𝑖,out }. (1)

• For the first FC layer,

DΩ
′
𝑘
(𝒘𝑙) = 𝒘𝑙𝑘 , for 𝑘 ∈ [𝐾 ], DΩ′′ (𝒘𝑙) = 0,

Ω
′
𝑘 =

(G𝐹,𝑙−1 (Ω𝑘)∩ ( [𝑡𝑙1 ]× [𝑡𝑙2 ]× {1+
𝑘−1∑︁
𝑖=1
𝑐𝑙𝑖,in :

𝑘∑︁
𝑖=1
𝑐𝑙𝑖,in })

)×{1+𝑘−1∑︁
𝑖=1
𝑐𝑙𝑖,out :

𝑘∑︁
𝑖=1
𝑐𝑙𝑖,out },

Ω
′′
=

( [𝑡𝑙1 ] × [𝑡𝑙2 ] × [𝑐𝑙in ] × [𝑐𝑙out ]
) \ ∪𝐾𝑘=1Ω

′
𝑘 . (2)

• For the last FC layer,

DΩ
′
𝑘
(𝒘𝐿) = 𝒘𝐿𝑘 , for 𝑘 ∈ [𝐾 ],
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Fig. 2: Illustration of preconditioning the global network by composing 4 sub-networks.𝒘𝑘 denotes
the weights of the 𝑘-th sub-network (using the same notation for different layers for simplicity). (a)
The first convolutional layer; (b) One of the intermediate convolutional layers. Note that some of
the connections with zero weights are omitted for simplicity; (c) The last FC layer; cf. [2].

Ω
′
𝑘 = [𝑡𝐿1 ] × [𝑡𝐿2 ] × {1 +

∑︁𝑘−1

𝑖=1
𝑐𝐿𝑖,in :

∑︁𝑘

𝑖=1
𝑐𝐿𝑖,in } × [𝐶 ]. (3)

• For other convolutional layers and other FC layers,

DΩ
′
𝑘
(𝒘𝑙) = 𝒘𝑙𝑘 , for 𝑘 ∈ [𝐾 ], DΩ′′ (𝒘𝑙) = 0,

Ω
′
𝑘 = [𝑡𝑙1 ] × [𝑡𝑙2 ] × {1 +

∑︁𝑘−1

𝑖=1
𝑐𝑙𝑖,in :

∑︁𝑘

𝑖=1
𝑐𝑙𝑖,in } × {1 +

∑︁𝑘−1

𝑖=1
𝑐𝑙𝑖,out :

∑︁𝑘

𝑖=1
𝑐𝑙𝑖,out },

Ω
′′
=

( [𝑡𝑙1 ] × [𝑡𝑙2 ] × [𝑐𝑙in ] × [𝑐𝑙out ]
) \ ∪𝐾𝑘=1Ω

′
𝑘 . (4)

3 Experiments

In this section, some experiments on image classification tasks are carried out to
evaluate the proposed approach by observing the training time and the classifica-
tion accuracy. The experiments are carried out using the TensorFlow library on a
workstation with 4 NVIDIA Tesla V100 32G GPUs. We compare the performances
between two training strategies: 1) to train the global network with the parameters
randomly initialized (referred to as “GNet-R”), 2) to train the sub-networks (referred
to as “SNets”) in parallel and then further train the global network initialized by the
sub-networks transfer learning method (referred to as “GNet-T”). The sub-networks
and the global networks are trained using the same computing resources. The global
networks are trained using the data-parallel strategy. The sub-networks are trained
in parallel by a multiprocessing strategy, with GPUs uniformly assigned to sub-
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Fig. 3: Illustration of the way of partitioning each image into 8 sub-images; cf. [2].
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Fig. 4: Classification accuracy curves for validation data during training with varying partition
numbers. Comparisons between the two training strategies (i.e., “GNet-R” and “GNet-T”).

networks. In addition, the numbers of training iterations in the two strategies are the
same. For the strategy 1), the GNet-R is trained for 200 epochs. For the strategy 2),
the SNets are trained for 100 epochs and then the GNet-T is trained for 100 epochs.
The experiments are carried out on the dataset which contains 4323 images of

flowers in 5 categories1. The dataset is split into training, validation and testing sets
in the ratio of about 70:15:15, and the images are all resized to 224 × 224. We use a
residual network of 18 layers in [3]. Additionally, the network and the input images
are decomposed into 4, 8, and 16 partitions. For 4 (or 16) partitions, the input images
are cropped 24 pixels on the boundaries, which are then decomposed into 4 (or 16)
sub-images of size 140 × 140 (or 70 × 70) by decomposing into 2 (or 4) partitions
in both the width and height dimensions and then applying overlap between each
pair of neighbouring subdomains; for 8 partitions, the decomposition is illustrated
as Fig. 3.
Table 1 shows the FLOPs and the number of parameters of the global network

and one sub-network, and the training times of the two training strategies, which

1 https://www.kaggle.com/alxmamaev/flowers-recognition.
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Table 1: The FLOPs and the number of parameters of the global network (“GNet”) and one sub-
network (“SNet”, and “4”, “8” and “16” mean 4, 8 and 16 partitions, respectively); the training
time of the global networks and 4 (or 8, 16) sub-networks for 10 epochs. “M” means 106.

GNet SNet-4 SNet-8 SNet-16
# param 17.22M 1.08M 0.27M 0.07M
FLOPs 5015.56M 154.57M 19.69M 4.05M
training time 289 s 137 s 101 s 82 s

Table 2: The comparison of the classification accuracy of the testing data between the global
networks of the two training strategies (i.e., “GNet-T” and “GNet-R”) with varying partition
numbers. “Initialized” means that the global networks are initialized by the sub-network transfer
learning strategy (i.e., “GNet-T”) or randomly initialized (i.e., “GNet-R”) without being further
trained, and “Trained” means that the global networks are trained.

Initialized (%) Trained (%)
GNet-R GNet-T-4 GNet-T-8 GNet-T-16 GNet-R GNet-T-4 GNet-T-8 GNet-T-16
17.39 77.73 57.45 49.46 82.80 83.56 82.49 79.26

indicates that 1) the number of parameters of the sub-network is approximately 1/𝐾2

of that of the corresponding global network, 2) for 4 partitions, the computation of
the sub-network is approximately 1/25 of the corresponding global network; for
8 and 16, this ratio decreases to 1/28 and 1/210, and 3) for the same number of
iterations, the training time of 𝐾 sub-networks is less than 1/2 of that of the global
network; thus, the sub-network transfer learning strategy saves more than 1/4 of the
training time.
Fig. 4 and Table 2 show the comparisons of the classification accuracy between

the two training strategies, which shows that 1) in general, as the number of partitions
increases, the initialization seem to beworse and the accuracy of GNet-T after further
training decreases, and 2) after further training, the sub-network transfer learning
strategy shows almost no loss of accuracy, except for the case of 16 partitions. These
results indicate that a decomposition into too many partitions may reduce the quality
of the initialization and also perform poorly after further training.

4 Conclusion

In this paper, inspired by the idea of domain decomposition methods and nonlinear
preconditioning, we propose and study a new method of decomposing and precondi-
tioning DCNNs for the purpose of parallelizing the training of DCNNs. The global
network is firstly decomposed into sub-networks that are trained independently with-
out any interprocessor communication, which are then recomposed to initialize the
global network via the transfer learning strategy. The experimental results show
that the proposed approach can indeed provide good initialization and accelerate
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the training of the global network. Additionally, after further training, the transfer
learning strategy shows almost no loss of accuracy.
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Numerical Calculation of the Portal Pressure
Gradient of the Human Liver With a Domain
Decomposition Method

Zeng Lin, Bokai Wu, Shanlin Qin, Xinhong Wang, Rongliang Chen, and
Xiao-Chuan Cai

1 Introduction

Portal hypertension (PH) refers to the abnormal increase of the portal venous pres-
sure,which is a common chronic liver diseasewith clinical consequences of cirrhosis,
such as hepatic encephalopathy, variceal hemorrhage and ascites [11, 7]. Fig. 1 shows
the portal vein and hepatic vein extracted from CT images, from the figure we also
see the single inlet and multiple outlets structure of the portal vein and the multiple
inlets and single outlet characteristics of the hepatic vein. The portal pressure gradi-
ent (PPG) is defined as the difference in the pressure between the inlet of the portal
vein and the outlet of the inferior vena cava. PH refers to the situation that PPG is
greater than 5 mmHg [4]. When the value of PPG is higher than 10 mmHg, the PH is

Zeng Lin
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,
e-mail: zeng.lin@siat.ac.cn

Bokai Wu
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,
e-mail: bk.wu@siat.ac.cn

Shanlin Qin
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,
e-mail: sl.qin@siat.ac.cn

Xinhong Wang
Department of Radiology, The SecondAffiliatedHospital, School ofMedicine, ZhejiangUniversity,
Hangzhou, China, e-mail: 2611104@zju.edu.cn

Rongliang Chen
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,
e-mail: rl.chen@siat.ac.cn

*Corresponding Author: Xiao-Chuan Cai
Department of Mathematics, University of Macau, Macau, China, e-mail: xccai@um.edu.mo

157



158 Lin et al.

called the clinically significant portal hypertension. If PPG is higher than 12 mmHg,
variceal hemorrhage may occur [11].

Fig. 1: The segmented portal vein and hepatic vein

In clinical applications, the common approach to measure the PPG is the tran-
sjugular route, which requires the insertion of a radiopaque catheter into the right
hepatic vein via the jugular vein under fluoro scopic guidance. The method is inva-
sive and sometimes impractical for routine clinical practice. Recently, a technology
based on computational fluid dynamics (CFD) [5, 6, 14] is being introduced as an
alternative approach to measure the pressure difference non-invasively. With CFD,
several desired pathological values, such as pressure, velocity and wall shear stress
(WSS) can be easily computed.
In this work, we model the blood flow by the system of Navier-Stokes equations

which is discretized by a fully implicit finite element method on a fully unstructured
mesh, and solved by an efficient and highly parallel domain decomposition method
[9]. With this method, a simulation of a full 3D patient-specific hepatic flow can be
realized in a few hours. The numerical experiments are carried out on a cluster of
computers with near 2000 processor cores and the parallel efficiency is higher than
60%. The computed PPG values are within the normal range of published data.

2 Numerical method

The blood flows in the hepatic vessels are described by the unsteady incompressible
Navier-Stokes equations:
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𝜌
𝜕𝒖

𝜕𝑡
+ 𝜌(𝒖 · ∇)𝒖 − ∇ · 𝝈 = 𝒇 𝑖𝑛 Ω × (0, 𝑇],

∇ · 𝒖 = 0 𝑖𝑛 Ω × (0, 𝑇] .
(1)

Here 𝒖 denotes the velocity vector, 𝜌 the blood density, 𝒇 the external force and 𝝈
is the Cauchy stress tensor defined as:

𝝈 = −𝑝𝑰 + 2𝜇𝜺(𝒖), (2)

where 𝑝 is the pressure, 𝑰 is the identity tensor, 𝜇 is the dynamic viscosity and 𝜺 is
the deformation tensor defined as 𝜺(𝒖) = 1/2(∇𝒖 + ∇𝒖𝑇 ).
The initial condition is imposed by a given function. The velocity boundary

conditions are imposed for the inlets of the portal vein. No slip condition is applied
on the wall. The resistance boundary conditions are used for the outlets of the portal
vein and hepatic vein [8].
The weak form of (1) reads: Find 𝒖 ∈ 𝑉 and 𝑝 ∈ 𝑃 such that ∀𝒗 ∈ 𝑉0 and ∀𝑞 ∈ 𝑃,

B({𝒖, 𝑝}, {𝒗, 𝑞}) = 0, (3)

where

B({𝒖, 𝑝}, {𝒗, 𝑞}) = 𝜌

∫
Ω

𝜕𝒖

𝜕𝑡
· 𝒗𝑑Ω + 𝜌

∫
Ω
(𝒖 · ∇)𝒖 · 𝒗𝑑Ω

−
∫
Ω
𝑝(∇ · 𝒗)𝑑Ω + 2𝜇

∫
Ω
𝜺(𝒖) : 𝜺(𝒗)𝑑Ω

+
∫
Ω
(∇ · 𝒖)𝑞𝑑Ω +

∫
Γ𝑂
(𝝈𝒏) · 𝒗𝑑Γ − 𝜌

∫
Ω
𝒇 · 𝒗𝑑Ω.

(4)

Here Γ𝑂 is the outlet boundary and 𝒏 is the outward normal vector of the outlet. The
functional spaces 𝑉 , 𝑉0 and 𝑃 are defined in details in [5].
The computational domain Ω is covered with a fully unstructured tetrahedral

mesh on which we introduce 𝑃1 − 𝑃1 finite element function spaces. As the 𝑃1 − 𝑃1
pair doesn’t satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) [2] condition, some
stabilization terms are added in the weak form (4) when applied to finite element
functions. More details about the stabilization parameters can be found in [2]. Then
(4) can be rewritten as a time-dependent nonlinear algebraic system

𝑑X(𝑡)
𝑑𝑡

= N(X), (5)

where X(𝑡) is the vector of the nodal values of the velocity 𝒖 and pressure 𝑝, N(·)
is the nonlinear function representing the spatial discretization of (4). (5) can be
further discretized by the fully implicit backward Euler method in time

X
𝑛 −X𝑛−1

Δ𝑡
= N(X𝑛), (6)
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where X𝑛 is the value of X(𝑡) at the 𝑛-th time step and Δ𝑡 is the time step size.
For simplicity, (6) can be rearranged into a nonlinear system

F 𝑛 (X𝑛) = 0 (7)

to be solved at each time step.
In this work, the nonlinear system (7) will be solved by the Newton-Krylov-

Schwarz algorithm [13]. The algorithm includes three components, an inexact New-
ton [3] as the nonlinear solver, a preconditioned Krylov subspace method (GMRES)
[12] as the linear solver at each Newton step, and an overlapping Schwarz method
[1] as the preconditioner. More details about the algorithm are available in [8].

3 Numerical experiments

In this section, we present some numerical experiments for blood flows in the portal
vein and hepatic vein, and also the parallel performance of the algorithmwith respect
to the number of processor cores. Lastly, the PPG values will be calculated based on
the simulation of blood flows in a patient-specific portal vein and hepatic vein.
In all the numerical experiments, 𝜌 = 1.05𝑔/𝑐𝑚3 and 𝜇 = 0.038𝑐𝑚2/𝑠 [10]

are used to characterize the properties of the hepatic blood. The algorithm is im-
plemented with the Portable Extensible Toolkit for Scientific computation (PETSc)
library. In the experiments, the relative stopping condition for Newton is set to be
1.0× 10−6 and the relative stopping condition for GMRES is 1.0× 10−3. Incomplete
LU (ILU) is used to solve the subdomain problems in the additive Schwarz precon-
ditioner. “ILU(𝑙)” represents ILU with 𝑙 level of fill-ins, “𝑛𝑝” means the number of
processor cores, “Newton” stands for the average number of Newton iterations per
time step, “GMRES” denotes the average number of GMRES iterations per Newton
step, “Time” is the average wall clock time in seconds spent per time step, “Memory”
indicates the memory consumption in megabyte per processor core per time step,
“Speedup” denotes the speedup ratio and “Efficiency” means the parallel efficiency.
A sample finite element mesh for the portal vein and hepatic vein is shown in Fig.

2. The portal vein has 1 inlet and 25 outlets and the hepatic vein has 47 inlets and
1 outlet. The clinically measured flow velocity [10] is used for the inflow boundary
condition and the total resistance is chosen such that the computed pressures are
within the ranges of typical adult patients.
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Fig. 2: A sample finite element mesh for the portal vein and hepatic vein

Table 1: Parallel performance using different number of processor cores

𝑛𝑝 Newton GMRES Memory (MB) Time (s) Speedup Efficiency
240 3.10 404.52 450.89 160.39 1 100%
480 3.10 452.68 250.55 93.97 1.71 86%
960 3.10 457.98 143.06 51.93 3.09 77%
1920 3.10 462.02 78.84 30.14 5.32 67%

A parallel scalability study. The parallel scalability is investigated on a cluster of
computers, and each compute node of the computer has two Intel Xeon processors
and 64GB of shared memory. The performance of the algorithm in terms of the
number of Newton iterations per time step, the number of GMRES iterations per
Newton step, the total memory per processor core per time step, the total compute
time per time step, the speedup ratio and the parallel efficiency are presented in
Table 1. A mesh with 9.96 × 106 elements is utilized for the numerical tests, where
the largest size of the elements is 0.85𝑚𝑚, the smallest is 0.09𝑚𝑚 and the average
is 0.26𝑚𝑚. The time step size is set as Δ𝑡 = 1.00 × 10−3𝑠, the subdomain solver is
ILU(1) and the overlapping size is 2. The scalability about the linear and nonlinear
algebraic solvers are clearly observed, wherein the number of Newton iterations and
GMRES iterations change only slightly as the number of processor cores increase,
especially for the Newton iterations. It can be seen that when the number of processor
cores increases from 240 to 1920, the compute time reduces to 30.14𝑠 and the parallel
efficiency reduces to 67%, which is quite good considering the fact that the geometry
of the problem is rather complicated.
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Fig. 3: The pressure, velocity and WSS distribution of the computed flow in the portal vein and
hepatic vein at 𝑡 = 0.5𝑠

The portal pressure gradient.Next, we present a numerical calculation of PPG.
Firstly, the pressure, velocity and WSS distributions of the blood flow in the portal
vein and hepatic vein at 𝑡 = 0.5𝑠 are plotted in Fig. 3. Then we pick several pairs of
points (A1,B1), (A2,B2), (A3,B3) and (A4,B4) as marked in Fig. 1 to compute the
difference in the pressure between the portal vein and the hepatic vein, i.e., the PPG,
for three cardiac cycles. The portal vein pressure at points A1, A2, A3 and A4 are
drawn in the top-left sub-figure of Fig. 4. Meanwhile, the hepatic vein pressure at
points B1, B2, B3 and B4 are illustrated in the top-right sub-figure of Fig. 4. Then
their PPG values of the pairs (A1,B1), (A2,B2), (A3,B3) and (A4,B4) are plotted
in the bottom-left sub-figure of Fig. 4. Finally, the time-averaged PPG (TAPPG)
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values are presented in the bottom-right sub-figure of Fig. 4. It is clear that all four
approximations are within the normal ranges as indicated in [8].

Fig. 4: The computed portal vein pressure, hepatic vein pressure, PPG and TAPPG values for three
cardiac cycles
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A Parallel Adaptive Finite Element Method for
Modeling a Deformable Droplet Travelling in Air

Li Luo, Xiao-Chuan Cai, and David E. Keyes

1 Introduction

Violent respiratory events such as coughing and sneezing can contribute to the
transmission of infectious diseases from host to host. The dynamics of droplet
transfer between individuals and the range of contamination are extremely complex
and remain unclear [3]. Studying the fluid dynamics of pathogen-laden droplets is
critically important to controlling the pandemic.
Fluid dynamics studies of violent ejections are presented in [1, 4]. These studies

focus on analytical modeling of the puff evolution or the transport of inertial spher-
ical droplets to understand the available quantitative relationships. CFD simulation
has been conducted to investigate the dispersion of airborne particles by using a
Lagrangian-based model for particle motion [10] or by coupling the Navier-Stokes
equations with an additional transport equation for a scalar concentration field [9].
Although the transport of particles in a crowd are detailed in these studies, the travel-
ling process of an individual droplet and its dynamics subject to the combined effect
of size, gravitational settling, surface tension, and aerodynamic forces are not given
particular attention. To address these issues, incorporating multi-phase flow physics
in the modeling is necessary [3].
In this work, we study the process of a deformable droplet travelling over a long

distance based on two-phase flow simulation, with focus on the two-way coupling
between the droplet dynamics and the ambient airflow through advection and surface
tension, in order to provide some numerical understanding of the transmission of
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covid19. A phase-field model consisting of the coupled Cahn-Hilliard-Navier-Stokes
equations with appropriate boundary conditions is used to describe the two-phase
flow. Due to the vast difference between the size of the droplets and the long trajec-
tories they travel (over 1000 times), the problem is computationally very expensive
and rarely addressed by previous studies of phase-field methods. To tackle this issue,
we develop an efficient adaptive finite element method based on a posterior error
estimate to refine elements near the interface, while using coarse elements elsewhere
to save computation. In the numerical experiments, we are mainly concerned with:
1) the influence of the droplet size on its shape dynamics and travelling path; 2) the
influence of the droplet motion on the surrounding airflow; and 3) the lift and drag
forces acting on the droplet through the trajectory.

2 A mathematical model based on the
Cahn-Hilliard-Navier-Stokes equations

In a bounded domain Ω ⊂ R𝑑 (𝑑 = 2, 3), the system of two immiscible incompress-
ible fluids can be described by the coupled Cahn-Hilliard-Navier-Stokes equations:

𝜕𝜑

𝜕𝑡
+ u · ∇𝜑 = 𝐿𝑑Δ𝜇, 𝜇 = −𝜖Δ𝜑 − 𝜑

𝜖
+ 𝜑

3

𝜖
, (1)

𝑅𝑒𝜌

(
𝜕u
𝜕𝑡
+ (u · ∇)u

)
= ∇ · 𝝈 − 𝑅𝑒𝜌

𝐹𝑟2 e𝑔 , ∇ · u = 0. (2)

Here, a phase field variable 𝜑 is introduced to describe the transition between
the two homogeneous equilibrium phases 𝜑± = ±1. 𝜇 is the chemical potential,
𝜖 is the ratio between the interface thickness and the characteristic length. 𝝈 =
−𝑝I + 𝜂𝐷 (u) − 𝐵𝜖 (∇𝜑 ⊗ ∇𝜑) is the total stress tensor, where 𝑝 is the pressure,
u is the fluid velocity field, and 𝐷 (u) = ∇u + (∇u)𝑇 is the rate of strain tensor.
The term 𝜖 (∇𝜑 ⊗ ∇𝜑) represents the capillary force. The mass density 𝜌 and the
dynamic viscosity 𝜂 are interpolation functions of 𝜑 between fluid 1 and fluid
2, i.e. 𝜌 = 1+𝜑

2 + 𝜆𝜌
1−𝜑

2 , 𝜂 = 1+𝜑
2 + 𝜆𝜂

1−𝜑
2 , where 𝜆𝜌 = 𝜌2/𝜌1 is the ratio of

density between the two fluids and 𝜆𝜂 = 𝜂2/𝜂1 is the ratio of viscosity. e𝑔 is the
unit gravitational vector and 𝐹𝑟 is the Froude number. 𝐿𝑑 is the phenomenological
mobility coefficient, 𝑅𝑒 is the Reynolds number, and 𝐵 measures the strength of the
capillary force compared to the Newtonian fluid stress.
We assume 𝜕Ω = Γ𝑖∪Γ𝑜∪Γ𝑤 , where Γ𝑖 denotes the inflow boundary, Γ𝑜 denotes

the outflow boundary, and Γ𝑤 denotes the solid surface. Given functions 𝜑𝑖 and u𝑖 ,
the boundary conditions on Γ𝑖 are stated as

𝜑 = 𝜑𝑖 , 𝜇 = 0, u = u𝑖 , on Γ𝑖 . (3)

On Γ𝑜, we consider the following outflow boundary conditions [5],

𝜕𝑛𝜑 = 0, 𝜕𝑛𝜇 = 0, on Γ𝑜 , (4)

− (𝑝 + 𝐵𝐹 (𝜑))n + 𝜂n · 𝐷 (u) − 𝑅𝑒𝜌
2
|u |2𝜒 (u · n)n = 0, on Γ𝑜 , (5)
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where 𝐹 (𝜑) = 𝜖
2 |∇𝜑 |2 + 1

4𝜖 (𝜑2 − 1)2 is the free energy of the two-phase system.
𝜒(u · n) = 1

2
(
1 − tanh u·n

𝑈𝛿

)
is a smoothed step function, where 𝑈 is a characteristic

velocity scale (here 𝑈 = 1), and 𝛿 > 0 is a non-dimensional constant that is
sufficiently small. As 𝛿 → 0, 𝜒 takes a unit value in regions where u · n < 0
and vanishes elsewhere.
On Γ𝑤 , we consider the generalized Navier boundary conditions [6]:

𝜕𝜑

𝜕𝑡
+ u𝜏 · ∇𝜏𝜑 = −𝑉𝑠𝐿 (𝜑) , 𝜕𝑛𝜇 = 0, u · n = 0, on Γ𝑤 , (6)(

(𝐿𝑠𝑙𝑠)−1u𝜏 − 𝐵𝐿 (𝜑) ∇𝜏𝜑/𝜂 + n · 𝐷 (u)
)
× n = 0, on Γ𝑤 , (7)

where n is the unit outward normal vector and 𝜏 is the unit tangential vector of the
boundary. u𝜏 = u− (n ·u)n, ∇𝜏 = ∇− (n · ∇)n.𝑉𝑠 is a phenomenological parameter,
𝐿 (𝜑) = 𝜖𝜕𝑛𝜑 + 𝜕𝛾𝑤 𝑓 (𝜑)/𝜕𝜑, and 𝛾𝑤 𝑓 (𝜑) = −

√
2

3 cos 𝜃𝑠 sin( 𝜋2 𝜑), where 𝜃𝑠 is the
static contact angle. 𝐿𝑠 is the slip length of liquid, 𝑙𝑠 = 1+𝜑

2 +𝜆𝑙𝑠
1−𝜑

2 , and 𝜆𝑙𝑠 = 𝑙2/𝑙1.

3 A parallel, semi-implicit solution algorithm based on an
adaptive finite element discretization, and an overlapping
Schwarz preconditioned GMRES

We apply a second-order semi-implicit time discretization scheme to decouple 𝜑,
u, and 𝑝 at each time step [6]. Specifically, we apply a convex-splitting of the free
energy functional and treat the nonlinear term explicitly so that the resulting matrix
has constant coefficients. In addition, we consider a pressure-stabilized method
to decouple the Navier-Stokes equations into a convection-diffusion equation for
velocity and a Poisson equation for pressure. Then, the pressure equation results in
a constant matrix and can be solved efficiently.
The resulting decoupled systems are discretized by a finite element method on

unstructured meshes. We use P1-P1 finite element spaces for the Cahn-Hilliard
equation and P2-P1 for the Navier-Stokes equations. Let 𝑇ℎ be a triangulation of
Ω with ℎ be the mesh size of an element 𝑇 . We denote by 𝜑𝑛ℎ, 𝜇

𝑛
ℎ, u𝑛ℎ, 𝑝𝑛ℎ the

finite element interpolations of 𝜑, 𝜇, u, 𝑝 at the 𝑛th time step, respectively. In this
work, we use the adaptive mesh refinement (AMR) method to accurately capture the
phase field variable 𝜑 within the thin interface between the two phases. The AMR
procedure is performed in an iterative manner. At each adaptive step, we introduce a
physics-informed approach to refine the elements repeatedly if they are fully inside
the interface region (i.e., −0.9 ≤ 𝜑𝑛+1ℎ |𝑇 ≤ 0.9) and their sizes are considered to be
large (i.e., max

𝑒∈𝜕𝑇
|𝑒 | > 𝑒, where 𝑒 is a given scale). Meanwhile, we merge adjacent

elements if they are divided from the same “parent” and their error indicator Θ𝑇 is
sufficiently small, i.e.,

Θ𝑇 < 𝛾𝑐 max
𝑇∈𝑇ℎ
{Θ𝑇 }, where Θ𝑇 =

©«
∑︁
𝑒∈𝜕𝑇

∫
𝑒

|𝑒 |
24

[
∇𝜑𝑛+1ℎ · n𝑒

2

]2

d𝑒ª®¬
1
2

.
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Here, Θ𝑇 is the gradient jump of 𝜑𝑛+1ℎ on the interface of adjacent elements [7]. [·]
denotes the jump on the element boundary, n𝑒 is the unit outward normal vector on
𝑒, and 𝛾𝑐 is a given parameter. The iteration of refinement and coarsening is stopped
when the maximum error indicator max

𝑇 ∈𝑇ℎ
{Θ𝑇 } < 𝑡𝑜𝑙, where 𝑡𝑜𝑙 is a prescribed toler-

ance. Combining the above techniques, we present the overall numerical algorithm
as follows:

Algorithm 2 A decoupled solution algorithm based on an adaptive finite element
method

Set initial values 𝜑0
ℎ (= 𝜑−1

ℎ ) , u0
ℎ (= u−1

ℎ ) , 𝑝0
ℎ, and 𝑡 = 0.

Loop in time for 𝑛 = 0, · · ·
1 Solve the Cahn-Hilliard system to update 𝜑𝑛+1ℎ and 𝜇𝑛+1ℎ .
2 Loop in AMR for 𝑘 = 0, · · ·
(a) Compute Θ𝑇 for all 𝑇 ∈ 𝑇ℎ, if max

𝑇∈𝑇ℎ
{Θ𝑇 } < 𝑡𝑜𝑙, go to step 3.

(b) Refine the elements repeatedly if 𝜑𝑛+1ℎ |𝑇 ∈ [−0.9, 0.9] and max
𝑒∈𝜕𝑇

|𝑒 | > �̄�.
(c) Merge the adjacent elements if each of them yields Θ𝑇 < 𝛾𝑐 max

𝑇∈𝑇ℎ
{Θ𝑇 }.

(d) Update 𝜑𝑛−1
ℎ , 𝜑𝑛ℎ , u𝑛−1

ℎ , u𝑛ℎ, and 𝑝𝑛ℎ on the new mesh.
(e) Solve the Cahn-Hilliard system to update 𝜑𝑛+1ℎ and 𝜇𝑛+1ℎ .

3 Compute 𝜌𝑛+1ℎ , 𝜂𝑛+1ℎ , 𝑙𝑠𝑛+1ℎ using 𝜑𝑛+1ℎ .
4 Solve the velocity system to update u𝑛+1ℎ .
5 Solve the pressure system to update 𝑝𝑛+1ℎ .

End time loop

For the purpose of efficiency, we perform the AMR method every 𝑛skip time
steps, and terminate the AMR loop in step 2 when max

𝑇 ∈𝑇ℎ
{Θ𝑇 } does not decrease

any more. Because the matrices arising from the discretization of the Cahn-Hilliard
equation and the pressure equation involve only constant coefficients, they need
to be rebuilt only when refinement or coarsening occurs. The decoupled solution
algorithm requires to solve three linear systems at each time step. We employ a
restricted additive Schwarz preconditioned GMRES method to solve the Cahn-
Hilliard system and the velocity system. For the pressure Poisson equation, we use
an aggregation-based algebraic multigrid preconditioned GMRES method. As far as
we know, no existing combination of the above algorithms has been presented for
the concerned problem.

4 Numerical experiments

The proposed algorithm is implemented using libMesh [8] for the generation of finite
element stiffness matrices, and PETSc [2] for the preconditioned Krylov subspace
solvers. The overall algorithm is implemented on a parallel computer with distributed
memory.
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In this section, we present 2D numerical experiments for a droplet travelling in
a scenario when two people begin to talk face to face at 𝑡 = 0, and an airflow is
expelled horizontally from one’s mouth (Γ𝑖: 𝑥 = 10, 𝑦 ∈ [62.536, 64]). The airflow
has a parabolic profile with initial speed 𝑉 = 5 m/s. The computational domain is
[0, 35] × [50, 80] and the unit is 2.5 cm, as shown in Fig. 1. A nonuniform triangular
mesh is generated such that the mesh is finer between the two people. The initial
mesh has 56,568 elements and 28,285 vertices. The densities for the droplet (𝜑 = −1)
and air (𝜑 = 1) are 103 kg/m3 and 1.2 kg/m3, the viscosities for the droplet and air
are 10−3 Pa·s and 1.8 × 10−5 Pa·s. The interfacial tension is 0.072 N/m. The gravity
constant is 9.8 m/s2. By taking 𝑉 as the characteristic velocity and the opening size
of mouth 2.5 cm as the characteristic length, we obtain the following dimensionless
numbers: 𝜆𝜌 = 830, 𝜆𝜂 = 55, 𝑅𝑒 = 8333.25, B = 707.2, and 𝐹𝑟 = 10.1. The thickness
of the interface is 𝜖 = 0.002. The static contact angle is taken as 90◦. Other physical
parameters are taken as in [6]. For the numerical parameters, we choose 𝛿 = 0.05,
𝑒 = 0.002, 𝛾𝑐 = 0.01, 𝑡𝑜𝑙 = 0.01, 𝑛skip = 15, and the time step sizeΔ𝑡 = 5×10−4. For
the inflow boundary condition, we consider a droplet that is ejected from Γ𝑖 along
with the airflow at 𝑡𝑠 = 0.05ms, and its initial size is determined by the ejection time
𝛿𝑡𝑒, that is, 𝜑 = −1 if 𝑥 = 10, 𝑦 ∈ [63.238, 63.298] and 𝑡 ∈ [𝑡𝑠 , 𝑡𝑠 + 𝛿𝑡𝑒] whereas
𝜑 = 1 on Γ𝑖 . We consider three cases of ejection time: 𝑎. 𝛿𝑡𝑒 = 1 ms, 𝑏. 𝛿𝑡𝑒 = 0.5
ms, and 𝑐. 𝛿𝑡𝑒 = 0.1 ms.

Fig. 1: (left) Computational domain and (right) a sample partition of the computational domain
into 16 subdomains for the Schwarz preconditioning.

Fig. 2 shows the streamlines colored by velocity magnitude at 1.25 ms and 75
ms for case b. At the early stage, the parabolic velocity profile leads to a natural
expansion of airflow. As the flow evolves, it is angled down due to the gravitational
pull and generates two primary vortices, one on either side.
From Fig. 3 we see that the droplets travel ballistically subject to inertia and

gravity. They overshoot the airflow stream and can reach the recipients’ mucosa
directly or settle on surfaces to be later picked up by the recipients. While all
droplets evolve to a circle shape with the effect of surface tension, the large droplets
undergo a more obvious topological change than the smaller droplets. The bottom
row of the figure shows the effectiveness of the AMRmethod in tracking the moving
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Fig. 2: Streamlines colored by velocity magnitude at (left) 1.25 ms and (right) 75 ms for case b.

interface. For these cases, usually 3 or 4 adaptive iterations are needed for each
application of AMR.

Fig. 3: (top left) Trajectory of the droplets, (top right) snapshot of droplets at 12.5 ms and 25 ms,
(bottom left) adaptive mesh refinement for case 𝑏 at 1.25 ms, 2.5 ms, and 3.75 ms, and (bottom
right) enlarged view of the mesh at 1.25 ms for case b.

In the presented two-way coupling model, the airflow is affected by the motion
of the droplet due to the viscosity contrast and surface tension, especially when the
droplet is large. This is evidenced by the streamlines near the droplet 𝑎 in Fig. 4
(left), one can observe a vortex street generated behind the droplet. In contrast, a
smaller droplet does not influence the airflow much as shown in Fig. 4 (right).
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Fig. 4: Streamlines colored by velocity magnitude at 75 ms for (left) case a and (right) case c.

In Fig. 5, we show the time histories of the lift coefficient𝐶𝑙 = 2𝐹𝑙
𝜌1𝑈2𝐴

and the drag
coefficient 𝐶𝑑 = 2𝐹𝑑

𝜌1𝑈2𝐴
which evaluate the combined effect of surface tension and

aerodynamic forces acting on the droplets. Here 𝜌1 = 1, 𝑈 = 1 are dimensionless
constants. 𝐹𝑙 , 𝐹𝑑 , and 𝐴 can be computed using the integral transformation with the
surface delta function 𝑑 = 1−𝜑

2 :

𝐹𝛼 = − 1
𝑅𝑒

∫
Ω
𝝈 · ∇𝑑 · e𝛼dΩ, and 𝐴 = −

∫
Ω
∇𝑑 · n𝜑dΩ,

where 𝛼 = 𝑙, 𝑑, e𝑑 = i, e𝑙 = j, and n𝜑 = ∇𝜑
|∇𝜑 | . The forces exerted on the droplets

exhibit a oscillatory nature similar to the case of flow around a stationary circular
cylinder, but with more irregular patterns here because of the shape dynamics of
the droplets and the instability of the high Reynolds flows. The magnitude of the
oscillation generally decreases as the size of the droplet becomes smaller.
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Fig. 5: Time histories of (left) lift coefficient 𝐶𝑙 and (right) drag coefficient 𝐶𝑑 .
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5 Conclusions

Wepresent a parallel adaptive finite elementmethod for themodeling of a deformable
droplet travelling in air. The problem is described by theCahn-Hilliard-Navier-Stokes
equations that account for the two-way coupling between the airflow and the droplet
through advection and surface tension. The parallelization is realized via a Schwarz
type overlapping domain decomposition method. Our results show that the size of
the droplet has a significant impact on its travelling path, shape dynamics, and the
ambient airflow behavior.

References

1. S. Balachandar, S. Zaleski, A. Soldati, G. Ahmadi, and L. Bourouiba. Host-to-host airborne
transmission as a multiphase flow problem for science-based social distance guidelines. Int. J.
Multiph. Flow, 132:103439, 2020.

2. S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, and K. Buschelman et al. PETSc
Users Manual. Technical Report ANL-95/11-Revision 3.15, Argonne National Laboratory,
2021.

3. L. Bourouiba. The fluid dynamics of disease transmission. Annu. Rev. Fluid Mech., 53:473–
508, 2021.

4. C. P. Cummins, O. J. Ajayi, F. V. Mehendale, R. Gabl, and I. M. Viola. The dispersion of
spherical droplets in source-sink flows and their relevance to the COVID-19 pandemic. Phys.
Fluids, 32:083302, 2020.

5. S. Dong. An outflow boundary condition and algorithm for incompressible two-phase flows
with phase field approach. J. Comput. Phys., 266:47–73, 2014.

6. M. Gao and X.-P. Wang. An efficient scheme for a phase field model for the moving contact
line problem with variable density and viscosity. J. Comput. Phys., 272:704–718, 2014.

7. D. W. Kelly, J. P. Gago, O. C. Zienkiewicz, and I. Babuska. A posteriori error analysis and
adaptive processes in the finite element method: part I error analysis. Int. J. Numer. Methods
Eng., 19:1593–1619, 1983.

8. B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: A C++ library for parallel
adaptive mesh refinement/coarsening simulations. Eng. Comput., 22:237–254, 2006.

9. V. Vuorinena,M. Aarniob, andM.Alavah et al. Modelling aerosol transport and virus exposure
with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Saf.
Sci., 130:104866, 2020.

10. M. P. Wan, G. N. S. To, C. Y. H. Chao, L. Fang, and A. Melikov. Modeling the fate of
expiratory aerosols and the associated infection risk in an aircraft cabin environment. Aerosol
Sci. Technol., 43:322–343, 2009.



On the Effect of Boundary Conditions on the
Scalability of Schwarz Methods

Gabriele Ciaramella and Luca Mechelli

1 Introduction
This work is concerned with convergence and weak scalability1 analysis of one-
level parallel Schwarz method (PSM) and optimized Schwarz method (OSM) for the
solution of the problem

− Δ𝑢 = 𝑓 in Ω, 𝑢(𝑎1, 𝑦) = 𝑢(𝑏𝑁 , 𝑦) = 0 𝑦 ∈ (0, 1),
B𝑏 (𝑢) (𝑥) = B𝑡 (𝑢) (𝑥) = 0 𝑥 ∈ (𝑎1, 𝑏𝑁 ),

(1)

where Ω is the domain depicted in Fig. 1, and B𝑏 and B𝑡 are either Dirichlet, or
Neumann or Robin operators:

Dirichlet: B𝑏 (𝑢) (𝑥) = 𝑢(0, 𝑥), B𝑡 (𝑢) (𝑥) = 𝑢(1, 𝑥),
Neumann: B𝑏 (𝑢) (𝑥) = 𝜕𝑦𝑢(0, 𝑥), B𝑡 (𝑢) (𝑥) = 𝜕𝑦𝑢(1, 𝑥),
Robin:B𝑏 (𝑢) (𝑥) = 𝑞𝑢(0, 𝑥) − 𝜕𝑦𝑢(0, 𝑥), B𝑡 (𝑢) (𝑥) = 𝑞𝑢(1, 𝑥) + 𝜕𝑦𝑢(1, 𝑥).

Here, 𝑞 > 0 and the subscripts ‘𝑏’ and ‘𝑡’ stand for ‘bottom’ and ‘top’. As shown
in Fig. 1, the domain Ω is the union of subdomains Ω 𝑗 , 𝑗 = 1, . . . , 𝑁 , defined as
Ω 𝑗 := (𝑎 𝑗 , 𝑏 𝑗 ) × (0, 1), where 𝑎1 = 0, 𝑎 𝑗 = 𝐿 + 𝑎 𝑗−1 for 𝑗 = 2, . . . , 𝑁 + 1 and
𝑏 𝑗 = 𝑎 𝑗+1 + 2𝛿 for 𝑗 = 0, . . . , 𝑁 . Hence, the length of each subdomain is 𝐿 + 2𝛿 and
the length of the overlap is 2𝛿 with 𝛿 ∈ (0, 𝐿/2).
It is well known that one-level Schwarz methods are not weakly scalable, if

the number of subdomains increases and the whole domain Ω is fixed. However,

Gabriele Ciaramella
Politecnico di Milano e-mail: gabriele.ciaramella@polimi.it

Luca Mechelli
Universität Konstanz e-mail: luca.mechelli@uni-konstanz.de

1 Here, weak scalability is understood in the sense that the contraction factor does not deteriorate
as the number 𝑁 of subdomains increases and, hence, the number of iterations, needed to reach a
given tolerance, is uniformly bounded in 𝑁 ; see, e.g., [3].
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𝑥
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· · · · · · Ω𝑁

2𝛿2𝛿 𝐿 − 2𝛿

Fig. 1: Two-dimensional chain of 𝑁 rectangular fixed-sized subdomains.

the recent work [2], published in the field of implicit solvation models used in
computational chemistry, has drawn attention to the opposite case in which the
number of subdomains increases, but their size remains unchanged, and, as a result,
the size of the whole domainΩ increases. In this setting, weak scalability of PSM and
OSM for (1)withDirichlet boundary conditions is studied in [4, 3]. Scalability results
for the PSM in case of more general geometries of the (sub)domains are presented
in [5, 6, 7]. In these works, only external Dirichlet conditions are discussed and,
in such a case, weak scalability is shown; see also [11] for a scalability analysis of
the classical (alternating) Schwarz method. A short remark about the non-scalability
in case of external Neumann conditions is given in [3]. Similar results have been
recently presented in [1] for time-harmonic problems. Moreover, very similar results
to the ones of [3] are obtained a few years later in [9]. The goal of this work is to study
the effect of different (possibly mixed) external boundary conditions on convergence
and scalability of PSM and OSM. In particular, we will show that only in the case
of (both) external Neumann conditions at the top and the bottom of Ω, PSM and
OSM are not scalable. External Dirichlet conditions lead to the fastest convergence,
while external Robin conditions lead to a convergence that depends heavily on the
parameter 𝑞.
One-level PSM and OSM for the solution of (1) are

− Δ𝑢𝑛𝑗 = 𝑓 𝑗 in Ω 𝑗 ,

B𝑏 (𝑢𝑛𝑗 ) (𝑥) = B𝑡 (𝑢𝑛𝑗 ) (𝑥) = 0 𝑥 ∈ (𝑎1, 𝑏𝑁 ),
Tℓ (𝑢𝑛𝑗 ) (𝑎 𝑗 ) = Tℓ (𝑢𝑛−1

𝑗−1) (𝑎 𝑗 ), T𝑟 (𝑢𝑛𝑗 ) (𝑏 𝑗 ) = T𝑟 (𝑢𝑛−1
𝑗+1 ) (𝑏 𝑗 ),

(2)

for 𝑗 = 1, . . . , 𝑁 , where Tℓ and T𝑟 are Dirichlet trace operators,

Tℓ (𝑢𝑛𝑗 ) (𝑎 𝑗 ) = 𝑢𝑛𝑗 (𝑎 𝑗 , 𝑦) and T𝑟 (𝑢𝑛𝑗 ) (𝑏 𝑗 ) = 𝑢𝑛𝑗 (𝑏 𝑗 , 𝑦), (3)

for the PSM, and Robin trace operators,

Tℓ (𝑢𝑛𝑗 ) (𝑎 𝑗 )=𝑝𝑢𝑛𝑗 (𝑎 𝑗 ,𝑦)−𝜕𝑥 𝑢𝑛𝑗 (𝑎 𝑗 ,𝑦) and T𝑟 (𝑢𝑛𝑗 ) (𝑏 𝑗 )=𝑝𝑢𝑛𝑗 (𝑏 𝑗 ,𝑦)+𝜕𝑥 𝑢𝑛𝑗 (𝑏 𝑗 ,𝑦),
(4)

with 𝑝 > 0 for theOSM. The subscript ‘ℓ’ and ‘𝑟’ stand for ‘left’ and ‘right’. For 𝑗 = 1
the condition at 𝑎1 must be replaced by 𝑢𝑛1 (𝑎1, 𝑦) = 0 and for 𝑗 = 𝑁 the condition
at 𝑏𝑁 must be replaced by 𝑢𝑛𝑁 (𝑏𝑁 , 𝑦) = 0. In this paper, ‘external conditions’ and
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‘transmission conditions’ will always refer to the conditions obtained by the pairs
(B𝑏,B𝑢) and (Tℓ ,T𝑟 ), respectively. Note that the Robin parameter 𝑝 of the OSM
can be chosen independently of the Robin parameter 𝑞 used for the operators B𝑏 and
B𝑡 . We analyze convergence of PSM and OSM by a Fourier analysis in Section 3.
For this purpose, we use the solutions of eigenproblems of the 1D Laplace operators
with mixed boundary conditions. These are studied in Section 2. Finally, results of
numerical experiments are presented in Section 4.

2 Laplace eigenpairs for mixed external conditions
Consider the 1D eigenvalue problem

𝜑′′(𝑦) = −𝜆𝜑(𝑦), for 𝑦 ∈ (0, 1), B𝑏 (𝜑) (0) = B𝑡 (𝜑) (1) = 0, (5)

and six pairs of boundary operators (B𝑏,B𝑡 ):
(DD) B𝑏 (𝜑) (0) = 𝜑(0), B𝑡 (𝜑) (1) = 𝜑(1),
(DR) B𝑏 (𝜑) (0) = 𝜑(0), B𝑡 (𝜑) (1) = 𝑞𝜑(1) + 𝜑′(1),
(DN) B𝑏 (𝜑) (0) = 𝜑(0), B𝑡 (𝜑) (1) = 𝜑′(1),
(RR) B𝑏 (𝜑) (0) = 𝑞𝜑(0) − 𝜑′(0), B𝑡 (𝜑) (1) = 𝑞𝜑(1) + 𝜑′(1),
(NR) B𝑏 (𝜑) (0) = 𝜑′(0), B𝑡 (𝜑) (1) = 𝑞𝜑(1) + 𝜑′(1),
(NN) B𝑏 (𝜑) (0) = 𝜑′(0), B𝑡 (𝜑) (1) = 𝜑′(1),
where 𝑞 > 0 and ‘D’, ‘R’ and ‘N’ stand for ‘Dirichlet’, ‘Robin’ and ‘Neumann’. For
all these six cases the eigenvalue problem (5) is solved by orthonormal (in 𝐿2 (0, 1))
Fourier basis functions.

Theorem 1 (Eigenpairs of the Laplace operator)
Let 𝑞 > 0. The eigenproblems (5) with the above external conditions are solved

by the non-trivial eigenpairs (𝜑𝑘 , 𝜆𝑘) given by
(DD) 𝜑𝑘 (𝑦) =

√
2 sin(𝜋𝑘𝑦), 𝜆𝑘 = 𝜋2𝑘2, 𝑘 = 1, 2, . . .

(DR) 𝜑𝑘 (𝑦) =
√︃

4𝜇𝑘
2𝜇𝑘−sin(2𝜇𝑘 ) sin(𝜇𝑘𝑦), 𝜆𝑘 = 𝜇2

𝑘 , 𝑘 = 1, 2, . . . , where
𝜇𝑘 ∈ (𝑘𝜋 − 𝜋/2, 𝑘𝜋), 𝑘 = 1, 2, . . . , are roots of 𝑑 (𝑥) := 𝑞 sin(𝑥) + 𝑥 cos(𝑥).
Moreover, lim𝑞→0 𝜇1 (𝑞) = 𝜋/2 and lim𝑞→∞ 𝜇1 (𝑞) = 𝜋.

(DN) 𝜑𝑘 (𝑦) =
√

2 sin( 2𝑘+1
2 𝜋𝑦), 𝜆𝑘 = (2𝑘+1)

2

4 𝜋2, 𝑘 = 0, 1, 2, . . .

(RR) 𝜑𝑘 (𝑦) =
√︂

4𝜏𝑘
(𝜏2
𝑘
−𝑞2) sin(2𝜏𝑘 )+4𝑞𝜏𝑘 sin(𝜏𝑘 )2+2𝜏3

𝑘
+2𝑞2𝜏𝑘

(
𝑞 sin(𝜏𝑘𝑦) + 𝜏𝑘 cos(𝜏𝑘𝑦)

)
,

𝜆𝑘 = 𝜏2
𝑘 , 𝑘 = 1, 2, . . . , where 𝜏𝑘 ∈ (0, 𝜋), 𝑘 = 1, 2, . . . , are roots of

𝑑 (𝑥) := 2𝑞𝑥 cos(𝑥) + (𝑞2 − 𝑥2) sin(𝑥). Moreover, lim𝑞→0 𝜏1 (𝑞) = 0 and
lim𝑞→∞ 𝜏1 (𝑞) = 𝜋.

(NR) 𝜑𝑘 (𝑦) =
√︃

4𝜈𝑘
2𝜈𝑘+sin(2𝜈𝑘 ) cos(𝜈𝑘𝑦), 𝜆𝑘 = 𝜈2

𝑘 , 𝑘 = 1, 2, . . . , where
𝜈𝑘 ∈ ((𝑘 − 1)𝜋, (𝑘 − 1

2 )𝜋), 𝑘 = 1, 2, . . . , are roots of 𝑑 (𝑥) := 𝑥 sin(𝑥) −
𝑞 cos(𝑥). Moreover, lim𝑞→0 𝜈1 (𝑞) = 0 and lim𝑞→∞ 𝜈1 (𝑞) = 𝜋/2.
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Fig. 2: Left: Maps 𝑞 ↦→ 𝜇1 (𝑞) , 𝑞 ↦→ 𝜈1 (𝑞) and 𝑞 ↦→ 𝜏1 (𝑞) . Right: 𝜌DR, 𝜌NR, 𝜌DD and 𝜌DN as
functions of 𝑞 and for 𝛿 = 0.1 and 𝐿 = 1.0.

(NN) 𝜑𝑘 (𝑦) =
√

2 cos(𝜋𝑘𝑦), 𝜆𝑘 = 𝜋2𝑘2, 𝑘 = 0, 1, 2, . . .

Proof If we multiply (5) with 𝜑, integrate over [0, 1], and integrate by parts, we get
𝜆
∫ 1

0 |𝜑(𝑦) |2𝑑𝑦 =
∫ 1

0 |𝜑′(𝑦) |2𝑑𝑦 − 𝜑′(1)𝜑(1) + 𝜑′(0)𝜑(0). Using any of the above
external conditions (and that 𝑞 > 0, for the Robin ones) one gets 𝜆 ≥ 0. We refer to,
e.g., [10, Section 4.1] for similar discussions. Now, all the cases can be proved by
using the ansatz 𝜑(𝑦) = 𝐴 cos(√𝜆𝑦) + 𝐵 sin(√𝜆𝑦), which clearly satisfies (5), and
computing, e.g., 𝐴 and 𝜆 in such a way that 𝜑(𝑦) satisfies the two external conditions
and 𝐵 as a normalization factor. □

The coefficients 𝜈1, 𝜇1 and 𝜏1 as functions of 𝑞 are shown in Fig. 2 (left), where
we can observe that 𝜈1 (𝑞) < 𝜋

2 < 𝜇1 (𝑞) < 𝜋 and 0 < 𝜏1 (𝑞) < 𝜋, and that the
maps 𝑞 ↦→ 𝜈1 (𝑞), 𝑞 ↦→ 𝜇1 (𝑞) and 𝑞 ↦→ 𝜏1 (𝑞) increase monotonically and approach,
respectively, 𝜋2 and 𝜋 as 𝑞 → ∞. Hence, by taking the limit 𝑞 → 0, one can pass
from the conditions (DR), (RR) and (NR) to (DN), (NN) and (NN), respectively.
Similarly, by taking the limit 𝑞 → ∞, the conditions (DR), (RR) and (NR) become
(DD), (DD) and (DN), respectively.

3 Convergence and scalability
Consider the Schwarz method (2) and any pair (B𝑏,B𝑡 ) of operators as in Section
2. The Fourier expansions of 𝑢𝑛𝑗 (𝑥, 𝑦), 𝑗 = 1, . . . , 𝑁 , are

𝑢𝑛𝑗 (𝑥, 𝑦) =
∑︁
𝑘

�̂�𝑛𝑗 (𝑥, 𝜆𝑘)𝜑𝑘 (𝑦), (6)

where the sum is over 𝑘 = 1, 2, . . . for (DD), (DR), (RR) and (NR), and over
𝑘 = 0, 1, 2, . . . for (DN) and (NN). The functions 𝜑𝑘 depend on the external boundary
conditions and are the ones obtained in Theorem 1. The Fourier coefficients �̂�𝑛𝑗 (𝑥, 𝜆𝑘)
satisfy2

2 Notice that the procedure to obtain (7) is standard. We refer to, e.g., [10] for more details and
examples.
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−𝜕𝑥𝑥 �̂�𝑛𝑗 (𝑥, 𝜆𝑘) + 𝜆𝑘 �̂�𝑛𝑗 (𝑥, 𝜆𝑘) = �̂� 𝑗 (𝑥, 𝜆𝑘) in (𝑎 𝑗 , 𝑏 𝑗 ),
Tℓ (�̂�𝑛𝑗 (·, 𝜆𝑘)) (𝑎 𝑗 ) = Tℓ (�̂�𝑛−1

𝑗−1 (·, 𝜆𝑘)) (𝑎 𝑗 ),
T𝑟 (�̂�𝑛𝑗 (·, 𝜆𝑘)) (𝑏 𝑗 ) = T𝑟 (�̂�𝑛−1

𝑗+1 (·, 𝜆𝑘)) (𝑏 𝑗 ),
(7)

for 𝑗 = 1, . . . , 𝑁 . For 𝑗 = 1, the condition at 𝑎1 must be replaced by 𝑢𝑛1 (𝑎1) = 0 and
for 𝑗 = 𝑁 the condition at 𝑏𝑁 must be replaced by 𝑢𝑛𝑁 (𝑏𝑁 ) = 0. If the operators
Tℓ and T𝑟 correspond to Dirichlet conditions (see (3)), then (7) is a PSM. If they
correspond to Robin conditions (see (4)), then (7) is an OSM. The convergence of
the iteration (7) is analyzed in Theorem 2.

Theorem 2 (Convergence of Schwarz methods in Fourier space)
The contraction factors of the Schwarz methods3 (7) are bounded by

𝜌(𝜆𝑘 , 𝛿) = 𝑒2𝜆𝑘 𝛿 + 𝑒𝜆𝑘𝐿
𝑒2𝜆𝑘 𝛿+𝜆𝑘𝐿 + 1

. (8)

Moreover, it holds that 𝜌(𝜆𝑘 , 𝛿) ∈ [0, 1] with 𝜌(0, 𝛿) = 1 (independently of 𝑁), and
that 𝜆 ↦→ 𝜌(𝜆, 𝛿) is strictly monotonically decreasing.

Proof The Dirichlet case follows from [4, Lemma 2 and Theorem 3]. See also [3,
Lemma 2 and Theorem 1]. We focus here on the Robin case. From Theorem 3 in
[3] and the corresponding proof we have that the contraction factor of the OSM is
bounded by max{𝜑(𝜆, 𝛿, 𝑝), |𝜁 (𝜆, 𝛿, 𝑝) |} where

𝜑(𝜆, 𝛿, 𝑝) :=
(𝜆 + 𝑝)2𝑒2𝛿𝜆 − (𝜆 − 𝑝)2𝑒−2𝛿𝜆 + (𝜆 + 𝑝) |𝜆 − 𝑝 | (𝑒𝜆𝐿 − 𝑒−𝜆𝐿)

(𝜆 + 𝑝)2𝑒𝜆𝐿+2𝜆𝛿 − (𝜆 − 𝑝)2𝑒−𝜆𝐿−2𝜆𝛿 ≥ 0,

𝜁 (𝜆, 𝛿, 𝑝) :=
(𝜆 + 𝑝)𝑒−𝜆𝐿 + (𝜆 − 𝑝)𝑒𝜆𝐿

(𝜆 + 𝑝)𝑒𝜆(𝐿+2𝛿) + (𝜆 − 𝑝)𝑒−𝜆(𝐿+2𝛿) ,

with 𝜑(𝜆, 𝛿, 𝑝) ≤ 𝜑(𝜆, 𝛿, 0) = lim𝑝→∞ 𝜑(𝜆, 𝛿, 𝑝) = 𝑒2𝛿𝜆−𝑒−2𝛿𝜆+𝑒𝜆𝐿−𝑒−𝜆𝐿
𝑒𝜆𝐿+2𝛿𝜆−𝑒−𝜆𝐿−2𝛿𝜆 for all 𝜆 ≥ 0

and 𝛿 > 0. If we compute the derivative of 𝜆 ↦→ 𝜑(𝜆, 𝛿, 0) we get

𝜕𝜆𝜑(𝜆, 𝛿, 0) = −𝐿 (𝑒
4𝛿𝜆+𝐿𝜆 − 𝑒𝐿𝜆) + 2𝛿(𝑒2𝛿𝜆+2𝐿𝜆 − 𝑒2𝛿𝜆)

(𝑒2𝛿𝜆+𝐿𝜆 + 1)2 ,

which is negative for any 𝜆 ≥ 0 and 𝛿 > 0. Thus, 𝜆 ↦→ 𝜑(𝜆, 𝛿, 0) is strictly mono-
tonically decreasing. Let us now study the function 𝜁 (𝜆, 𝛿, 𝑝). Direct calculations
reveal that 𝜕𝑝𝜁 (𝜆, 𝛿, 𝑝) = − 2𝜆𝑒2𝛿𝜆 (𝑒4𝜆(𝛿+𝐿)−1)

( (𝜆+𝑝)𝑒4𝛿𝜆+2𝐿𝜆+𝜆−𝑝)2 , which is negative for any 𝜆 ≥ 0 and

𝛿 > 0, and 𝜁 (𝜆, 𝛿, 0) = (𝑒2𝐿𝜆+1)𝑒2𝛿𝜆

𝑒4𝛿𝜆+2𝐿𝜆+1 > 0 and lim𝑝→∞ 𝜁 (𝜆, 𝛿, 𝑝) = − (𝑒
2𝐿𝜆−1)𝑒2𝛿𝜆

𝑒4𝛿𝜆+2𝐿𝜆−1 < 0
for any 𝜆 ≥ 0 and 𝛿 > 0. These observations imply that 𝑝 ↦→ 𝜁 (𝜆, 𝛿, 𝑝) is strictly
monotonically decreasing and attains its maximum at 𝑝 = 0. Finally, a direct compar-
ison shows that 𝜑(𝜆, 𝛿, 0) ≥ 𝜁 (𝜆, 𝛿, 0) ≥ lim𝑝→∞ |𝜁 (𝜆, 𝛿, 𝑝) | and the result follows,
because 𝜑(𝜆, 𝛿, 0) = 𝑒2𝛿𝜆−𝑒−2𝛿𝜆+𝑒𝜆𝐿−𝑒−𝜆𝐿

𝑒𝜆𝐿+2𝛿𝜆−𝑒−𝜆𝐿−2𝛿𝜆 = 𝑒2𝜆𝛿+𝑒𝜆𝐿
𝑒2𝜆𝛿+𝜆𝐿+1 . □

3 The contraction factor for (7) (corresponding to the 𝑘-th Fourier component) is the spectral radius
of the Schwarz iteration matrix; see [4, 3].
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Theorem 2 gives the same bound (8) for the convergence factors of PSM and
OSM. This fact is not surprising. First, it is well known that OSM converges faster
than PSM for 𝛿 > 0. Hence, a convergence bound for the PSM is a valid bound
also for the OSM. Second, in the above proof the convergence bound for the OSM
is obtained for 𝑝 → ∞, which corresponds to passing from Robin transmission
conditions to Dirichlet transmission conditions. The bound (8) is based on the ones
obtained in [4, 3]. These are quite sharp for large values of 𝑁; see, e.g., [3, Fig. 4
and Fig. 5].
We can now prove our main convergence result, which allows us to study conver-

gence and scalability of PSM and OSM for all the external conditions considered in
Section 2.

Theorem 3 (Convergence of PSM and OSM)
The contraction factors (in the 𝐿2 norm) of PSM and OSM for the solution to (1)

are bounded by
(DD) 𝜌DD (𝛿) := 𝜌(𝜋2, 𝛿), (DR) 𝜌DR (𝛿, 𝑞) := 𝜌(𝜇1 (𝑞)2, 𝛿),
(DN) 𝜌DN (𝛿) := 𝜌(𝜋2/4, 𝛿), (RR) 𝜌RR (𝛿, 𝑞) := 𝜌(𝜏1 (𝑞)2, 𝛿),
(NR) 𝜌NR (𝛿, 𝑞) := 𝜌(𝜈1 (𝑞)2, 𝛿), (NN) 𝜌NN (𝛿) := 𝜌(0, 𝛿) = 1,

where 𝑞 ∈ (0,∞) and 𝜌(𝜆, 𝛿) is defined in Theorem 2. Moreover, for any 𝛿 > 0 we
have that

𝜌DD (𝛿) < 𝜌DR (𝛿, 𝑞) < 𝜌DN (𝛿) < 𝜌NR (𝛿, 𝑞) < 𝜌NN (𝛿) = 1, (9)
𝜌DD (𝛿) < 𝜌RR (𝛿, 𝑞) < 𝜌NN (𝛿) = 1. (10)

Proof According to Theorem 2, the bounds of the Fourier contraction factor 𝜌(𝜆, 𝛿)
is monotonically decreasing in 𝜆. Therefore, an upper bound for the convergence
factor of PSM and OSM (in the 𝐿2 norm) can be obtained by taking the maximum
over the admissible Fourier frequencies 𝜆𝑘 and invoking Parseval’s identity (see, e.g.,
[4]). Recalling Theorem 1, these maxima are attained at 𝜆1 = 𝜋2 for (DD), 𝜆1 = 𝜇2

1
for (DR), 𝜆0 = 𝜋2/4 for (DN), 𝜆1 = 𝜏2

1 for (RR), 𝜆1 = 𝜈2
1 for (NR), and 𝜆0 = 0 for

(NN). The inequalities (9) and (10) follow from the monotonicity 𝜆 ↦→ 𝜌(𝜆, 𝛿) and
the fact that 𝜈1 (𝑞) < 𝜋

2 < 𝜇1 (𝑞) < 𝜋 and 𝜏1 (𝑞) ∈ (0, 𝜋). □

The inequalities (9) and (10) imply that the contraction factor is bounded, inde-
pendently of 𝑁 , by a constant strictly smaller than 1 for all the cases except (NN). In
the case (NN), the first Fourier frequency is 𝜆0 = 0. Hence, the coefficients �̂�𝑛𝑗 (𝑥, 𝜆0)
are generated by the 1D Schwarz method

−𝜕𝑥𝑥 �̂�𝑛𝑗 (𝑥, 𝜆0) = �̂� 𝑗 (𝑥, 𝜆0) in (𝑎 𝑗 , 𝑏 𝑗 ),
Tℓ (�̂�𝑛𝑗 (·, 𝜆0)) (𝑎 𝑗 ) = Tℓ (�̂�𝑛−1

𝑗−1 (·, 𝜆0)) (𝑎 𝑗 ),
T𝑟 (�̂�𝑛𝑗 (·, 𝜆0)) (𝑏 𝑗 ) = T𝑟 (�̂�𝑛−1

𝑗+1 (·, 𝜆0)) (𝑏 𝑗 ),
(11)

which is known to be not scalable; see, e.g., [3, 8]. The scalability of PSM and
OSM for different external conditions applied at the top and at the bottom of the
domain is summarized in Table 1. Inequalities (9) and (10) lead to another interesting
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bottom top Dirichlet Robin Neumann
Dirichlet yes yes yes
Robin yes yes yes
Neumann yes yes no

bottom top Dirichlet Robin Neumann
Dirichlet - yes -
Robin yes no no
Neumann - no -

Table 1: Left: Scalability of PSM and OSM for different external conditions (for a fixed and finite
𝑞 > 0) applied at the top and at the bottom of the domain. Right: Robustness of PSM and OSM
with respect to 𝑞 ∈ [0,∞].

observation. The contraction factors are clearly influenced by the external boundary
conditions. Dirichlet conditions lead to faster convergence than Robin conditions,
which in turn lead to faster convergence than Neumann conditions. For example,
if one external condition is of the Dirichlet type, then PSM and OSM converge
faster if the other condition is of the Dirichlet type and slower if this is of Robin
and even slower for the Neumann type. The case (RR) is slightly different, because
the corresponding convergence of PSM and OSM depends heavily on the Robin
parameter 𝑞. The behavior of the bounds 𝜌RR (𝛿, 𝑞), 𝜌DR (𝛿, 𝑞) and 𝜌NR (𝛿, 𝑞) with
respect to 𝑞 is depicted in Fig. 2 (right), which shows the bounds discussed in
Theorem 3 as functions of 𝑞 (recall that 𝜌NN = 1). Here, we can observe that the
inequalities (9) and (10) are satisfied and that

• As 𝑞 increases the Dirichlet part of the Robin external condition dominates.
In addition, the bounds 𝜌RR and 𝜌DR decrease and approach 𝜌DD as 𝑞 → ∞.
Similarly, 𝜌NR decreases and approaches 𝜌DN.

• As 𝑞 decreases the Neumann part of the Robin external condition dominates. In
addition, the bounds 𝜌NR and 𝜌RR decrease and approach 𝜌NN = 1 as 𝑞 → 0.
Similarly, 𝜌DR increases and approaches 𝜌DN.

These observations lead to Tab. 1 (right), where we summarize the robustness of
PSM and OSMwith respect to the parameter 𝑞. The methods are robust with respect
to 𝑞 only if one of the two external boundary conditions is of Dirichlet type. This is
due to the fact that Robin conditions become Neumann conditions for 𝑞 → 0.

4 Numerical experiments
In this section, we test the scalability of PSM and OSM by numerical simulations.
For this purpose, we run PSM and OSM for all the external boundary conditions
discussed in this paper and measure the number of iterations required to reach
a tolerance on the error of 10−6. To guarantee that the initial errors contain all
frequencies, the methods are initialized with random initial guesses. In all cases,
each subdomain is discretized with a uniform grid of size 90 interior points in
direction 𝑥 and 50 interior points in direction 𝑦. The mesh size is ℎ = 𝐿

51 , with 𝐿 = 1,
and the overlap parameter is 𝛿 = 10ℎ. For the OSM the robin parameter is 𝑝 = 10.
The Robin parameter 𝑞 of the external Robin conditions is 𝑞 = 10, and the (RR) case
is also tested with 𝑞 = 0.1. The results of our experiments are shown in Tab. 2 and
confirm the theoretical results discussed in the previous sections.
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𝑁 DD DR(10) DN RR(10) NR(10) NN RR(0.1)
3 12 - 9 13 - 10 27 - 19 14 - 10 26 - 19 77 - 54 65 - 45
4 13 - 9 14 - 10 29 - 21 15 - 11 29 - 21 130 - 90 95 - 66
5 13 - 9 14 - 10 31 - 22 15 - 11 31 - 22 194 - 134 124 - 86
10 13 - 10 14 - 10 33 - 24 15 - 11 34 - 24 >401 - >401 227 - 155
30 13 - 10 14 - 10 34 - 24 15 - 11 35 - 24 >401 - >401 311 - 210
50 13 - 10 14 - 10 34 - 24 15 - 11 35 - 24 >401 - >401 319 - 216

Table 2: Number of iterations of PSM (left) and OSM (right) needed to reduce the norm of the
error below a tolerance of 10−6 for increasing number 𝑁 of fixed-sized subdomains. The maximum
number of allowed iterations is 401. This limit is only reached in the (NN) case, for which PSM
and OSM are not scalable.
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On the Asymptotic Optimality of Spectral
Coarse Spaces

Gabriele Ciaramella and Tommaso Vanzan

1 Introduction
The goal of this work is to study the asymptotic optimality of spectral coarse spaces
for two-level iterative methods. In particular, we consider a linear system 𝐴u = f,
where 𝐴 ∈ R𝑛×𝑛 and f ∈ R𝑛, and a two-level method that, given an iterate u𝑘 ,
computes the new vector u𝑘+1 as

u𝑘+1/2 = 𝐺u𝑘 + 𝑀−1f, (smoothing step) (1)

u𝑘+1 = u𝑘+1/2 + 𝑃𝐴−1
𝑐 𝑅(f − 𝐴u𝑘+1/2). (coarse correction) (2)

The smoothing step (1) is based on the splitting 𝐴 = 𝑀 − 𝑁 , where 𝑀 is the
preconditioner, and 𝐺 = 𝑀−1𝑁 the iteration matrix. The correction step (2) is
characterized by prolongation and restriction matrices 𝑃 ∈ R𝑛×𝑚 and 𝑅 = 𝑃⊤, and
a coarse matrix 𝐴𝑐 = 𝑅𝐴𝑃. The columns of 𝑃 are linearly independent vectors
spanning the coarse space 𝑉𝑐 := span {p1, . . . , p𝑚}. The convergence of the one-
level iteration (1) is characterized by the eigenvalues of𝐺, 𝜆 𝑗 , 𝑗 = 1, . . . , 𝑛 (sorted in
descending order by magnitude). The convergence of the two-level iteration (1)-(2)
depends on the spectrum of the iteration matrix 𝑇 , obtained by substituting (1) into
(2) and rearranging terms:

𝑇 = [𝐼 − 𝑃(𝑅𝐴𝑃)−1𝑅𝐴]𝐺. (3)

The goal of this short paper is to answer, though partially, the fundamental question:
given an integer 𝑚, what is the coarse space of dimension 𝑚 which minimizes
the spectral radius 𝜌(𝑇)? Since step (2) aims at correcting the error components
that the smoothing step (1) is not able to reduce (or eliminate), it is intuitive to
think that an optimal coarse space 𝑉𝑐 is obtained by defining p 𝑗 as the eigenvectors
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Politecnico di Milano e-mail: gabriele.ciaramella@polimi.it

Tommaso Vanzan
CSQI Chair, EPFL Lausanne e-mail: tommaso.vanzan@epfl.ch
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of 𝐺 corresponding to the 𝑚 largest (in modulus) eigenvalues. We call such a
𝑉𝑐 spectral coarse space. Following the idea of correcting the ‘badly converging’
modes of𝐺, several papers proposed new, and in some sense optimal, coarse spaces.
In the context of domain decomposition methods, we refer, e.g., to [2, 3, 4], where
efficient coarse spaces have been designed for parallel, restricted additive and additive
Schwarz methods. In the context of multigrid methods, it is worth mentioning the
work [6], where the interpolation weights are optimized using an approach based on
deep-neural networks. Fundamental results are presented in [7]: for a symmetric 𝐴,
it is proved that the coarse space of size 𝑚 that minimizes the energy norm of 𝑇 ,
namely ∥𝑇 ∥𝐴, is the span of the𝑚 eigenvectors of𝑀𝐴 corresponding to the𝑚 lowest
eigenvalues. Here,𝑀 := 𝑀−1+𝑀−⊤−𝑀−⊤𝐴𝑀−1 is symmetric and assumed positive
definite. If 𝑀 is symmetric, a direct calculation gives 𝑀𝐴 = 2𝑀−1𝐴 − (𝑀−1𝐴)2.
Using that 𝑀−1𝐴 = 𝐼 − 𝐺, one can show that the 𝑚 eigenvectors associated to the
lowest 𝑚 eigenvalues of 𝑀𝐴 correspond to the 𝑚 largest modes of 𝐺. Hence, the
optimal coarse space proposed in [7] is a spectral coarse space. The sharp result of
[7] provides a concrete optimal choice of 𝑉𝑐 minimizing ∥𝑇 ∥𝐴. This is generally an
upper bound for the asymptotic convergence factor 𝜌(𝑇). As we will see in Section
2, choosing the spectral coarse space, one gets 𝜌(𝑇) = |𝜆𝑚+1 |. The goal of this work
is to show that this is not necessarily the optimal asymptotic convergence factor.
In Section 2, we perform a detailed optimality analysis for the case 𝑚 = 1. The
asymptotic optimality of coarse spaces for 𝑚 ≥ 1 is studied numerically in Section
3. Interestingly, we will see that by optimizing 𝜌(𝑇) one constructs coarse spaces
that lead to preconditioned matrices with better condition numbers.

2 A perturbation approach
Let 𝐺 be diagonalizable with eigenpairs (𝜆 𝑗 , v 𝑗 ), 𝑗 = 1, . . . , 𝑛. Suppose that v 𝑗 are
also eigenvectors of 𝐴: 𝐴v 𝑗 = 𝜆 𝑗v 𝑗 . Concrete examples where these hypotheses are
fulfilled are given in Section 3. Assume that rank 𝑃 = 𝑚 (dim𝑉𝑐 = 𝑚). For any
eigenvector v 𝑗 , we can write the vector 𝑇v 𝑗 as

𝑇v 𝑗 =
𝑛∑︁
ℓ=1

�̃� 𝑗 ,ℓvℓ , 𝑗 = 1, . . . , 𝑛. (4)

If we denote by 𝑇 ∈ R𝑛×𝑛 the matrix of entries �̃� 𝑗 ,ℓ , and define 𝑉 := [v1, . . . , v𝑛],
then (4) becomes 𝑇𝑉 = 𝑉𝑇⊤. Since 𝐺 is diagonalizable, 𝑉 is invertible, and thus 𝑇
and 𝑇⊤ are similar. Hence, 𝑇 and 𝑇 have the same spectrum. We can now prove the
following lemma.

Lemma 1 (Characterization of 𝑇)
Given an index 𝑚 ≥ 𝑚 and assume that 𝑉𝑐 := span {p1, . . . , p𝑚} satisfies

𝑉𝑐 ⊆ span {v 𝑗 }�̃�𝑗=1 and 𝑉𝑐 ∩ {v 𝑗 }𝑛𝑗=�̃�+1 = {0}. (5)

Then, it holds that
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𝑇 =

[
𝑇�̃� 0
𝑋 Λ�̃�

]
,

Λ�̃� = diag (𝜆�̃�+1, . . . , 𝜆𝑛),
𝑇�̃� ∈ R�̃�×�̃�, 𝑋 ∈ R(𝑛−�̃�)×�̃�.

(6)

Proof The hypothesis (5) guarantees that span {v 𝑗 }�̃�𝑗=1 is invariant under the action of
𝑇 . Hence, 𝑇v 𝑗 ∈ span {v 𝑗 }�̃�𝑗=1 for 𝑗 = 1, . . . , 𝑚, and, using (4), one gets that �̃� 𝑗 ,ℓ = 0
for 𝑗 = 1, . . . , 𝑚 and ℓ = 𝑚+1, . . . , 𝑛. Now, consider any 𝑗 > 𝑚. A direct calculation
using (4) reveals that𝑇v 𝑗 = 𝐺v 𝑗−𝑃(𝑅𝐴𝑃)−1𝑅𝐴𝐺v 𝑗 = 𝜆 𝑗v 𝑗−

∑�̃�
ℓ=1 𝑥 𝑗−�̃�,ℓvℓ , where

𝑥𝑖,𝑘 are the elements of 𝑋 ∈ R(𝑛−�̃�)×�̃�. Hence, the structure (6) follows. □

Notice that, if (5) holds, then Lemma 1 allows us to study the properties of 𝑇
using the matrix 𝑇 and its structure (6), and hence 𝑇�̃�.
Let us now turn to the questions posed in Section 1. Assume that p 𝑗 = v 𝑗 , 𝑗 =

1, . . . , 𝑚, namely𝑉𝑐 = span {v 𝑗 }𝑚𝑗=1. In this case, (5) holds with𝑚 = 𝑚, and a simple

argument1 leads to 𝑇�̃� = 0, 𝑇 =

[
0 0
𝑋 Λ�̃�

]
. The spectrum of 𝑇 is {0, 𝜆𝑚+1, . . . , 𝜆𝑛}.

This means that 𝑉𝑐 ⊂ kern𝑇 and 𝜌(𝑇) = |𝜆𝑚+1 |. Let us now perturb the coarse
space 𝑉𝑐 using the eigenvector v𝑚+1, that is 𝑉𝑐 (𝜀) := span {v 𝑗 + 𝜀 v𝑚+1}𝑚𝑗=1. Clearly,
dim𝑉𝑐 (𝜀) = 𝑚 for any 𝜀 ∈ R. In this case, (5) holds with 𝑚 = 𝑚 + 1 and 𝑇 becomes

𝑇 (𝜀) =
[
𝑇�̃� (𝜀) 0
𝑋 (𝜀) Λ�̃�

]
, (7)

where we make explicit the dependence on 𝜀. Notice that 𝜀 = 0 clearly leads
to 𝑇�̃� (0) = diag (0, . . . , 0, 𝜆𝑚+1) ∈ R�̃�×�̃�, and we are back to the unper-
turbed case with 𝑇 (0) = 𝑇 having spectrum {0, 𝜆𝑚+1, . . . , 𝜆𝑛}. Now, notice that
min𝜀∈R 𝜌(𝑇 (𝜀)) ≤ 𝜌(𝑇 (0)) = |𝜆𝑚+1 |. Thus, it is natural to ask the question: is this
inequality strict? Can one find an �̃� ≠ 0 such that 𝜌(𝑇 (�̃�)) = min𝜀∈R 𝜌(𝑇 (𝜀)) <
𝜌(𝑇 (0)) holds? If the answer is positive, then we can conclude that choosing the
coarse vectors equal to the dominating eigenvectors of 𝐺 is not an optimal choice.
The next key result shows that, in the case 𝑚 = 1, the answer is positive.

Theorem 1 (Perturbation of 𝑉𝑐)
Let (v1, 𝜆1), (v2, 𝜆2) and (v3, 𝜆3) be three real eigenpairs of 𝐺, 𝐺v 𝑗 = 𝜆 𝑗v 𝑗

such that with 0 < |𝜆3 | < |𝜆2 | ≤ |𝜆1 | and ∥v 𝑗 ∥2 = 1, 𝑗 = 1, 2. Denote by 𝜆 𝑗 ∈ R
the eigenvalues of 𝐴 corresponding to v 𝑗 , and assume that 𝜆1𝜆2 > 0. Define 𝑉𝑐 :=
span {v1 + 𝜀v2} with 𝜀 ∈ R, and 𝛾 := v⊤1 v2 ∈ [−1, 1]. Then

(A) The spectral radius of 𝑇 (𝜀) is 𝜌(𝑇 (𝜀)) = max{|𝜆(𝜀, 𝛾) |, |𝜆3 |}, where

𝜆(𝜀, 𝛾) = 𝜆1𝜆2𝜀
2 + 𝛾(𝜆1𝜆2 + 𝜆2𝜆1)𝜀 + 𝜆2𝜆1

𝜆2𝜀2 + 𝛾(𝜆1 + 𝜆2)𝜀 + 𝜆1
. (8)

1 Let v 𝑗 be an eigenvector of 𝐴 with 𝑗 ∈ {1, . . . , 𝑚}. Denote by e 𝑗 ∈ R𝑛 the 𝑗th canonical
vector. Since 𝑃e 𝑗 = v 𝑗 , 𝑅𝐴𝑃e 𝑗 = 𝑅𝐴v 𝑗 . This is equivalent to e 𝑗 = (𝑅𝐴𝑃)−1𝑅𝐴v 𝑗 , which gives
𝑇v 𝑗 = 𝜆 𝑗 (v 𝑗 − 𝑃 (𝑅𝐴𝑃)−1𝑅𝐴v 𝑗 ) = 𝜆 𝑗 (v 𝑗 − 𝑃e 𝑗 ) = 0.
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(B) Let 𝛾 = 0. If 𝜆1 > 𝜆2 > 0 or 0 > 𝜆2 > 𝜆1, then min
𝜀∈R

𝜌(𝑇 (𝜀)) = 𝜌(𝑇 (0)).
(C) Let 𝛾 = 0, If 𝜆2 > 0 > 𝜆1 or 𝜆1 > 0 > 𝜆2, then there exists an �̃� ≠ 0 such that

𝜌(𝑇 (�̃�)) = |𝜆3 | = min
𝜀∈R

𝜌(𝑇 (𝜀)) < 𝜌(𝑇 (0)).
(D) Let 𝛾 ≠ 0. If 𝜆1 > 𝜆2 > 0 or 0 > 𝜆2 > 𝜆1, then there exists an �̃� ≠ 0 such that
|𝜆(�̃�, 𝛾) | < |𝜆2 | and hence 𝜌(𝑇 (�̃�)) = max{|𝜆(�̃�, 𝛾) |, |𝜆3 |} < 𝜌(𝑇 (0)).

(E) Let 𝛾 ≠ 0. If 𝜆2 > 0 > 𝜆1 or 𝜆1 > 0 > 𝜆2, then there exists an �̃� ≠ 0 such that
𝜌(𝑇 (�̃�)) = |𝜆3 | = min

𝜀∈R
𝜌(𝑇 (𝜀)) < 𝜌(𝑇 (0)).

Proof Since 𝑚 = 1, a direct calculation allows us to compute the matrix

𝑇�̃� (𝜀) =

𝜆1 − 𝜆1𝜆1 (1+𝜀𝛾)

𝑔 −𝜀 𝜆1𝜆1 (1+𝜀𝛾)
𝑔

−𝜆2𝜆2 (𝜀+𝛾)
𝑔 𝜆2 − (𝜀𝜆2𝜆2) (𝜀+𝛾)

𝑔


,

where 𝑔 = 𝜆1 + 𝜀𝛾 [𝜆1 +𝜆2] + 𝜀2𝜆2. The spectrum of this matrix is {0, 𝜆(𝜀, 𝛾)}, with
𝜆(𝜀, 𝛾) given in (8). Hence, point (A) follows recalling (7).
To prove points (B), (C), (D) and (E) we use some properties of the map

𝜀 ↦→ 𝜆(𝜀, 𝛾). First, we notice that

𝜆(0, 𝛾) = 𝜆2, lim
𝜀→±∞𝜆(𝜀, 𝛾) = 𝜆1, 𝜆(𝜀, 𝛾) = 𝜆(−𝜀,−𝛾). (9)

Second, the derivative of 𝜆(𝜀, 𝛾) with respect to 𝜀 is

𝑑𝜆(𝜀, 𝛾)
𝑑𝜀

=
(𝜆1 − 𝜆2)𝜆1𝜆2 (𝜀2 + 2𝜀/𝛾 + 1)𝛾
(𝜆2𝜀2 + 𝛾(𝜆1 + 𝜆2)𝜀 + 𝜆1)2

. (10)

Because of 𝜆(𝜀, 𝛾) = 𝜆(−𝜀,−𝛾) in (9), we can assume without loss of generality
that 𝛾 ≥ 0.
Let us now consider the case 𝛾 = 0. In this case, the derivative (10) becomes

𝑑𝜆(𝜀,0)
𝑑𝜀 = (𝜆1−𝜆2)𝜆1𝜆22𝜀

(𝜆2𝜀2+𝜆2
1)2
. Moreover, since 𝜆(𝜀, 0) = 𝜆(−𝜀, 0) we can assume that

𝜀 ≥ 0.
Case (B). If 𝜆1 > 𝜆2 > 0, then 𝑑𝜆(𝜀,0)

𝑑𝜀 > 0 for all 𝜀 > 0. Hence, 𝜀 ↦→ 𝜆(𝜀, 0)
is monotonically increasing, 𝜆(𝜀, 0) ≥ 0 for all 𝜀 > 0 and, thus, the minimum
of 𝜀 ↦→ |𝜆(𝜀, 0) | is attained at 𝜀 = 0 with |𝜆(0, 0) | = |𝜆2 | > |𝜆3 |, and the result
follows. Analogously, if 0 > 𝜆2 > 𝜆1, then 𝑑𝜆(𝜀,0)

𝑑𝜀 < 0 for all 𝜀 > 0. Hence,
𝜀 ↦→ 𝜆(𝜀, 0) is monotonically decreasing, 𝜆(𝜀, 0) < 0 for all 𝜀 > 0 and the minimum
of 𝜀 ↦→ |𝜆(𝜀, 0) | is attained at 𝜀 = 0.
Case (C). If 𝜆1 > 0 > 𝜆2, then 𝑑𝜆(𝜀,0)

𝑑𝜀 > 0 for all 𝜀 > 0. Hence, 𝜀 ↦→ 𝜆(𝜀, 0)
is monotonically increasing and such that 𝜆(0, 0) = 𝜆2 < 0 and lim𝜀→∞ 𝜆(𝜀, 0) =
𝜆1 > 0. Thus, the continuity of the map 𝜀 ↦→ 𝜆(𝜀, 0) guarantees the existence of an
�̃� > 0 such that 𝜆(�̃�, 0) = 0. Analogously, if 𝜆2 > 0 > 𝜆1, then 𝑑𝜆(𝜀,0)

𝑑𝜀 < 0 for all
𝜀 > 0 and the result follows by the continuity of 𝜀 ↦→ 𝜆(𝜀, 0).
Let us now consider the case 𝛾 > 0. The sign of 𝑑𝜆(𝜀,𝛾)𝑑𝜀 is affected by the term

𝑓 (𝜀) := 𝜀2 + 2𝜀/𝛾 + 1, which appears at the numerator of (10). The function 𝑓 (𝜀)
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is strictly convex, attains its minimum at 𝜀 = − 1
𝛾 , and is negative in (𝜀1, 𝜀2) and

positive in (−∞, 𝜀1) ∪ (𝜀2,∞), with 𝜀1, 𝜀2 = − 1∓
√

1−𝛾2

𝛾 .
Case (D). If 𝜆1 > 𝜆2 > 0, then 𝑑𝜆(𝜀,𝛾)

𝑑𝜀 > 0 for all 𝜀 > 𝜀2. Hence, 𝑑𝜆(0,𝛾)𝑑𝜀 > 0,
which means that there exists an �̃� < 0 such that |𝜆(�̃�, 𝛾) | < |𝜆(0, 𝛾) | = |𝜆2 |. The
case 0 > 𝜆2 > 𝜆1 follows analogously.
Case (E). If 𝜆1 > 0 > 𝜆2, then 𝑑𝜆(𝜀,𝛾)𝑑𝜀 > 0 for all 𝜀 > 0. Hence, by the continuity

of 𝜀 ↦→ 𝜆(𝜀, 𝛾) (for 𝜀 ≥ 0) there exists an �̃� > 0 such that 𝜆(�̃�, 𝛾) = 0. The case
𝜆2 > 0 > 𝜆1 follows analogously. □

Theorem 1 and its proof say that, if the two eigenvalues 𝜆1 and 𝜆2 have opposite
signs (but they could be equal in modulus), then it is always possible to find an
𝜀 ≠ 0 such that the coarse space 𝑉𝑐 := span{v1 + 𝜀v2} leads to a faster method than
𝑉𝑐 := span{v1}, even though both are one-dimensional subspaces. In addition, if
𝜆3 ≠ 0 the former leads to a two-level operator 𝑇 with a larger kernel than the one
corresponding to the latter. The situation is completely different if 𝜆1 and 𝜆2 have
the same sign. In this case, the orthogonality parameter 𝛾 is crucial. If v1 and v2
are orthogonal (𝛾 = 0), then one cannot improve the effect of 𝑉𝑐 := span{v1} by a
simple perturbation using v2. However, if v1 and v2 are not orthogonal (𝛾 ≠ 0), then
one can still find an 𝜀 ≠ 0 such that 𝜌(𝑇 (𝜀)) < 𝜌(𝑇 (0)).
Notice that, if |𝜆3 | = |𝜆2 |, Theorem 1 shows that one cannot obtain a 𝜌(𝑇) smaller

than |𝜆2 | using a one-dimensional perturbation. However, if one optimizes the entire
coarse space 𝑉𝑐 (keeping 𝑚 fixed), then one can find coarse spaces leading to better
contraction factor of the two-level iteration, even though |𝜆3 | = |𝜆2 |. This is shown
in the next section.

3 Optimizing the coarse-space functions
Consider the elliptic problem

−Δ𝑢 + 𝑐 (𝜕𝑥𝑢 + 𝜕𝑦𝑢) = 𝑓 in Ω = (0, 1)2, 𝑢 = 0 on 𝜕Ω. (11)

Using a uniform grid of size ℎ, the standard second-order finite-difference scheme
for the Laplace operator and the central difference approximation for the advection
terms, problem (11) becomes 𝐴u = f, where 𝐴 has constant and positive diagonal
entries, 𝐷 = diag(𝐴) = 4/ℎ2𝐼. A simple calculation shows that, if 𝑐 ≥ 0 satisfies
𝑐 ≤ 2/ℎ, then the eigenvalues of 𝐴 are real. The eigenvectors of 𝐴 are orthogonal if
𝑐 = 0 and non-orthogonal if 𝑐 > 0.
One of the most used smoothers for (11) is the damped Jacobi method: u𝑘+1 =

u𝑘 + 𝜔𝐷−1 (f − 𝐴u𝑘), where 𝜔 ∈ (0, 1] is a damping parameter. The corresponding
iteration matrix is𝐺 = 𝐼 −𝜔𝐷−1𝐴. Since 𝐷 = 4/ℎ2𝐼, the matrices 𝐴 and𝐺 have the
same eigenvectors. For 𝑐 = 0, it is possible to show that, if 𝜔 = 1 (classical Jacobi
iteration), then the nonzero eigenvalues of 𝐺 have positive and negative signs, while
if 𝜔 = 1/2, the eigenvalues of 𝐺 are all positive. Hence, the chosen model problem
allows us to work in the theoretical framework of Section 2.
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Fig. 1: Behavior of |𝜆(𝜀, 𝛾) | and 𝜌(𝑇 (𝜀)) as functions of 𝜀 for different 𝑐 and 𝛾. Top left panel:
𝑐 = 0, 𝜔 = 1/2; top right panel: 𝑐 = 0, 𝜔 = 1; bottom left panel: 𝑐 = 10, 𝜔 = 1/2; bottom right
panel: 𝑐 = 10, 𝜔 = 1.

To validate numerically Theorem 1, we set ℎ = 1/10 and consider 𝑉𝑐 :=
{v1 + 𝜀v2}. Figure 1 shows the dependence of 𝜌(𝑇 (𝜀)) and |𝜆(𝜀, 𝛾) | on 𝜀 and
𝛾. On the top left panel, we set 𝑐 = 0 and 𝜔 = 1/2 so that the hypotheses of point (B)
of Theorem 1 are satisfied, since 𝛾 = 0 and 𝜆1 ≥ 𝜆2 > 0. As point (B) predicts, we
observe that min

𝜀∈R
𝜌(𝑇 (𝜀)) is attained at 𝜀 = 0, i.e. min𝜀∈R 𝜌(𝑇 (𝜀)) = 𝜌(𝑇 (0)) = 𝜆2.

Hence, adding a perturbation does not improve the coarse space made only by v1.
Next, we consider point (C), by setting 𝑐 = 0 and 𝜔 = 1. Through a direct com-
putation we get 𝜆1 = −0.95, 𝜆2 = −𝜆1 and 𝜆3 = 0.90. The top-right panel shows,
on the one hand, that for several values of 𝜀, 𝜌(𝑇 (𝜀)) = 𝜆3 < 𝜆2, that is with a
one-dimensional perturbed coarse space, we obtain the same contraction factor we
would have with the two-dimensional spectral coarse space 𝑉𝑐 = span {v1, v2}. On
the other hand, we observe that there are two values of 𝜀 such that 𝜆(𝜀, 𝛾) = 0,
which (recalling (4) and (6)) implies that 𝑇 is nilpotent over the span{v1, v2}. To
study point (D), we set 𝑐 = 10, 𝜔 = 1/2, which lead to 𝜆1 = 0.92, 𝜆2 = 𝜆3 = 0.90.
The left-bottom panel confirms there exists an 𝜀∗ < 0 such that |𝜆(𝜀∗, 𝛾) | ≤ 𝜆2,
which implies 𝜌(𝑇 (𝜀∗)) ≤ 𝜆2. Finally, we set 𝑐 = 10 and 𝜔 = 1. Point (E) is
confirmed by the right-bottom panel, which shows that |𝜆(𝜀, 𝛾) | < |𝜆2 |, and thus
min𝜀 𝜌(𝑇 (𝜀)) = |𝜆3 |, for some values of 𝜀.
We have shown both theoretically and numerically that the spectral coarse space

is not necessarily the one-dimensional coarse space minimizing 𝜌(𝑇). Now, we wish
to go beyond this one-dimensional analysis and optimize the entire coarse space 𝑉𝑐
keeping its dimension 𝑚 fixed. This is equivalent to optimizing the prolongation
operator 𝑃 whose columns span 𝑉𝑐. Thus, we consider the optimization problem
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min
𝑃∈R𝑛×𝑚

𝜌(𝑇 (𝑃)). (12)

To solve approximately (12), we follow the approach proposed by [6]. Due to the
Gelfand formula 𝜌(𝑇) = lim𝑘→∞ 𝑘

√︁
∥𝑇 𝑘 ∥𝐹 , we replace (12) with the simpler opti-

mization problemmin𝑃 ∥𝑇 (𝑃)𝑘 ∥2𝐹 for some positive 𝑘 . Here, ∥ · ∥𝐹 is the Frobenius
norm. We then consider the unbiased stochastic estimator [5]

∥𝑇 𝑘 ∥2𝐹 = trace
(
(𝑇 𝑘)⊤𝑇 𝑘

)
= Ez

[
z⊤ (𝑇 𝑘)⊤𝑇 𝑘z

]
= Ez

[∥𝑇 𝑘z∥22
]
,

where z ∈ R𝑛 is a random vector with Rademacher distribution, i.e. P(z𝑖 = ±1) =
1/2. Finally, we rely on a sample average approach, replacing the unbiased stochastic
estimator with its empirical mean such that (12) is approximated by

min
𝑃∈R𝑛×𝑚

1
𝑁

𝑁∑︁
𝑖=1
∥𝑇 (𝑃)𝑘z𝑖 ∥2𝐹 , (13)

where z𝑖 are a set of independent, Rademacher distributed, random vectors. The
action of 𝑇 onto the vectors z𝑖 can be interpreted as the feed-forward process of a
neural net, where each layer represents one specific step of the two-level method,
that is the smoothing step, the residual computation, the coarse correction and
the prolongation/restriction operations. In our setting, the weights of most layers
are fixed and given, and the optimization is performed only on the weights of
the layer representing the prolongation step. The restriction layer is constrained to
have as weights the transpose of the weights of the prolongation layer. The cost of
constructing coarse spaces using deep neural networks can be very high, and not
practical if the problem needs to be solved only once. However, our interest here is
on theoretical aspects, and deep neural networks are used only to show the existence
of coarse spaces (asymptotically) better than the spectral ones.
We solve (13) for 𝑘 = 10 and𝑁 = 𝑛 usingTensorflow [1] and its stochastic gradient

descent algorithm with learning parameter 0.1. The weights of the prolongation
layer are initialized with an uniform distribution. Table 1 reports both 𝜌(𝑇 (𝑃)) and
∥𝑇 (𝑃)∥𝐴 using a spectral coarse space and the coarse space obtained solving (13).
We can clearly see that there exist coarse spaces, hence matrices 𝑃, corresponding
to values of the asymptotic convergence factor 𝜌(𝑇 (𝑃)) much smaller than the ones
obtained by spectral coarse spaces. Hence, Table 1 confirms that a spectral coarse
space of dimension 𝑚 is not necessarily a (global) minimizer for min

𝑃∈R𝑛×𝑚
𝜌(𝑇 (𝑃)).

This can be observed not only in the case 𝑐 = 0, for which the result of [7, Theorem
5.5] states that (recall that 𝑀 is symmetric) the spectral coarse space minimizes
∥𝑇 (𝑃)∥𝐴, but also for 𝑐 > 0, which corresponds to a nonsymmetric 𝐴. Interestingly,
the coarse spaces obtained by our numerical optimizations lead to preconditioned
matrices with better condition numbers, as shown in the last row of Table 1, where
the condition number 𝜅2 of the matrix 𝐴 preconditioned by the two-level method
(and different coarse spaces) is reported.
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𝑐 𝜔 𝑚 = 1 𝑚 = 5 𝑚 = 10 𝑚 = 15

𝜌
(𝑇
) 0 1/2 0.95 - 0.95 0.90 - 0.90 0.82 - 0.83 0.76 - 0.78

0 1 0.95 - 0.90 0.90 - 0.80 0.80 - 0.65 0.74 - 0.53
10 1/2 0.90 - 0.90 0.85 - 0.82 0.79 - 0.74 0.73 - 0.68
10 1 0.85 - 0.80 0.80 - 0.67 0.71 - 0.55 0.66 - 0.37

∥𝑇
∥ 𝐴 0 1/2 0.95 - 0.95 0.90 - 0.90 0.82 - 0.84 0.76 - 0.77

0 1 0.95 - 0.95 0.90 - 0.94 0.80 - 0.88 0.74 - 0.88
𝜅 2

0 1 46.91 - 29.45 18.48 - 14.40 9.37 - 8.22 6.69 - 8.53
10 1 27.25 - 23.98 22.44 - 12.36 17.34 - 11.35 13.06 - 9.71

Table 1: Values of 𝜌(𝑇) , ∥𝑇 ∥𝐴 and condition number 𝜅2 of the matrix 𝐴 preconditioned by the
two-level method for different 𝑐 and 𝜔 and using either a spectral coarse space (left number), or
the coarse space obtained solving (13) (right number).
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Discrete Analysis of Schwarz Waveform
Relaxation for a Simplified Air-Sea Coupling
Problem with Nonlinear Transmission
Conditions

S. Clement, F. Lemarié, and E. Blayo

1 Introduction

Schwarz-like domain decompositionmethods are very popular in mathematics, com-
putational sciences and engineering notably for the implementation of coupling
strategies. Such an iterative method has been recently applied in a state-of-the-art
Earth System Model (ESM) to evaluate the consequences of inaccuracies in the
usual ad-hoc ocean-atmosphere coupling algorithms used in realistic models [2].
For such a complex application it is challenging to have an a priori knowledge of the
convergence properties of the Schwarz method. Indeed coupled problems arising in
ESMs often exhibit sharp turbulent boundary layers whose parameterizations lead
to peculiar transmission conditions. The objective in this paper is to study a model
problem representative of the coupling between the ocean and the atmosphere, in-
cluding discretization and so-called bulk interface conditions which are analogous
to a quadratic friction law. Such a model is introduced in Sec. 2 and its discretization,
as done in state-of-the-art ESMs, is described in Sec. 3. In the semi-discrete case in
space we conduct in Sec. 4 a convergence analysis of the model problem first with
a linear friction and then with a quadratic friction linearized around equilibrium
solutions. Finally, in Sec. 5, numerical experiments in the linear and nonlinear case
are performed to illustrate the relevance of our analysis.
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2 Model problem for ocean-atmosphere coupling

We focus on the dynamical part of the oceanic and atmospheric primitive equations
and neglect the horizontal variations of the velocity field, which leads to a model
problem depending on the vertical direction only. This assumption, commonly made
to study turbulent mixing in the boundary layers near the air-sea interface, is justified
because of the large disparity between the vertical and the horizontal spatial scales
in these layers. We consider the following diffusion problem accounting for Earth’s
rotation ( 𝑓 is the Coriolis frequency and k a vertical unit vector):



𝜕𝑡u + 𝑓 k × u − 𝜕𝑧 (𝜈(𝑧, 𝑡)𝜕𝑧u) = g, in Ω × (0, 𝑇),

u(𝑧, 0) = u0 (𝑧), ∀𝑧 in Ω,
u(𝐻𝑜, 𝑡) = u∞𝑜 (𝑡), u(𝐻𝑎, 𝑡) = u∞𝑎 (𝑡), 𝑡 ∈ (0, 𝑇),

with u = (𝑢, 𝑣) the horizontal velocity vector, 𝜈(𝑧, 𝑡) > 0 the turbulent viscosity
and Ω = (𝐻𝑜, 𝐻𝑎) a bounded open subset of R containing the air-sea interface
Γ = {𝑧 = 0}. In the ocean and the atmosphere, which are turbulent fluids, the
velocity field varies considerably in the few meters close to the interface (in a region
called surface layer). The cost of an explicit representation of the surface layer
in numerical simulations being unaffordable, this region is numerically accounted
for using wall laws a.k.a. log laws (e.g. [4]). This approach, traditionally used to
deal with solid walls, is also used in the ocean-atmosphere context, with additional
complexity arising from the stratification effects [5]. In this context wall laws are
referred to as surface layer parameterizations. The role of such parameterizations is
to provide 𝜈𝜕𝑧u on the upper and lower interfaces of the surface layer as a function
of the difference of fluid velocities. Thus the coupling problem of interest should
be understood as a domain decomposition with three non-overlapping subdomains.
For the sake of convenience the velocity vector u = (𝑢, 𝑣) is rewritten as a complex
variable𝑈 = 𝑢 + 𝑖𝑣. Then the model problem reads

𝜕𝑡𝑈 𝑗 + 𝑖 𝑓𝑈 𝑗 − 𝜕𝑧
(
𝜈 𝑗 (𝑧, 𝑡)𝜕𝑧𝑈 𝑗

)
= 𝑔 𝑗 , ( 𝑗 = 𝑜, 𝑎) in Ω 𝑗 × (0, 𝑇)

𝑈 𝑗 (𝐻 𝑗 , 𝑡) = 𝑈∞𝑗 (𝑡), 𝑡 ∈ (0, 𝑇),
𝑈 𝑗 (𝑧, 0) = 𝑈0 (𝑧), ∀𝑧 in Ω 𝑗 ,

𝜌𝑜𝜈𝑜𝜕𝑧𝑈𝑜 (𝛿𝑜, 𝑡) = 𝜌𝑎𝜈𝑎𝜕𝑧𝑈𝑎 (𝛿𝑎, 𝑡) = Fsl (𝑈𝑎 (𝛿𝑎, 𝑡) −𝑈𝑜 (𝛿𝑜, 𝑡)), 𝑡 ∈ (0, 𝑇)
(1)

where Ω𝑜 = (𝐻𝑜, 𝛿𝑜), Ω𝑎 = (𝛿𝑎, 𝐻𝑎), and Fsl is a parameterization function for the
surface layer extending over Ωsl = (𝛿𝑜, 𝛿𝑎). A typical formulation for Fsl is

Fsl (𝑈𝑎 (𝛿𝑎, 𝑡) −𝑈𝑜 (𝛿𝑜, 𝑡)) = 𝜌𝑎𝐶𝐷 |𝑈𝑎 (𝛿𝑎, 𝑡) −𝑈𝑜 (𝛿𝑜, 𝑡) | (𝑈𝑎 (𝛿𝑎, 𝑡) −𝑈𝑜 (𝛿𝑜, 𝑡))

which corresponds to a quadratic friction law with 𝐶𝐷 a drag coefficient (assumed
constant in the present study). Geostrophic winds and currents are used in this study
as source terms and boundary conditions. Geostrophic equilibrium is the stationary
state forwhich theCoriolis force compensates for the effects of gravity. It corresponds
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to the large scale dynamics of ocean and atmosphere, and leads to reasonable values
of the solution𝑈.
The well-posedness of (1) has been studied in [6] where it is proved that its

stationary version admits a unique solution for realistic values of the parameters. The
study of the nonstationary case is much more challenging: numerical experiments
tend to confirm this well-posedness, but with no theoretical proof.

3 Discretized coupled problem

3.1 Implementation of the surface layer

As described in Sec. 2, the full domain Ω is split into three parts: Ω𝑜 in the ocean,
Ω𝑎 in the atmosphere and Ωsl a thin domain containing the interface (see Fig. 1).
The role of Ωsl is to provide 𝜌 𝑗𝜈 𝑗𝜕𝑧𝑈 𝑗 at 𝑧 = 𝛿 𝑗 ( 𝑗 = 𝑜, 𝑎) as a function of fluid
velocities at the same locations. However, in state-of-the-art climate models, the
discretization is based on an approximate form of the coupled problem (1). For
practical reasons, the computational domains are Ω̃𝑜 = (𝐻𝑜, 0) = Ω𝑜

⋃(𝛿𝑜, 0) and
Ω̃𝑎 = (0, 𝐻𝑎) = (0, 𝛿𝑎)

⋃
Ω𝑎, and the locations of the lower and upper boundaries

of the surface layer (𝑧 = 𝛿 𝑗 ) are assimilated to the centers of the first grid cells (i.e.
𝛿𝑜 = −ℎo/2 and 𝛿𝑎 = ℎa/2with ℎo and ℎa the thicknesses of the first grid cell in each
subdomain), where the values of the velocity closest to the interface are available.
Typical resolutions in the models are 𝛿𝑎 = ℎa/2 = 10 m and 𝛿𝑜 = −ℎo/2 = −1 m.
At a discrete level, the transmission condition in (1) is replaced by

𝜌o𝜈o𝜕𝑧𝑈o (0, 𝑡) = 𝜌a𝜈a𝜕𝑧𝑈a (0, 𝑡) = 𝜌a𝛼

(
𝑈a

(
ℎa
2
, 𝑡

)
−𝑈o

(
− ℎo

2
, 𝑡

))
(2)

where 𝛼 = 𝐶𝐷
���𝑈a

(
ℎa
2 , 𝑡

)
−𝑈o

(
− ℎo

2 , 𝑡
)��� for the nonlinear case. In the following, for

the analysis in Sec. 4, we consider a linear friction where 𝛼 is assumed constant and
a quadratic friction linearized around equilibrium solutions.

3.2 Schwarz Waveform Relaxation

As discussed for example in [2], current ocean-atmosphere coupling methods can
actually be seen as a single iteration of a Schwarz Waveform Relaxation (SWR)
algorithm. SWR applied to the coupling problem presented in Sec. 2 with the
transmission conditions (2) and constant viscosity in each subdomain reads:

(𝜕𝑡 + 𝑖 𝑓 )𝑈𝑘𝑗 − 𝜈 𝑗𝜕𝑧𝜑𝑘𝑗 = 𝑔 𝑗 , in Ω̃ 𝑗 × (0, 𝑇) (3a)
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Fig. 1: Discrete representation of the
three domains Ω𝑎 ,Ωsl,Ω𝑜 together
with a typical stationary state. Note
the different scales for (𝑢, 𝑣) in the
ocean and in the atmosphere.

}
}

}
𝑈𝑘𝑗 (𝑧, 0) = 𝑈0 (𝑧), ∀𝑧 ∈ Ω̃ 𝑗 (3b)

𝑈𝑘𝑗 (𝐻 𝑗 , 𝑡) = 𝑈∞𝑗 , 𝑡 ∈ [0, 𝑇] (3c)

𝜈a𝜑
𝑘
a (0, 𝑡) = 𝛼𝑘−1

(
𝑈𝑘−1+𝜃

a

(
ℎa
2
, 𝑡

)
−𝑈𝑘−1

o

(
− ℎo

2
, 𝑡

))
, 𝑡 ∈ [0, 𝑇] (3d)

𝜌o𝜈o𝜑
𝑘
o (0, 𝑡) = 𝜌a𝜈a𝜑

𝑘
a (0, 𝑡), 𝑡 ∈ [0, 𝑇] (3e)

where 𝑗 = a, o, 𝜑 𝑗 = 𝜕𝑧𝑈 𝑗 , and 𝑈𝑘−1+𝜃
a = 𝜃𝑈𝑘a + (1 − 𝜃)𝑈𝑘−1

a with 𝜃 a relaxation
parameter (interpolation for 0 ≤ 𝜃 ≤ 1 or extrapolation for 𝜃 > 1). At each iteration,
(3e) ensures that the kinetic energy is conserved at the machine precision in the
coupled system which is a major constraint for climate models. In (3d), the presence
of the parameter 𝜃 makes it resemble to a Dirichlet-Neumann Waveform Relaxation
algorithm. Indeed, if (3d) is replaced by 𝑈𝑘a = 𝜃𝑈𝑘−1

o + (1 − 𝜃)𝑈𝑘−1
a the DNWR

algorithm is retrieved, as examined in the continuous case in [1] and in the discrete
case in [3]. However (3d) involves both 𝜑𝑘a and 𝑈𝑘−1+𝜃

a : the 𝜃 parameter appears
thus here within (close to Robin) condition (𝜈a𝜑a (0) − 𝛼𝜃𝑈a (ℎa/2) = . . .), i.e.
the relaxation is not performed directly on the converging variable which leads to
convergence properties different from the DNWR case, as shown in Sec. 4.
In the following, centered finite difference schemes in space are usedwith constant

space steps ℎ 𝑗 . Derivatives are 𝜑 𝑗 (𝑧, 𝑡) = 𝑈 𝑗 (𝑧+ℎ 𝑗/2,𝑡)−𝑈 𝑗 (𝑧−ℎ 𝑗/2,𝑡)
ℎ 𝑗

and the semi-
discrete version of (3a) in the homogeneous case is

(𝜕𝑡 + 𝑖 𝑓 )𝑈 𝑗 (𝑧, 𝑡) = 𝜈 𝑗
𝜑 𝑗 (𝑧 + ℎ 𝑗/2, 𝑡) − 𝜑 𝑗 (𝑧 − ℎ 𝑗/2, 𝑡)

ℎ 𝑗
(4)



SWR for a Simplified Air-Sea Coupling Problem 193

4 Convergence analysis

In this section we conduct a convergence analysis of the SWR algorithm (3) first
with 𝛼 a constant and then in a more complicated case where the problem is lin-
earized around its equilibrium solutions. In the following we systematically make
the assumption that the space domain is of infinite size (i.e. 𝐻 𝑗 → ∞) for the sake
of simplicity.

Linear friction case (𝛼 = const) We assume in this paragraph that 𝛼 = 𝛼𝑐 with
𝛼𝑐 a constant independent of𝑈 𝑗 and we study the system satisfied by the errors (i.e.
𝑔 𝑗 ,𝑈0,𝑈

∞ = 0). The Fourier transform in time of the finite difference scheme (4)
yields 𝑈a (ℎa/2) = 𝜈a

𝜑a (ℎa)−𝜑a (0)
𝑖 (𝜔+ 𝑓 )ℎa

with 𝜔 ∈ R the frequency variable. After simple
algebra, the transmission condition (3d) in Fourier space expressed in terms of the
𝜑 𝑗 is(

𝜒𝑎𝜈𝑎
ℎ𝑎
+ 𝜃𝛼𝑐

)
𝜑𝑘a (0) − 𝜃𝛼𝑐𝜑𝑘a (ℎ𝑎) =(1 − 𝜃)𝛼𝑐 (𝜑𝑘−1

a (ℎa) − 𝜑𝑘−1
a (0))

− 𝛼𝑐 ℎ𝑎𝜈𝑜
ℎ𝑜𝜈𝑎

(𝜑𝑘−1
o (0) − 𝜑𝑘−1

o (−ℎo))
(5)

with 𝜒 𝑗 =
𝑖 (𝜔+ 𝑓 )ℎ2

𝑗

𝜈 𝑗
. A discrete analysis of the finite difference scheme (4) in the

frequency domain (e.g. [7]) leads to 𝜑𝑘o (−𝑚ℎo) = 𝐴𝑘 (𝜆o + 1)𝑚 and 𝜑𝑘a (𝑚ℎa) =
𝐵𝑘 (𝜆a + 1)𝑚 with 𝜆 𝑗 = 1

2

(
𝜒 𝑗 − √𝜒 𝑗

√︁
𝜒 𝑗 + 4

)
and 𝑚 the space index. The conver-

gence factor of SWR is then the rate at which 𝐴𝑘 or 𝐵𝑘 tends to 0. Combining
(5) with the Fourier transform in time of (3e), we get the evolution of 𝐵𝑘 which
eventually leads to the following convergence factor:

𝜉 =

���� 𝐵𝑘𝐵𝑘−1

���� =
�����
(1 − 𝜃) + 𝜖 ℎa𝜆o

ℎo𝜆a
𝜈a𝜒a
𝛼𝑐ℎa𝜆a

− 𝜃

����� , (6)

where 𝜖 = 𝜌a
𝜌o
≈ 10−3 in the ocean-atmosphere context. Note that the convergence

factor (6) differs significantly from the semi-discrete convergence factor 𝜉DNWR =
|1 − 𝜃DNWR (1 − 𝜖ℎa𝜆o/(𝜆aℎo)) | of the DNWR algorithm.Moreover, it can be found
that

lim
(𝜔+ 𝑓 )→0

𝜉 =
1
𝜃

����1 − 𝜃 + 𝜖
√︂
𝜈a
𝜈o

���� = 𝜉0, lim
(𝜔+ 𝑓 )→∞

𝜉 = 0.

As 𝜔 + 𝑓 → 0 the asymptotic value 𝜉0 depends on 𝜃: it is +∞ for 𝜃 = 0 (i.e. a
fast divergence), and 𝜉0 = 𝜖

√︃
𝜈a
𝜈o
for 𝜃 = 1. When 𝜔 → ∞, the convergence factor

tends to zero (i.e. the convergence is fast for high frequencies). Whatever 𝜔, it can
be shown that the value 𝜉0 is an upper bound of the convergence factor when 𝜃 ≤ 1
if

√︃
𝜈o
𝜈a
≤ ℎo

ℎa
, the latter condition being easily satisfied. Since we have 𝜖 ≈ 10−3, the

convergence is fast for 𝜃 = 1 whereas 𝜖 does not play any role for 𝜃 = 0. The optimal
parameter 𝜃opt for low frequencies is 1 + 𝜖

√︃
𝜈a
𝜈o
which is very close to 1.
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Linearized quadratic friction case The analysis of the nonlinear quadratic
friction case (i.e. with 𝛼 = 𝐶𝐷 | 𝑈a (ℎa/2, 𝑡) − 𝑈o (−ℎo/2, 𝑡) |) cannot be pursued
through a Fourier transform. We thus consider the linearization of the problem
around a stationary state 𝑈𝑒𝑗 , 𝜑

𝑒
𝑗 satisfying (1): assuming that 𝑈

𝑘
𝑗 (±ℎ 𝑗/2, 𝑡) is in a

neighborhood of𝑈𝑒 (±ℎ 𝑗/2), the modulus in 𝛼 is non-zero and we can differentiate
𝛼. Differences with the stationary state are noted 𝛿𝜑𝑘𝑗 = 𝜑𝑘𝑗 (0, 𝑡) − 𝜑𝑒𝑗 (0) and
𝛿𝑈𝑘𝑗 = 𝑈

𝑘
𝑗 (±ℎ 𝑗/2, 𝑡) −𝑈𝑒𝑗 (±ℎ 𝑗/2). After some algebra, the linearized transmission

operator reads

𝜈a𝛿𝜑
𝑘
a = 𝛼𝑒

((
3
2
− 𝜃

)
𝛿𝑈𝑘−1

a + 𝜃 𝛿𝑈𝑘a −
3
2
𝛿𝑈𝑘−1

o +1
2
𝑈𝑒a −𝑈𝑒o
𝑈𝑒a −𝑈𝑒o

𝛿𝑈𝑘−1
a − 𝛿𝑈𝑘−1

o

)

(7)
with 𝛼𝑒 = 𝐶𝐷

��𝑈𝑒a (ℎa/2) −𝑈𝑒o (−ℎo/2)
��. Following the derivation in the previous

paragraph, we find that the convergence factor 𝜉𝑞 in the linearized quadratic friction
case differs from one iteration to another (it is indeed a function of 𝐵𝑘−1 (−𝜔)

𝐵𝑘−1 (𝜔) ).

However, for (𝜔 + 𝑓 ) → 0 the term 1
2
𝑈𝑒a −𝑈𝑒o
𝑈𝑒a −𝑈𝑒o

𝛿𝑈𝑘−1
a − 𝛿𝑈𝑘−1

o vanishes, therefore the
asymptotic convergence rate 𝜉𝑞0 is independent of the iterate:

lim
(𝜔+ 𝑓 )→0

𝜉𝑞 =
1
𝜃

����32 − 𝜃 + 3
2
𝜖

√︂
𝜈a
𝜈o

���� = 𝜉𝑞0 , lim
(𝜔+ 𝑓 )→∞

𝜉𝑞 = 0.

The convergence is fast for high frequencies, as in the linear friction case. However
the optimal parameter for (𝜔 + 𝑓 ) → 0 is here 𝜃𝑞opt =

3
2 + 3

2 𝜖
√︃
𝜈a
𝜈o
. It is different

from the optimal parameter 𝜃opt obtained with linear friction: for typical values of
the ocean-atmosphere coupling problem, 𝜃𝑞opt is close to

3
2 . The asymptotic value 𝜉

𝑞
0

is not an upper bound of the convergence factor but it is a good choice for 𝜃𝑞opt.

5 Numerical experiments

The aim of this section is to illustrate the influence of the parameter 𝜃, in the
linear and quadratic friction cases. The stationary state 𝑈𝑒𝑗 is used to compute
𝛼𝑐 = 𝛼𝑒 = 𝐶𝐷 |𝑈𝑒a ( ℎa

2 ) −𝑈𝑒o ( ℎo
2 ) | in the linear case. Parameters of the problem are

taken as realistic:𝐶𝐷 = 1.2×10−3, the space steps are ℎa
2 = 10 m, ℎo

2 = 1 m, the time
step is 60 s, the size of the time window 𝑇 is 1 day (1440Δ𝑡) and the computational
domains sizes are 𝐻𝑜 = 𝐻𝑎 = 2000 m (100 and 1000 nodes respectively in Ω𝑎
and Ω𝑜). The Coriolis parameter is 𝑓 = 10−4 s−1 and the diffusivities are 𝜈a =
1 m2 s−1, 𝜈o = 3 × 10−3 m2 s−1. 𝑈∞𝑗 are set to constant values of 10 m s−1 in the
atmosphere and 0.1 m s−1 in the ocean, while the forcing terms 𝑔 𝑗 = 𝑖 𝑓𝑈∞𝑗 and
the initial condition 𝑈0 (𝑧) = 𝑈𝑒𝑗 (𝑧). SWR is initialized at the interface with a white
noise around the interface value of the initial condition. Figure 2 shows the evolution
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of the error for two choices of 𝜃. The theoretical convergence according to 𝜉0 is
also displayed: sup𝜔 𝜉 is an upper bound of the 𝐿2 convergence factor [6] and 𝜉0
is an approximation of sup𝜔 𝜉. Both 𝜉0 and 𝜉𝑞0 are close to the convergence rate,
with the exception of 𝜉𝑞0 that predicts much faster convergence than observed when
𝜃 = 1.5. This shows that the maximum of the convergence factor is not reached when
(𝜔 + 𝑓 ) → 0 in this case. Figure 2 confirms the results of Sec. 4: when considering
𝛼 = 𝛼𝑐 constant, the fastest convergence is achieved when 𝜃 is close to 1, similarly to
the DNWR algorithm. However this does not translate into the nonlinear case, which
converges faster with 𝜃 = 1.5. Figure 3 shows that the convergence behavior with the
linearized transmission condition is similar to the nonlinear case. As expected the
convergence is faster for 𝜃 = 1.5 than for 𝜃 = 1. We observed that those results are
robust to changes in the values of the parameters in the range of interest. Linearized
transmission conditions are hence relevant to study theoretically the convergence
properties of our nonlinear problem.
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Fig. 2: Evolution of the 𝐿2 norm of the errors. Black lines represent the observed convergence;
grey lines are the estimated convergence with slopes 𝜉0 for linear cases and 𝜉𝑞0 for quadratic cases.
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Fig. 3: Evolution of the 𝐿2 norm of the errors with linearized (L) and nonlinear (NL) transmission
conditions. The legend indicates the changes in the parameters for each case.
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6 Conclusion

In this paper, we studied a SWR algorithm applied to a simplified ocean-atmosphere
problem. This problem considers nonlinear transmission conditions arising from
wall laws representative of the ones used in Earth-System Models and analogous to
a quadratic friction law. We motivated the fact that the convergence analysis of such
problems can only be done at a semi-discrete level in space due to the particular
practical implementation of continuous interface conditions in actual climatemodels.
Then we analytically studied the convergence properties in a case with linear friction
and in a case with linearized quadratic friction. We formulated the problem with a
relaxation parameter 𝜃 in the transmission conditions and systematically assessed
its impact on the convergence speed. For the two cases of interest, the convergence
factors are derived and the asymptotic limits for small values of the frequency
𝜔 + 𝑓 are given. This asymptotic limit allowed us to choose appropriate values for
the parameter 𝜃 to guarantee fast convergence of the algorithm. The behavior of
the algorithm for linear friction and linearized quadratic friction turns out to be
different which leads to different "optimal" values of 𝜃. Numerical experiments in
the nonlinear case showed that the observed convergence behaves as predicted by
the linearized quadratic friction case whose thorough theoretical analysis is left for
future work.
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A Posteriori Error Estimates in Maximum Norm
for Interior Penalty Discontinuous Galerkin
Approximation of the Obstacle Problem

B. Ayuso de Dios, T. Gudi, and K. Porwal

1 Introduction

Adaptive finite element method (AFEM) is an effective numerical tool for solving
linear and nonlinear PDEs. A proper local refinement plays a key role in AFEM and
relies on proper a-posteriori error estimators. In this contribution, we introduce a
pointwise a posteriori error estimator for the symmetric interior penalty discontin-
uous Galerkin (SIPG) approximation of the elliptic obstacle problem. The elliptic
obstacle problem is a prototype of the elliptic variational inequalities of the first
kind. This problem exhibits the free boundary and appears in various processes in
engineering and physical sciences such as elasto-plasticity, dam problem and math-
ematical finance [3]. A-posteriori error analysis in maximum norm for conforming
approximation of obstacle problems is given in the seminal works [6, 7]. For dis-
continuous Galerkin (DG) approximation, the a-posteriori error analysis in energy
norm is contained in [4]. In the maximum norm, to the best of our knowledge, the
results in [1] are the first in this direction. Here, due to space limitation, we state the
reliability result and focus on its numerical verification and validation. Details on
the analysis as well as further discussion can be found in [1].
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2 The elliptic obstacle problem

LetΩ ⊂ R𝑑 , 𝑑 = 2, 3 be a bounded, polygonal (𝑑 = 2) or polyhedral (𝑑 = 3) domain
with boundary 𝜕Ω. Let 𝑓 ∈ 𝐿∞ (Ω) and the obstacle 𝜒 ∈ 𝐻1 (Ω) ∩ 𝐶0 (Ω) be such
that 𝜒 ≤ 0 on 𝜕Ω. The variational formulation of the obstacle problem then reads:
find 𝑢 ∈ K such that∫

Ω
∇𝑢 · ∇(𝑢−𝑣) 𝑑𝑥 ≤ ( 𝑓 , 𝑢−𝑣) ∀𝑣 ∈ K := {𝑣 ∈ 𝐻1

0 (Ω) : 𝑣 ≥ 𝜒 a.e. inΩ} , (1)

where (·, ·) refers to the 𝐿2 (Ω) inner-product andK is the so-called set of admissible
displacements which is a non-empty, closed and convex set. In (1), the solution 𝑢
could be regarded as the equilibrium position of an elastic membrane subject to the
load 𝑓 whose boundary is held fixed (𝑢 ∈ 𝐻1

0 (Ω)) and which is constrained to lie
above the given obstacle 𝜒. Such constraint results in non-linearity inherent to the
PDE. The contact and non-contact sets of the exact solution 𝑢 are defined as

C := {𝑥 ∈ Ω : 𝑢(𝑥) = 𝜒(𝑥)}𝑜, N := {𝑥 ∈ Ω : 𝑢(𝑥) > 𝜒(𝑥)}.

The continuous Lagrange multiplier 𝜎(𝑢) ∈ 𝐻−1 (Ω) is defined by

⟨𝜎(𝑢), 𝑣⟩ = ( 𝑓 , 𝑣) − (∇𝑢,∇𝑣), ∀𝑣 ∈ 𝐻1
0 (Ω), (2)

where ⟨·, ·⟩ denotes the duality pairing of 𝐻−1 (Ω) and 𝐻1
0 (Ω). From (2) and (1), it

follows that
⟨𝜎(𝑢), 𝑣 − 𝑢⟩ ≤ 0, ∀𝑣 ∈ K .

In particular,𝜎(𝑢) = 0 on the non-contact setN. The classical theory of Stampacchia
[3, Chapter 1, page 4] guarantees the existence and uniqueness of the solution. Notice,
however that the solution operator is not only non-linear and non-differentiable, but
it is strikingly not one-to-one (observe that any variation in 𝑓 within the contact set
might or might not result in a variation in the solution 𝑢).

3 The Symmetric Interior Penalty method

Basic Notations and Finite Element spaces

Let Tℎ be a shape-regular family of partitions of Ω into triangles or tetrahedra 𝑇 and
let ℎ𝑇 denote the diameter of each 𝑇 ∈ Tℎ and set ℎ𝑚𝑖𝑛 = min{ℎ𝑇 : 𝑇 ∈ Tℎ}. We
denote by E𝑜ℎ and E𝜕ℎ the sets of all interior and boundary edges/faces, respectively,
and we set Eℎ = E𝑜ℎ ∪ E𝜕ℎ . The average and jump trace operators are defined in the
usual way: let 𝑇+ and 𝑇− be two neighbouring elements, and n+, n− be their outward
normal unit vectors, respectively (n± = n𝑇± ) and let 𝜁± be the restriction of 𝜁 to 𝑇±.
We set:
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2{𝜁 } = (𝜁+ + 𝜁−), [[ 𝜁 ]] = 𝜁+n+ + 𝜁−n− on 𝑤 ∈ E𝑜ℎ ,
and on 𝑒 ∈ E𝜕ℎ we set [[ 𝜁 ]] = 𝜁n. We will also use the notations

(𝑢, 𝑤)Tℎ =
∑︁
𝑇 ∈Tℎ

∫
𝑇
𝑢𝑤𝑑𝑥, ⟨𝑢, 𝑤⟩Eℎ =

∑︁
𝑒∈Eℎ

∫
𝑒
𝑢𝑤𝑑𝑠 ∀𝑢, 𝑤 ∈ 𝑉.

Let P1 (𝑇) be the space of linear polynomials on 𝑇 andV𝑇 denotes the set of vertices
of the simplex 𝑇 . We denote by 𝑉ℎ and 𝑉𝑐𝑜𝑛 𝑓ℎ the discontinuous and conforming
finite element spaces defined respectively, by

𝑉ℎ =
{
𝑣 ∈ 𝐿2 (Ω) : 𝑣 |𝑇 ∈ P1 (𝑇) ∀𝑇 ∈ Tℎ

}
, 𝑉

𝑐𝑜𝑛 𝑓
ℎ = 𝑉ℎ ∩ 𝐻1

0 (Ω) . (3)

Let 𝜒ℎ ∈ 𝑉𝑐𝑜𝑛 𝑓ℎ be the nodal Lagrange linear interpolant of 𝜒. We define the discrete
analogue of K by

Kℎ := {𝑣ℎ ∈ 𝑉ℎ : 𝑣ℎ |𝑇 (𝑝) ≥ 𝜒ℎ (𝑝), ∀𝑝 ∈ V𝑇 , ∀𝑇 ∈ Tℎ} ≠ ∅,

which is a nonempty, closed and convex subset of 𝑉ℎ. Note that, Kℎ ⊈ K.
• SIPG method: The method reads: find 𝑢ℎ ∈ Kℎ such that

Aℎ (𝑢ℎ, 𝑢ℎ − 𝑣ℎ) ≤ ( 𝑓 , 𝑢ℎ − 𝑣ℎ) ∀ 𝑣ℎ ∈ Kℎ, (4)

where the SIPG bilinear form Aℎ (·, ·) is defined as:

Aℎ (𝑢, 𝑤) = (∇𝑢,∇𝑤)Tℎ−⟨{∇𝑢}, [[ 𝑤 ]]⟩Eℎ−⟨[[ 𝑢 ]], {∇𝑤}⟩Eℎ+⟨𝑆𝑒 [[ 𝑢 ]], [[ 𝑤 ]]⟩Eℎ ,
(5)

with 𝑆𝑒 = 𝛼𝑒ℎ
−1
𝑒 , 𝛼𝑒 ≥ 𝛼∗ > 0, ∀ 𝑒 ∈ Eℎ and ℎ𝑒 the length of the edge/face 𝑒.

Following [8, 4], we define the discrete Lagrange multiplier 𝜎ℎ ∈ 𝑉ℎ:

⟨𝜎ℎ, 𝑣ℎ⟩ℎ := ( 𝑓 , 𝑣ℎ) − Aℎ (𝑢ℎ, 𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ, (6)

where ⟨·, ·⟩ℎ is given by

⟨𝑤ℎ, 𝑣ℎ⟩ℎ :=
∑︁
𝑇 ∈Tℎ

∫
𝑇
Iℎ (𝑤ℎ |𝑇𝑣ℎ |𝑇 ) 𝑑𝑥 =

∑︁
𝑇 ∈Tℎ

|𝑇 |
𝑑 + 1

∑︁
𝑝∈V𝑇

𝑤ℎ (𝑝)𝑣ℎ (𝑝),

with Iℎ denoting the nodal Lagrange linear interpolation operator. The use of the
⟨·, ·⟩ℎ inner product in the definition (6) of 𝜎ℎ allows for localizing 𝜎ℎ at the vertices
of the partition, which facilitates the implementation. The discrete contact and non-
contact sets relative to 𝑢ℎ, are defined by:

Cℎ := {𝑇 ∈ Tℎ : 𝑢ℎ (𝑝) = 𝜒ℎ (𝑝) ∀ 𝑝 ∈ V𝑇 }, Nℎ := {𝑇 ∈ Tℎ : 𝑢ℎ (𝑝) > 𝜒ℎ (𝑝) ∀ 𝑝 ∈ V𝑇 },

and the free boundary set is given by Mℎ = Tℎ \ (Cℎ ∪ Nℎ). Using (6) and the
discrete problem (4), we obtain that ⟨𝜎ℎ, 𝑣ℎ − 𝑢ℎ⟩ℎ ≤ 0 ∀ 𝑣ℎ ∈ Kℎ, from which it
can be further deduced that 𝜎ℎ (𝑝) = 0 on 𝑝 vertex of 𝑇 ⊂ Nℎ.
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4 Reliable a posteriori error estimates in maximum norm

We now define the error estimators that enter in full error estimator 𝜂ℎ :

𝜂1 = max
𝑇 ∈Tℎ

∥ℎ2
𝑇 ( 𝑓 − 𝜎ℎ)∥𝐿∞ (𝑇) , 𝜂2 = max

𝑇 ∈Cℎ∪Mℎ
∥ℎ2
𝑇∇𝜎ℎ∥𝐿𝑑 (𝑇) ,

𝜂3 = max
𝑒∈E𝑜

ℎ

∥ℎ𝑒 [[ ∇𝑢ℎ ]] ∥𝐿∞ (𝑒) , 𝜂4 = ∥ [[ 𝑢ℎ ]] ∥𝐿∞ (Eℎ) ,

𝜂5 = ∥(𝜒 − 𝑢ℎ)+∥𝐿∞ (Ω) , 𝜂6 = ∥(𝑢ℎ − 𝜒)+∥𝐿∞ ( {𝜎ℎ<0}) .

The full a-posteriori error estimator 𝜂ℎ is then defined as:

𝜂ℎ = | log ℎ𝑚𝑖𝑛 |
(
𝜂1 + 𝜂2 + 𝜂3 + 𝜂4

)
+ 𝜂5 + 𝜂6

Theorem 1 Let 𝑢 ∈ K and 𝑢ℎ ∈ Kℎ be the solution of (1) and (4), respectively.
Then,

∥𝑢 − 𝑢ℎ∥𝐿∞ (Ω) ≲ 𝜂ℎ
The proof of the theorem is technical and we refer to [1] for the details as well as the
results regarding local efficiency of the estimator.

5 Numerical Results

To solve (4), we use the iterative primal dual active set method [5]. We briefly
describe the algorithm in the present setting.
Primal dual active set method: Let 𝜆ℎ ∈ 𝑉ℎ be defined by setting for every 𝑇 ∈
Tℎ, 𝑝 ∈ V𝑇 𝜆ℎ (𝑝) := |𝑇 |

𝑑+1𝜎ℎ (𝑝). Then equation (6) can be rewritten as

Aℎ (𝑢ℎ, 𝑣ℎ) +
∑︁
𝑇 ∈Tℎ

∑︁
𝑝∈V𝑇

𝜆ℎ (𝑝)𝑣ℎ (𝑝) = ( 𝑓 , 𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ . (7)

The so-called complementarity conditions are then given by: ∀𝑝 ∈ V𝑇 , 𝑇 ∈ Tℎ

𝜆ℎ (𝑝) ≤ 0, 𝑢ℎ (𝑝) ≥ 𝜒ℎ (𝑝) and
∑︁
𝑇 ∈Tℎ

∑︁
𝑝∈V𝑇

𝜆ℎ (𝑝) (𝑢ℎ (𝑝) − 𝜒ℎ (𝑝)) = 0 .

(8)

After choosing Lagrangian linear basis for 𝑉ℎ in (3), with 𝑁 = dim(𝑉ℎ), we denote
by A ∈ R𝑁×𝑁 and 𝑭 ∈ R𝑁 the matrix and vector representation of Aℎ (·, ·) in
(5) and the right hand side in (4), respectively. Similarly, 𝑼, 𝝌,𝚲 ∈ R𝑁 denote
respectively the vector representations of 𝑢ℎ, 𝜒ℎ and 𝜆ℎ. The algebraic formulation
of (7)-(8) reads:

A𝑼 + I Λ = 𝑭, (Λ,𝑼 − 𝝌) = 0, Λ ≤ 0, 𝑼 ≥ 𝝌, (9)
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where I ∈ R𝑁×𝑁 is the identity matrix and (·, ·) the standard R𝑁 -scalar product. By
defining

C(𝑈,Λ) := Λ −min(0,Λ + (𝑼 − 𝝌)), (10)

the complementarity conditions in (9) reduce to C(𝑈,Λ) = 0. Indeed, from the
definition (10) , notice that if Λ + (𝑼 − 𝝌) < 0 =⇒ C(𝑈,Λ) = (𝝌 − 𝑼) and
so, C(𝑈,Λ) = 0 implies 𝑼 = 𝝌, which together with Λ + (𝑼 − 𝝌) < 0 gives
Λ < 0. Similarly, Λ + (𝑼 − 𝝌) > 0 would imply C(𝑈,Λ) = Λ. In this case
the complementarity condition C(𝑈,Λ) = 0 gives Λ = 0 which together with
Λ + (𝑼 − 𝝌) > 0 yields 𝑼 > 𝝌. Hence, the solution of (9) is reduced to solve the
system

A𝑼 + I Λ = 𝑭, C(𝑈,Λ) = 0. (11)

The primal-dual active set algorithm solves (11) iteratively:
(i) Set 𝑘 = 0, Initialise𝑼 (0) , Λ(0) .
(ii) Find the sets of vertices AC(𝑘) and D(𝑘) defined as

AC(𝑘) = {1 ≤ 𝑗 ≤ 𝑁 : Λ(𝑘)𝑗 + (𝑈 (𝑘)𝑗 − 𝝌 (𝑘)𝑗 ) < 0} indices in active set,

D(𝑘) = {1 ≤ 𝑗 ≤ 𝑁 : Λ(𝑘)𝑗 + (𝑈 (𝑘)𝑗 − 𝝌 (𝑘)𝑗 ) ≥ 0} indices not in active set.

(iii) Solve for (𝑼 (𝑘+1) ,Λ(𝑘+1) ) from the following system:

A𝑼 (𝑘+1) + I Λ(𝑘+1) = 𝑭, 𝑈 (𝑘+1)𝑗 = 𝜒 𝑗 ∀ 𝑗 ∈ AC(𝑘) , Λ(𝑘+1)𝑗 = 0 ∀ 𝑗 ∈ D(𝑘) .

(iv) Set 𝑘 = 𝑘 + 1. Go to Step (ii) and compute AC(𝑘) and its complementary D(𝑘) .
The iteration is stopped when AC(𝑘) = AC(𝑘+1) . The set AC(𝑘) contains the indices
for the vertices in the discrete contact set Cℎ; D(𝑘) contains the indices of the
remaining nodes.

5.1 Numerical experiments

We present now some test examples to illustrate the performance of a-posteriori
error estimator. For the adaptive refinement, we use the paradigm

SOLVE −→ ESTIMATE −→MARK −→ REFINE

In the step SOLVE, we compute 𝑢ℎ using the primal-dual active set algorithm as
described before. Thereafter, we compute the error estimator 𝜂ℎ on each element
𝑇 ∈ Tℎ and use maximum marking strategy with parameter 𝜃 = 0.4. Finally, the
mesh is refined using the newest vertex bisection algorithm. In all examples, we set
𝛼𝑒 = 25 and AC refers to the discrete active set (depicted in yellow).

Example 1: Madonna’s obstacle: (scaled version of [7, example 3.1])). Let Ω =
(0, 1)2, 𝑓 = 0 and 𝑟2 = (𝑥 − 1/2)2 + (𝑦 − 1/2)2 , 𝑥, 𝑦 ∈ Ω
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𝜒 = 1 − 4𝑟, 𝑢 =

{
1 − 4𝑟, 𝑟 < 1/4
−(log(𝑟) + 2 log(2)), 𝑟 ≥ 1/4.

In Figure 1a we report the error and the estimator 𝜂ℎ. This graphic indicates a
rate (1/𝐷𝑂𝐹) with respect to degrees of freedom (DOF). The single estimators
𝜂𝑖 , 𝑖 = 1...6 are plotted in Figure 1b. Both graphics confirm the reliability of
the estimator. In Figure 2 are depicted the efficiency indices (leftmost subfigure),
the adaptive mesh refinement at level 20 (center) and the discrete contact set Cℎ
(rightmost figure). Note that the solution is singular in the C due to the singularity
of the obstacle therein, which leads to the more refinement in Cℎ. Also as expected,
we observe more refinement near free boundary.
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Fig. 2: Example 1: Efficiency index, adaptive mesh and AC

Example 2: non-convex domain [2]:

Ω = (−2, 2)2 \ [0, 2) × (−2, 0], 𝜒 = 0,

𝑢 = 𝑟2/3𝑠𝑖𝑛(2𝜃/3)𝛾1 (𝑟), 𝑟2 = 𝑥2 + 𝑦2 , 𝑟 = 2(𝑟 − 1/4)

𝑓 = − 𝑟2/3𝑠𝑖𝑛(2𝜃/3)
(𝛾′1 (𝑟)

𝑟
+ 𝛾′′1 (𝑟)

)
− 4

3
𝑟−1/3𝑠𝑖𝑛(2𝜃/3)𝛾′1 (𝑟) − 𝛾2 (𝑟)
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𝛾1 (𝑟) =



1, 𝑟 < 0
−6𝑟5 + 15𝑟4 − 10𝑟3 + 1, 0 ≤ 𝑟 < 1
0, 𝑟 ≥ 1,

𝛾2 (𝑟) =
{

0, 𝑟 ≤ 5
4

1, otherwise.

In Figure 3(a) we compare the estimator 𝜂ℎ with the one in energy norm. From this
graphic, it is evident that the error and the estimator converge with rate 1/𝐷𝑂𝐹 in
𝐿∞ and 1/√𝐷𝑂𝐹 in energy norm. The convergence behaviour of the single estima-
tors 𝜂𝑖 , 𝑖 = 1...6 is given in Figure 3(b). Note that, 𝜂5 is zero since 𝜒 = 𝜒ℎ = 0 in
this example. Figure 4 confirms the efficiency of the estimator 𝜂ℎ. In Figure 4 are
also given the adaptive mesh refinement at the level 24 and Cℎ. We observe that the
estimator captures well the singular behavior of the solution. The mesh refinement
near the free boundary is higher due to the large jump in gradients.
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Fig. 3: Exam-
ple 2: Error and
estimator in en-
ergy norm and
maximum norm
and single esti-
mators in maxi-
mum norm.
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Fig. 4: Example 2: Efficiency index in energy norm and maximum norm, adaptive mesh and AC

Example 3: taken from [6] ( Liptschiz obstacle):

Ω = {(𝑥, 𝑦) ∈ R2 : |𝑥 | + |𝑦 | < 1}, 𝑓 = −5, 𝜒 = dist(𝑥, 𝜕Ω) − 1/5.

In Figure 5 we have reported the estimator 𝜂ℎ and the single estimators 𝜂𝑖 , 𝑖 = 1...6,
(𝜂5 = 0 since 𝜒 is piecewise linear) (leftmost) together with the adaptive mesh at
refinement level 7 (center) and Cℎ (rightmost). It can be observed that the estimator
converges with the optimal rate. The obstacle function is in the shape of a pyramid
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and the continuous Lagrange multiplier has support along the edges of the obstacle
which justifies the refinement along the edges of the obstacle in the contact region.
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Fig. 5: Example 3: Estimators, Adaptive Mesh and AC
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Spectral Equivalence Properties of
Higher-Order Tensor Product Finite Elements

Clark R. Dohrmann

1 Introduction

The focus of this study is on spectral equivalence results for higher-order tensor
product finite elements in the 𝐻 (curl), 𝐻 (div), and 𝐿2 function spaces. For certain
choices of the higher-order shape functions, the resulting mass and stiffness matrices
are spectrally equivalent to those for an assembly of lowest-order edge-, face- or
interior-based elements on the associated Gauss-Lobatto-Legendre (GLL) mesh.
This equivalencewill help enable the development of efficient domain decomposition
or multigrid preconditioners. Specifically, preconditioners for the equivalent lowest-
order linear system can be used for the higher-order problem and avoid the demands
of assembling a higher-order coefficient matrix.
Using assemblies of lowest-order (linear) elements for efficient preconditioning

of higher-order discretizations in the function space 𝐻1 is not new. We refer the
interested reader to Section 7.1 of [10] or the introduction of [2] for a discussion of
the pioneering work by Orszag [9], Deville and Mund [3, 8], Canuto [1] and others.
We are, however, not aware of similar approaches for problems using higher-order
edge- (Nédélec), face- (Raviart-Thomas) or interior-based elements. We note for the
case of nodal elements that the degrees of freedom (DOFs) for a higher-order element
and its equivalent assembly of lowest-order elements are nodal values in both cases.
This natural one-to-one correspondence of DOFs can be realized for edge-, face- and
interior-based elements by using shape functions (bases) associated with integrals
and introduced by Gerritsma [5].
For edge-based elements, the DOFs for the shape functions are associated with

integrals of tangential components of a vector field along each edge of the associated
GLL mesh (see Figure 1 left). Similarly, DOFs for face-based elements correspond
to integrals of the normal component of a vector field over individual faces of the
GLL mesh (see Figure 1 right). For completeness, we also present shape functions

Clark R. Dohrmann
Sandia National Laboratories, Albuquerque, New Mexico, USA, e-mail: crdohrm@sandia.gov
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and equivalence results for related interior-based elements. For these elements, the
DOFs correspond to integrals of a scalar function over individual elements of the
GLL mesh. We note in all three cases that the shape functions can be expressed
simply in terms of one-dimensional interpolatory nodal functions at the GLL points
along with a one-dimensional function which enables the correspondence between
DOFs of the higher- and lowest-order elements.
The paper is organized as follows. Shape functions for edge-, face-, and interior-

based elements are described in §2. This is followed in §3 by a presentation of
spectral equivalence results between higher-order elements and their lowest-order
counterparts. Numerical results are presented in §4 which confirm these results. A
more comprehensive report [4] can be consulted for complete proofs and applications
of the spectral equivalence results to preconditioning.

Fig. 1: Edge (left) and face (right) locations on three faces of a cube for a higher-order element
of degree 𝑝 = 4. Also shown is the corresponding assembly of 𝑝3 lowest-order elements on the
associated Gauss-Lobatto-Legendre (GLL) mesh.

2 Shape Functions

Following the notation in [7], let𝑄𝑖, 𝑗 ,𝑘 denote the space of polynomials in reference
element coordinates (𝜂1, 𝜂2, 𝜂3) ∈ [−1, 1] for which the maximum degree is 𝑖 in 𝜂1,
𝑗 in 𝜂2 and 𝑘 in 𝜂3.
As is commonly done for nodal elements, one-dimensional GLL shape functions

𝜑0, . . . , 𝜑𝑝 are used to construct higher-order shape functions in three dimensions.
See Figure 2 (left) for the case of degree 𝑝 = 4. Notice that these functions are
simply interpolatory (Lagrange) shape functions at the GLL points 𝑥0 = −1, 𝑥𝑝 = 1,
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and 𝑥𝑖−1 < 𝑥𝑖 for 𝑖 = 1, . . . , 𝑝. We remark that the internal GLL points 𝑥1, . . . , 𝑥𝑝−1
are the roots of 𝐿 ′𝑝−1, where 𝐿𝑝 is the Legendre polynomial of degree 𝑝.
Shape functions for edge-, face-, and interior-based elements based on the work

of Gerritsma [5] are described next. Although different from the shape functions in
[7], they span the same polynomial spaces and are conforming between elements.

Fig. 2: One-dimensional higher-order (left) and linear (right) shape functions associated with GLL
points for degree 𝑝 = 4.

2.1 Edge Shape Functions

The vector field for an edge-based finite element of degree 𝑝 can be expressed in
terms of the reference element coordinates as

𝒖e
𝑝 = 𝑢e

1𝑝𝒃1 + 𝑢e
2𝑝𝒃2 + 𝑢e

3𝑝𝒃3,

where 𝑢e
1𝑝 ∈ 𝑄𝑝−1, 𝑝, 𝑝 , 𝑢e

2𝑝 ∈ 𝑄𝑝,𝑝−1, 𝑝 , 𝑢e
3𝑝 ∈ 𝑄𝑝,𝑝, 𝑝−1, and 𝒃1, 𝒃2, 𝒃3 are unit

vectors associated with the element coordinates (see e.g. [7]).
Our present focus is on edges aligned with the 𝒃1 direction; similar constructions

of shape functions hold for edges aligned with the other two directions. For each
𝑖 ∈ {0, . . . , 𝑝 − 1} define

𝜓𝑖 (𝜂1) =
𝑝∑︁
𝑚=0

𝑎𝑖𝑚𝜑𝑚 (𝜂1), 𝑎𝑖𝑚 =

{
0 𝑚 ≤ 𝑖
1 𝑚 > 𝑖

Since 𝜓𝑖 (𝑥𝑚+1) − 𝜓𝑖 (𝑥𝑚) is 1 for 𝑚 = 𝑖 and 0 for 𝑚 ≠ 𝑖, it follows that∫ 𝑥𝑚+1

𝑥𝑚

𝜓 ′𝑖 𝑑𝑥 = 𝛿𝑖𝑚, (1)

where 𝛿𝑖𝑚 is the Kronecker delta function. The edge functions 𝜓 ′0, . . . , 𝜓
′
𝑝−1 and

their application to tensor product finite elements are discussed in [5].
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Let E𝑖 𝑗𝑘 denote the edge with 𝜂1 ∈ (𝑥𝑖 , 𝑥𝑖+1), 𝜂2 = 𝑥 𝑗 and 𝜂3 = 𝑥𝑘 . The shape
function associated with this edge is given by

𝝋e
𝑖 𝑗𝑘 (𝜂1, 𝜂2, 𝜂3) = 𝜓 ′𝑖 (𝜂1)𝜑 𝑗 (𝜂2)𝜑𝑘 (𝜂3)𝒃1. (2)

Notice that 𝝋e
𝑖 𝑗𝑘 · 𝒃2 = 𝝋e

𝑖 𝑗𝑘 · 𝒃3 = 0. Thus, the tangential component of 𝝋e
𝑖 𝑗𝑘 vanishes

along all edges not in the 𝒃1 direction. Consider the integral 𝑎e
𝑙𝑚𝑛 :=

∫
E𝑙𝑚𝑛 𝝋

e
𝑖 𝑗𝑘 ·𝒃1 𝑑𝑥.

Since 𝜑 𝑗 (𝑥𝑚) = 𝛿 𝑗𝑚 and 𝜑𝑘 (𝑥𝑛) = 𝛿𝑘𝑛, we find using (1) that

𝑎e
𝑙𝑚𝑛 = 𝛿 𝑗𝑚𝛿𝑘𝑛

∫ 𝑥𝑙+1

𝑥𝑙

𝜓 ′𝑖 (𝜂1) 𝑑𝑥 = 𝛿𝑖𝑙𝛿 𝑗𝑚𝛿𝑘𝑛.

In other words, the integral of the tangential component of 𝝋e
𝑖 𝑗𝑘 vanishes over

all edges except for E𝑖 𝑗𝑘 , for which this integral is 1. This feature ensures linear
independence of the shape functions. Moreover, arguments similar to those in [7]
can be used to show the finite element space is conforming in the space 𝐻 (curl; Ω̂),
where Ω̂ := (−1, 1)3. Using the curl-conserving transformation described in §3.9 of
[6], the finite elements are also conforming in the space 𝐻 (curl;Ω), where Ω is the
domain of the higher-order finite element mesh.

2.2 Face Shape Functions

The vector field for a face-based finite element of degree 𝑝 can be expressed in terms
of the element coordinates as

𝒖f
𝑝 = 𝑢f

1𝑝𝒃1 + 𝑢f
2𝑝𝒃2 + 𝑢f

3𝑝𝒃3,

where 𝑢f
1𝑝 ∈ 𝑄𝑝,𝑝−1, 𝑝−1, 𝑢f

2𝑝 ∈ 𝑄𝑝−1, 𝑝, 𝑝−1, and 𝑢f
3𝑝 ∈ 𝑄𝑝−1, 𝑝−1, 𝑝 (again, see e.g.

[7]).
Our present focus is on faces aligned with the 𝒃3 direction; similar constructions

of shape functions hold for faces aligned with the other two directions. Let F𝑖 𝑗𝑘
denote the face with 𝜂1 ∈ (𝑥𝑖 , 𝑥𝑖+1), 𝜂2 ∈ (𝑥 𝑗 , 𝑥 𝑗+1), and 𝜂3 = 𝑥𝑘 . The shape function
associated with this face is given by

𝝋f
𝑖 𝑗𝑘 (𝜂1, 𝜂2, 𝜂3) = 𝜓 ′𝑖 (𝜂1)𝜓 ′𝑗 (𝜂2)𝜑𝑘 (𝜂3)𝒃3. (3)

Notice that 𝝋f
𝑖 𝑗𝑘 · 𝒃1 = 𝝋f

𝑖 𝑗𝑘 · 𝒃2 = 0. Thus, the normal component of 𝝋f
𝑖 𝑗𝑘 vanishes

over all faces with normals not in the 𝒃3 direction. Next, consider the area integral
𝑎f
𝑙𝑚𝑛 :=

∫
F𝑙𝑚𝑛 𝝋

f
𝑖 𝑗𝑘 · 𝒃3 𝑑𝑥. Since 𝜑𝑘 (𝑥𝑛) = 𝛿𝑘𝑛, we find using (1) that

𝑎f
𝑙𝑚𝑛 =

∫
F𝑙𝑚𝑘

𝛿𝑘𝑛𝜓
′
𝑖 (𝜂1)𝜑′𝑗 (𝜂2) 𝑑𝑥
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= 𝛿𝑘𝑛

∫ 𝑥𝑙+1

𝑥𝑙

𝜓 ′𝑖 (𝜂1) 𝑑𝜂1

∫ 𝑥𝑚+1

𝑥𝑚

𝜓 ′𝑗 (𝜂2) 𝑑𝜂2 = 𝛿𝑖𝑙𝛿 𝑗𝑚𝛿𝑘𝑛.

In other words, the integral of the normal component of 𝝋f
𝑖 𝑗𝑘 vanishes over all faces

except for F𝑖 𝑗𝑘 , for which this integral is 1. Again, this ensures linear independence
of the shape functions, and arguments similar to those in [7] can be used to show the
finite element space is conforming in 𝐻 (div; Ω̂). Using the divergence-conserving
transformation described in §3.9 of [6], the finite elements are also conforming in
the space 𝐻 (div;Ω), whereΩ is the domain of the higher-order finite element mesh.

2.3 Interior Shape Functions

The scalar field of an interior-based element is approximated by functions 𝑢v
𝑝 ∈

𝑄𝑝−1, 𝑝−1, 𝑝−1. Let 𝑉𝑖 𝑗𝑘 denote the cell with 𝜂1 ∈ (𝑥𝑖 , 𝑥𝑖+1), 𝜂2 ∈ (𝑥 𝑗 , 𝑥 𝑗+1), and
𝜂3 ∈ (𝑥𝑘 , 𝑥𝑘+1). The shape function associated with this cell is given by

𝜑v
𝑖 𝑗𝑘 (𝜂1, 𝜂2, 𝜂3) = 𝜓 ′𝑖 (𝜂1)𝜓 ′𝑗 (𝜂2)𝜓 ′𝑘 (𝜂3). (4)

Consider the volume integrals 𝑎v
𝑙𝑚𝑛 :=

∫
𝑉𝑙𝑚𝑛

𝜑v
𝑖 𝑗𝑘 𝑑𝑥. We find using (1) that

𝑎v
𝑙𝑚𝑛 =

∫ 𝑥𝑙+1

𝑥𝑙

𝜓 ′𝑖 (𝜂1)
∫ 𝑥𝑚+1

𝑥𝑚

𝜓 ′𝑗 (𝜂2)
∫ 𝑥𝑛+1

𝑥𝑛

𝜓 ′𝑘 (𝜂3) 𝑑𝑥 = 𝛿𝑖𝑙𝛿 𝑗𝑚𝛿𝑘𝑛.

In other words, the integral of 𝜑v
𝑖 𝑗𝑘 vanishes over all regions except for 𝑉𝑖 𝑗𝑘 , for

which this integral is 1. This ensures linear independence of the shape functions.
Further, a polynomial function 𝑢v

𝑝 ∈ 𝑄𝑝−1, 𝑝−1, 𝑝−1 can be expressed in terms of the
shape functions as

𝑢v
𝑝 =

𝑝−1∑︁
𝑖, 𝑗 ,𝑘=0

𝑐v
𝑖 𝑗𝑘𝜓

′
𝑖 (𝜂1)𝜓 ′𝑗 (𝜂2)𝜓 ′𝑘 (𝜂3), 𝑐v

𝑖 𝑗𝑘 (𝑢v
𝑝) =

∫
𝑉𝑖 𝑗𝑘

𝑢v
𝑝 𝑑𝑥.

Remark 1 Starting with the edge shape function 𝝋e
𝑖 𝑗𝑘 in (2), notice that the face shape

function 𝝋f
𝑖 𝑗𝑘 in (3) is obtained simply by replacing 𝜑 𝑗 (𝜂2)𝒃1 with 𝜓 ′𝑗𝒃3. Likewise,

𝜑v
𝑖 𝑗𝑘 in (4) is obtained from 𝝋f

𝑖 𝑗𝑘 simply by replacing 𝜑𝑘 (𝜂3)𝒃3 with 𝜓 ′𝑘 (𝜂3).

2.4 Lowest-Order Shape Functions

The lowest-order counterparts of the one-dimensional higher-order shape functions
𝜑0, . . . , 𝜑𝑝 are piecewise linear and are denoted by 𝜑0ℎ, . . . 𝜑𝑝ℎ (see Figure 2 (right)
for the case of 𝑝 = 4). Analogous to the the higher-order edge, face, and interior
shape functions, we may define the lowest-order counterparts of (2), (3) and (4) as
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𝝋e
𝑖 𝑗𝑘ℎ (𝜂1, 𝜂2, 𝜂3) = 𝜓 ′𝑖ℎ (𝜂1)𝜑 𝑗ℎ (𝜂2)𝜑𝑘ℎ (𝜂3)𝒃1, (5)

𝝋f
𝑖 𝑗𝑘ℎ (𝜂1, 𝜂2, 𝜂3) = 𝜓 ′𝑖ℎ (𝜂1)𝜓 ′𝑗ℎ (𝜂2)𝜑𝑘ℎ (𝜂3)𝒃3, (6)

𝜑v
𝑖 𝑗𝑘ℎ (𝜂1, 𝜂2, 𝜂3) = 𝜓 ′𝑖ℎ (𝜂1)𝜓 ′𝑗ℎ (𝜂2)𝜓 ′𝑘ℎ (𝜂3), (7)

where 𝜓𝑖ℎ is defined analogously to 𝜓𝑖 as

𝜓𝑖ℎ (𝜂1) =
𝑝∑︁
𝑚=0

𝑎𝑖𝑚𝜑𝑚ℎ (𝜂1).

By construction, the lowest-order edge, face, and interior shape functions in (5-7)
have similar interpolatory properties to their higher-order counterparts. For example,
the integrated tangential component of 𝝋e

𝑖 𝑗𝑘ℎ is 1 along edge E𝑖 𝑗𝑘 and vanishes along
all other edges of the GLL mesh just like the higher-order shape function 𝝋e

𝑖 𝑗𝑘 .

3 Spectral Equivalence Results

In this section, we summarize the spectral equivalence of mass and stiffness matrices
of higher-order edge, face and interior-based elements with their assembled lowest-
order counterparts on the GLLmesh. By spectral equivalence wemean that constants
in the estimates are independent of the polynomial degree. In three dimensions, the
constants for the equivalence are independent of element aspect ratios for mass
matrices, while stiffness matrices have a weak dependence for edge-based elements
but no dependence for face-based elements. More details, including proofs of the
results, can be found in [4]. We use the notational convention 𝑓 ≃ 𝑔 to mean that
there exist positive constants 𝑐 and 𝐶, independent of polynomial degree, such that
𝑐𝑔 ≤ 𝑓 ≤ 𝐶𝑔 for non-negative scalars 𝑓 and 𝑔.

3.1 Mass Matrix Equivalence

We follow closely in [4] the development given on pages 16 and 17 of [1] to show
spectral equivalence of mass matrices. Based on these results, spectral equivalence
for stiffness matrices is shown to follow.

Lemma 1 Let 𝒖k
ℎ denote the lowest-order interpolant of the higher-order vector

function 𝒖k
𝑝 , where k ∈ {e, f}. Similarly, let 𝑢v

ℎ denote the lowest-order interpolant
of the higher-order scalar function 𝑢v

𝑝 . It holds that

∥𝒖e
ℎ∥𝐿2 (Ω̂) ≃ ∥𝒖e

𝑝 ∥𝐿2 (Ω̂) , (8)

∥𝒖f
ℎ∥𝐿2 (Ω̂) ≃ ∥𝒖f

𝑝 ∥𝐿2 (Ω̂) , (9)

∥𝑢v
ℎ∥𝐿2 (Ω̂) ≃ ∥𝑢v

𝑝 ∥𝐿2 (Ω̂) . (10)
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3.2 Stiffness Matrix Equivalence

The stiffness matrix for a higher-order edge-based element is associated with the curl
semi-norm of 𝒖e

𝑝 , which we denote by |∇ × 𝒖e
𝑝 |𝐿2 (Ω̂) . Similarly, the stiffness matrix

for a higher-order face-based element is associated with the divergence semi-norm
of 𝒖f

𝑝 , which we denote by |∇ · 𝒖f
𝑝 |𝐿2 (Ω̂) .

Lemma 2 Let 𝒖k
ℎ denote the lowest-order interpolant of 𝒖k

𝑝 , where k ∈ {e, f}. It
holds that

|∇ × 𝒖e
ℎ |𝐿2 (Ω̂) ≃ |∇ × 𝒖e

𝑝 |𝐿2 (Ω̂) , (11)

|∇ · 𝒖f
ℎ |𝐿2 (Ω̂) ≃ |∇ · 𝒖f

𝑝 |𝐿2 (Ω̂) . (12)

4 Numerical Results

Numerical support for the estimates in (8-12) is provided in this section. For each of
these estimates, we consider a generalized eigenvalue problem of the form 𝐵𝑝𝑥 =
𝜆𝐵ℎ𝑥, where 𝐵𝑝 and 𝐵ℎ are the higher- and lowest-order element mass or stiffness
matrices corresponding to the estimate. Notice that 𝐵𝑝 and 𝐵ℎ are singular for (11)
and (12), with null spaces corresponding to gradients of node-based finite element
functions and curls of edge-based finite element functions, respectively. For these
two cases, we confirmed that the null spaces for 𝐵𝑝 and 𝐵ℎ are identical. Further, the
generalized eigenvalue problem was solved in a space orthogonal to the null space.
The smallest and largest eigenvalues corresponding to (8-10) are shown in Figure 3

(left) for elements in three dimensions. For completeness, results are also shown for
node-based elements in the space 𝐻1. Notice in all cases that the smallest and largest
eigenvalues are bounded by those for node-based elements. This provides numerical
support for (8-10) based on node-based spectral equivalence results in [1]. Similar
results are shown in Figure 3 (right) which correspond to (11-12).
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Fig. 3: Generalized eigenvalues associated with mass (left) and stiffness (right) matrices in three
dimensions.
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Optimizing Transmission Conditions for
Multiple Subdomains in the Magnetotelluric
Approximation of Maxwell’s Equations

V. Dolean, M.J. Gander, and A. Kyriakis

1 Optimized Schwarz for the Magnetotelluric Approximation

Wave propagation phenomena are ubiquitous in science and engineering. In Geo-
physics, the magnetotelluric approximation of Maxwell’s equations is an important
tool to extract information about the spatial variation of electrical conductivity in the
Earth’s subsurface. This approximation results in a complex diffusion equation [4],

Δ𝑢 − (𝜎 − 𝑖𝜀)𝑢 = 𝑓 , in a domain Ω, (1)

where 𝑓 is the source function, and 𝜎 and 𝜀 are strictly positive constants1.
To study Optimized Schwarz Methods (OSMs) for (1), we use a rectangular

domain Ω given by the union of rectangular subdomains Ω 𝑗 := (𝑎 𝑗 , 𝑏 𝑗 ) × (0, �̂�),
𝑗 = 1, 2, . . . , 𝐽, where 𝑎 𝑗 = ( 𝑗 − 1)𝐿 − 𝛿

2 and 𝑏 𝑗 = 𝑗 𝐿 + 𝛿
2 , and 𝛿 is the overlap, like

in [2]. Our OSM computes for iteration index 𝑛 = 1, 2, . . .

Δ𝑢𝑛𝑗 − (𝜎 − 𝑖𝜀)𝑢𝑛𝑗 = 𝑓 in Ω 𝑗 ,

−𝜕𝑥𝑢𝑛𝑗 + 𝑝−𝑗 𝑢𝑛𝑗 = −𝜕𝑥𝑢𝑛−1
𝑗−1 + 𝑝−𝑗 𝑢𝑛−1

𝑗−1 at 𝑥 = 𝑎 𝑗 ,
𝜕𝑥𝑢

𝑛
𝑗 + 𝑝+𝑗𝑢𝑛𝑗 = 𝜕𝑥𝑢𝑛−1

𝑗+1 + 𝑝+𝑗𝑢𝑛−1
𝑗+1 at 𝑥 = 𝑏 𝑗 ,

(2)

where 𝑝−𝑗 and 𝑝
+
𝑗 are strictly positive parameters in the so called 2-sided OSM,

see e.g. [6], and we have at the top and bottom homogeneous Dirichlet boundary
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1 In the magnetotelluric approximation we have 𝜎 = 0, but we consider the slightly more general
case here. Note also that the zeroth order term in (1) is much more benign than the zeroth order
term of opposite sign in the Helmholtz equation, see e.g. [5].
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conditions, and on the left and right homogeneous Robin boundary conditions, i.e
we put for simplicity of notation 𝑢𝑛−1

0 = 𝑢𝑛−1
𝐽+1 = 0 in (2). Note that the parameters

𝑝−𝑗 ,𝑝
+
𝑗 are real and not complex (as one would expect in the case of a complex

problem) for the sake of simplicity in our analysis. The Robin parameters are fixed
at the domain boundaries 𝑥 = 𝑎1 and 𝑥 = 𝑏𝐽 to 𝑝−1 = 𝑝𝑎 and 𝑝−𝐽 = 𝑝𝑏. As 𝑝𝑎, 𝑝𝑏
tend to infinity, this is equivalent to imposing Dirichlet conditions. By linearity, it
suffices to study the homogeneous equations, 𝑓 = 0, and analyze convergence to zero
of the OSM (2). Expanding the homogeneous iterates in a Fourier series 𝑢𝑛𝑗 (𝑥, 𝑦) =∑∞
𝑚=1 𝑣

𝑛
𝑗 (𝑥, �̃�) sin( �̃� 𝑦)where �̃� = 𝑚𝜋

�̂�
to satisfy the homogeneousDirichlet boundary

conditions at the top and bottom, we obtain for the Fourier coefficients the equations

𝜕𝑥𝑥𝑣
𝑛
𝑗 − ( �̃�2 + 𝜎 − 𝑖𝜀)𝑣𝑛𝑗 = 0 𝑥 ∈ (𝑎 𝑗 , 𝑏 𝑗 ),

−𝜕𝑥𝑣𝑛𝑗 + 𝑝−𝑗 𝑣𝑛𝑗 = −𝜕𝑥𝑣𝑛−1
𝑗−1 + 𝑝−𝑗 𝑣𝑛−1

𝑗−1 at 𝑥 = 𝑎 𝑗 ,
𝜕𝑥𝑣

𝑛
𝑗 + 𝑝+𝑗 𝑣𝑛𝑗 = 𝜕𝑥𝑣𝑛−1

𝑗+1 + 𝑝+𝑗 𝑣𝑛−1
𝑗+1 at 𝑥 = 𝑏 𝑗 .

(3)

The general solution of the differential equation is 𝑣𝑛𝑗 (𝑥, �̃�) = 𝑐 𝑗𝑒−𝜆( �̃�)𝑥 + 𝑑 𝑗𝑒𝜆( �̃�)𝑥 ,
where 𝜆 = 𝜆( �̃�) =

√︁
�̃�2 + 𝜎 − 𝑖𝜀. We next define the Robin traces, R𝑛−1− (𝑎 𝑗 , �̃�) :=

−𝜕𝑥𝑣𝑛−1
𝑗−1 (𝑎 𝑗 , �̃�) + 𝑝−𝑗 𝑣𝑛−1

𝑗−1 (𝑎 𝑗 , �̃�) and R𝑛−1+ (𝑏 𝑗 , �̃�) := 𝜕𝑥𝑣𝑛−1
𝑗+1 (𝑏 𝑗 , �̃�) + 𝑝+𝑗 𝑣𝑛−1

𝑗+1 (𝑏 𝑗 , �̃�).
Inserting the solution into the transmission conditions in (3), a linear system arises
where the unknowns are 𝑐 𝑗 and 𝑑 𝑗 , whose solution is

𝑐 𝑗 =
1
𝐷 𝑗
(𝑒𝜆𝑏 𝑗 (𝑝+𝑗 + 𝜆)R𝑛−1

− (𝑎 𝑗 , �̃�) − 𝑒𝜆𝑎 𝑗 (𝑝−𝑗 − 𝜆)R𝑛−1
+ (𝑏 𝑗 , �̃�)),

𝑑 𝑗 =
1
𝐷 𝑗
(−𝑒−𝜆𝑏 𝑗 (𝑝+𝑗 − 𝜆)R𝑛−1

− (𝑎 𝑗 , �̃�) + 𝑒−𝜆𝑎 𝑗 (𝑝−𝑗 + 𝜆)R𝑛−1
+ (𝑏 𝑗 , �̃�)),

where 𝐷 𝑗 := (𝜆 + 𝑝+𝑗 ) (𝜆 + 𝑝−𝑗 )𝑒𝜆(𝐿+𝛿) − (𝜆 − 𝑝+𝑗 ) (𝜆 − 𝑝−𝑗 )𝑒−𝜆(𝐿+𝛿) . We thus arrive
for the Robin traces in the OSM at the iteration formula

R𝑛− (𝑎 𝑗 , �̃�) = 𝛼−𝑗 R𝑛−1
− (𝑎 𝑗−1, �̃�) + 𝛽−𝑗R𝑛−1

+ (𝑏 𝑗−1, �̃�), 𝑗 = 2, . . ., 𝐽,

R𝑛+ (𝑏 𝑗 , �̃�) = 𝛽+𝑗R𝑛−1
− (𝑎 𝑗+1, �̃�) + 𝛼+𝑗R𝑛−1

+ (𝑏 𝑗+1, �̃�), 𝑗 = 1, . . ., 𝐽 − 1,

where

𝛼−𝑗 :=
(𝜆 + 𝑝+𝑗−1) (𝜆 + 𝑝−𝑗 )𝑒𝜆𝛿 − (𝜆 − 𝑝+𝑗−1) (𝜆 − 𝑝−𝑗 )𝑒−𝜆𝛿

(𝜆+𝑝+𝑗−1) (𝜆+𝑝−𝑗−1)𝑒𝜆(𝐿+𝛿)−(𝜆−𝑝+𝑗−1) (𝜆−𝑝−𝑗−1)𝑒−𝜆(𝐿+𝛿)
, 𝑗 = 2, . . ., 𝐽,

𝛼+𝑗 :=
(𝜆 + 𝑝−𝑗+1) (𝜆 + 𝑝+𝑗 )𝑒𝜆𝛿 − (𝜆 − 𝑝−𝑗+1) (𝜆 − 𝑝+𝑗 )𝑒−𝜆𝛿

(𝜆+𝑝+𝑗+1) (𝜆+𝑝−𝑗+1)𝑒𝜆(𝐿+𝛿)−(𝜆−𝑝+𝑗+1) (𝜆−𝑝−𝑗+1)𝑒−𝜆(𝐿+𝛿)
, 𝑗 = 1, . . ., 𝐽 − 1,

𝛽−𝑗 :=
(𝜆 + 𝑝−𝑗 ) (𝜆 − 𝑝−𝑗−1)𝑒−𝜆𝐿 − (𝜆 − 𝑝−𝑗 ) (𝜆 + 𝑝−𝑗−1)𝑒𝜆𝐿

(𝜆+𝑝+𝑗−1) (𝜆+𝑝−𝑗−1)𝑒𝜆(𝐿+𝛿)−(𝜆−𝑝+𝑗−1) (𝜆−𝑝−𝑗−1)𝑒−𝜆(𝐿+𝛿)
, 𝑗 = 2, . . ., 𝐽,
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𝛽+𝑗 :=
(𝜆 + 𝑝+𝑗 ) (𝜆 − 𝑝+𝑗+1)𝑒−𝜆𝐿 − (𝜆 − 𝑝+𝑗 ) (𝜆 + 𝑝+𝑗+1)𝑒𝜆𝐿

(𝜆+𝑝+𝑗+1) (𝜆+𝑝−𝑗+1)𝑒𝜆(𝐿+𝛿)−(𝜆−𝑝+𝑗+1) (𝜆−𝑝−𝑗+1)𝑒−𝜆(𝐿+𝛿)
, 𝑗 = 1, . . ., 𝐽 − 1.

Defining the matrices

𝑇1
𝑗 :=

[
𝛼−𝑗 𝛽

−
𝑗

0 0

]
, 𝑗 = 2, .., 𝐽 and 𝑇2

𝑗 :=
[

0 0
𝛽+𝑗 𝛼

+
𝑗

]
, 𝑗 = 1, .., 𝐽 − 1,

we can write the OSM in substructured form (keeping the first and last rows and
columns to make the block structure appear), namely



0
R𝑛+ (𝑏1, �̃�)
R𝑛− (𝑎2, �̃�)
R𝑛+ (𝑏2, �̃�)

...
R𝑛− (𝑎 𝑗 , �̃�)
R𝑛+ (𝑏 𝑗 , �̃�)

...
R𝑛− (𝑎𝑁−1, �̃�)
R𝑛+ (𝑏𝑁−1, �̃�)
R𝑛− (𝑎𝑁 , �̃�)

0

︸              ︷︷              ︸
R𝑛

=



𝑇2
1

𝑇1
2 𝑇2

2

. . .
. . .

𝑇1
𝑗 𝑇2

𝑗

. . .
. . .

𝑇1
𝑁−1 𝑇2

𝑁−1

𝑇1
𝑁

︸                                                     ︷︷                                                     ︸
𝑇



0
R𝑛−1+ (𝑏1, �̃�)
R𝑛−1− (𝑎2, �̃�)
R𝑛−1+ (𝑏2, �̃�)

...
R𝑛−1− (𝑎 𝑗 , �̃�)
R𝑛−1+ (𝑏 𝑗 , �̃�)

...
R𝑛−1− (𝑎𝑁−1, �̃�)
R𝑛−1+ (𝑏𝑁−1, �̃�)
R𝑛−1− (𝑎𝑁 , �̃�)

0

︸                 ︷︷                 ︸
R𝑛−1

.

(4)
If the parameters 𝑝±𝑗 are constant over all the interfaces, and we eliminate the first and
the last row and column of 𝑇 , 𝑇 becomes a block Toeplitz matrix. The best choice
of the parameters minimizes the spectral radius 𝜌(𝑇) over a numerically relevant
range of frequencies 𝐾 := [ �̃�min, �̃�max] with �̃�min := 𝜋

�̂�
(or 0 for simplicity) and

�̃�max := 𝑀𝜋
�̂�
, 𝑀 ∼ 1

ℎ , where ℎ is the mesh size, and is thus solution of the min-max
problem min𝑝±𝑗 max�̃�∈𝐾 |𝜌(𝑇 ( �̃� , 𝑝±𝑗 )) |.
The traditional approach to obtain optimized transmission conditions for opti-

mized Schwarz methods is to optimize performance for a simple two subdomain
model problem, and then to use the result also in the case of many subdomains. We
want to study here if this approach is justified, by directly optimizing the performance
for two and more subdomains, and then comparing the results. We obtain our results
from insight by numerical optimisation for small overlap, in order to find asymp-
totic formulas for the convergence factor and the parameters involved. The constants
in the asymptotic results are then obtained by rigorous analytical computations of
asymptotic series. We thus do not obtain existence and uniqueness results, but our
asymptotically optimized convergence factors equioscillate as one would expect.
For Robin conditions with complex parameters for two subdomains, existence and
uniqueness results can be found in B. Delourme and L. Halpern [3].
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2 Optimization for 2, 3, 4, 5 and 6 subdomains

For two subdomains, the general substructured iteration matrix becomes

𝑇 =

[
0 𝛽+1
𝛽−2 0

]
.

The eigenvalues of this matrix are ±√︁𝛽+1 𝛽−2 and thus the square of the convergence
factor is 𝜌2 =

��𝛽+1 𝛽−2 ��.
Theorem 1 (Two Subdomain Optimization) Let 𝑠:=

√
𝜎 − 𝑖𝜀, where the complex

square root is taken with a positive real part, and let 𝐶 be the real constant

𝐶:=ℜ 𝑠((𝑝𝑏 + 𝑠) (𝑝𝑎 + 𝑠) − (𝑠 − 𝑝𝑏) (𝑠 − 𝑝𝑎)𝑒−4𝑠𝐿)
((𝑠 − 𝑝𝑎)𝑒−2𝑠𝐿 + 𝑠 + 𝑝𝑎) ((𝑠 − 𝑝𝑏)𝑒−2𝑠𝐿 + 𝑠 + 𝑝𝑏)

. (5)

where 𝑝𝑎 and 𝑝𝑏 are the Robin parameters at the outer boundaries. Then for two
subdomains with 𝑝+1 = 𝑝−2=:𝑝 and �̃�min = 0, the asymptotically optimized parameter
𝑝 for small overlap 𝛿 and associated convergence factor are

𝑝 = 2−1/3𝐶2/3𝛿−1/3, 𝜌 = 1 − 2 · 21/3𝐶1/3𝛿1/3 + O(𝛿2/3). (6)

If 𝑝+1 ≠ 𝑝−2 and �̃�𝑚𝑖𝑛 = 0, the asymptotically optimized parameters for small overlap
𝛿 and associated convergence factor are

𝑝+1 = 2−2/5𝐶2/5𝛿−3/5, 𝑝−2 = 2−4/5𝐶4/5𝛿−1/5, 𝜌 = 1−2·2−1/5𝐶1/5𝛿1/5+O(𝛿2/5). (7)

Proof From numerical experiments, we obtain that the solution of the min-max
problem equioscillates, 𝜌(0) = 𝜌( �̃�∗), where �̃�∗ is an interior maximum point, and
asymptotically 𝑝 = 𝐶𝑝𝛿

−1/3, 𝜌 = 1 − 𝐶𝑅𝛿1/3 + O(𝛿2/3), and �̃�∗ = 𝐶𝑘𝛿
−2/3. By

expanding for 𝛿 small, and setting the leading term in the derivative 𝜕𝜌

𝜕�̃�
( �̃�∗) to

zero, we get 𝐶𝑝 =
𝐶2
𝑘

2 . Expanding the maximum leads to 𝜌( �̃�∗) = 𝜌(𝐶𝑘𝛿−2/3) =
1−2𝐶𝑘𝛿1/3+O(𝛿2/3), therefore𝐶𝑅 = 2𝐶𝑘 . Finally the solution of the equioscillation
equation 𝜌(0) = 𝜌( �̃�∗) determines uniquely 𝐶𝑘 = 21/3𝐶1/3.
In the case with two parameters, we have two equioscillations, 𝜌(0) = 𝜌( �̃�∗1) =

𝜌( �̃�∗2), where �̃�∗𝑗 are two interior local maxima, and asymptotically 𝑝1 = 𝐶𝑝1𝛿
−3/5,

𝑝1 = 𝐶𝑝1𝛿
−1/5, 𝜌 = 1 − 𝐶𝑅𝛿1/5 + O(𝛿2/5), �̃�∗1 = 𝐶𝑘1𝛿

−2/5 and �̃�∗2 = 𝐶𝑘2𝛿
−4/5. By

expanding for 𝛿 small, and setting the leading terms in the derivatives 𝜕𝜌𝜕𝑘 ( �̃�∗1,2) to
zero, and we get 𝐶𝑝1 = 𝐶2

𝑘2, 𝐶𝑝2 =
𝐶2
𝑘1

𝐶2
𝑘2
. Expanding the maxima leads to 𝜌( �̃�∗1) =

𝜌(𝐶𝑘𝛿−2/5) = 1 − 2𝐶𝑘1
𝐶2
𝑘2
𝛿1/5 + O(𝛿2/5) and 𝜌( �̃�∗2) = 𝜌(𝐶𝑘𝛿−4/5) = 1 − 2𝐶𝑘2𝛿

1/5 +
O(𝛿2/5) and equating 𝜌( �̃�∗1) = 𝜌( �̃�∗2) we get 𝐶𝑘1 = 𝐶3

𝑘2 and 𝐶𝑅 = 2𝐶𝑘2. Finally
equating 𝜌(0) = 𝜌( �̃�∗2) asymptotically determines uniquely 𝐶𝑘2 = 2−1/5𝐶1/5 and
then 𝐶𝑘1 = 𝐶3

𝑘2 and 𝐶𝑝1 = 𝐶2
𝑘2, 𝐶𝑝2 = 𝐶4

𝑘2.
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Corollary 1 (Two Subdomains with Dirichlet outer boundary conditions) The
case of Dirichlet outer boundary conditions can be obtained by letting 𝑝𝑎 and 𝑝𝑏
go to infinity, which simplifies (5) to

𝐶 = ℜ 𝑠(1 + 𝑒
2𝑠𝐿)

(𝑒2𝑠𝐿 − 1) (8)

and the asymptotic results in Theorem 1 simplify accordingly.

For three subdomains, the general substructured iteration matrix becomes

𝑇 =



0 𝛽+1 𝛼
+
1 0

𝛽−2 0 0 0
0 0 0 𝛽+2
0 𝛼−3 𝛽−3 0


,

and we obtain for the first time an optimization result for three subdomains:
Theorem 2 (Three Subdomain Optimization) For three subdomains with equal
parameters 𝑝+1 = 𝑝−2 = 𝑝+2 = 𝑝−3 = 𝑝, the asymptotically optimized parameter 𝑝 for
small overlap 𝛿 and associated convergence factor are

𝑝 = 2−1/3𝐶2/3𝛿−1/3, 𝜌 = 1 − 2 · 21/3𝐶1/3𝛿1/3 + O(𝛿2/3), (9)

where 𝐶 is a real constant that can be obtained in closed form. If the parameters are
different, their asymptotically optimized values for small overlap 𝛿 are such that

𝑝+1 , 𝑝
+
2 , 𝑝

−
2 , 𝑝

−
3 ∈ {2−2/5𝐶2/5𝛿−3/5, 2−4/5𝐶4/5𝛿−1/5}, 𝑝+1 ≠ 𝑝−2 , 𝑝

+
2 ≠ 𝑝−3 , (10)

and the associated convergence factor is

𝜌 = 1 − 2 · 2−1/5𝐶1/5𝛿1/5 + O(𝛿2/5). (11)

Proof The characteristic polynomial of the iteration matrix is

𝐺 (𝜇) = 𝜇4 − (𝛽−2 𝛽+1 + 𝛽−3 𝛽+2 )𝜇2 − 𝛼−3 𝛽−2𝛼+1 𝛽+2 + 𝛽−3 𝛽+2 𝛽−2 𝛽+1 .

This biquadratic equation has the roots 𝜇1 = ±
√︃
𝑚1+√𝑚2

2 , 𝜇2 = ±
√︃
𝑚1−√𝑚2

2 where

𝑚1 = 𝛽−2 𝛽
+
1 + 𝛽−3 𝛽+2 , 𝑚2 = 4𝛼−3 𝛽

−
2𝛼
+
1 𝛽
+
2 + (𝛽−2 𝛽+1 − 𝛽−3 𝛽+2 )2.

Therefore 𝜌(𝑇) = max{|𝜇1 |, |𝜇2 |}. Following the same reasoning as in the proof of
Theorem1,we observe that the solution equioscillates, andminimizing themaximum
asymptotically for 𝛿 small then leads to the desired result, for more details, see [7].□

Notice that the optimized parameters and the relation between them is the same as
in the two-subdomain case, the only difference is the equation whose solution gives
the exact value of the constant 𝐶. The only difference between a two subdomain
optimization and a three subdomain optimization is therefore the constant.
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Table 1: Asymptotic results for four subdomains: 𝜎 = 𝜀 = 1, 𝐿 = 1, 𝑝𝑎 = 𝑝𝑏 = 1

Many parameters One parameter

𝛿 𝜌 𝑝+1 𝑝−2 𝑝+2 𝑝−3 𝑝+3 𝑝−4 𝜌 𝑝

1/102 0.5206 13.1269 1.2705 10.1871 0.7748 16.5975 2.1327 0.6202 2.8396
1/103 0.6708 37.9717 1.4208 42.9379 1.6005 68.1923 2.4896 0.8022 6.0657
1/104 0.7789 152.9323 2.3266 152.0873 3.1841 161.0389 2.4919 0.9029 13.0412
1/105 0.8510 651.7536 4.1945 645.0605 4.1519 649.8928 4.1828 0.9537 28.0834

Table 2: Asymptotic results for five subdomains : 𝜎 = 𝜀 = 1, 𝐿 = 1, 𝑝𝑎 = 𝑝𝑏 = 1

Many parameters One parameter

𝛿 𝜌 𝑝+1 𝑝−2 𝑝+2 𝑝−3 𝑝+3 𝑝−4 𝑝+4 𝑝−5 𝜌 𝑝

1/102 0.5273 8.5648 1.4619 9.1763 0.8030 9.1398 0.8426 15.5121 2.2499 0.6290 2.6747
1/103 0.7333 24.6097 0.9209 23.4189 0.4499 37.2200 0.8433 34.8142 0.9181 0.8072 5.7261
1/104 0.7769 156.0648 2.4223 156.0502 2.4221 161.2036 2.5009 166.3478 2.5941 0.9055 12.3166
1/105 0.8547 704.4063 4.3378 611.3217 3.7296 611.3217 3.7296 690.8837 4.2116 0.9550 26.5260

Table 3: Asymptotic results for six subdomains: 𝜎 = 𝜀 = 1, 𝐿 = 1, 𝑝𝑎 = 𝑝𝑏 = 1

𝛿 𝜌 𝑝+1 𝑝−2 𝑝+2 𝑝−3 𝑝+3 𝑝−4 𝑝+4 𝑝−5 𝑝+5 𝑝−6

1/102 0.5460 10.5283 1.4526 7.7653 1.2124 8.2834 0.6573 7.6445 1.3410 8.0029 0.9586
1/103 0.7011 30.3314 0.9049 30.3452 1.1096 30.3010 0.9363 30.3458 0.8901 30.1139 1.1307
1/104 0.7837 145.7147 2.1126 146.4533 2.1231 145.7147 2.1126 149.1802 2.1743 146.7200 2.1909
1/105 0.8553 660.5326 3.9932 611.9401 3.7012 606.1453 3.6661 606.1144 3.6659 606.0914 3.8534

Corollary 2 (Three subdomains with Dirichlet outer boundary conditions)
When Dirichlet boundary conditions are used at the end of the computational do-
main, we obtain for the constant

𝐶 = ℜ 𝑠(𝑒
2𝑠𝐿 − 𝑒𝑠𝐿 + 1)
𝑒2𝑠𝐿 − 1

, (12)

which is different from the two subdomain constant in (8).

For four subdomains, we show in Table 1 the numerically optimized parameter
values when the overlap 𝛿 becomes small. We observe that again the optimized
parameters behave like in Theorem 1 and Theorem 2 when the overlap 𝛿 becomes
small. It is in principle possible to continue the asymptotic analysis from two and
three subdomains, but this is beyond the scope of the present paper. Continuing the
numerical optimization for five and six subdomains, we get the results in Table 2 and
Table 3, which show again the same asymptotic behavior. We therefore conjecture
the following two results for an arbitrary fixed number of subdomains:
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1. When all parameters are equal to 𝑝, then the asymptotically optimized parameter
𝑝 for small overlap 𝛿 and the associated convergence factor have the same form
as for two-subdomains (6) in Theorem 1, only the constant is different.

2. If all parameters are allowed to be different, the optimized parameters behave
for small overlap 𝛿 like

𝑝+𝑗 , 𝑝
−
𝑗+1 ∈ {2−2/5𝐶2/5𝛿−3/5, 2−4/5𝐶4/5𝛿−1/5} and 𝑝+𝑗 ≠ 𝑝−𝑗+1 ∀ 𝑗 = 1.., 𝐽 − 1,

as we have seen in the three subdomain case in Theorem 2, and we have again
the same asymptotic convergence factor as for two and three subdomains, only
the constant is different.

3 Optimization for many subdomains

In order to obtain a theoretical result for many subdomains, we use the technique
of limiting spectra [1] to derive a bound on the spectral radius which we can then
minimize. The technique of limiting spectra allows us to get an estimate of the
spectral radius when the matrix size goes to infinity. To do so, we must however
assume that the outer Robin boundary conditions use the same optimized parameter
as at the interfaces, in order to have the Toeplitz structure needed for the limiting
spectrum approach.

Theorem 3 (Many Subdomain Optimization) With all Robin parameters equal,
𝑝−𝑗 = 𝑝

+
𝑗 = 𝑝, the convergence factor of the OSM satisfies the bound

𝜌 = lim
𝑁→+∞

𝜌(𝑇𝑂𝑆2𝑑 ) ≤ max
{
|𝛼 − 𝛽 | , |𝛼 + 𝛽 |

}
< 1,

where 𝛼 = (𝜆+𝑝)2𝑒𝜆𝛿−(𝜆−𝑝)2𝑒−𝜆𝛿
(𝜆+𝑝)2𝑒𝜆(𝐿+𝛿)−(𝜆−𝑝)2𝑒−𝜆(𝐿+𝛿) , 𝛽 = (𝜆−𝑝) (𝜆+𝑝) (𝑒−𝜆𝐿−𝑒𝜆𝐿 )

(𝜆+𝑝) (𝜆+𝑝)𝑒𝜆(𝐿+𝛿)−(𝜆−𝑝) (𝜆−𝑝)𝑒−𝜆(𝐿+𝛿) . The
asymptotically optimized parameter and associated convergence factor are

𝑝 = 2−1/3𝐶2/3𝛿−1/3, 𝜌 = 1 − 2 · 21/3𝐶1/3𝛿1/3 + O(𝛿2/3) (13)

with the constant𝐶 := ℜ 𝑠 (1−𝑒−𝑠𝐿 )
1+𝑒−𝑠𝐿 . If we allow two-sided Robin parameters, 𝑝−𝑗 = 𝑝−

and 𝑝+𝑗 = 𝑝+, the OSM convergence factor satisfies the bound

𝜌 = lim
𝑁→+∞

𝜌(𝑇𝑂𝑆2𝑑 ) ≤ max
{ ���𝛼 − √︁

𝛽−𝛽+
��� , ���𝛼 + √︁

𝛽−𝛽+
��� } < 1,

where 𝛼 = (𝜆+𝑝+) (𝜆+𝑝−)𝑒𝜆𝛿−(𝜆−𝑝+) (𝜆−𝑝−)𝑒−𝜆𝛿
𝐷 , 𝛽± = (𝜆2−(𝑝∓)2) (𝑒−𝜆𝐿−𝑒𝜆𝐿 )

𝐷 , with 𝐷 =
(𝜆 + 𝑝+) (𝜆 + 𝑝−)𝑒𝜆(𝐿+𝛿) − (𝜆 − 𝑝+) (𝜆 − 𝑝−)𝑒−𝜆(𝐿+𝛿) . The asymptotically optimized
parameter choice 𝑝− ≠ 𝑝+ and the associated convergence factor are

𝑝−, 𝑝+ ∈
{
𝐶2/5𝛿−3/5, 𝐶4/5𝛿−1/5

}
, 𝜌 = 1 − 2𝐶1/5𝛿1/5 + O(𝛿2/5),
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with the same constant 𝐶 := ℜ 𝑠 (1−𝑒−𝑠𝐿 )
1+𝑒−𝑠𝐿 as for one parameter.

Proof As in the case of two and three subdomains, we observe equioscillation by
numerical optimization, and asymptotically that 𝑝 = 𝐶𝑝𝛿

−1/3, 𝜌 = 1 − 𝐶𝑅𝛿1/3 +
O(𝛿2/3) and the convergence factor has a local maximum at the point �̃�∗ = 𝐶𝑘𝛿−2/3.
By expanding for small 𝛿, the derivative 𝜕𝜌𝜕𝑘 ( �̃�∗) needs to have a vanishing leading
order term, which leads to 𝐶𝑝 =

𝐶2
𝑘

2 . Expanding the convergence factor at the
maximum point �̃�∗ gives 𝜌( �̃�∗) = 𝜌(𝐶𝑘𝛿−2/3) = 1 − 2𝐶𝑘𝛿1/3 + O(𝛿2/3), and hence
𝐶𝑅 = 2𝐶𝑘 . Equating now 𝜌(0) = 𝜌( �̃�∗) determines uniquely 𝐶𝑘 and then 𝐶𝑝 =√︁
𝐶𝑘/2 giving (13). By following the same lines as for two and three subdomains,
we also get the asymptotic result in the case of two different parameters. □

We can therefore safely conclude that for the magnetotelluric approximation of
Maxwell’s equations, which contains the important Laplace and screened Laplace
equation as special cases, it is sufficient to optimize transmission conditions for a
simple two subdomain decomposition in order to obtain good transmission condi-
tions also for the case of many subdomains, a new result that was not known so
far.
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Non-overlapping Spectral Additive Schwarz
Methods for HDG and Multiscale Discretizations

Yi Yu, Maksymilian Dryja, and Marcus Sarkis

1 Introduction

In this paper, we design and state some theoretical results for the exact and inex-
act versions of Non-overlapping Spectral Additive Schwarz Methods (NOSAS) in
the framework of Hybridizable Discontinuous Galerkin (HDG) discretizations and
multiscale discretizations for the following elliptic problem:

𝜌(𝑥)−1q + ∇𝑢 = 0 in Ω,
∇ · q = 𝑓 in Ω,

𝑢 = 0 on 𝜕Ω,
(1)

where 𝜌(𝑥) ∈ 𝐿∞ (Ω), 𝜌(𝑥) ≥ 𝜌0 > 0, 𝑓 ∈ 𝐿2 (Ω) and Ω is a polyhedral domain
in R𝑑 (𝑑 ≥ 2). The problem (1) has a unique solution (q, 𝑢) ∈ H(div,Ω) × 𝐻1

0 (Ω),
where H(div,Ω) := {q ∈ 𝐿2 (Ω)𝑑 , div q ∈ 𝐿2 (Ω)}.
We begin by describing the HDG discretization. Consider a partitioning of the

domainΩ into a conforming mesh Tℎ with elements 𝐾 . We assume that the partition
Tℎ is shape regular and quasi-uniform of size 𝑂 (ℎ). A face of K is denoted by F and
let Eℎ be the set of all faces of Tℎ excluding the ones on 𝜕Ω. The HDG yields a scalar
approximation 𝑢ℎ to 𝑢, a vector approximation qℎ to q, and a scalar approximation
𝜆ℎ to the trace of 𝑢 on element faces, in the spaces of Qℎ = {p ∈ 𝐿2 (Tℎ)𝑑 :
p|𝐾 ∈ P𝑘 (𝐾),∀𝐾 ∈ Tℎ}, 𝑊ℎ = {𝑤 ∈ 𝐿2 (Tℎ) : 𝑤 |𝐾 ∈ 𝑃𝑘 (𝐾),∀𝐾 ∈ Tℎ} and
𝑀ℎ = {𝜇 ∈ 𝐿2 (Eℎ) : 𝜇 |𝐹 ∈ 𝑃𝑘 (𝐹),∀𝐹 ∈ Eℎ}, respectively. Here P𝑘 (𝐾) = 𝑃𝑘 (𝐾)𝑑
and 𝑃𝑘 (𝐾) is the space of polynomials of order at most 𝑘 on K.
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To copewith the heterogeneous coefficients for each element, we define the numerical
flux q̂ℎ which is a double-valued vector function on mesh interfaces as follow:

q̂ℎ · n = qℎ · n + 𝜏𝐾 𝜌𝐾 (𝑢ℎ − 𝜆ℎ) on Eℎ . (2)

Here 𝜏 := 𝜏𝐾 𝜌𝐾 is called stabilizer, and 𝜌𝐾 is a constant which approximates 𝜌(𝑥)
in element 𝐾 , the nonnegative constant function 𝜏𝐾 defined on Eℎ can be either a
single or a double valued function on the element interfaces and 𝜏𝐾 above denotes
the 𝜏−value on the 𝜕𝐾 . The novelty of writing 𝜏 = 𝜏𝐾 𝜌𝐾 is that we will introduce
an equivalent norm of 𝑎(·, ·) independently of the coefficients. With the definitions
of the numerical flux q̂ℎ, the HDG discretization of problem (1) can be written as:
find (qℎ, 𝑢ℎ, 𝜆ℎ) ∈ Qℎ ×𝑊ℎ × 𝑀ℎ, such that for all (p, 𝑤, 𝜇) ∈ Qℎ ×𝑊ℎ × 𝑀ℎ:

(𝑢ℎ,∇ · p)Tℎ − (𝜌(𝑥)−1qℎ, p)Tℎ− < 𝜆ℎ, p · n >𝜕Tℎ = 0, (3a)
−(qℎ,∇𝑤)Tℎ+ < q̂ℎ · n, 𝑤 >𝜕Tℎ = ( 𝑓 , 𝑤)Tℎ , (3b)

< q̂ℎ · n, 𝜇 >𝜕Tℎ\𝜕Ω = 0. (3c)

It is proved in [1] that the system (3) is uniquely solvable and can be reduced into
the matrix form of the following problem: find 𝜆ℎ ∈ 𝑀ℎ such that

𝑎(𝜆ℎ, 𝜇) = 𝑏(𝜇), ∀𝜇 ∈ 𝑀ℎ . (4)
Here

𝑎(𝜂, 𝜇) =
∑︁
𝐾 ∈Tℎ

𝑎𝐾 (𝜂, 𝜇) =
∑︁
𝐾 ∈Tℎ
(𝜌−1
𝐾 𝑄𝜂,𝑄𝜇)𝐾 + <𝜏𝐾 𝜌𝐾 (𝑈𝜂 − 𝜂), (𝑈𝜇 − 𝜇)>𝜕𝐾

and 𝑏(𝜇) =
∑︁
𝐾 ∈Tℎ

𝑏𝐾 (𝜇) =
∑︁
𝐾 ∈Tℎ
( 𝑓 ,𝑈𝜇)𝐾 , where 𝑄𝜈 ∈ Qℎ and 𝑈𝜈 ∈ 𝑊ℎ are the

unique solution of the local element problem (3) with 𝜆ℎ = 𝜈 and right hand side
𝑓 = 0. We note that once we get 𝜆ℎ, the solution of (3) can be completed by
computing qℎ and 𝑢ℎ in each element separately. Note that the bilinear form 𝑎(·, ·)
is positive definite. Let us define the norm | | | · | | |𝜌,ℎ as follows:

| | |𝜆 | | |𝜌,ℎ =
( ∑︁
𝐾 ∈Tℎ

𝜌𝐾
ℎ
| |𝜆 − 𝑚𝑘 (𝜆) | |2𝐿2 (𝜕𝐾)

)1/2
, (5)

where 𝑚𝐾 (𝜆) = 1
|𝜕𝐾 |

∫
𝜕𝐾
𝜆𝑑𝑠. The next theorem shows the norm | | | · | | |𝜌,ℎ is equiv-

alent to the energy norm 𝑎(·, ·), for the proof see [1].
Theorem 1 For all 𝜆 ∈ 𝑀ℎ, there are positive constants 𝐶1, 𝐶2, independent of h
and 𝜌𝐾 , such that

𝐶1 | | |𝜆 | | |2𝜌,ℎ ≤ 𝑎(𝜆, 𝜆) ≤ 𝐶2𝛾 | | |𝜆 | | |2𝜌,ℎ,

where 𝛾 = 1 +max𝐾 ∈Tℎ 𝜏∗𝐾 ℎ, and 𝜏
∗
𝐾 denotes the second largest value of 𝜏𝐾 on 𝜕𝐾 .

NOSAS were first introduced for Continuous Galerkin (CG) discretizations in
[7, 8] as domain decomposition preconditioners designed to elliptic problems with



NOSAS for HDG and Multiscale Discretizations 223

highly heterogeneous coefficients. NOSAS are non-overlapping Schwarz precondi-
tioners where the subdomain interactions are via the coarse problem. The coarse
problem involves local and global interactions. The global component is introduced
to guarantee the robustness of the preconditioners for any coefficients 𝜌(𝑥) and
number of subdomains. The proposed global problem is built from generalized
eigenfunctions on the subdomains. The size of the global problem is equal to the
total number of those eigenfunctions and is only related to the number of islands or
channels with high-contrast coefficients that touch the boundary of the subdomains,
see [9]. Additionally, the inexact version of NOSAS has good parallelization proper-
ties. The main goal of this paper is to design and show results of NOSAS for HDG
and multiscale discretizations. We note that other kinds of domain decomposition
preconditioners for HDG were introduced in [1, 6].

2 Domain decomposition setting

We decompose Ω into N non-overlapping polygonal subdomains Ω𝑖 of size 𝑂 (𝐻).
The local spaces 𝑉𝑖 , (1 ≤ 𝑖 ≤ 𝑁) are the restriction of 𝑀ℎ on Ω𝑖 and vanishing on
𝜕Ω𝑖 and coarse space 𝑉0 is the restriction of 𝑀ℎ on the interface of all subdomain.
Then 𝑀ℎ admits the following direct sum decomposition:

𝑀ℎ = 𝑅
𝑇
0𝑉0 ⊕ 𝑅𝑇1𝑉1 ⊕ · · · ⊕ 𝑅𝑇𝑁𝑉𝑁 .

The local extrapolation operators 𝑅𝑇𝑖 : 𝑉𝑖 → 𝑀ℎ (1 ≤ 𝑖 ≤ 𝑁) is the extension by
zero outside of Ω𝑖 . The coarse extrapolation operators 𝑅𝑇0 : 𝑉0 → 𝑀ℎ is the core of
NOSAS which we will define and state theoretical results in Section 3.
For 1 ≤ 𝑖 ≤ 𝑁 , denote matrix 𝐴𝑖 corresponding to the exact local bilinear form:

𝑎𝑖 (𝑢, 𝑣) = 𝑣𝑇 𝐴𝑖 𝑢 = 𝑎(𝑅𝑇𝑖 𝑢, 𝑅𝑇𝑖 𝑣) 𝑢, 𝑣 ∈ 𝑉𝑖 ,

For 𝑖 = 0, we first consider matrix 𝐴0 corresponding to the exact bilinear form:

𝑎0 (𝑢, 𝑣) = 𝑣𝑇 𝐴0 𝑢 = 𝑎(𝑅𝑇0 𝑢, 𝑅𝑇0 𝑣) 𝑢, 𝑣 ∈ 𝑉0.

We will also consider inexact bilinear form �̂�0 (·, ·) later in this paper. Then the
non-overlapping Schwarz preconditioner have the following forms:

𝑇𝐴 = 𝐵−1𝐴, 𝐵−1 = 𝑅𝑇0 𝐴
−1
0 𝑅0 +

𝑁∑︁
𝑖=1

𝑅𝑇𝑖 𝐴
−1
𝑖 𝑅𝑖 .

We note that if we had chosen 𝑅𝑇0 as the 𝑎-discrete harmonic extension, then the
above preconditioner would become a direct solver and it would be too expensive
to solve the coarse problem. The core of NOSAS is to use a low-rank 𝑎-discrete
harmonic extension 𝑅𝑇0 , which is inexpensive to solve the coarse problem, also
guarantees good condition numbers.
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3 NOSAS with exact and inexact solver

The linear system 𝐴𝜆ℎ = 𝑏 corresponding to (4) can be assembled by the Neumann
matrix 𝐴(𝑖) and 𝑏 (𝑖) in each subdomain Ω𝑖 . We decompose 𝐴(𝑖) into blocked matrix
(𝐴(𝑖)ΓΓ 𝐴

(𝑖)
Γ𝐼 ; 𝐴(𝑖)𝐼Γ 𝐴(𝑖)𝐼 𝐼 ) and 𝑏 (𝑖) into (𝑏

(𝑖)
Γ ; 𝑏 (𝑖)𝐼 ), where subscript Γ, 𝐼 denote the parts

associated with the interface of subdomain and interior of subdomain, respectively.
The Schur complement of 𝐴 and 𝐴(𝑖) denote as 𝑆 and 𝑆 (𝑖) , respectively.
For the NOSAS exact solver, solve the generalized eigenvalue problem in each

subdomain (𝑖 = 1, · · · , 𝑁) separately:

𝑆 (𝑖)𝜉 (𝑖)𝑗 := (𝐴(𝑖)ΓΓ − 𝐴
(𝑖)
Γ𝐼 (𝐴

(𝑖)
𝐼 𝐼 )−1𝐴(𝑖)𝐼Γ )𝜉

(𝑖)
𝑗 = Λ(𝑖)𝑗 𝐴

(𝑖)
ΓΓ𝜉

(𝑖)
𝑗 (1 ≤ 𝑗 ≤ 𝑛𝑖), (6)

where 𝑛𝑖 is the degrees of freedom on Γ𝑖 := Γ ∩ 𝜕Ω𝑖 . Note that the eigenvalue lies
in [0, 1] for the above generalized eigenvalue problem. We fix a threshold 𝛿 < 1 and
pick the smallest 𝑘𝑖 eigenvalues ≤ 𝛿 and corresponding eigenvectors to construct
eigenfunctions space 𝑄 (𝑖) and harmonic extension 𝑃 (𝑖) as follow:

𝑄 (𝑖) = [𝜉 (𝑖)1 , 𝜉 (𝑖)2 , · · · , 𝜉 (𝑖)𝑘𝑖 ] and 𝑃 (𝑖) = −(𝐴(𝑖)𝐼 𝐼 )−1𝐴(𝑖)𝐼Γ𝑄
(𝑖) .

We also define 𝐷 (𝑖) = diagonal(1 − Λ(𝑖)1 , 1 − Λ(𝑖)2 , · · · , 1 − Λ(𝑖)𝑘𝑖 ) = 𝐼 − Λ(𝑖) .
For 𝑢0 ∈ 𝑉0, we define the global extension 𝑅𝑇0 : 𝑉0 → 𝑀ℎ as:

𝑅𝑇0 𝑢0=


𝑢0

−
𝑁∑︁
𝑖=1
𝑃 (𝑖)(𝑃 (𝑖)𝑇𝐴(𝑖)𝐼 𝐼 𝑃 (𝑖) )−1𝑃 (𝑖)

𝑇
𝐴(𝑖)𝐼Γ 𝑢

(𝑖)
0


=


𝑢0

𝑁∑︁
𝑖=1
𝑃 (𝑖)(𝑄 (𝑖)𝑇𝐴(𝑖)ΓΓ𝑄 (𝑖) )−1𝑄 (𝑖)

𝑇
𝐴(𝑖)ΓΓ𝑢

(𝑖)
0


,

where 𝑢 (𝑖)0 is the restriction of 𝑢0 on Γ𝑖 . Below 𝑣 (𝑖)0 denotes the restriction of 𝑣0 to
Γ𝑖 . Next ∀𝑢0, 𝑣0 ∈ 𝑉0, we define the exact coarse bilinear form as:

𝑎0 (𝑢0, 𝑣0)=𝑎(𝑅𝑇0 𝑢0, 𝑅
𝑇
0 𝑣0)=

𝑁∑︁
𝑖=1

𝑣 (𝑖)
𝑇

0
(
𝐴(𝑖)ΓΓ−𝐴

(𝑖)
Γ𝐼 𝑃

(𝑖) (𝑃 (𝑖)𝑇 𝐴(𝑖)𝐼 𝐼 𝑃 (𝑖) )−1𝑃 (𝑖)
𝑇
𝐴(𝑖)𝐼Γ

)
𝑢 (𝑖)0

=
𝑁∑︁
𝑖=1

𝑎 (𝑖)0 (𝑢
(𝑖)
0 , 𝑣 (𝑖)0 )=

𝑁∑︁
𝑖=1

𝑣 (𝑖)
𝑇

0
(
𝐴(𝑖)ΓΓ −𝐴

(𝑖)
ΓΓ𝑄

(𝑖)𝐷 (𝑖)(𝑄 (𝑖)𝑇𝐴(𝑖)ΓΓ𝑄 (𝑖))−1𝑄 (𝑖)
𝑇
𝐴(𝑖)ΓΓ

)
𝑢 (𝑖)0 .

Above, 𝑎0 (·, ·) is the global bilinear form and 𝑎 (𝑖)0 (·, ·) is the bilinear form on Γ𝑖
locally. The next lemma shows that 𝑎 (𝑖)0 (·, ·) is equivalent to Schur complement
𝑆 (𝑖) in the span of 𝑄 (𝑖) , and an extension by zero for the orthogonal complement
subspace.

Lemma 1 ([9]) Let Π (𝑖)𝑆 𝑢 (𝑖)0 be the projection of 𝑢 (𝑖)0 onto Span{𝑄 (𝑖)}. That is,
Π (𝑖)𝑆 𝑢

(𝑖)
0 :=𝑄 (𝑖)(𝑄 (𝑖)𝑇𝐴(𝑖)ΓΓ𝑄 (𝑖))−1𝑄 (𝑖)

𝑇
𝐴(𝑖)ΓΓ 𝑢

(𝑖)
0 . Then:
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𝑎 (𝑖)0 (𝑢
(𝑖)
0 , 𝑣 (𝑖)0 ) = (Π

(𝑖)
𝑆 𝑣 (𝑖)0 )𝑇𝑆 (𝑖) (Π

(𝑖)
𝑆 𝑢 (𝑖)0 ) + (𝑣

(𝑖)
0 − Π

(𝑖)
𝑆 𝑣 (𝑖)0 )𝑇 𝐴

(𝑖)
ΓΓ (𝑢

(𝑖)
0 − Π

(𝑖)
𝑆 𝑢 (𝑖)0 ).

Lemma 2 ([9]) Let 𝑢0 ∈ 𝑉0 then

𝑎0 (𝑢0, 𝑢0) =
𝑁∑︁
𝑖=1

𝑎 (𝑖)0 (𝑢
(𝑖)
0 , 𝑢 (𝑖)0 ) ≤

𝑁∑︁
𝑖=1

1
𝛿
𝑢 (𝑖)

𝑇

0 𝑆 (𝑖)𝑢 (𝑖)0 =
1
𝛿
𝑢𝑇0 𝑆𝑢0.

Using Lemma 1 and Lemma 2 and the classical Schwarz Theory [5] we have:

Theorem 2 ([9]) For any 𝑢 ∈ 𝑀ℎ, the following holds:

(2 + 3
𝛿
)−1𝑎(𝑢, 𝑢) ≤ 𝑎(𝑇𝐴𝑢, 𝑢) ≤ 2𝑎(𝑢, 𝑢) =⇒ 𝑘 (𝑇𝐴) ≤ 2(2 + 3

𝛿
).

In the implementation of NOSAS, the complexity of the coarse problem involves
computing 𝐴−1

ΓΓ and this complexity can be reduced if we replace 𝐴ΓΓ by its diagonal
�̂�ΓΓ. This version is called the inexact NOSAS with 𝑇𝐴 as the preconditioner. The
generalized eigenvalue problem is now given by:

𝑆 (𝑖)𝜉 (𝑖)𝑖 := (𝐴(𝑖)ΓΓ − 𝐴
(𝑖)
Γ𝐼 (𝐴

(𝑖)
𝐼 𝐼 )−1𝐴(𝑖)𝐼Γ )𝜉

(𝑖)
𝑗 = Λ̂(𝑖)𝑗 �̂�

(𝑖)
ΓΓ𝜉

(𝑖)
𝑗 .

And for 𝑢0, 𝑣0 ∈ 𝑉0 (Ω), we define the inexact coarse solver as:

�̂�0 (𝑢0, 𝑣0) =
𝑁∑︁
𝑖=1

𝑣 (𝑖)
𝑇

0
(
�̂�(𝑖)ΓΓ− �̂�

(𝑖)
ΓΓ�̂�

(𝑖) �̂� (𝑖) (�̂� (𝑖)𝑇�̂�(𝑖)ΓΓ�̂� (𝑖) )−1�̂� (𝑖)
𝑇
�̂�(𝑖)ΓΓ

)
𝑢 (𝑖)0 ,

where �̂� (𝑖)are the generalized eigenvectors and �̂� (𝑖)=diagonal(1−Λ̂(𝑖)1 , · · · , 1−Λ̂
(𝑖)
𝑘𝑖
).

Then, we obtain the following condition number estimate:

Theorem 3 ([9]) For any 𝑢 ∈ 𝑀ℎ, the following holds:

(2 + 5
𝛿
)−1𝑎(𝑢, 𝑢) ≤ 𝑎(𝑇𝐴𝑢, 𝑢) ≤ 3𝑎(𝑢, 𝑢) =⇒ 𝑘 (𝑇𝐴) ≤ 3(2 + 5

𝛿
).

4 Multiscale discretizations methods

The idea of multiscale methods [2, 3] is to use 𝜆𝑚𝑠 ∈ 𝑉off to approximate the exact
solution 𝜆ℎ from 𝑎(𝜆ℎ, 𝜇) = 𝑏(𝜇),∀𝜇 ∈ 𝑀ℎ, where 𝑉off is the space of multiscale
basis functions. The following procedures show how we construct 𝑉off. The first
step, a snapshot space 𝑉snapshots is constructed by the solutions of local problems. In
our NOSAS methods, we construct the snapshot space by 𝑉snapshots = H𝑇𝑉0, where
H𝑇 is the a-discrete harmonic extension. Notice that the dimension of 𝑉snapshots can
be extremely large. The next step is to construct 𝑉off from 𝑉snapshots which can be
used to generate an efficient and accurate approximation to the multiscale solution.
We choose offline space 𝑉off = 𝑅𝑇0𝑉0 where 𝑅𝑇0 is the global extension for NOSAS.
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We use the following outline of the Generalized Multiscale Finite Element Method
(GMsFEM) to show coarse space of NOSAS is a multiscale discretization.
Offline stages:

1. Mesh partitioning to obtain the subdomains.
2. Construct 𝑉snapshots that will be used to compute an offline space.
3. Construct a small dimensional offline space 𝑉off by performing dimension re-
duction in the space of local snapshots. This is done by choosing a threshold 𝛿
and then compute multiscale basis functions.

4. Build the coarse and local matrices and factorize.

Online stages:

1. Given 𝑓 , solve the local problems inside each subdomain and update the residual
on the interfaces.

2. Solve a coarse problem. Add coarse and local solutions.

In the offline stages, we construct the 𝑉off = 𝑅𝑇0𝑉0 by NOSAS and also compute
the factorization of matrices 𝐴0 and 𝐴𝑖 (1 ≤ 𝑖 ≤ 𝑁). In the online stage, we first
solve 𝑁 local problems in parallel:

𝐴𝑖𝜆𝑖 = 𝑅𝑖𝑏 = 𝑏𝑖 1 ≤ 𝑖 ≤ 𝑁.

Then, we using the local solutions to form and solve the following coarse problem:

𝐴0𝜆0 = 𝑅0 (𝑏 − 𝐴
𝑁∑︁
𝑖=1

𝑅𝑇𝑖 𝜆𝑖).

Finally, 𝜆𝑚𝑠 = 𝑅𝑇0 𝜆0 +
∑𝑁
𝑖=1 𝑅

𝑇
𝑖 𝜆𝑖 is obtained.

We note that we have similar numerical results if using 𝐴0𝜆0 = 𝑅0𝑏 as the coarse
problem. Additionally, we can also develop a multiscale technique to reduce the
dimension of the local problems, see [4].

Theorem 4 For NOSAS methods with 𝜆𝑚𝑠 = 𝑅𝑇0 𝜆0 +
∑𝑁
𝑖=1 𝑅

𝑇
𝑖 𝜆𝑖 , holds

𝑎(𝜆ℎ − 𝜆𝑚𝑠 , 𝜆ℎ − 𝜆𝑚𝑠) ≤ (1 − 𝛿) 𝑎(H𝑇𝜆Γ,H𝑇𝜆Γ),

whereH𝑇 is the 𝑎-discrete harmonic extension and 𝜆Γ the restriction of 𝜆ℎ on Γ.

The proof follows from Lemma 1. This bound is not sharp since we can see on
numerical experiments for heterogeneous coefficient that a small 𝛿 can give small
relative errors.

5 Numerical Experiments

We first show results of problem (1) for square domain with side length 1, 𝑓 ≡ 1
and with highly heterogeneous coefficients in the following mesh (see Figure 1).
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We choose 𝑘 = 0 for HDG spaces Qℎ, 𝑊ℎ, and 𝑀ℎ. We divide the square domain
into 𝐻 × 𝐻 congruent square subdomains, and we fix the number of stripes in each
subdomain. Thatmeanswe always have two horizontal stripes and two vertical stripes
in each subdomain. The coefficients 𝜌(𝑥) = 1 in the green stripes and 𝜌(𝑥) = 106 in
the white regions. We do not consider 𝜌(𝑥) = 106 in stripes and 𝜌(𝑥) = 1 elsewhere.
Because it is robust without the generalized eigenfunctions. In Table 2 we show
numerical results for HDG with different values of 𝜏 = 𝜏𝐾 𝜌𝐾 in this mesh using
NOSAS with exact solvers. By choosing 𝛿 = 1

4
ℎ
𝐻 the NOSAS will not deteriorate

due to the small eigenvalues related to the jumps of coefficients, and the condition
number is 𝑂 (𝐻/ℎ). We also note that we see little difference in numerical results
when we use inexact diagonal solvers or exact solvers (We do not include the results
here.) In Table 1, we show that the size of the global part for the coarse problem of
NOSAS is proportional to the number of subdomains and does not depend on 𝐻/ℎ.

Fig. 1: Coefficients 𝜌(𝑥) = 1 in
green stripes and 𝜌(𝑥) = 106 in
white regions.

𝐻=1/2 𝐻=1/4 𝐻=1/8 𝐻=1/16
𝐻/ℎ=8 12 84 420 1860

𝐻/ℎ=16 12 84 420 1860

Table 1: The number of all eigenfunctions 𝑁𝐸
for NOSAS with the exact solver. The size of the
global problem is 𝑁𝐸 × 𝑁𝐸 .

Finally, Table 3 shows results for multiscale in HDG. We use a similar mesh in
Figure 1. However, the number of stripes fixed in the whole domain. That means we
always have eight horizontal stripes and eight vertical stripes with width ℎ in the
whole domain. The coefficients 𝜌(𝑥) = 1 in the stripes and 𝜌(𝑥) = 106 elsewhere.
We fix ℎ and 𝜏= 𝜌𝐾, and choose different 𝛿 to show the relative error of 𝜆ℎ −𝜆𝑚𝑠 and
the number of coarse basis functions per subdomain. Since we use the exact local
solver in each subdomain, we expect that the relative error of 𝜆ℎ − 𝜆𝑚𝑠 will increase
if we decrease𝐻 because the error arises from approximating the exact local solution
in each subdomain.
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𝜏 = 𝜌𝐾 𝐻 = 1
2 𝐻 = 1

4 𝐻 = 1
8 𝐻 = 1

16
𝐻
ℎ = 8 14 17 17 19

(10.2596) (10.2686) (10.2732) (10.2756)
𝐻
ℎ = 16 20 25 26 29

(20.8039) (20.8062) (20.8074) (20.8080)
(a) 𝜏=𝜏𝐾𝜌𝐾with𝜏𝐾= 1.

𝜏 = 2
𝜌−1
𝐾1
+𝜌−1
𝐾2

𝐻 = 1
2 𝐻 = 1

4 𝐻 = 1
8 𝐻 = 1

16

𝐻
ℎ = 8 14 17 18 18

(10.2516) (10.2646) (10.2713) (10.2746)
𝐻
ℎ = 16 20 24 27 27

(20.7990) (20.8038) (20.8062) (20.8074)
(b)𝜏 is the harmonic mean of 𝜌𝐾 in adjacent elements.

𝜏 =
𝜌𝐾1+𝜌𝐾2

2 𝐻 = 1
2 𝐻 = 1

4 𝐻 = 1
8 𝐻 = 1

16
𝐻
ℎ = 8 14 17 17 17

(10.2562) (10.2669) (10.2724) (10.2752)
𝐻
ℎ = 16 19 25 26 26

(20.8019) (20.8052) (20.8069) (20.8078)
(c)𝜏 is the arithmetic mean of 𝜌𝐾 in adjacent elements.

Table 2: NOSAS with exact solver for HDG with different choices of 𝜏. The number of iterations
of the PCG required to reduced the residual by 10−6 and the condition number (in parenthesis).

𝐻 = 1
2 𝐻 = 1

4 𝐻 = 1
8 𝐻 = 1

16

𝛿 =10−5 7 5.25 3.06 1.89
(3.21𝑒−5) ( 7.17𝑒−5) (1.55𝑒−4) (7.54𝑒−4)

𝛿 = 1/2 24.25 18.56 11.26 5.05
(3.21𝑒−5) (7.15𝑒−5) (1.54𝑒−4) (7.50𝑒−4)

𝛿 = 3/4 63 45.75 24.93 11.48
(4.10𝑒−18) (1.40𝑒−14) (1.14𝑒−13) (8.03𝑒−13)

Table 3: NOSAS as a multiscale methods with fix ℎ = 1/64. The number of global basis functions
per subdomain and the relative energy error 𝜆ℎ − 𝜆𝑚𝑠 with respect to 𝜆ℎ (in parenthesis).
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Robust BPX Solver for Cahn-Hilliard Equations

Siamak Faal, Adam Powell, and Marcus Sarkis

1 Introduction

Since their introduction in the late 1950’s, the Cahn-Hilliard equations have played
an important role in understanding phase transition phenomena that is observed
in materials. In particular, Cahn-Hilliard equations describe the process of phase
separation in which a mixture of two materials separate or fuse to form pure material
domains. The main purpose of these proceedings is to develop robust solvers for a
well-known unconditionally stable time-stepping discretization.
Let Ω ⊂ R𝑑 , 𝑑 ≤ 3, be a polygonal or polyhedral with boundary denoted by

𝜕Ω. We focus on Cahn-Hilliard equations [5] with initial and boundary conditions
defined as

𝑢𝑡 = Δ𝑤, 𝑥 ∈ Ω, 𝑡 > 0, (1a)
𝑤 = Ψ′(𝑢) − 𝛾Δ𝑢, 𝑥 ∈ Ω, 𝑡 > 0, (1b)

𝑢(𝑥, 0) = 𝑢0 (𝑥), 𝑥 ∈ Ω, (1c)
∇𝑢 · 𝑛 = ∇𝑤 · 𝑛 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0, (1d)

where 𝑢 is the order parameter, such as concentration in a binary compound, with
𝑢 = ±1 indicating pure states, Ψ(𝑢) is the potential function and 𝛾 > 0 is related to
interfacial width between the two phases. 𝑛 denotes the normal vector to 𝜕Ω. In this
article we consider the logarithmic nonlinear potential defined as
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Ψ(𝑢) :=
𝜃

2
[(1 + 𝑢) ln(1 + 𝑢) + (1 − 𝑢) ln(1 − 𝑢)] + 𝜃𝑐

2
(1 − 𝑢2), 0 < 𝜃 < 𝜃𝑐 .

Following the splitting scheme presented in [6], we decompose Ψ into two functions
Ψ = Ψ𝑖 + Ψ𝑒 with Ψ𝑖 convex and Ψ𝑒 concave, and 𝜓 := Ψ′ = 𝜓𝑖 + 𝜓𝑒, where

Ψ𝑖 (𝑢) :=
𝜃

2
[(1 + 𝑢) ln(1 + 𝑢) + (1 − 𝑢) ln(1 − 𝑢)] , 𝜓𝑖 (𝑢) = 𝜃

2
ln

( 1 + 𝑢
1 − 𝑢

)
,

Ψ𝑒 (𝑢) :=
𝜃𝑐
2
(1 − 𝑢2), 𝜓𝑒 (𝑢) = −𝜃𝑐𝑢.

We use the notation 𝑖 ∼ and 𝑒 ∼ to indicate implicit and explicit treatment of Ψ𝑖 and
Ψ𝑒 in the time-stepping discretization, respectively,which leads to an unconditionally
stable time discretization.
Let 𝑇 > 0 denote a finite time, then the weak formulation of (1) demands finding

(𝑢, 𝑤) ∈ 𝐿∞ (0, 𝑇 ; 𝐻1 (Ω)) × 𝐿2 (0, 𝑇 ; 𝐻1 (Ω)) such that 𝑢(𝑥, 0) = 𝑢0 (𝑥) and

⟨𝑢𝑡 , 𝑣⟩ + (∇𝑤, ∇𝑣) = 0, ∀𝑣 ∈ 𝐻1 (Ω), (2a)
(𝑤, 𝑧) − (𝜓, 𝑧) − 𝛾(∇𝑢, ∇𝑧) = 0, ∀𝑧 ∈ 𝐻1 (Ω), (2b)

where ⟨·, ·⟩ denotes the duality pairing between 𝐻1 (Ω) and 𝐻−1 (Ω); and (·, ·)
denotes the inner product in 𝐿2 (Ω).
The existence and uniqueness of this system for a class ofΨ has been shown in [1].

This system also has two interesting properties: Conservation ofMass and dissipative
Free Energy E(𝑢). Indeed, substituting 𝑣 ≡ 1 in (2a) leads to

∫
Ω
𝑢(𝑡) 𝑑𝑥 =

∫
Ω
𝑢(0) 𝑑𝑥

and substituting 𝑣 = 𝑤 and 𝑧 = 𝑢𝑡 in (2) gives

𝑑

𝑑𝑡
E(𝑢(𝑡)) = −

∫
Ω
𝛾 |∇𝑤(𝑡) |2 𝑑𝑥 where E(𝑢) :=

∫
Ω

1
2
|∇𝑢 |2 + Ψ(𝑢) 𝑑𝑥.

2 Numerical Approximation

In order to formulate a finite element approximation of the problem (2), we focus on a
polygon domainΩ, and construct a quasi-uniform family of triangulationTℎ such that
Ω =

⋃
𝜅∈Tℎ 𝜅 and ℎ := max𝜅∈Tℎ ℎ𝜅 , where ℎ𝜅 := diam(𝜅). We define the finite ele-

ment space 𝑆ℎ := span({𝜑𝑟 ∈ 𝐶 (Ω) : 𝜑𝑟 (𝑥𝑘) = 𝛿𝑟𝑘 , for 𝑟, 𝑘 = 1, . . . , 𝑁ℎ}), where
𝜑𝑟 are the standard piecewise and continuous afine nodal basis functions and {𝑥𝑟 }
denotes the set of the vertices. Let {𝑡𝑛 = 𝑛 𝜏 : 𝑛 = 0, 1, . . . , 𝑁, and 𝑁 ·𝜏 = 𝑇} denote
a discretization of time interval [0, 𝑇] and 𝜏 the time-stepping size, and consider
the first order approximation of 𝑢𝑡 in time as 𝑢𝑡 (𝑡𝑛) ≈ [𝑢(𝑡𝑛) − 𝑢(𝑡𝑛−1)]/(𝑡𝑛 − 𝑡𝑛−1).
Our goal is to find (�̂�𝑛, �̂�𝑛) ∈ 𝑆ℎ × 𝑆ℎ, where �̂�𝑛 := �̂�(𝑡𝑛) and �̂�𝑛 := �̂�(𝑡𝑛), such
that for all 0 < 𝑛 ≤ 𝑁 ,

(�̂�𝑛 − �̂�𝑛−1, �̂�)ℎ + 𝜏(∇�̂�𝑛, ∇�̂�) = 0, ∀ �̂� ∈ 𝑆ℎ (3a)
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(�̂�𝑛, 𝑧)ℎ − (𝜓𝑖 (�̂�𝑛) + 𝜓𝑒 (�̂�𝑛−1), 𝑧)ℎ − 𝛾(∇�̂�𝑛, ∇𝑧) = 0, ∀ 𝑧 ∈ 𝑆ℎ . (3b)

where (·, ·)ℎ is the lumped discrete inner product defined as

(�̂�, 𝑧)ℎ :=
∫
Ω
𝐼ℎ (�̂� 𝑧) 𝑑𝑥 =

𝑁ℎ∑︁
𝑟=1

𝑚𝑟 �̂�(𝑥𝑟 ) 𝑧(𝑥𝑟 ), ∀ �̂�, 𝑧 ∈ 𝑆ℎ, (4)

and 𝐼ℎ is the nodewise linear interpolation given by

𝐼ℎ : 𝐶 (Ω̄) → 𝑆ℎ, 𝐼ℎ𝑣(𝑥𝑟 ) = 𝑣(𝑥𝑟 ) for 𝑟 = 1, . . . , 𝑁ℎ, (5)
𝑚𝑟 = (𝜑𝑟 , 𝜑𝑟 )ℎ . (6)

The proof of the existence of the discrete problem (3) follows from the convexity of
the Ψ𝑖 and lumped mass matrix approach considered in the discretization; The proof
of the unconditionally time-stepping stability is similar to [6].

Theorem 1 There exists a unique solution (�̂�𝑛, �̂�𝑛) ∈ 𝑆ℎ × 𝑆ℎ to the finite element
problem (3).

Proof The proof is a simple modification of the proof given in [6]. Let (�̂�𝑛1 , �̂�𝑛1 ) and
(�̂�𝑛2 , �̂�𝑛2 ) be two solution of (3). By subtracting one solution from the other we get

( �̂�𝑛𝑢, �̂�) + 𝜏(∇�̂�𝑛𝑤 , ∇�̂�) = 0, ∀ �̂� ∈ 𝑆ℎ, (7a)
( �̂�𝑛𝑤 , 𝑧) − (𝜓𝑖 (�̂�𝑛2 ) − 𝜓𝑖 (�̂�𝑛1 ), 𝑧) − 𝛾(∇�̂�𝑛𝑢, ∇𝑧) = 0, ∀ 𝑧 ∈ 𝑆ℎ . (7b)

where �̂�𝑛𝑢 := �̂�𝑛2 − �̂�𝑛1 and �̂�𝑛𝑤 := �̂�𝑛2 − �̂�𝑛1 . Substituting �̂� and 𝑧 into (7) with �̂�𝑛𝑤 and
�̂�𝑛𝑢, respectively, leads to

𝜏 | �̂�𝑛𝑤 |21 + 𝛾 | �̂�𝑛𝑢 |21 =
(
𝜓𝑖 (�̂�𝑛1 ) − 𝜓𝑖 (�̂�𝑛2 )ℎ, �̂�𝑛𝑢

)
,

where | · |1 denotes the seminorm of 𝐻1 (Ω). Applying the mean value theorem to
𝜓𝑖 gives (

𝜓𝑖 (𝑠1) − 𝜓𝑖 (𝑠2)
) (𝑠2 − 𝑠1) = −𝜓 ′𝑖 (𝑐) (𝑠2 − 𝑠1)2,

for every 𝑠1, 𝑠2 ∈ (−1, 1) and 𝑐 between 𝑠1 and 𝑠2. Based on the convexity of 𝜓𝑖 we
get 0 ≤ 𝜓 ′𝑖 (𝑠) for 𝑠 ∈ (−1, 1), which implies(

𝜓𝑖 (�̂�𝑛1 ) − 𝜓𝑖 (�̂�𝑛2 ), �̂�𝑛𝑢
)
ℎ ≤ 0,

and accordingly 𝜏 | �̂�𝑛𝑤 |21 + 𝛾 | �̂�𝑛𝑢 |21 ≤ 0. Moreover, since ( �̂�𝑛𝑢, 1)ℎ = 0, the Poincaré
inequality implies that ∥ �̂�𝑛𝑢∥ = 0. To show the uniqueness of �̂�𝑛 it suffices to set 𝑧
equal to �̂�𝑛𝑤 in (7b) and get ∥ �̂�𝑛𝑤 ∥ = 0. This concludes the proof of uniqueness. □
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3 Newton’s Method

Our objective is to solve the nonlinear system (3) using Newton’s method. Since the
nonlinearity is associated with the potential function Ψ, for every Newton’s iteration
𝑗 and time step 𝑛, we set

�̂�𝑛𝑗 = �̂�
𝑛
𝑗−1 − 𝛿�̂�𝑛𝑗 . (8)

Substituting (�̂�𝑛, �̂�𝑛) with (�̂�𝑛𝑗 , �̂�𝑛𝑗 ) in (3) and using the linearization

𝜓𝑖 (�̂�𝑛𝑗 ) ≈ 𝜓𝑖 (�̂�𝑛𝑗−1) − 𝜓 ′𝑖 (�̂�𝑛𝑗−1) 𝛿�̂�𝑛𝑗 , (9)

the system of equation in (3) leads to

(𝛿�̂�𝑛𝑗 , �̂�)ℎ − 𝜏 (∇�̂�𝑛𝑗 , ∇�̂�) = 𝜙1 (�̂�), ∀ �̂� ∈ 𝑆ℎ, (10a)(
𝜓 ′𝑖 (�̂�𝑛𝑗−1) 𝛿�̂�𝑛𝑗 , 𝑧

)
ℎ + 𝛾 (∇𝛿�̂�𝑛𝑗 , ∇𝑧) + (�̂�𝑛𝑗 , 𝑧)ℎ = 𝜙2 (𝑧), ∀ 𝑧 ∈ 𝑆ℎ, (10b)

where

𝜙1 (�̂�) := (�̂�𝑛𝑗−1 − �̂�𝑛−1, �̂�)ℎ, (11a)

𝜙2 (𝑧) :=
(
𝜓𝑖 (�̂�𝑛𝑗−1) + 𝜓𝑒 (�̂�𝑛−1), 𝑧)ℎ + 𝛾 (∇�̂�𝑛𝑗−1, ∇𝑧). (11b)

Let u𝑛𝑗 , w𝑛𝑗 and 𝜹u𝑛𝑗 in R𝑁ℎ denote the vectors composed of the values of �̂�𝑛𝑗 , �̂�𝑛𝑗
and 𝛿�̂�𝑛𝑗 evaluated at every vertex 𝑥𝑟 , that is [u𝑛𝑗 ]𝑟 = �̂�𝑛𝑗 (𝑥𝑟 ), [w𝑛𝑗 ]𝑟 = �̂�𝑛𝑗 (𝑥𝑟 ) and
[𝜹u𝑛𝑗 ]𝑟 = 𝛿�̂�𝑛𝑗 (𝑥𝑟 ). In addition, let [𝑀]𝑟 ,𝑘 := (𝜑𝑟 , 𝜑𝑘)ℎ, [𝐾]𝑟 ,𝑘 := (∇𝜑𝑟 , ∇𝜑𝑘) and

[𝐽 𝑗−1]𝑟 ,𝑘 :=
(
𝜓 ′𝑖

( 𝑁ℎ∑︁
𝑙=1
[u𝑛𝑗−1]𝑙𝜑𝑙

)
𝜑𝑟 , 𝜑𝑘

)
ℎ
, �̃� := 𝐾,

[q 𝑗−1]𝑟 :=
(
𝜓𝑖

( 𝑁ℎ∑︁
𝑙=1
[u𝑛𝑗−1]𝑙𝜑𝑙

)
, 𝜑𝑟

)
ℎ
, [p]𝑟 :=

(
𝜓𝑒

( 𝑁ℎ∑︁
𝑙=1
[u𝑛−1]𝑙𝜑𝑙

)
, 𝜑𝑟

)
ℎ
.

Then, the discrete representation of (10) yields

𝑀 𝜹u𝑛𝑗 − 𝜏 𝐾 w𝑛𝑗 = f 𝑗−1 (12a)

𝑀𝑇 w𝑛𝑗 + (𝐽 𝑗−1 + 𝛾 �̃�) 𝜹u𝑛𝑗 = g 𝑗−1, (12b)

u𝑛𝑗 = u𝑛𝑗−1 − 𝜹u𝑛𝑗 . (12c)

where f 𝑗−1 = 𝑀 (u𝑛𝑗−1 − u𝑛−1) and g 𝑗−1 = q 𝑗−1 + p + 𝛾 �̃� u𝑛𝑗−1.
LetΩ = (0, 1)2 andTℎ be a uniform triangulationwith 45-degrees triangleswhere

ℎ = 1/32, 𝜏 = 0.01, 𝛾 = ℎ2 with a random initial condition u0. Fig. 1 illustrates
the numerical solution at six time instances. The Newton’s method is stopped when
∥𝜹u𝑛∥ℓ∞ ≤ 10−10. The color map that varies from blue (dark) to yellow (light)
depicts values of u𝑛 (𝑥𝑟 ) close to −1+ and +1−, respectively.
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4 Preconditioned Iterative Solver

We consider solving (12) simultaneously to find w𝑛𝑗 and 𝜹u𝑛𝑗 as a solution to

𝐴 x =

[−𝜏 𝐾 𝑀
𝑀𝑇 𝐽 𝑗−1 + 𝛾 �̃�

] [ w𝑛𝑗
𝜹u𝑛𝑗

]
=

[
f 𝑗−1
g 𝑗−1

]
= b. (13)

Since the associated matrix is symmetric, we can use MinRes algorithm to find
(w𝑛𝑗 , 𝜹u𝑛𝑗 ) at each Newton’s iteration. We now propose a preconditioner based on
the Schur complememt of the first block of (13) given by

𝐵1 =

[−𝑀 (𝐽 𝑗−1 + 𝛾�̃�)−1𝑀𝑇 − 𝜏𝐾 0
0 𝐽 𝑗−1 + 𝛾�̃�

]
. (14)

In what follows, we investigate the performance of the solver based on the proposed

𝑡 = 0.00 𝑡 = 0.02 𝑡 = 0.04

𝑡 = 0.06 𝑡 = 0.08 𝑡 = 0.10

Fig. 1: numerical solution of (12) at 𝑡 = 0, 0.02, 0.04, 0.06, 0.08, and 0.1 for Ω = (0, 1)2,
ℎ = 1/32, 𝜏 = 0.01, 𝛾 = ℎ2 and a random initial condition u0.

𝑃1 x = 𝐵−1
1 𝐴 x = 𝐵−1

1 b. Note that, since the lumped inner products is utilized, 𝑀
and 𝐽 𝑗−1 are diagonal matrices. See also [4] for other class of preconditioners.
Table 1 demonstrates the behavior of the preconditioned system 𝑃1. As listed,

the preconditioned system requires six Newton’s iterations for the first, and four
iterations for the second time step. The table includes number of MinRes iterations
that reduce the preconditioned residue by a 10−6 factor. As time goes on, the solution
becomes more regular (see Fig. 1) and demands less number of Newton’s iterations.
Note that 𝐴 is symmetric and 𝐵1 is symmetric positive definite.We note that, without
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utilizing the preconditioner, the solver may not converge or the convergence is much
slower. In Table 2 we consider 𝑃2 x = 𝐵−1

2 𝐴 x = 𝐵−1
2 b where 𝐵−1

2 is a BPX [3] type

𝑛 𝑗 ∥𝜹u𝑛𝑗 ∥∞ relres gmres itrs
1 1 9.342e-01 6.272e-07 25
1 2 4.144e-01 6.748e-07 27
1 3 1.548e-02 8.128e-07 26
1 4 3.020e-05 8.109e-07 26
1 5 1.133e-10 8.109e-07 26
1 6 2.112e-16 8.109e-07 26
2 1 2.651e-01 7.713e-07 27
2 2 4.494e-03 6.102e-07 28
2 3 3.427e-06 6.140e-07 28
2 4 2.031e-12 6.140e-07 28

Table 1: Results of solving (13) using preconditioned system 𝑃1 with lumped matrices𝑀 and 𝐽 𝑗−1
for ℎ = 1/32, 𝜏 = 0.01, 𝛾 = ℎ2 and a random initial condition u0.

preconditioner. The BPX method we consider here follows the strategy in [8, 7] that
deals with rational functions of Sobolev norms; this work was motivated from the
BPX introduced in [2] that deals with sum of Sobolev norms of the same sign. The
multilevel preconditioner is defined as 𝐵−1

2 = diag{𝐷1, 𝐷2} with

𝐷1 = −
∑︁
𝑘

𝑅𝑇𝑘

[(
diag𝑘

{
𝑅𝑘𝑀

−1 (𝐽 𝑗−1 + 𝛾�̃�)𝑀−1𝑅𝑇𝑘
})−1
+ diag𝑘{𝑅𝑘𝜏 𝐾𝑅𝑇𝑘 }

]−1
𝑅𝑘 ,

𝐷2 =
∑︁
𝑘

𝑅𝑇𝑘

(
diag𝑘

{
𝑅𝑘 (𝐽 𝑗−1 + 𝛾�̃�)𝑅𝑇𝑘

})−1
𝑅𝑘 ,

where𝐷1 and 𝐷2 are diagonal matrices, 𝑅𝑇𝑘 is the prolongation operator from 𝑘-level
to fine level and diag𝑘{𝐶𝑘} is the diagonal of the matrix 𝐶𝑘 defined on the 𝑘-level.
As listed in Table 2, the number of iterations using the inexact BPX preconditioner

(𝐵−1
2 ) is comparable with the exact preconditioner 𝐵

−1
1 . See also [4] where the Schur

complememt of the second block is considered. In Table 3, we test the behavior
of preconditioned systems 𝑃1 and 𝑃2 as we vary 𝜏 for fixed 𝛾 = ℎ2 = (1/16)2.
As listed, the number of MinRes iterations for 𝑃1 and 𝑃2 is smaller for larger time-
stepping size 𝜏. This is not surprising, since, as we increase 𝜏, the Schur complement
𝑀 (𝐽 𝑗−1 + 𝛾 �̃�)−1 𝑀𝑇 + 𝜏 𝐾 becomes more positive definite. The result of changing
𝛾 = ℎ2 for fixed 𝜏 = 0.01 is listed in Table 4. As depicted in the table, the number
of MinRes iterations of both 𝑃1 and 𝑃2 is very robust with respect to mesh size
ℎ. We note that the condition 𝛾 = 𝑂 (ℎ2) is a reasonable choice since the size of
the transition layer of 𝑢 from −1 to 1 is 𝑂 (√𝛾). Note that, we use a random initial
condition u0 and utilize the lumped matrices1 when defining 𝑀 and 𝐽 𝑗−1.

1 This is a consequence of using the inner product ( ·, ·)ℎ as defined in (4)
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𝑛 𝑗 ∥𝜹u𝑛𝑗 ∥∞ relres gmres itrs
1 1 9.342e-01 7.115e-07 50
1 2 4.144e-01 7.393e-07 58
1 3 1.548e-02 7.555e-07 57
1 4 3.020e-05 7.575e-07 51
1 5 1.132e-10 7.575e-07 57
1 6 2.202e-16 7.575e-07 57
2 1 2.651e-01 7.712e-07 59
2 2 4.494e-03 8.443e-07 59
2 3 3.427e-06 8.430e-07 59
2 4 2.025e-12 8.430e-07 59

Table 2: Results of solving (13) using preconditioned system 𝑃2 with lumped matrices𝑀 and 𝐽 𝑗−1
for ℎ = 1/32, 𝜏 = 0.01, 𝛾 = ℎ2 and a random initial condition u0.

𝜏 𝑛
Exact 𝑃1 Additive multigrid 𝑃2

Newton stp solver itr. Newton stp solver itr.

0.1

1 6 18 6 32
2 4 19 4 34
3 4 19 4 34
4 5 19 5 34

0.01

1 5 24 5 51
2 4 26 4 53
3 4 26 4 53
4 4 26 4 53

0.001

1 5 26 5 87
2 4 27 4 90
3 4 27 4 90
4 4 27 4 90

Table 3: Results of varying 𝜏 for fixed 𝛾 = ℎ2 = (1/16)2. Number of solver iterations (solver itr.)
reported in the table are the average over the Newton’s iterations at every time step 𝑛. Preconditioned
systems 𝑃1 and 𝑃2 are constructed using lumped matrices 𝑀 and 𝐽 𝑗−1 and the initial conditions
for all is a fixed random u0.

5 Conclusions

Our main contribution is the development of a robust multilevel PBX-type pre-
conditioner for a finite element approximation of the Cahn-Hilliard problem. The
numerical results provided demonstrate the robustness of the preconditioned systems
with respect to mesh size and time steps.
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Natural Factor Based Solvers

Juan Galvis1, Marcus Sarkis2, and O. Andrés Cuervo1,3

1 Summary

We consider parametric families of partial differential equations–PDEs where the
parameter 𝜅 modifies only the (1,1) block of a saddle point matrix product of a
discretization below. The main goal is to develop an algorithm that removes some
of the dependence of iterative solvers on the parameter 𝜅. The algorithm we propose
requires only one matrix factorization which does not depend on 𝜅, therefore, allows
to reuse it for solving very fast a large number of discrete PDEs for different 𝜅 and
forcing terms. The design of the proposed algorithm is motivated by previous works
on natural factor formulation of the stiffness matrices and their stable numerical
solvers. As an application, in two dimensions, we consider an iterative preconditioned
solver based on the null space ofCrouzeix-Raviart discrete gradient represented as the
discrete curl of 𝑃1 conforming finite element functions. For the numerical examples,
we consider the case of random coefficient pressure equation where the permeability
is modeled by an stochastic process. We note that contrarily from recycling Krylov
subspace techniques, the proposed algorithm does not require fixed forcing terms.

2 Introduction

The general form of a saddle point system of linear equations we consider is[
𝐷 (𝜅)−1 𝐺
𝐺𝑇 0

] [
𝑞
𝑢

]
=

[
𝑟
𝑏

]
, (1)
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where the matrix 𝐷 is symmetric positive definite. This form is standard in the
formulation of mixed finite elements. What is not very well-known, as pointed out
by Argyris and Brønlund [1], is that classical conforming and nonconforming finite
element methods – FEMs can also be written in the form (1) with 𝑟 = 0; see Section
3 for the case of Crouzeix-Raviart FEM and Section 4 for 𝑃1 conforming FEM.
We show that the stiffness matrix, associated to the Crouzeix-Raviart FEM element
discretization for the PDE (2) with isotropic coefficients 𝜅(𝑥), has the the natural
factor of the form 𝐴𝐶𝑅 = 𝐺𝑇𝐶𝑅𝐷 (𝜅)𝐺𝐶𝑅, where 𝐺𝐶𝑅 is the discrete gradient (not
affected by the parameter 𝜅) and 𝐷 (𝜅) is a diagonal matrix with entries depending
of the integration of 𝜅 in each element, hence, it is easy to update the natural factor if
𝜅 is modified. Due to the superior numerical stability with respect to roundoff errors
when operating with 𝐺𝑇 , 𝐷 (𝜅) and 𝐺 rather than the assembled stiffness matrix,
several works [5, 4, 3, 2] were dedicated in solving the saddle point problem (1) or
associated SVD and diagonalization. In Sections 5 and 6 we review some aspects of
these works. The methods start by representing 𝑞 on the range of the matrix [𝐺 𝑍]
where 𝑍 is such that 𝑄 = [𝐺 𝑍] is a square invertible matrix; two common choices
of 𝑍 are 𝑍𝑇𝐺 = 0 or 𝑍𝑇𝐷−1𝐺 = 0. These works generate very stable algorithms
for ill-conditioned 𝜅, however, they do not remove the dependence on 𝐷 of the
factorizations, hence, they do not fit our goal of reusing the same factorization for
different values of 𝜅. In Section 7 we propose our method, we first use discrete Hodge
Laplacian ideas to choose 𝑍 = 𝐶𝐿 as the curl of 𝑃1 conforming piecewise linear
basis functions, hence 𝐺𝑇𝐶𝑅𝐶𝐿 = 0. Then we consider the coupled system

(grad 𝑢𝐶𝑅 + curl𝑤𝑃1 , 𝜅 (grad 𝑣𝐶𝑅 + curl 𝑣𝑃1 ))𝐿2 (Ω)

as a preconditioner for the uncoupled system

(grad 𝑢𝐶𝑅, 𝜅 grad 𝑣𝐶𝑅)𝜅 + (curl𝑤𝑃1 , 𝜅 curl 𝑣𝑃1 )𝐿2 (Ω) .

3 Crouzeix-Raviart nonconforming finite elements

Consider the heterogeneous diffusion equation{−𝜕1 (𝜅(𝑥)𝜕1𝑢(𝑥)) − 𝜕2 (𝜅(𝑥)𝜕2𝑢(𝑥)) = 𝑓 (𝑥), 𝑥 ∈ Ω,
𝑢(𝑥) = 0, 𝑥 ∈ 𝜕Ω, (2)

where Ω ⊆ R2 and 𝜅 : Ω→ R+, 𝑓 : Ω→ R are given.
In particular, in the target application 𝜅(𝑥) is a random field that describes the

permeability and allows modeling the lack of data and uncertainties of the problem
(e.g., subsurface flow). The forcing term 𝑓 may also be a random field. In general,
in many practical situations we must solve (2) for a large family of coefficients 𝜅 and
forcing terms 𝑓 . See Section 8.
Let us introduce a triangulation T ℎ of Ω. Discretize (2) by the Crouzeix-Raviart

(CR) non-conforming finite element space. Define the CR space𝑉𝐶𝑅 as the space of
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all piecewise linear functions with respect to T ℎ that are continuous at interior edges
midpoints. The degrees of freedom are located in the midpoint of the edges of T ℎ.
Let𝑉𝐶𝑅 ⊆ 𝑉𝐶𝑅 the subspace of functions in𝑉𝐶𝑅 with zero value at the midpoint of
boundary edges. The approximation 𝑢𝐶𝑅 ∈ 𝑉𝐶𝑅 of the solution of (2) is the solution
of

∑︁
𝑇 ∈Tℎ

∫
𝑇
𝜅(𝑥) (𝜕1𝑢𝐶𝑅 (𝑥)𝜕1𝑣(𝑥) + 𝜕2𝑢𝐶𝑅 (𝑥)𝜕2𝑣(𝑥))𝑑𝑥 =

∫
Ω
𝑓 (𝑥)𝑣(𝑥)𝑑𝑥,

for all 𝑣 ∈ 𝑉𝐶𝑅 . The linear system of the 𝐶𝑅 approximation is given by

𝐴𝐶𝑅𝑢𝐶𝑅 = 𝑏𝐶𝑅, (3)

where 𝐴𝐶𝑅 =
[
𝑎𝐶𝑅𝑒𝑖

]𝑁𝑒
𝑒,𝑖=1 and 𝑏𝐶𝑅 = [𝑏𝑒]𝑁𝑒𝑒=1 . Here, 𝑁𝑒 denotes the number of

interior edges of T ℎ, 𝑏𝑒 =
∫
Ω
𝑓 (𝑥)𝜑𝐶𝑅𝑒 (𝑥)𝑑𝑥 and

𝑎𝐶𝑅𝑒𝑖 =
∑︁
𝑇 ∈Tℎ

∫
𝑇
𝜅(𝑥)

(
𝜕1𝜑

𝐶𝑅
𝑒 (𝑥)𝜕1𝜑

𝐶𝑅
𝑖 (𝑥) + 𝜕2𝜑

𝐶𝑅
𝑒 (𝑥)𝜕2𝜑

𝐶𝑅
𝑖 (𝑥)

)
𝑑𝑥.

Let 𝑥𝑇 denote the barycenter of triangle𝑇 ∈ T ℎ. Piecewise gradients of functions
in 𝑉𝐶𝑅 are piecewise constant vector functions and then

𝑎𝐶𝑅𝑒𝑖 =
∑︁
𝑇 ∈Tℎ

𝜅𝑇 |𝑇 |𝜕1𝜑𝑒 (𝑥𝑇 )𝜕1𝜑𝑖 (𝑥𝑇 ) +
∑︁
𝑇 ∈Tℎ

𝜅𝑇 |𝑇 |𝜕2𝜑𝑒 (𝑥𝑇 )𝜕2𝜑𝑖 (𝑥𝑇 ) (4)

where 𝜅𝑇 is the average value of 𝜅(𝑥) in 𝑇 . Therefore, we can write (see [1])

𝐴𝐶𝑅 = 𝐺𝑇𝐶𝑅𝐷𝐺𝐶𝑅 = 𝐺𝑇𝐶𝑅,1𝐷1𝐺𝐶𝑅,1 + 𝐺𝑇𝐶𝑅,2𝐷2𝐺𝐶𝑅,2

where 𝐺𝐶𝑅,𝑙 =
[
𝑔𝐶𝑅,𝑙𝑒,𝑇

]
𝑁𝑇×𝑁𝑒

=
[√︁
|𝑇 |𝜕𝑙𝜑𝐶𝑅𝑒 (𝑥𝑇 )

]
𝑁𝑇×𝑁𝑒

, and 𝑁𝑇 denotes the

number of triangles in T ℎ and 𝑙 = 1, 2. Furthermore, write,

𝐷𝑙 = diag(𝜅𝑇 )𝑇 ∈Tℎ , 𝐷 = diag(𝐷1, 𝐷2) and 𝐺𝐶𝑅 =

[
𝐺𝐶𝑅,1
𝐺𝐶𝑅,2

]
2𝑁𝑇×𝑁𝑒

. (5)

We can write the matrix formulalation as

𝐺𝑇𝐶𝑅𝐷𝐺𝐶𝑅𝑢𝐶𝑅 = 𝑏𝐶𝑅 . (6)

We see that problem (6) is the Schur complement of the saddle point problem[
𝐷−1 𝐺𝐶𝑅
𝐺𝑇𝐶𝑅 0

] [
𝑞
𝑢𝐶𝑅

]
=

[
0
−𝑏𝐶𝑅

]
. (7)

4 Conforming finite elements 𝑷1

Let 𝑉𝐿 = 𝑃1 (T ℎ) = {𝑣 : Ω → R| 𝑣 |𝑇 is linear for all 𝑇 ∈ T ℎ} ∩ 𝐶0 (𝐷). The
space 𝑉𝐿 has a base {𝜑𝐿𝑖 }𝑁𝑣𝑖=1, where 𝑁𝑣 is the number of vertices and 𝜑

𝐿
𝑖 is the
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function that takes value 1 at the 𝑖 − 𝑡ℎ node and 0 at the other nodes. Also define
𝑉𝐿 = 𝑉𝐿 ∩ 𝐻1

0 (Ω) and 𝑁𝑣 the number of interior vertices.
The approximation 𝑢𝐿 of the solution of (2) is: find 𝑢𝐿 ∈ 𝑉𝐿 such that∫

Ω
𝜅(𝑥) (𝜕1𝑢𝐿 (𝑥)𝜕1𝑣(𝑥) + 𝜕2𝑢𝐿 (𝑥)𝜕2𝑣(𝑥))𝑑𝑥 =

∫
Ω
𝑓 (𝑥)𝑣(𝑥)𝑑𝑥,

for all 𝑣 ∈ 𝑉𝐿 , with matrix form 𝐴𝐿𝑢𝐿 = 𝑏𝐿 , where, 𝐴𝐿 = [𝑎𝐿𝑖 𝑗 ]𝑁𝑣𝑖, 𝑗=1 and

𝑏𝐿 = [𝑏𝐿𝑖 ]𝑁𝑣𝑖=1 with 𝑏
𝐿
𝑖 =

∫
𝐷
𝑓 (𝑥)𝜑𝐿𝑖 (𝑥)𝑑𝑥 and 𝑎𝐿𝑖 𝑗 =

∫
Ω
𝜅(𝑥)

(
𝜕1𝜑

𝐿
𝑖 (𝑥)𝜕1𝜑

𝐿
𝑗 (𝑥) +

𝜕2𝜑
𝐿
𝑖 (𝑥)𝜕2𝜑

𝐿
𝑗 (𝑥)

)
𝑑𝑥. As before, we have (see [1])
𝐴𝐿 = 𝐺𝑇𝐿𝐷𝐺𝐿 = 𝐺𝑇𝐿,1𝐷1𝐺𝐿,1 + 𝐺𝑇𝐿,2𝐷2𝐺𝐿,2

where 𝐺𝐿,𝑙 =
[
𝑔𝐿,𝑙𝑒,𝑣

]
𝑁𝑇×𝑁𝑣

=
[√︁
|𝑇 |𝜕𝑙𝜑𝐿𝑣 (𝑥𝑇 )

]
𝑁𝑇×𝑁𝑣

and 𝐺𝐿 =

[
𝐺𝐿,1
𝐺𝐿,2

]
2𝑁𝑇×𝑁𝑣

.

We can write the matrix formulation as

𝐺𝑇𝐿𝐷𝐺𝐿𝑢𝐿 = 𝑏𝐿 , (8)

and the corresponding saddle point problem is
[
𝐷−1 𝐺𝐿
𝐺𝑇𝐿 0

] [
𝑞
𝑢𝐿

]
=

[
0
−𝑏𝐿

]
.

5 The null space method

A method for solving the saddle point problem (1) is called the null space method,
see [3]. We split (1) into two equations, 𝐷−1𝑞+𝐺𝑢 = 𝑟 and𝐺𝑇𝑞 = 𝑏. The null space
method consists in finding 𝑍 that represents the null space of 𝐺𝑇 , 𝐺𝑇𝑍 = 0, and
such that [𝐺 𝑍] is a non-singular square matrix. Therefore, we can change variables
to potentials 𝜒 and 𝜓 such that

𝑞 = [𝐺 𝑍]
[
𝜒
𝜓

]
= 𝐺𝜒 + 𝑍𝜓. (9)

From (9) and 𝐺𝑇𝑍 = 0 we have 𝐺𝑇𝑞 = 𝐺𝑇𝐺𝜒 and from 𝐺𝑇𝑞 = 𝑏 we have
𝑏 = 𝐺𝑇𝐺𝜒 which gives 𝜒 = (𝐺𝑇𝐺)−1𝑏, that can be pre-computed. On the other
hand, from 𝐷−1𝑞 + 𝐺𝑢 = 𝑟 and (9) we have that 𝐷−1𝐺𝜒 + 𝐷−1𝑍𝜓 + 𝐺𝑢 = 𝑟 which
gives 𝑍𝑇𝐷−1𝑍𝜓 = 𝑍𝑇𝑟 − 𝑍𝑇𝐷−1𝐺𝜒 and if we call 𝑐 = 𝑍𝑇𝑟 − 𝑍𝑇𝐷−1𝐺𝜒, we can
write the system

𝑍𝑇𝐷−1𝑍𝜓 = 𝑐. (10)

This is the null space system and it is similar to the Schur complement of (1). See
(8).



Natural Factor Based Solvers 241

6 Range null-space hybrid

Now we combine the first equation of (1) and (9). We have 𝐷−1 (𝐺𝜒 + 𝑍𝜓) +𝐺𝑢 = 𝑟
which gives 𝑍𝜓 + 𝐷𝐺𝑢 = 𝐷𝑟 − 𝐺𝜒 and it allows as to write the system ([4, 5])

[𝐷𝐺 𝑍]
[
𝑢
𝜓

]
= 𝐷𝑟 − 𝐺𝜒. (11)

We note that the matrix [𝐷𝐺 𝑍] is a square matrix and this system is called range
space scaled system. The related matrix [𝐺 𝐷−1𝑍] is called null space scaled
matrix. This algorithm is called “hybrid” because uses both the range-space and the
null-space. See [4, 5].
Alternatively, we can write 𝑍𝑇 (𝐷−1𝑞 + 𝐺𝑢) = 𝑍𝑇𝑟 which gives 𝑍𝑇𝐷−1𝑞 = 𝑍𝑇𝑟

and together with (9) gives the system[
𝐺𝑇

𝑍𝑇𝐷−1

]
𝑞 =

[
𝑏
𝑍𝑇𝑟

]
. (12)

Note that matrices (11) and (12) have a dependence on 𝐷, however, for numerical
stability purpose is very efficient since the matrix is based on discrete gradient times
𝐷 rather than the assembled second-order derivatives with 𝐷.

7 An auxiliary problem and 2 × 2 systems

Recall that for a scalar 𝑤,
−−−→
curl 𝑤 = (𝜕2𝑤,−𝜕1𝑤) and for a vector −→𝑞 = (𝑞1, 𝑞2),

curl −→𝑞 = 𝜕1𝑞2 − 𝜕2𝑞1. Consider now the elliptic equation{
−curl (𝜅(𝑥)−−−→curl 𝑤(𝑥)) = 𝑔(𝑥), 𝑥 ∈ Ω,

𝜅(𝑥)curl 𝑤(𝑥) · 𝝉 = 0, 𝑥 ∈ 𝜕Ω,

where 𝜏 is the tangential vector on the boundary of Ω. Note that we have
curl (𝜅(𝑥)−−−→curl 𝑤(𝑥)) = −𝜕1 (𝜅(𝑥)𝜕1𝑤(𝑥)) − 𝜕2 (𝜅(𝑥)𝜕2𝑤(𝑥)) and 𝜅(𝑥)−−−→curl 𝑤(𝑥) · 𝝉 =
−𝑛2𝜅(𝑥)𝜕1𝑤(𝑥) − 𝑛1𝜅(𝑥)𝜕2𝑤(𝑥) = −𝜅(𝑥)∇𝑤(𝑥) · 𝜼, where 𝜼 is the normal vector.
We approximate this problem by conforming elements. Let 𝑉𝐿 = 𝑃1 (T ℎ) = {𝑣 :
Ω → R such that 𝑣 |𝑇 is linear for all 𝑇 ∈ T ℎ} ∩ 𝐶0 (Ω). The approximation of the
problem above is: Find 𝑤𝐿 ∈ 𝑉𝐿 such that∫

Ω
𝜅(𝑥)−−−→curl 𝑤𝐿 (𝑥) · −−−→curl 𝑣(𝑥)𝑑𝑥 =

∫
Ω
𝑔(𝑥)𝑣(𝑥)𝑑𝑥 for all 𝑣 ∈ 𝑉𝐿 ,

with additional requirement that
∫
Ω
𝑤𝐿 (𝑥)𝑑𝑥 = 0. The matrix form is

𝐴𝐿𝑤𝐿 = �̃�𝐿 ,
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where 𝐴𝐿 = [𝑎𝐿𝑖 𝑗 ]𝑁𝑣×𝑁𝑣 and �̃�𝐿 = [𝑏𝐿𝑖 ]𝑁𝑣×1 with entries defined by 𝑎
𝐿
𝑖 𝑗 =∫

Ω
𝜅(𝑥)−−−→curl 𝜑𝐿𝑖 (𝑥) ·

−−−→
curl 𝜑𝐿𝑗 (𝑥)𝑑𝑥 and 𝑏𝐿𝑖 =

∫
Ω
𝑔(𝑥)𝜑𝐿𝑖 (𝑥)𝑑𝑥. Here 𝑁𝑣 is the number

of vertices in T ℎ. As before, we have

𝐴𝐿 = 𝐶𝑇𝐿𝐷𝐶𝐿 = 𝐺𝑇𝐿,2𝐷1𝐺𝐿,2 + (−𝐺𝐿,1)𝑇𝐷2 (−𝐺𝐿,1)

where 𝐺𝐿,𝑙 =
[
𝑔𝐿,𝑙𝑒,𝑣

]
𝑁𝑇×𝑁𝑣

=
[√︁
|𝑇 |𝜕𝑙𝜑𝐿𝑣 (𝑥𝑇 )

]
and 𝐶𝐿 =

[
𝐺𝐿,2
−𝐺𝐿,1

]
2𝑁𝑇×𝑁𝑣

. Note

that (𝑢𝐶𝑅, 𝑤𝐿) satisfy the 2 × 2 system
[
𝐴𝐶𝑅 0

0 𝐴𝐿

] [
𝑢𝐶𝑅
𝑤𝐿

]
=

[
𝑏𝐶𝑅
�̃�𝐿

]
.

Denote
𝐴 =

[
𝐴𝐶𝑅 0

0 𝐴𝐿

]
, �̂� =

[
𝑢𝐶𝑅
𝑤𝐿

]
and �̂� =

[
𝑏𝐶𝑅
�̃�𝐿

]
(13)

and introduce the matrices 𝐻 = [𝐺𝐶𝑅 𝐶𝐿] and

𝑀 = 𝐻𝑇𝐷𝐻 =

[
𝐴𝐶𝑅 𝐺𝑇𝐶𝑅𝐷𝐶𝐿

𝐶𝑇𝐿𝐷𝐺𝐶𝑅 𝐴𝐿

]
. (14)

The preconditioned system is given by

𝑀−1𝐴�̂� = 𝑀−1�̂�. (15)

Fig. 1: Triangulation of 𝐷 = [0, 1]2.

For any planar triangulation (with triangular elements) of a simply connected
domain we have 2𝑁𝑇 = 𝑁𝑒 + 𝑁𝑣 − 1 (where 𝑁𝑒 is the number of interior edges and
𝑁𝑣 is the number of vertices). See Figure 1 for the particular case of Ω = [0, 1]2 and
T ℎ constructed by dividing Ω into 𝑛2 squares and further dividing each square into
two triangles by adding and edge from the left-bottom vertex to right-top one. The
following lemma shows that no extra computation is required to obtain basis of null
spaces. Also, recall that 𝐺𝑇𝐺 is the stiffness matrix of the Laplace operator.
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Lemma 1. We have: (a) 𝐻 = [𝐺𝐶𝑅 𝐶𝐿] is a square matrix of size 2𝑁𝑇 × 2𝑁𝑇 . (b)
𝐺𝑇𝐶𝑅𝐶𝐿 = 0. (c) Because of (b), 𝐻 is non singular and 𝐶𝐿 spans the kernel of 𝐺𝑇𝐶𝑅.
Also 𝐺𝐶𝑅 spans the kernel of 𝐶𝑇𝐿 . (d) 𝑀 = 𝐻𝑇𝐷𝐻 is the product of three square
matrices. Therefore the solution of 𝑀�̂� = �̂� can be computed as �̂� = 𝐻−1𝐷−1𝐻−𝑇 �̂� .

Proof: We prove (b). Let 𝑒 be an interior edge and 𝑣 a vertex of T ℎ. Then

(𝐺𝑇𝐶𝑅𝐶𝐿)𝑒,𝑣 =
∑︁
𝑇 ∈Tℎ

𝑔𝐶𝑅,1𝑒,𝑇 𝑔𝐿,2𝑣,𝑇 −
∑︁
𝑇 ∈Tℎ

𝑔𝐶𝑅,2𝑒,𝑇 𝑔𝐿,1𝑣,𝑇

=
∑︁
𝑇 ∈Tℎ

|𝑇 | [𝜕1𝜑
𝐶𝑅
𝑒 (𝑥𝑇 )𝜕2𝜑

𝐿
𝑣 (𝑥𝑇 ) − 𝜕2𝜑

𝐶𝑅
𝑒 (𝑥𝑇 )𝜕1𝜑

𝐿
𝑣 (𝑥𝑇 )

]

=
∑︁
𝑇 ∈Tℎ

∫
𝑇
∇𝜑𝐶𝑅𝑒 (𝑥) ·

−−−→
curl 𝜑𝐿𝑣 (𝑥) 𝑑𝑥

=
∑︁
𝑇 ∈Tℎ

∫
𝜕𝑇
𝜑𝐶𝑅𝑒 (𝑥)

−−−→
curl 𝜑𝐿𝑣 (𝑥) · 𝜼 𝑑𝑥 = 0.

We have the following condition number bound.

Theorem 1. Let 𝜅min ≤ 𝜅(𝑥) ≤ 𝜅max and 𝜂 = 𝜅max/𝜅min the contrast. Then
cond (𝐻−1𝐷−1𝐻−𝑇 𝐴) ≤ 2𝜂 − 1.

Proof:let 𝑠 = 𝑢𝑇𝐶𝑅𝐴𝐶𝑅𝑢𝐶𝑅 + 𝑤𝑇𝐿𝐴𝐿𝑤𝐿 , using Lemma 1 (b), the result follows from
2|𝑢𝑇𝐶𝑅𝐺𝑇𝐶𝑅𝐷𝐶𝐿𝑤𝐿 | = 2|𝑢𝑇𝐶𝑅𝐺𝑇𝐶𝑅 (𝐷 − 𝐷 (𝑘min))𝐶𝐿𝑤𝐿 | ≤ (1 − 1/𝜂)𝑠.

8 PCG for the block system and numerical experiments

We propose to solve 𝐴�̂� = �̂� with 𝐴 and �̂� defined in (13) with �̃�𝐿 = 0 using
PCG with preconditioner 𝑀 in (14). See (15). Recall that we use the construction in
Section 7. For the numerical test we compute an LU or QR factorizations for 𝐻 and
apply 𝑀−1 = 𝐻−1𝐷−1𝐻−𝑇 . Note that 𝑀−1 depends on the coefficient 𝜅 only through
the matrix 𝐷 = 𝐷 (𝜅). See (5).

Condition Iterations Contrast
Mean 1.79 7.32 5.65
Variance 0.23 1.46 23.91

Table 1: Condition number, number of iteration and coefficient contrast in the CG method for
the Monte Carlo computation of 𝑢(𝑥) for (2). The log-coefficient 𝑐 is given by a truncated KL
expansion with 𝐾 = 15 terms with covariance function shown in (16). We use 𝑁 = 40 elements in
each direction and 𝑅 = 1000 realizations.
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Numerical tests for exponential covariance function. For problem (2) we consider
the coefficient 𝜅 of the form 𝜅(𝑥, 𝜔) = 𝑒c(𝑥,𝜔) , where the stochastic process 𝑐 is
defined by the Karhunen-Loève expansion with associated covariance function

c(𝑥, 𝑥 ′) = exp
(
−1

2
∥ 𝑥 − 𝑥 ′ ∥2

)
. (16)

We approximate the expected value 𝑢(𝑥) of the solution (2), through Monte Carlo
method with 𝑅 realizations. In Table 1 we show the mean and variance of condi-
tion number of the preconditioned system, the number of iterations and the contrast
max𝑥 𝜅(𝑥, 𝜔)/min𝑥 𝜅(𝑥, 𝜔) during the Monte Carlo solve. The small variance in the
condition number indicates low dependence of the method on the parameter 𝜅.

Matérn class of covariance functions. Now, the coefficient 𝜅 is defined with the
Matérn class of covariance functions

cMatern (𝑥, 𝑥
′) = 21−𝜈

Γ(𝜈)

(√
2𝜈∥𝑥 − 𝑥 ′∥

𝑙

)𝜈
𝐾𝜈

(√
2𝜈∥𝑥 − 𝑥 ′∥

𝑙

)
(17)

with (probabilistic) parameters 𝜈, 𝑙 > 0 and 𝐾𝜈 is the modified Bessel function of the
second kind. With this function in the KL expansion, we obtain the results in Table
2. In Table 2 we show the dependence of the condition number, number of iteration
and coefficient contrast. We note that the small variance of the number of iterations
and the value of the condition number indicate that the iteration do not depend much
on the parameter 𝜅(𝑥, 𝜔). Additional experiments and results are object of current
research and will be presented elsewhere.

Condition Iterations Contrast
Mean 3.07 11.1 11.18

Variance 0.73 1.3 67.28

Table 2: Condition number, iterations numbers and contrast of coefficient 𝜅 in the CG method in
the Monte Carlo computation of 𝑢(𝑥) solution of (2). The log-coefficient 𝑐 given as a truncated KL
expansion with 𝐾 = 30 terms constructed from the covariance function shown in (17) with 𝜈 = 0.5
and 𝑙 = 1. We use 𝑁 = 20 elements in each direction and 𝑅 = 1000 realizations.
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A Simple Finite Difference Discretization for
Ventcell Transmission Conditions at Cross Points

Martin J. Gander and Laurence Halpern

1 Introduction

Our main focus here is on cross points in non-overlapping domain decomposition
methods, but our techniques can also be applied to cross points in overlapping
domain decomposition methods, which can be an issue as indicated already by P.L
Lions in his seminal paper [17], see Figure 1. The Additive Schwarz method [7] for

Fig. 1: Lions’ comment from the first international conference on domain decomposition methods
in Paris in 1987 on the difficulty of cross point situations for the parallel overlapping Schwarz
method (𝑚 is the number of subdomains, O𝑖 a subdomain, and 𝑛 the iteration index).
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example leaves the treatment of the divergent modes around cross points1 to Krylov
acceleration, which leads to the coloring constant in the condition number estimate.
A partition of unity can however be used to make the method convergent, as in
Restricted Additive Schwarz, see [10, 11] for more information.
For non-overlapping domain decomposition methods, Dean and Glowinski pro-

posed in 1993 [4] already a cross point treatment with specific Lagrange multipliers
for wave equations, and FETI-DP treats cross points by imposing continuity there
[8, 20], see also [2] for the Helmholtz case. At the continuous level, the seminal
energy estimates of Lions in [18] and Després in [5] showed that Robin transmission
conditions do not pose any problem at cross points, but when discretized, standard
energy estimates do not work any more [14], and one needs to use methods like aux-
iliary variables or complete communication to treat cross points [15], see also [19].
In an algebraic setting the optimized Robin parameter can also require a different
weight at cross points [13]. Less was known historically for higher order transmission
conditions containing also tangential derivatives in the presence of cross points, for
an early approach at the continuous level, see [22]2. More recently, cross points have
become a focus of attention in the domain decomposition community: in [21] a new
approach at the cross points based on a corner treatment developed for absorbing
boundary conditions is proposed for higher order transmission conditions for lattice
type partitions; in [6] a new technique with quasi-continuity relations is proposed
for polygonal domains; and in [3] cross points are treated with a non-local problem
in the context of a multi-trace formulation and non-local transmission conditions, an
approach related to the algebraic non-local approach in [12] which leads to a direct
solver without approximation, independent of the number of subdomains and type
of PDE solved.
Often however in the above references, several difficulties are mixed: the domain

decomposition method is for high frequency wave propagation instead of simple
Laplace problems, or non-local transmission conditions instead of local ones are
used, which can make the cross point difficulties which exist already for Laplace
problems appear less clearly.

2 Optimized Schwarz with Ventcell Transmission Conditions

We consider an optimized Schwarz method (OSM) with Ventcell transmission con-
ditions [9] for the Laplace problem and the decomposition of a square domain Ω
into four square subdomains Ωℓ , as shown in Figure 2,

Δ𝑢𝑛ℓ = 𝑓 in Ωℓ ,
(𝜕𝑛ℓ + 𝑝 − 𝑞𝜕2

𝜏)𝑢𝑛ℓ = (𝜕𝑛ℓ + 𝑝 − 𝑞𝜕2
𝜏)𝑢𝑛−1

𝑙 on Γℓ,𝑙 ,
(1)

1 For an illustration of these modes, see [10, Figure 3.2]
2 Note that the term ’additive’ in this reference does not refer to the additive Schwarz method!
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𝑥

𝑦

0 1

1

Ω

Ω4 Ω3

Ω1 Ω2

Γ34

Γ23Γ41

Γ12

Fig. 2:Model problem domain and decomposition.

where 𝑛 is the iteration index, ℓ, 𝑙 ∈ {1, 2, 3, 4} are the subdomain indices, 𝜕𝑛ℓ is
the normal and 𝜕𝜏 the tangential derivative, and 𝑝, 𝑞 are the Ventcell transmission
parameters (or Robin if 𝑞 = 0) that can be optimized for best performance of the
OSM [9]. A standard second order five point finite difference discretization, omitting
the subdomain and iteration indices to avoid cluttering the notation, leads for generic
grid point indices 𝑖 in 𝑥 and 𝑗 in 𝑦 to

Δ𝑢 ≈ 𝑢𝑖+1, 𝑗 + 𝑢𝑖−1, 𝑗 − 4𝑢𝑖, 𝑗 + 𝑢𝑖, 𝑗+1 + 𝑢𝑖, 𝑗−1

ℎ2 𝑢𝑖, 𝑗
𝑢𝑖+1, 𝑗𝑢𝑖−1, 𝑗

𝑢𝑖, 𝑗−1

𝑢𝑖, 𝑗+1

𝜕𝑛𝑢 ≈
𝑢𝑖+1, 𝑗 − 𝑢𝑖−1, 𝑗

2ℎ
𝑢𝑖+1, 𝑗𝑢𝑖−1, 𝑗

𝜕2
𝜏𝑢 ≈

𝑢𝑖, 𝑗+1 − 2𝑢𝑖, 𝑗 + 𝑢𝑖, 𝑗−1

ℎ2 𝑢𝑖, 𝑗

𝑢𝑖, 𝑗−1

𝑢𝑖, 𝑗+1

where we indicated the vertical interface in red. A problem is that for the normal
derivative approximation, one point lies outside of the domain, here 𝑢𝑖+1, 𝑗 on the
right. The value of this so called ghost point is however also involved in the interior
five point finite difference stencil when evaluated at the interface,

𝑢𝑖+1, 𝑗 + 𝑢𝑖−1, 𝑗 − 4𝑢𝑖, 𝑗 + 𝑢𝑖, 𝑗+1 + 𝑢𝑖, 𝑗−1

ℎ2 = 𝑓𝑖, 𝑗 𝑢𝑖, 𝑗
𝑢𝑖+1, 𝑗𝑢𝑖−1, 𝑗

𝑢𝑖, 𝑗−1

𝑢𝑖, 𝑗+1

𝑢𝑖+1, 𝑗 − 𝑢𝑖−1, 𝑗

2ℎ
= 𝑔 𝑗

𝑢𝑖+1, 𝑗𝑢𝑖−1, 𝑗
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Hence the ghost point value 𝑢𝑖+1, 𝑗 is determined by the approximation of the bound-
ary condition 𝜕𝑛𝑢 = 𝑔 imposed in a centered fashion at the vertical red interface,
and the scheme is complete. The same approach can naturally be used for a centered
approximation of the more general Ventcell condition (𝜕𝑛 + 𝑝 + 𝑞𝜕2

𝜏)𝑢 = 𝑔.
Now at the 90𝑜 cross point in Figure 2, something special happens with this

discretization:we have for example for subdomainΩ1 the interior five point Laplacian
at the cross point (𝑖, 𝑗) with the two Ventcell conditions

𝑢𝑖+1, 𝑗 + 𝑢𝑖−1, 𝑗 − 4𝑢𝑖, 𝑗 + 𝑢𝑖, 𝑗+1 + 𝑢𝑖, 𝑗−1

ℎ2 = 𝑓𝑖, 𝑗

𝑢𝑖+1, 𝑗−𝑢𝑖−1, 𝑗
2ℎ + 𝑝𝑢𝑖, 𝑗 − 𝑞 𝑢𝑖, 𝑗+1−2𝑢𝑖, 𝑗+𝑢𝑖, 𝑗−1

ℎ2 = 𝑔 𝑗

𝑢𝑖, 𝑗+1−𝑢𝑖, 𝑗−1
2ℎ + 𝑝𝑢𝑖, 𝑗 − 𝑞 𝑢𝑖+1, 𝑗−2𝑢𝑖, 𝑗+𝑢𝑖−1, 𝑗

ℎ2 = �̃�𝑖

Ω1

𝑢𝑖, 𝑗
𝑢𝑖+1, 𝑗𝑢𝑖−1, 𝑗

𝑢𝑖, 𝑗−1

𝑢𝑖, 𝑗+1

and thus the scheme is complete for the subdomain solve: we have the two equations
from the two discretized boundary conditions for the two ghost points in color.
Once the subdomain solution is known, the ghost point values are known as well,

and one can easily extract the values to be transmitted to the neighboring subdomains,
again in the form of the centered discretized Ventcell conditions,

For Ω2:
𝑢𝑖−1, 𝑗−𝑢𝑖+1, 𝑗

2ℎ + 𝑝𝑢𝑖, 𝑗 − 𝑞 𝑢𝑖, 𝑗+1−2𝑢𝑖, 𝑗+𝑢𝑖, 𝑗−1
ℎ2

For Ω4:
𝑢𝑖, 𝑗−1−𝑢𝑖, 𝑗+1

2ℎ + 𝑝𝑢𝑖, 𝑗 − 𝑞 𝑢𝑖+1, 𝑗−2𝑢𝑖, 𝑗+𝑢𝑖−1, 𝑗
ℎ2 Ω1 Ω2

Ω4

𝑢𝑖, 𝑗
𝑢𝑖+1, 𝑗𝑢𝑖−1, 𝑗

𝑢𝑖, 𝑗−1

𝑢𝑖, 𝑗+1

The complete discrete OSM algorithm is thus for example for subdomain Ω1 given
by solving at iteration 𝑛 for 𝑖 = 1 . . . 𝐼, 𝑗 = 1 . . . 𝐽 for 𝑢𝑛1,𝑖, 𝑗 the discrete equations

𝑢𝑛1,𝑖+1, 𝑗 + 𝑢𝑛1,𝑖−1, 𝑗 − 4𝑢𝑛1,𝑖, 𝑗 + 𝑢𝑛1,𝑖, 𝑗+1 + 𝑢𝑛1,𝑖, 𝑗−1

ℎ2 = 𝑓𝑖, 𝑗 ,

with the transmission condition for 𝑗 = 1 . . . 𝐽 on the right,

𝑢𝑛1,𝑖+1, 𝑗 − 𝑢𝑛1,𝑖−1, 𝑗

2ℎ
+ 𝑝𝑢𝑛1,𝑖, 𝑗 − 𝑞

𝑢𝑛1,𝑖, 𝑗+1 − 2𝑢𝑛1,𝑖, 𝑗 + 𝑢𝑛1,𝑖, 𝑗−1

ℎ2 =

𝑢𝑛−1
2,𝑖+1, 𝑗 − 𝑢𝑛−1

2,𝑖−1, 𝑗

2ℎ
+ 𝑝𝑢𝑛−1

2,𝑖, 𝑗 − 𝑞
𝑢𝑛−1

2,𝑖, 𝑗+1 − 2𝑢𝑛−1
2,𝑖, 𝑗 + 𝑢𝑛−1

2,𝑖, 𝑗−1

ℎ2 ,

and the transmission condition for 𝑖 = 1 . . . 𝐼 at the top,

𝑢𝑛1,𝑖, 𝑗+1 − 𝑢𝑛1,𝑖, 𝑗−1

2ℎ
+ 𝑝𝑢𝑛1,𝑖, 𝑗 − 𝑞

𝑢𝑛1,𝑖+1, 𝑗 − 2𝑢𝑛1,𝑖, 𝑗 + 𝑢𝑛1,𝑖−1, 𝑗

ℎ2 =
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𝑢𝑛−1
4,𝑖, 𝑗+1 − 𝑢𝑛−1

4,𝑖, 𝑗−1

2ℎ
+ 𝑝𝑢𝑛−1

4,𝑖, 𝑗 − 𝑞
𝑢𝑛−1

4,𝑖+1, 𝑗 − 2𝑢𝑛−1
4,𝑖, 𝑗 + 𝑢𝑛−1

4,𝑖−1, 𝑗

ℎ2 ,

and analogously for the other three subdomains. We thus have a very simple finite
difference scheme for the OSM with Ventcell transmission conditions, which takes
advantage of the rectangular structure of the Laplace operator at such rectangular
cross points.

3 Numerical Experiments

We show in Figure 3 the error in the first few iterates of the OSMwith Ventcell trans-
mission conditions in the left column, and for comparison in the right column the
case of optimized Robin transmission conditions, i.e. 𝑞 = 0. We used as mesh param-
eter ℎ = 1/16, and solve directly the error equations, starting with a random initial
guess; for the importance of this, see [10, Section 5.1]. We observe that the OSM is
converging nicely also at the cross point, both for Robin and Ventcell transmission
conditions, and convergence is much faster for the Ventcell transmission conditions.
This appears even more clearly in the convergence plot shown in Figure 4. We see
that the OSM with optimized Ventcell transmission conditions converges almost
four times faster than with optimized Robin transmission conditions, at the same
cost per iteration, and Krylov acceleration with GMRES only leads to little further
improvement for the decay of the error in the iterations, especially for the Ventcell
transmission condition (as already seen in [10, Fig 5.1] for the two subdomain case).

4 Conclusions

We presented a simple finite difference discretization of optimized Schwarz methods
with Ventcell transmission conditions for the Laplace problem in the presence of
cross points in the decomposition. The discretization takes advantage of the rectan-
gular structure of the Laplace operator and only works for rectangular cross points as
in Figure 2. For more general cross point situations, auxiliary variables or complete
communication can be used [15], but only in the simpler case of Robin conditions.
For a rectangular cross point, our technique can also be used in a variational

formulation: multiplying by a test function 𝑣 and integrating by parts on Ω1, we get
using the Ventcell condition∫

Ω1

∇𝑢1∇𝑣 + 𝑝
∫
Γ12∪Γ14

𝑢1𝑣 − 𝑞
∫
Γ12∪Γ14

𝜕2
𝜏𝑢1𝑣,

and the last term gives when integrating by parts, and using the fact that the test
function 𝑣 vanishes on the outer boundary due to the Dirichlet condition there
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Fig. 3: Iterates of OSM with Ventcell transmission conditions on the left, and with Robin transmis-
sion conditions on the right.
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Fig. 4: Comparison of the decay of the error in the OSM as function of the iteration index 𝑛 for
optimized Robin and Ventcell transmission conditions.

∫
Γ12∪Γ14

𝜕2
𝜏𝑢1𝑣 = 𝜕𝑦𝑢1 ( 1

2 ,
1
2 )𝑣( 1

2 ,
1
2 ) −

∫
Γ12

𝜕𝑦𝑢1𝜕𝑦𝑣 + 𝜕𝑥𝑢1 ( 1
2 ,

1
2 )𝑣( 1

2 ,
1
2 ) −

∫
Γ14

𝜕𝑥𝑢1𝜕𝑥𝑣.

Due to the rectangular nature of the cross point, the two remaining terms there are
well defined using the equation and the Ventcell condition at the cross point, as in
the finite difference discretization earlier,

𝜕2
𝑥𝑢1 + 𝜕2

𝑦𝑢1 = 𝑓 , (𝜕𝑥 + 𝑝 − 𝑞𝜕2
𝑦)𝑢1 = 𝑔, (𝜕𝑦 + 𝑝 − 𝑞𝜕2

𝑥)𝑢1 = �̃�,

since solving the Ventcell conditions for the second order derivative terms and
inserting into the equation evaluated at the cross point leads to

𝜕𝑥𝑢1 ( 1
2 ,

1
2 ) + 𝜕𝑦𝑢1 ( 1

2 ,
1
2 ) = −2𝑝𝑢1 ( 1

2 ,
1
2 ) + 𝑞 𝑓 ( 1

2 ,
1
2 ) + 𝑔( 1

2 ,
1
2 ) + �̃�( 1

2 ,
1
2 ),

and the variational formulation is complete (for the time dependent case see [1], and
for well posedness in the Helmholtz case [16]). Analogously this can be done for
the other subdomains, and also the data for the next iteration can be extracted in this
way, which leads to a natural finite element discretization for Ventcell transmission
conditions at cross points, see also [21] for a similar approach.
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Cycles in Newton-Raphson Preconditioned by
Schwarz (ASPIN and Its Cousins)

Conor McCoid and Martin J. Gander

1 Introduction

ASPIN [3], RASPEN [5], and MSPIN [8] rely on various Schwarz methods to
precondition either Newton-Raphson or inexact Newton.While a priori convergence
criteria have been found for the underlying Schwarz methods, so far none exist for
their combination with Newton-Raphson.
Like in the linear case when combining a Krylov method and a Schwarz method,

there is an equivalence between preconditioning Newton-Raphson with a Schwarz
method and accelerating that same Schwarz method with Newton-Raphson [6]: A
domain is first subdivided into subdomains, the problem solved on each subdo-
main, and the resulting formulation iterated through Krylov and Newton-Raphson,
respectively.
We examine cycling behaviour in alternating Schwarz in one dimension that

has been accelerated by applying Newton-Raphson. We begin by presenting the
algorithm for alternating Schwarz and how it is accelerated by Newton-Raphson.
Suppose we seek to solve the boundary value problem

𝐹 (𝑥, 𝑢, 𝑢′, 𝑢′′) = 0, 𝑥 ∈ [𝑎, 𝑏], 𝑢(𝑎) = 𝐴, 𝑢(𝑏) = 𝐵

for some function 𝐹 (𝑥, 𝑢, 𝑣, 𝑤). Then an iteration of alternating Schwarz with sub-
domains (𝑎, 𝛽) and (𝛼, 𝑏), 𝛼 < 𝛽, is comprised of the following three steps:

(1) 𝐹 (𝑥, 𝑢1, 𝑢
′
1, 𝑢
′′
1 ) = 0, 𝑢1 (𝑎) = 𝐴, 𝑢1 (𝛽) = 𝛾𝑛,

(2) 𝐹 (𝑥, 𝑢2, 𝑢
′
2, 𝑢
′′
2 ) = 0, 𝑢2 (𝛼) = 𝑢1 (𝛼), 𝑢2 (𝑏) = 𝐵,

(3) 𝛾𝑛+1 = 𝑢2 (𝛽) = 𝐺 (𝛾𝑛).
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University of Geneva, e-mail: conor.mccoid@unige.ch
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University of Geneva, e-mail: martin.gander@unige.ch
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The function 𝐺 (𝛾) thus represents one iteration of alternating Schwarz in sub-
structured form. The process is repeated until convergence, ie.

(𝐺 ◦ 𝐺 ◦ · · · ◦ 𝐺) (𝛾) = 𝐺𝑛 (𝛾) ≈ 𝐺𝑛+1 (𝛾) = (𝐺 ◦ 𝐺𝑛) (𝛾).

This is naturally a fixed point iteration applied to the function 𝐺 (𝛾).
To accelerate the method one applies Newton-Raphson to the function 𝑓 (𝛾) =

𝐺 (𝛾) − 𝛾, which has a root at the fixed point. If the fixed point is unique, this is the
only root of 𝑓 (𝛾). To apply Newton-Raphson, one needs to know the value of𝐺 ′(𝛾),
which may be found by adding two new steps, (1’) and (2’), to alternating Schwarz:

(1) 𝐹 (𝑥, 𝑢1, 𝑢
′
1, 𝑢
′′
1 ) = 0, 𝑢1 (𝑎) = 𝐴, 𝑢1 (𝛽) = 𝛾𝑛,

(1′) 𝐽 (𝑢1) · (𝑣1, 𝑣
′
1, 𝑣
′′
1 ) = 0, 𝑣1 (𝑎) = 0, 𝑣1 (𝛽) = 1,

(2) 𝐹 (𝑥, 𝑢2, 𝑢
′
2, 𝑢
′′
2 ) = 0, 𝑢2 (𝛼) = 𝑢1 (𝛼), 𝑢2 (𝑏) = 𝐵,

(2′) 𝐽 (𝑢2) · (𝑣2, 𝑣
′
2, 𝑣
′′
2 ) = 0, 𝑣2 (𝛼) = 1, 𝑣2 (𝑏) = 0,

(3) 𝛾𝑛+1 = 𝛾𝑛 − 𝑢2 (𝛽) − 𝛾𝑛
𝑣1 (𝛼)𝑣2 (𝛽) − 1

= 𝛾𝑛 − 𝐺 (𝛾𝑛) − 𝛾𝑛
𝐺 ′(𝛾𝑛) − 1

,

where 𝑣𝑖 (𝑥) = 𝜕𝑢𝑖 (𝑥)/𝜕𝛾 and 𝐽 (𝑢𝑖) is the Jacobian of 𝐹 (𝑥, 𝑢𝑖 , 𝑢′𝑖 , 𝑢′′𝑖 ).

2 Convergence of generic fixed point iterations and
Newton-Raphson

A generic fixed point iteration 𝑥𝑛+1 = 𝑔(𝑥𝑛) converges when |𝑔(𝑥𝑛) − 𝑥∗ | <
|𝑥𝑛 − 𝑥∗ |, where 𝑥∗ is the fixed point. This occurs when 𝑔(𝑥) lies between 𝑥 and
2𝑥∗ − 𝑥. The convergence or divergence of the fixed point iteration is monotonic if
sign(𝑔(𝑥) − 𝑥∗) = sign(𝑥 − 𝑥∗) and oscillatory otherwise. This creates four lines,
𝑦 = 𝑥, 𝑦 = 2𝑥∗ − 𝑥, 𝑦 = 𝑥∗ and 𝑥 = 𝑥∗, that divide the plane into octants. The four
pairs of opposite octants form four regions with distinct behaviour of the fixed point
iteration, see left of Figure 1 or Figure 5.7 from [7]:

1, 𝑔(𝑥) < 𝑥 < 𝑥∗ or 𝑔(𝑥) > 𝑥 > 𝑥∗: monotonic divergence;
2, 𝑥 < 𝑔(𝑥) < 𝑥∗ or 𝑥 > 𝑔(𝑥) > 𝑥∗: monotonic convergence;
3, 𝑥 < 𝑥∗ < 𝑔(𝑥) < 2𝑥∗ − 𝑥 or 𝑥 > 𝑥∗ > 𝑔(𝑥) > 2𝑥∗ − 𝑥: convergent oscillations;
4, 𝑥 < 𝑥∗ < 2𝑥∗ − 𝑥 < 𝑔(𝑥) or 𝑥 > 𝑥∗ > 2𝑥∗ − 𝑥 > 𝑔(𝑥): divergent oscillations.
If the function 𝑔(𝑥) intersects the line 𝑦 = 𝑥 at a point other than 𝑥∗ then there

are additional fixed points that the method can converge towards. If it intersects the
line 𝑦 = 2𝑥∗ − 𝑥 then a stable cycle can form. A fixed point iteration is therefore only
guaranteed to converge if 𝑔(𝑥) lies entirely between the lines 𝑦 = 𝑥 and 𝑦 = 2𝑥∗ − 𝑥,
ie. within regions 2 and 3.
Newton-Raphson can make use of this analysis by considering it as a fixed point

iteration:
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𝑥
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𝑓 (𝑥)

21 3 4

Fig. 1: Left: Behaviour of the fixed point iteration 𝑥𝑛+1 = 𝑔 (𝑥𝑛) , where the origin is the fixed
point, 𝑔 (0) = 0. Right: Regions of Newton-Raphson, 𝑥𝑛+1 = 𝑥𝑛 − 𝑓 (𝑥𝑛)/ 𝑓 ′ (𝑥𝑛) , where the
origin is the root, 𝑓 (0) = 0. The tangent line to 𝑓 (𝑥) can be traced from (𝑥, 𝑓 (𝑥)) towards the
line 𝑦 = 0. Where it lands on this line indicates which fixed point iteration behaviour occurs.

𝑥𝑛+1 = 𝑥𝑛 − 𝑓 (𝑥𝑛)
𝑓 ′(𝑥𝑛) = 𝑔 𝑓 (𝑥𝑛).

The borders between the regions no longer depend solely on the value of 𝑓 (𝑥) but
also 𝑓 ′(𝑥). The right of Figure 1 shows which type of behaviour Newton-Raphson
will have based on where the tangent line points.
As stated, if 𝑔 𝑓 (𝑥) intersects the line 𝑦 = 𝑥 there are additional fixed points, and

if it intersects 𝑦 = 2𝑥∗ − 𝑥 there may be stable cycles. For guaranteed convergence
𝑔 𝑓 (𝑥) must lie between these lines. Intersections of 𝑔 𝑓 (𝑥) with 𝑦 = 𝑥 occur only
if 𝑓 (𝑥) = 0 and 𝑓 (𝑥) has additional roots or 𝑓 ′(𝑥) = ∞. Both circumstances are
assumed not to occur. Intersections of 𝑔 𝑓 (𝑥) with 𝑦 = 2𝑥∗ − 𝑥 may be represented
as a first order ODE:

𝑓 ′𝐶 (𝑥) = −
𝑓𝐶 (𝑥)

2(𝑥∗ − 𝑥) , 𝑓𝐶 (𝑥∗) = 0.

The solution to this ODE is 𝑓𝐶 (𝑥) = 𝐶
√︁
|𝑥 − 𝑥∗ | where 𝐶 ∈ R. If a function 𝑓 (𝑥)

with root 𝑥∗ is tangential to 𝑓𝐶 (𝑥) for any value of 𝐶 then 𝑔 𝑓 (𝑥) intersects the line
𝑦 = 2𝑥∗ − 𝑥. The left of Figure 2 shows the functions 𝑓𝐶 (𝑥).
A function 𝑓 (𝑥) that is monotonic with respect to this geometry has guaranteed

convergence under Newton-Raphson. That is, if 𝑓 (𝑥) is nowhere tangential to 𝑓𝐶 (𝑥)
in a given domain containing 𝑥∗ for any value of 𝐶 then 𝑔 𝑓 (𝑥) converges to the root
for any initial guess in that domain. Since 𝑓 ′𝐶 (𝑥∗) = ∞ and 𝑓 (𝑥∗) = 0 there is always
a region around the root 𝑥∗ where 𝑓 (𝑥) crosses all of these lines monotonically. This
conforms with the theory on Newton-Raphson.
The corresponding geometry for a fixed point function accelerated by Newton-

Raphson is skewed such that the line 𝑦 = 0 is aligned to 𝑦 = 𝑥, as seen in the right
of Figure 2. The lines of this figure are the functions 𝑔𝐶 (𝑥) = 𝑓𝐶 (𝑥) + 𝑥. A function
𝑔(𝑥) must be monotonic in this geometry or Newton-Raphson applied to 𝑔(𝑥) − 𝑥
may exhibit cycling behaviour.
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Fig. 2: Left: Solutions 𝑓𝐶 (𝑥) such that 𝑔 𝑓 (𝑥) intersects 𝑦 = 2𝑥∗ − 𝑥 for all 𝑥. Right: Functions
𝑔𝐶 (𝑥) = 𝑓𝐶 (𝑥) + 𝑥 such that 𝑔 𝑓 (𝑥) for 𝑓 (𝑥) = 𝑔𝐶 (𝑥) − 𝑥 intersects 𝑦 = 2𝑥∗ − 𝑥 for all 𝑥.

Table 1: Conditions for convergent behaviour of Newton-Raphson applied to 𝑔 (𝑥) − 𝑥.

𝑔 (𝑥) lies in Necessary condition Sufficient condition

1 𝑔′ (𝑥) > 1
2 𝑔′ (𝑥) < 1 𝑔′ (𝑥) < 1/2
3 𝑔′ (𝑥) < 1/2 𝑔′ (𝑥) < 0
4 𝑔′ (𝑥) < 0

If it is known in which fixed point region of the left of Figure 1 𝑔(𝑥) lies then one
can find necessary and, in some cases, sufficient conditions for Newton-Raphson to
have convergent behaviour based on the slopes of the lines 𝑔𝐶 (𝑥). For example, in
region 2 the maximum of 𝑔′𝐶 (𝑥) is 1. If 𝑔(𝑥) lies in region 2 then its slope must
therefore be less than 1 everywhere or there will be a point where 𝑔(𝑥) runs tangent
to 𝑔𝐶 (𝑥) for some𝐶. Moreover, the minimum of 𝑔′𝐶 (𝑥) is 1/2. If 𝑔(𝑥) has a slope less
than 1/2 then it cannot run tangent to 𝑔𝐶 (𝑥) for any 𝐶. The list of these conditions
is summarized in Table 1.

3 The fixed point iteration of alternating Schwarz

We now seek to apply this theory to alternating Schwarz. As stated earlier, we
consider alternating Schwarz as a function 𝐺 (𝛾), taking as input the value of 𝑢1 (𝛽)
and as output the value of 𝑢2 (𝛽). Under reasonable conditions we can prove a number
of useful properties of 𝐺 (𝛾) without prior knowledge of the fixed point 𝛾∗.
Theorem 1 If the problem 𝐹 (𝑥, 𝑢, 𝑢′, 𝑢′′) = 0 for 𝑥 ∈ Ω, 𝑢(𝑥) = ℎ(𝑥) for 𝑥 ∈ 𝜕Ω
has a unique solution on Ω = [𝑎, 𝛼] and Ω = [𝛽, 𝑏] and the continuations of these
solutions are also unique, then the function 𝐺 (𝛾) is strictly monotonic.

Proof It suffices to show that 𝐺 (𝛾1) = 𝐺 (𝛾2) implies 𝛾1 = 𝛾2. Let 𝑢 𝑗1 solve the
problem on [𝑎, 𝛽] with 𝑢 𝑗1 (𝛽) = 𝛾 𝑗 . Likewise, 𝑢 𝑗2 solves the problem on [𝛼, 𝑏]
with 𝑢 𝑗2 (𝛼) = 𝑢

𝑗
1 (𝛼). Suppose 𝑢1

2 (𝛽) = 𝑢2
2 (𝛽). Then both 𝑢1

2 and 𝑢
2
2 solve the same

problem on [𝛽, 𝑏]. By assumption, this must mean 𝑢1
2 = 𝑢2

2 and 𝑢
1
1 (𝛼) = 𝑢2

1 (𝛼). By



Cycles in Newton-Raphson Preconditioned by Schwarz (ASPIN and Its Cousins) 259

a similar argument, this implies 𝑢1
1 and 𝑢

2
1 solve the same problem on [𝑎, 𝛼]. Again

by assumption 𝑢1
1 = 𝑢2

1 and 𝛾1 = 𝛾2. □

We can even prove that 𝐺 (𝛾) is restricted to region 2 with additional properties.
As an example, we reprove a result from Lui [9].

Theorem 2 (Theorem 2 from [9])
Consider the equation 𝑢′′(𝑥) + 𝑓 (𝑥, 𝑢, 𝑢′) = 0 for 𝑥 ∈ (𝑎, 𝑏), 𝑢(𝑎) = 𝑢(𝑏) = 0

under the assumptions that

• 𝑓 ∈ 𝐶1 ( [𝑎, 𝑏] × R × R) ,
• 𝜕 𝑓 (𝑥,𝑣,𝑣′)

𝜕𝑢 ≤ 0 for all 𝑥 ∈ [𝑎, 𝑏] and 𝑣 ∈ 𝐻1
0 ( [𝑎, 𝑏]) ,

• | 𝑓 (𝑥, 𝑣, 𝑣′) | ≤ 𝐶 (1 + |𝑣′ |𝜂) for all 𝑥 ∈ [𝑎, 𝑏] and 𝑣 ∈ 𝐻1
0 ( [𝑎, 𝑏]) and some

𝐶 > 0, 0 < 𝜂 < 1 .

The problem is solved using alternating Schwarz with two subdomains and Dirichlet
transmission conditions. Then 𝐺 (𝛾) for this problem lies within region 2.

Proof It suffices to prove that the problem is well posed and 0 < 𝐺 ′(𝛾) < 1 for
all 𝛾 ∈ R. The well-posedness of the problem is guaranteed by Proposition 2 from
[9]. As Lui points out, this also means the problem is well posed on any subdomain.
Using Theorem 1 this gives monotonicity of 𝐺 (𝛾). Moreover, if 𝑢(𝑥) = 0 for any
𝑥 ∈ (𝑎, 𝑏) then the problem would be well posed on the domains [𝑎, 𝑥] and [𝑥, 𝑏].
As such, 𝑢(𝑥) has the same sign as 𝛾 and 𝐺 ′(𝛾) > 0.
Consider the problem in 𝑔1:

𝑔′′1 (𝑥) +
𝜕 𝑓

𝜕𝑢
𝑔1 + 𝜕 𝑓

𝜕𝑢′
𝑔′1 = 0, 𝑥 ∈ [𝑎, 𝛽], 𝑔1 (𝑎) = 0, 𝑔1 (𝛽) = 1.

From the second assumption on 𝑓 the operator on 𝑔1 satisfies a maximum principle
(see, for example, [9]). Therefore, 𝑔1 (𝑥) < 1 for all 𝑥 ∈ (𝑎, 𝛽). By the same
reasoning, 𝑔2 (𝑥) < 𝑔1 (𝛼) < 1 for all 𝑥 ∈ (𝛼, 𝑏) and 𝐺 ′(𝛾) < 1. Incidentally, the
same maximum principle applies for the operator on −𝑔1 and −𝑔2, and so𝐺 ′(𝛾) > 0
as we had before. □

This provides guaranteed convergence of alternating Schwarz. However, it does
not guarantee the convergence when one accelerates it through Newton-Raphson.
Using Table 1 we know that such convergence is assured if 𝐺 ′(𝛾) < 1/2 for all 𝛾,
but this is not true in all cases and cannot be determined a priori.
Take as an example the following second order nonlinear differential equation

𝑢′′(𝑥) − sin(𝑎𝑢(𝑥)) = 0, 𝑥 ∈ (−1, 1), (1)

with homogeneous Dirichlet boundary conditions. The problem is well posed and
admits only the trivial solution 𝑢(𝑥) = 0. It is easy to see that this equation satisfies
the conditions of Theorem 2. Therefore, the alternating Schwarz fixed point iteration,
𝐺 (𝛾), lies within region 2 and is guaranteed to converge to the fixed point. Sadly, its
Newton-Raphson acceleration will not do so for all initial conditions. Take 𝑎 = 3.6
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Fig. 3: Left: Results of Newton-Raphson accelerated alternating Schwarz as a function of initial
condition in solving equation (1). The value of 𝑎 is 3.6 and the subdomains areΩ1 = (−1, 0.2) and
Ω2 = (−0.2, 1) .Middle: 𝐺 (𝛾) and its Newton-Raphson acceleration. Right: 𝐺 (𝛾) plotted with
the geometry of the right of Figure 2.

with an overlap of 0.4 and symmetric regions. The results of the Newton-Raphson
acceleration are found in Figure 3 (left). While for most initial values of 𝛾 the
method converges to the correct solution 𝑢 = 0 there are two small intervals where
the method enters a stable cycle.
The function 𝐺 (𝛾) can be plotted numerically, along with its Newton-Raphson

acceleration, see Figure 3 (middle), which shows that 𝐺 (𝛾) does indeed lie within
region 2 as predicted by Theorem 2. However, 𝐺 (𝛾) runs tangential to one of the
lines 𝑔𝐶 (𝛾), see Figure 3 (right), and so its Newton-Raphson acceleration crosses
into region 4. Due to symmetry, there is a 2-cycle at each crossing. Depending on
the slope of the acceleration as it crosses into region 4 this cycle may be stable.
Where stable cycles exist so toomust there be period doubling bifurcation. Chang-

ing the value of the parameter 𝑎 we find that the 2-cycle found in Figure 3 (left)
becomes two 2-cycles, then two 4-cycles, and so on until it devolves into chaos, see

Fig. 4: Period doubling bifurcation in the example caused by Newton-Raphson acceleration.
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Fig. 5: Left: value of 𝑎 at which bifurcation starts. Right: width of basin of cycling in 𝛾 and 𝑎.

Figure 4. With enough chaos the cycles are no longer stable and the acceleration
exits into a convergent region.
While a change in the parameter 𝑎 is the most obvious way to alter the dynamics,

one can also change the size of the overlap. This has a direct effect on the basin
of cycling in the spaces of both initial condition 𝛾 and the parameter 𝑎. Figure 5
(left) shows a nonlinear relationship between the first value of 𝑎 at which cycling is
observed and the size of the overlap. As the overlap grows the parameter 𝑎 must be
larger and larger for cycling to occur. Figure 5 (right) indicates that the interval of
initial conditions that result in cycling shrinks as the overlap grows. Meanwhile, the
length of the bifurcation diagram increases, meaning there are more values of 𝑎 with
stable cycling.

4 Accelerated alternating Schwarz with guaranteed convergence

Given Theorem 2 and the conditions of Table 1 one can construct a series of tests to
see if the Newton-Raphson acceleration is suitable for a given iteration. We present
one further useful trick to strengthen convergence, a correction to Newton-Raphson
due to Davidenko and Branin [1, 2, 4]. We replace step (3) in the algorithm with

(3∗) �̃�𝑛 = 𝛾𝑛 − 𝐺 (𝛾𝑛) − 𝛾𝑛
|𝐺 ′(𝛾𝑛) − 1| .

For 𝐺 (𝛾) within region 2 the Newton-Raphson acceleration will now always march
in the direction of the fixed point. It may still overshoot and cycle but the direction
will always be correct.
For a problem satisfying the conditions of Theorem 2 or similar that guarantees

that 𝐺 (𝛾) lies in region 2 the algorithm proceeds as follows:
1. Select some 𝛾0 ∈ R. Set 𝑛 = 0.
2. Calculate 𝐺 (𝛾𝑛) and 𝐺 ′(𝛾𝑛). If 𝐺 ′(𝛾𝑛) = 1 then set 𝛾𝑛+1 = 𝐺 (𝛾𝑛), increment
𝑛 and return to step 2. If this is not true, proceed to step 3.
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3. Perform step (3*), which is the Newton-Raphson acceleration using the
Davidenko-Branin trick. If |𝐺 ′(𝛾𝑛) − 1| ≥ 1/2 then set 𝛾𝑛+1 = �̃�𝑛, increment 𝑛
and return to step 2. If this is not true, calculate �̂�𝑛, the average of 𝛾𝑛 and �̃�𝑛,
and proceed to step 4.

4. Calculate 𝐺 (�̂�𝑛). If 𝐺 (�̂�𝑛) − �̂�𝑛 has the same sign as 𝐺 (𝛾𝑛) − 𝛾𝑛 then set
𝛾𝑛+1 = �̃�𝑛, increment 𝑛 and return to step 2. If this is not true, set 𝛾𝑛+1 = 𝐺 (𝛾𝑛),
increment 𝑛 and return to step 2.

Each of steps 2, 3 and 4 contain a test of whether Newton-Raphson will converge.
In step 2, Newton-Raphson will not converge if the derivative of𝐺 (𝛾) − 1 is zero. In
step 3, convergence is guaranteed if 𝐺 ′(𝛾) ≤ 1/2 based on Table 1. The Davidenko-
Branin trick strengthens this and also guarantees convergence if 𝐺 ′(𝛾) ≥ 3/2.
In step 4 we test the point halfway between the starting value 𝛾𝑛 and the Newton-

Raphson acceleration �̃�𝑛, denoted �̂�𝑛. Since 𝐺 (𝛾) is in region 2 if 𝐺 (𝛾) > 𝛾 then
𝛾 < 𝛾∗ and vice versa. Therefore, we can easily determine whether �̂�𝑛 is on the same
side of the fixed point as 𝛾𝑛. If it is, then the fixed point 𝛾∗ lies on the same side
of �̂�𝑛 as �̃�𝑛, and so �̃�𝑛 is closer to 𝛾∗ than 𝛾𝑛. If it is not, then 𝛾∗ lies between 𝛾𝑛
and �̂�𝑛. Since �̃�𝑛 is on the other side of �̂�𝑛 it is further from 𝛾∗ than 𝛾𝑛 and we have
divergence. In such a case, the fixed point iteration should be used.
Note that while 𝐺 (𝛾) represents alternating Schwarz in this context, it may be

exchanged for any fixed point iteration, in particular any Schwarz method. All that is
required for the algorithm to function is for 𝐺 (𝛾) to be within region 2. For Schwarz
methods, this would necessitate a theorem similar to Theorem 2.
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Should Multilevel Methods for Discontinuous
Galerkin Discretizations Use Discontinuous
Interpolation Operators?

Martin J. Gander and José Pablo Lucero Lorca

1 Discontinuous Interpolation for a Model Problem

Interpolation operators are very important for the construction of amultigridmethod.
Since multigrid’s inception by Fedorenko [7], interpolation was identified as key,
deserving an entire appendix in Brandt’s seminal work [5]: ’[...] even a small and
smooth residual function may produce large high-frequency residuals, and significant
amount of computational work will be required to smooth them out.’
For discontinuous Galerkin (DG) discretizations [2], the problem of choosing an

interpolation becomes particularly interesting. A good interpolation operator will
not produce undesirable high frequency components in the residual. In an inher-
ited (Galerkin) coarse operator, the choice of restriction and prolongation operators
defines the coarse space itself, and then convergence of multigrid algorithms with
classical restriction and interpolation operators for DG discretizations of elliptic
problems cannot be independent of the number of levels [1]. In 1D, the reason for
this was identified in [9, §4.3]): the DG penalization is doubled at each coarsening,
causing the coarse problem to become successively stiffer.
A simple classical interpolation operator is linear interpolation: in 1D one takes

the average from two adjacent points in the coarser grid and sets the two DG degrees
of freedom at the midpoint belonging to the fine mesh to this same value, therefore
imposing continuity at that point and discontinuity at coarse grid points. But why
should continuity be imposed on the DG interpolated solution on the fine mesh? Can
solver performance be improved with a discontinuous interpolation operator?
Convergence of two-level methods for DG discretizations has been analyzed for

continuous interpolation operators using classical analysis, see [8, 3] and references
therein, and also Fourier analysis [10, 11, 12, 9]. We use Fourier analysis here
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𝑥−𝐽 = 1

Fig. 1:Mesh for our DG discretization of the Poisson equation.

to investigate the influence of a discontinuous interpolation operator on the two
level solver performance. We consider a symmetric interior penalty discontinuous
Galerkin (SIPG) finite element discretization of the Poisson equation as in [2],

𝑎ℎ (𝑢, 𝑣) B
∫
T
∇𝑢 · ∇𝑣𝑑𝑥 +

∫
F

(
[[𝑢]]

{{
𝜕𝑣

𝜕𝑛

}}
+
{{
𝜕𝑢

𝜕𝑛

}}
[[𝑣]]

)
𝑑𝑠 +

∫
F
𝛿 [[𝑢]] [[𝑣]] 𝑑𝑠, (1)

on a 1D mesh as shown in Fig. 1. The resulting linear system is (for details see [9])

𝐴𝒖 =
1
ℎ2

©«

. . .
. . . − 1

2. . . 𝛿0 1 − 𝛿0 − 1
2

− 1
2 1 − 𝛿0 𝛿0 − 1

2
− 1

2 𝛿0 1 − 𝛿0 − 1
2

− 1
2 1 − 𝛿0 𝛿0

. . .

− 1
2

. . .
. . .

ª®®®®®®®®®®¬

©«

...

𝑢+𝑗−1
𝑢−𝑗
𝑢+𝑗
𝑢−𝑗+1...

ª®®®®®®®®®®¬

=

©«

...

𝑓 +𝑗−1
𝑓 −𝑗
𝑓 +𝑗
𝑓 −𝑗+1...

ª®®®®®®®®®®¬

C 𝒇 , (2)

where the top and bottom blocks will be determined by the boundary condi-
tions, ℎ is the mesh size, 𝛿0 ∈ R is the DG penalization parameter, 𝒇 =
(. . . , 𝑓 +𝑗−1, 𝑓

−
𝑗 , 𝑓

+
𝑗 , 𝑓

−
𝑗+1, . . . ) ∈ R2𝐽 is the source vector, analogous to the solution 𝒖.

The two-level preconditioner𝑀−1 we study consists of a cell-wise nonoverlapping
Schwarz (a cell block-Jacobi) smoother 𝐷−1

𝑐 , since the discretization leads to a
block matrix (see [8, 6])1, and a new discontinuous interpolation operator 𝑃 with
discontinuity parameter 𝑐, i.e.

𝐷−1
𝑐 𝒖 B ℎ2

©
«

. . .

𝛿0

𝛿0

. . .

ª®®®®®®®®®¬

−1 ©
«

...

𝑢+𝑗

𝑢−𝑗
...

ª®®®®®®®®®¬

, 𝑃 B

©«

1
𝑐 1 − 𝑐

1 − 𝑐 𝑐
1 . . .. . .

. . .. . .

. . .. . .

ª®®®®®®®®®®¬

, (3)

where 𝑐 = 1
2 gives a continuous interpolation on the nodes not present in the coarse

mesh, and discontinuous elsewhere. The restriction operator is 𝑅 B 1
2𝑃
⊺, and we use

𝐴0 := 𝑅𝐴𝑃. The action of our two-level preconditioner𝑀−1, with one presmoothing
step and a relaxation parameter 𝛼, acting on a residual 𝒈, is given by

1 In 1D this is simply a Jacobi smoother, which is not the case in higher dimensions.
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1. compute 𝒙 := 𝛼𝐷−1
𝑐 𝒈,

2. compute 𝒚 := 𝒙 + 𝑃𝐴−1
0 𝑅(𝒈 − 𝐴𝒙),

3. obtain 𝑀−1𝒈 = 𝒚.

2 Study of optimal parameters by Local Fourier Analysis

In [9] we described in detail, for classical interpolation, how Local Fourier Analysis
(LFA) can be used to block diagonalize all the matrices involved in the definition
of 𝑀−1 by using unitary transformations. The same approach still works with our
new discontinuous interpolation operator, and we thus use the same definitions and
notation for the block-diagonalization matrices 𝑄, 𝑄𝑙 , 𝑄𝑟 , 𝑄0, 𝑄𝑙0 and 𝑄𝑟 0 from
[9], working directly with matrices instead of stencils in order to make the important
LFA more accessible to our linear algebra community. We extract a submatrix 𝐴
containing the degrees of freedom of two adjacent cells from the SIPG operator
defined in (2),

𝐴 =
1
ℎ2

©«

− 1
2 1 − 𝛿0 𝛿0 0 − 1

2

− 1
2 0 𝛿0 1 − 𝛿0 − 1

2

− 1
2 1 − 𝛿0 𝛿0 0 − 1

2

− 1
2 0 𝛿0 1 − 𝛿0 − 1

2

ª®®®®®®®®¬
,

which we can block-diagonalize, 𝐴 = 𝑄𝑙𝐴𝑄𝑟 , to obtain

𝐴 =
1
ℎ2

©«

𝛿0 + cos (2𝜋(𝑘 − 𝐽/2)ℎ) 1 − 𝛿0

1 − 𝛿0 𝛿0 + cos (2𝜋(𝑘 − 𝐽/2)ℎ)
𝛿0 − cos (2𝜋𝑘ℎ) 1 − 𝛿0

1 − 𝛿0 𝛿0 − cos (2𝜋𝑘ℎ)

ª®®®®®®®®¬
.

The same mechanism can be applied to the smoother, 𝐷𝑐 = 𝑄𝑙𝐷𝑐𝑄𝑟 = 𝛿0
ℎ2 𝐼, where

𝐼 is the 4 × 4 identity matrix, and also to the restriction and prolongation operators,
𝑅 = 1

2𝑄𝑙0𝑅𝑄𝑟 with

𝑅 =
1√
2

©«
1 + (𝑐 − 1)𝑒 2𝑖 𝜋𝑘

𝐽 −𝑐𝑒 2𝑖 𝜋𝑘
𝐽 (−1) 𝑗

(
1 − (𝑐 − 1)𝑒 2𝑖 𝜋𝑘

𝐽

)
(−1) 𝑗𝑐𝑒 2𝑖 𝜋𝑘

𝐽

(−1) 𝑗𝑐𝑒− 2𝑖 𝜋𝑘
𝐽 (−1) 𝑗

(
1 + (𝑐 − 1)𝑒− 2𝑖 𝜋𝑘

𝐽

)
𝑐𝑒−

2𝑖 𝜋𝑘
𝐽 1 − (𝑐 − 1)𝑒− 2𝑖 𝜋𝑘

𝐽

ª®®¬
,

and 𝑃 = 2𝑅⊺, 𝑃 = 𝑄𝑙𝑃𝑄𝑟 0 = 2𝑅∗. Finally, for the coarse operator, we obtain
𝑄∗0𝐴0𝑄0 = 𝑄∗0𝑅𝐴𝑃𝑄0 = 𝑄∗0𝑅𝑄𝑄

∗𝐴𝑄𝑄∗𝑃𝑄0, and thus 𝐴0 = 𝑅𝐴𝑃 with
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𝐴0=
1
𝐻2

©«
1
2

(
𝑐 (4(𝑐 − 1)𝛿0 − 2𝑐 + 3) + (𝑐 − 1) cos

(
4𝜋𝑘
𝐽

)
+ 2𝛿0 − 1

)
1
2 (−1) 𝑗

(
−(2𝑐 − 1) (𝑐 (2𝛿0 − 1) − 𝛿0 + 1) 𝑒 4𝑖 𝜋𝑘

𝐽 − 𝑐 − 𝛿0 + 1
)

1
2 (−1) 𝑗

(
−(2𝑐 − 1) (𝑐 (2𝛿0 − 1) − 𝛿0 + 1) 𝑒− 4𝑖 𝜋𝑘

𝐽 − 𝑐 − 𝛿0 + 1
)

1
2

(
𝑐 (4(𝑐 − 1)𝛿0 − 2𝑐 + 3) + (𝑐 − 1) cos

(
4𝜋𝑘
𝐽

)
+ 2𝛿0 − 1

) ª®®¬
,

where 𝐻 = 2ℎ. We notice that the coarse operator is different for 𝑗 even and 𝑗 odd;
however, the matrices obtained for both cases are similar, with similarity matrix
(−1) 𝑗 𝐼 where 𝐼 is the identity matrix, and therefore have the same spectrum. In what
follows we assume 𝑗 to be even, without loss of generality. This means that we will
be studying a node that is present in both the coarse and fine meshes.
The error reduction capabilities of our two level preconditioner 𝑀−1 are given by

the spectrum of the stationary iteration operator

𝐸 = (𝐼 − 𝑃𝐴−1
0 𝑅𝐴) (𝐼 − 𝛼𝐷−1

𝑐 𝐴),

and as in [9], the 4-by-4 block Fourier-transformed operator from LFA,

𝐸 (𝑘) = (𝐼 − 𝑃(𝑘)𝐴−1
0 (𝑘)𝑅(𝑘)𝐴(𝑘)) (𝐼 − 𝛼𝐷−1

𝑐 (𝑘)𝐴(𝑘)),

has the same spectrum. Thus, we focus on studying the spectral radius 𝜌(𝐸 (𝑘)) in
order to find the optimal choices for the relaxation parameter𝛼, the penalty parameter
𝛿0 and the discontinuity parameter 𝑐. The non zero eigenvalues of 𝐸 (𝑘) are of the
form 𝜆± := 𝑐1 ±

√︃
𝑐2
𝑐3
, with

𝑐1 =




{
− 𝛼

(
3𝑐2𝛿0 (4𝛿0 − 3) + 𝑐

(
−12𝛿2

0 + 9𝛿0 + 1
)
+ 4𝛿2

0 − 2𝛿0 − 1
)

+ 𝛿0

(
𝑐2

(
8𝛿2

0 − 4𝛿0 − 1
)
+ 𝑐

(
−8𝛿2

0 + 4𝛿0 + 2
)
+ 2𝛿2

0 − 1
)

+(1 − 𝑐) (𝛼 + 𝛼𝑐 (𝛿0 − 2) + (𝑐 − 1)𝛿0) cos
(

4𝜋𝑘
𝐽

)} /
(
2𝛿2

0 − 1 + 𝛿0𝑐
2
(
8𝛿2

0 − 4𝛿0 − 1
)
+ 𝛿0𝑐

(
−8𝛿2

0 + 4𝛿0 + 2
)
− 𝛿0 (𝑐 − 1)2 cos

(
4𝜋𝑘
𝐽

))
,

𝑐2 =




2𝛼2
(
16(𝑐 − 1)2𝑐2𝛿4

0 − 2(𝑐 − 1)2
(
4𝑐2 + 𝑐 + 2

)
𝛿0 − 8(𝑐 − 1)𝑐(3(𝑐 − 1)𝑐 − 1)𝛿3

0

+
(
𝑐(17𝑐 + 8) (𝑐 − 1)2 + 2

)
𝛿2

0 + 2(𝑐 − 1)2 ((𝑐 − 1)𝑐 + 1)
)

+ 4𝛼2
(
4(𝑐 − 1)𝑐𝛿2

0 − 3(𝑐 − 1)𝑐𝛿0 + 𝑐 + 𝛿0 − 1
)
(𝑐 (3(𝑐 − 1)𝛿0 − 2𝑐 + 3) + 𝛿0 − 1) cos

(
4𝜋𝑘
𝐽

)

+ 2𝛼2 (𝑐 − 1)2𝑐 (𝑐 ((𝛿0 − 4) 𝛿0 + 2) + 2 (𝛿0 − 1)) cos2
(

4𝜋𝑘
𝐽

)
,

𝑐3 =




𝛿2
0

(
4𝑐(𝑐 − 1)𝛿0 − 2(1 − 2𝑐)2𝛿2

0 + (𝑐 − 1)2
)2

+ 2𝛿2
0

(
−2

(
2𝑐2 − 3𝑐 + 1

)2
𝛿2

0 + 4𝑐(𝑐 − 1)3𝛿0 + (𝑐 − 1)4
)

cos
(

4𝜋𝑘
𝐽

)

+ (𝑐 − 1)4𝛿2
0 cos2

(
4𝜋𝑘
𝐽

)
.

Afirst approach to optimizewould be tominimize the spectral radius for all frequency
parameters 𝑘 , but if we can find a combination of the parameters (𝛼, 𝛿0, 𝑐) such that
the eigenvalues of the error operator do not depend on the frequency parameter
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𝑘 , then the spectrum of the iteration operator, and therefore the preconditioned
system becomes perfectly clustered , i.e. only a few eigenvalues repeat many times,
regardless of the size of the problem. The solver then becomes mesh independent,
and the preconditioner very attractive for a Krylov method that will converge in a
finite number of steps.
For these equations not to depend on 𝑘 , they must be independent of cos

(
4𝜋𝑘
𝐽

)
,

and to achieve this, we impose three conditions on the coefficients accompanying the
cosine, and we deduce a combination of the parameters (𝛼, 𝛿0, 𝑐) which we verify
a posteriori fall into the allowed range of values for each parameter. Our conditions
are:
1. Set the coefficient accompanying the cosine in the numerator of 𝑐1 to zero.
2. Since the denominator of 𝑐1 also contains the cosine, set the rest of the numerator
of 𝑐1 to zero in order to get rid of 𝑐1 entirely. Note that this requirement
immediately implies an equioscillating spectrum (i.e. the maximum and the
minimum have equal absolute value), which often is characterizing the solution
minimizing the spectral radius, see e.g. [9].

3. 𝑐2 and 𝑐3 are second order polynomials in the cosine variable, if we want
the quotient to be non zero and independent of the cosine, we need for the
polynomials to simplify and for that, they must differ only by a multiplying
factor independent of the cosine. We then equate the quotient of the quadratic
terms with the quotient of the linear terms and verify a posteriori that 𝑐2/𝑐3
becomes indeed independent of the cosine.

These three conditions lead to the nonlinear system of equations




𝛼 + 𝛼𝑐 (𝛿0 − 2) + (𝑐 − 1)𝛿0 =0,

𝛼
(
3𝑐2𝛿0 (4𝛿0 − 3) + 𝑐

(
−12𝛿2

0 + 9𝛿0 + 1
)
+ 4𝛿2

0 − 2𝛿0 − 1
)
=

𝛿0

(
𝑐2

(
8𝛿2

0 − 4𝛿0 − 1
)
+ 𝑐

(
−8𝛿2

0 + 4𝛿0 + 2
)
+ 2𝛿2

0 − 1
)
,

2𝛼2 (𝑐 − 1)2𝑐 (𝑐 ((𝛿0 − 4) 𝛿0 + 2) + 2 (𝛿0 − 1))
(𝑐 − 1)4𝛿2

0
=

4𝛼2 (
4(𝑐 − 1)𝑐𝛿2

0 − 3(𝑐 − 1)𝑐𝛿0 + 𝑐 + 𝛿0 − 1
) (𝑐 (3(𝑐 − 1)𝛿0 − 2𝑐 + 3) + 𝛿0 − 1)

2𝛿2
0

(
−2

(
2𝑐2 − 3𝑐 + 1

)2
𝛿2

0 + 4𝑐(𝑐 − 1)3𝛿0 + (𝑐 − 1)4
) .

This system of equations can be solved either numerically or symbolically. After a
significant effort, the following values solve our nonlinear system:

𝑐 =Root of 3 − 8𝑐 + 8𝑐2 − 8𝑐3 + 4𝑐4 such that 𝑐 ∈ R and 0 < 𝑐 < 1,

𝛿0 =Root of − 1 − 4𝛿0 + 24𝛿0
2 − 32𝛿0

3 + 12𝛿0
4 such that 𝛿0 ∈ R and 1 < 𝛿0, and

𝛼 =Root of − 1 − 40�̃� + 214�̃�2 − 352�̃�3 + 183�̃�4 such that �̃� ∈ R and 0 < �̃� < 1.
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Fig. 2: Solving −Δ𝑢 = 1 in 1D with Dirichlet boundary conditions. Left: eigenvalues of the error
operator 𝐸, for a 32-cell mesh. Top curve at 0: optimizing 𝛼 for 𝛿0 = 2 (classical choice). Bottom
curve at 0: optimizing 𝛼 and 𝛿0. Middle curve at 0: optimizing 𝛼, 𝛿0 and 𝑐. Right: GMRES
iterations for classical interpolation 𝑐 = 0.5, with 𝛿0 = 2 and 𝛼 = 8/9, and for the optimized
clustering choice, leading to finite step convergence.

The corresponding numerical values are approximately

𝑐 ≈ 0.564604, 𝛿0 ≈ 1.516980, 𝛼 ≈ 0.908154,

and we see that indeed the interpolation should be discontinuous! We have found
a combination of parameters that perfectly clusters the eigenvalues of the iteration
operator of our two level method, and therefore also the spectrum of the precondi-
tioned operator. Such clustering is not very often possible in preconditioners, a few
exceptions are the HSS preconditioner in [4], and some block preconditioners, see
e.g. [13]. Furthermore, the spectrum is equioscillating, which often characterizes the
solution minimizing the spectral radius of the iteration operator.

3 Numerical Results

We show in Fig. 2 on the left the eigenvalues of the iteration operator for a 32-cell
mesh in 1D with Dirichlet boundary conditions, for continuous interpolation and
𝛿0 = 2 optimizing only 𝛼, optimizing both 𝛼 and 𝛿0, and the optimized clustering
choice.We clearly see the clustering of the eigenvalues, including some extra clusters
due to the Dirichlet boundary conditions. We also note that the spectrum is nearly
equioscillating due to condition (1) and (2), which delivers visibly an optimal choice
in the sense of minimizing the spectral radius of the error operator. With periodic
boundary conditions, the spectral radius for the optimal choice of 𝛼, 𝛿0 and 𝑐 is
0.19732, while only optimizing𝛼 and 𝛿0 it is 0.2. The eigenvalues due to theDirichlet
boundary conditions are slightly larger than 0.2, but tests with periodic boundary
conditions confirm that then these larger eigenvalues are not present. Refining the
mesh conserves the shape of the spectrum shown in Fig. 2 on the left, but with more
eigenvalues in each cluster, except for the clusters related to the Dirichlet boundary
conditions. Note also that since the error operator is equioscillating around zero, the
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Fig. 3: Spectrum of the iteration operator for a 32-by-32 square 2D mesh. First curve at 0 from the
top: optimizing 𝛼 for 𝛿0 = 2 (classical choice) in 1D. Third curve at 0 from the top: optimizing
𝛼 and 𝛿0 in 1D. Second curve at 0 from the top: optimizing 𝛼, 𝛿0 and 𝑐 in 1D. Fourth curve at 0
from the top: numerically optimizing 𝛼, 𝛿0 and 𝑐 in 2D.

spectrum of the preconditioned system is equioscillating around one, and since the
spectral radius is less than one, the preconditioned system has a positive spectrum
and is thus invertible.
In Fig. 2 on the rightwe show theGMRES iterations needed to reduce the residuals

by 10−8 for different parameter choices and the clustering choice, for different mesh
refinements. We observe that the GMRES solver becomes exact after six iterations
for the clustering choice.
We next perform tests in two dimensions using an interpolation operator with

a stencil that is simply a tensor product of the 1D stencil
( 1 0
𝑐 1−𝑐

1−𝑐 𝑐
0 1

)
⊗

( 1 0
𝑐 1−𝑐

1−𝑐 𝑐
0 1

)
,

where ⊗ stands for the Kronecker product. This is very common in DG methods
where even the cell block-Jacobi matrix can be expressed as a Kronecker sum for
fast inversion. We show in Fig. 3 the spectrum for different optimizations in two
dimensions. We observe that the clustering is not present, however as shown in
detail in [9] for classical interpolation, the optimal choice from the 1D analysis is
also here very close to the numerically calculated optimum in 2D.

4 Conclusion

We showed for a one dimensional discontinuous Galerkin model problem that the
optimization of a two grid method leads to a discontinuous interpolation operator,
and its performance is superior to using a continuous interpolation operator. The
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discontinuous interpolation operator allowed us also to cluster the spectrum for
our model problem, and thus a Krylov method with this preconditioner becomes a
direct solver, converging in the number of iterations corresponding to the number
of clusters in exact arithmetic. We showed numerically that this is indeed the case,
and that when using the one dimensional optimized parameters in higher spatial
dimensions, we still get a spectrum close to the numerically best possible one, even
though the spectrum is not clustered any more. We currently investigate if there exist
discontinous interpolation operators in 2D that cluster the spectrum, and what their
influence is on the Galerkin coarse operator obtained.
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Domain Decomposition in Shallow Water
Modelling of Dutch Lakes for Multiple
Applications

Menno Genseberger, Asako Fujisaki, Christophe Thiange, Carlijn Eijsberg - Bak,
Arnout Bijlsma, and Pascal Boderie

1 Introduction

1.1 Area of interest

Lake IJssel, Lake Marken, and Veluwerandmeren originated from the construction
of dams and land reclamation of an inland sea in the Netherlands (see Fig. 4). For
Lake Marken and Veluwerandmeren the dynamic behavior is mainly governed by
wind driven waves and flow of water. For Lake IJssel also discharge of River IJssel
(in the south) and flushing of water towards the Wadden Sea (in the north) play a
role. Proper computational modelling of the dynamics of waves and flow of water
is a challenge. This is of importance for different societal aspects of these lakes: in
safety assessments of the primary water defences, operational forecasting of flooding
[1], and water quality and ecological studies.

1.2 Previous approaches

Previously, for modelling the hydrodynamic flow in the lake, two shallow water
solvers were used: Delft3D-FLOW and WAQUA [2]. Delft3D-FLOW is the depth
averaged (2DH) and three-dimensional (3D) shallow water solver in the modelling
suite Delft3D [3]. Delft3D is open source and used worldwide. WAQUA is the 2DH
shallow water solver in the modelling suite SIMONA. SIMONA is maintained for
Dutch public works and only applied to the Dutch main waters (coastal area, rivers,
and lakes). The computational kernels of Delft3D-FLOW and WAQUA are quite
similar: both use the same ADI (Alternating Direction Implicit) time integration
method on a staggered curvilinear computational grid.

Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands, e-mail: Menno.Genseberger@
deltares.nl
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In first instance, for Delft3D-FLOW focus was on modelling flexibility and for
WAQUA on good parallel performance. Parallel implementation of WAQUA was
developed [4, 5] based on domain decomposition with an overlap of one subdomain.
In the same period, non-overlapping domain decomposition with optimized cou-
pling/absorbing boundary conditions was considered for Delft3D-FLOW [6, 7, 8].
Ideas of the latter were adapted for incorporation in WAQUA to enable more mod-
elling flexibility and further improvement of the parallel performance, see [9]. For
application of this approach to operational forecasting of flooding on Lake IJssel
and Lake Marken, see [10]. The WAQUA shallow water solver is suitable for safety
assessments of the primary water defences and operational forecasting of flooding.
Water quality and ecological studies require more advanced modelling flexibility
fromDelft3D-FLOW (see for instance [11] for a typical application in LakeMarken).
However, Delft3D-FLOW does not have such a good parallel behavior likeWAQUA.
This is a bottle neck for applications that require highly detailed modelling.

1.3 New approach

Currently there is a transition from Delft3D-FLOW and WAQUA/TRIWAQ to the
shallow water solver for unstructured computational grids in the Delft3D FM (Flex-
ible Mesh) suite [12, 13]. To enable the use of unstructured computational grids,
the computational kernel of Delft3D FM is different from Delft3D-FLOW and
WAQUA/TRIWAQ.
Delft3D FM solves the shallow-water equations with the spatial discretisation

being achieved by a staggered finite volume method on an unstructured mesh of
cells of varying complexity (triangles to hexagons). The discretised shallow water
equations for thewater levels are solved implicitly in time, withmomentum advection
treated explicitly. The velocities and fluxes are then obtained by back substitution.
After linearisation of the temporal discretisation, the resulting systems are solved
with a semi-implicit method. This involves a linear system which is currently solved
by a minimum degree algorithm to reduce system size and a Conjugate Gradient
iterative solver with block Jacobi preconditioner and ILU(0) factorization on the
blocks as implemented in PETSc [14]. (Note that for this new simulation software
for shallow water we are still working on major improvements, Delft3D FM is open
source to enable collaboration world-wide.)
Because of these differences, a novel approach is required for model development

and model application with Delft3D FM [12, 13]. In this paper we illustrate this for
the new shallow water models of Lake IJssel, Lake Marken, and Veluwerandmeren.
The aim is an integrated approach in which the Delft3D FMmodels can be used as a
basis for the different societal aspects of these lakes. For that purpose we want to take
advantage of the enhanced modelling possibilities of an unstructured computational
grid. Therefore focus is on the computational grid and we developed a strategy to
generate this, as outlined in section 2. For the different applications on the lakes,
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50 m
200 m
400 m

Fig. 1: On the top an illustration of the generation of the boundary fitted computational grid for
Lake Marken. With 50 m triangular grid cells near the coast and 400 m triangular grid cells in the
middle of the lake by using polygons. On the right bottom a local update of the computational grid
near Marker Wadden.

section 3 illustrates how domain decomposition in Delft3D FM enables parallel
computing for practical use. We end with some concluding remarks in section 4.

2 Computational grids

Lake IJssel, Lake Marken, and Veluwerandmeren are quite shallow lakes with local
depth varations (due to navigation channels, pits for sand mining or that remained
from the old inland sea, land reclamation for housing or nature). For accurate mod-
elling the flow of water, these local depth variations and structures like dams and
sluices should be incorporated properly. Also projection of topography on the com-
putational grid needs special care. The required accuracy can differ in the application
to different societal aspects. However, our aim is an integrated approach in which
the model can serve as a basis for different model applications.
Key idea is to have enough grid resolution with 50 m triangular cells near the

dikes (important for dike safety assessments and operational forecasting) and a
coarser grid resolution with 400 m triangular cells where possible in order to save
computational time (important both for operational forecasting and water quality
studies). For this we used polygons to force the required local resolutions. See the
top of Fig. 1 for an illustration for Lake Marken of the strategy to generate the
computational grid. From an initial pilot we learned that we can make a Delft3D
FM boundary fitted triangular grid that has similar accuracy as a uniform boundary
fitted grid with 50 m triangular cells but with more than three times less grid cells
and, as a consequence, computational times that are more than three times lower.
With the grid generation strategy we were able, next to a proper fitting of the grid
to the boundary, to incorporate important details of new land reclamation projects,
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Fig. 2: Example near the discharge sluices of Den Oever (in north west part) of taking into account
for the grid generation the erosion pits near the Afsluitdijk (left) and the resulting highly detailed
parts of the grid (right).

like IJburg for housing and Marker Wadden for nature in Lake Marken. See Fig. 4
for the resulting computational grids.
Furthermore, the strategy enables the local adaptation of the computational grid

later on. For Lake Marken this is important as several infrastructural projects are still
running or being started in the near future. On the bottom right of Fig. 1 an example
of such an adaptation for Lake Marken is shown. It shows the local update of the
computational grid near Marker Wadden by following the local structures for the
most recent outline of the islands (which are being built between 2016 and 2019) and
pits around the islands (topography obtained from recent surveyswith high resolution
multibeam depth samples). This update is important for modelling (in combination
with in situ measurements and remote sensing images) the effect of Marker Wadden
on sediments in LakeMarken in water quality and ecological studies. For Lake IJssel
the computational grid was locally adapted near the Afsluitdijk in the north for salt
intrusion via the locks from theWadden Sea. That resulted in highly detailed parts of
the grid covering deep pits and navigation channels to better represent steep gradients
in the topography, see the example in Fig. 2. Fig. 3 shows model results for Lake
IJssel for the 2018 drought. Then, very little fresh water entered the lake from River
IJssel. Therefore, it was not possible to flush the more saline water that accumulated
in the deep pits to the Wadden Sea. As a consequence chloride spreaded all over the
lake and chloride concentrations exceeded average norms at drinking water intakes
in the mid west of the lake. To monitor this situation during the 2018 drought many
measurement campaigns were performed on Lake IJssel. These measurements were
used to validate the model, they are plotted as bullets on the model results in Fig. 3.

3 Domain decomposition for parallel computing in Delft3D FM

The new shallow water models with Delft3D FM of Lake IJssel, Lake Marken, and
Veluwerandmeren incorporate important details by local grid refinement.
As a consequence, compared with the previous shallow water solvers, for Lake

IJssel and Lake Marken the corresponding horizontal computational grids are about
a factor 4 larger. TheWAQUAmodel of Lake IJssel contains 111 763 horizontal grid
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Fig. 3: Results of newmodel and measurements (bullets) during 2018 drought, chloride [mg/l] near
bottom (left) and near surface (right).

elements, whereas the Delft3D FMmodel 369 683. For Lake Marken these numbers
are 109 793 and 33 5141, respectively. The WAQUA model of Veluwerandmeren
contains 64 616 horizontal grid elements, the Delft3D FM model 91 291. To be
able to use these models for the different applications in practice, we want to apply
parallel computing with Delft3D FM.
Current parallelisation of Delft3D FM is via domain decomposition with METIS

[15] to distribute the computational work. At the interfaces between subdomains,
halo regions are defined using degree 4 neighbours for a proper representation of
discretised stencils (see [12, 13] formore details) at the interfaces and communication
between subdomains via MPI [16]. On the right in Fig. 4 an example is shown of
such a decomposition for the shallow water model of Lake Marken.
The shallowwatermodels of LakeMarken and Lake IJssel were two of the real life

testcases to study the current parallelization of Delft3D FM in two PRACE projects.
These projects investigated possible improvements, amongst others strategies for
automatic partitioning into subdomains, for more details we refer to [17, 18]. In the
present paper we show results for the current parallelisation in the standard version
of Delft3D FM.
To investigate the parallel performance of the new Delft3D FM shallow water

models we run tests both in depth-averaged mode (2DH) and in three-dimensional
mode (3D). For Lake IJssel in 3D the model was run with both hydrodynamics and
salinity for a part of the drought period in 2018 with 5 boundary fitted layers in
the vertical. For Lake Marken in 3D the model was run with hydrodynamics for the
second half year of 2011 with 7 boundary fitted layers in the vertical. In 2DH the
Lake IJssel and Lake Marken models were run with hydrodynamics for a storm in
January 2007. For Lake Veluwerandmeren the model was run with hydrodynamics
for a storm in December 2013 both in 2DH and 3D with 5 boundary fitted layers in
the vertical. Tests were run at the Cartesius supercomputer with 2 Intel Xeon E5-
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Lake 
IJssel

Lake 
Marken

Fig. 4:On the left the area of interest with the computational grids of the lakes projected on a satellite
image (by Copernicus Sentinel-2 from ESA at June 30th 2018, https://scihub.copernicus.eu/dhus).
On the right an example for Lake Marken of automatic partitioning by domain decomposition with
METIS into 16 subdomains. The overlap/halo regions are highlighted by orange lines (light gray
in black and white print). Note that gridcells are 400 m in the middle of the lake and 50 m near the
borders of the lake.

2697A v4 processors and 32 cores per node and InfiniBand and Intel MPI between
the nodes (Bull B720 bullx system, SURF, the Netherlands).
Fig. 5 shows the speedup compared to computations on 1 node. The Veluwerand-

meren model is relatively small. In 2DH parallel scaling stops after about 4 nodes
(with 128 cores), for 3D there is more computational work per horizontal grid point
and computational times can still be lowered by incorporating more nodes/cores.
The Lake IJssel and Lake Marken models have comparable horizontal grid sizes and
speedup also shows similar behavior. In 2DH parallel scaling stops at about 16 nodes
(with 512 cores), for 3D parallel scaling continues even beyond 16 nodes. This last
observation is important for application in 3D for real life problems in these lakes
with salinity, nutrients, sediments, and algae. The current numerical implementation
of Delft3D FM uses a time integration method with automatic time stepping. The
time step (that is used for the whole model domain) is determined with a local CFL
criterium for which small grid cells may result in relatively small time steps. The
computational grids for Lake IJssel and Lake Marken contain highly detailed parts
which may lead to such small time steps. To finish the required simulation periods,
which may be typically a year for applications in water quality and ecology, this
accumulates to a lot of time steps to be taken. But as the scaling in 3D is still good,
computational times can be further lowered by incorporatingmore nodes/cores. Note
that, because of complexity due to different processes modeled and the automatic



DD in Shallow Water Modelling of Dutch Lakes 277

time stepping approach, it is hard to present generic and characteristic numbers that
relate problem size and computational performance. For a model that only involves
the shallow water equations, about 40 % to 60 % of the wall clock time is due to the
solver part, see [17] for more details. This contribution is much lower when incor-
porating additional processes like salt intrusion for Lake IJssel, profiling results for
this and other models (amongst others for the North Sea with transport of nutrients
and algal blooms) are currently being analyzed in a running PRACE project.
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Fig. 5: Speed up of Delft3D FM shallow water models for Lake IJssel (left), LakeMarken (middle),
and Veluwerandmeren (right) compared to computations on 1 node on Cartesius supercomputer of
SURF.

4 Conclusions and outlook

In this paper we illustrated the development of new shallowwater models of Lake IJs-
sel, Lake Marken, and Veluwerandmeren with Delft3D FM. The aim is an integrated
approach in which the models can be used as a basis for the different societal as-
pects of these lakes: in safety assessments of the primary water defences, operational
forecasting of flooding, and water quality and ecological studies. For that purpose
domain decomposition in the current numerical implementation of Delft3D FM en-
ables parallel computing for practical use. However, the time integration method
used with automatic time stepping may become a bottleneck in the near future for
these models due to the highly detailed parts in the computational grids. Therefore,
a next step would be to make a more implicit time integration method available in
Delft3D FM. That may also require more advanced non-overlapping domain de-
composition techniques with optimized coupling/absorbing boundary conditions, as
applied before in the previous shallow water solvers for these lakes.

Acknowledgements This paper presents results from projects financed by the Dutch Ministry
of Infrastructure and the Environment. We acknowledge PRACE for awarding us access to re-
source Cartesius based in The Netherlands at SURF. The support of Maxime Mogé from SURF,



278 Genseberger et al.

The Netherlands and Andrew Emerson from CINECA, Italy to the technical work is gratefully
acknowledged.

References

1. Genseberger, M., Smale, A., Hartholt, H.: Real-time forecasting of flood levels, wind driven
waves, wave runup, and overtopping at dikes aroundDutch lakes. In: Proceedings 2nd European
Conference on FLOODrisk Management, pp. 1519–1525. Taylor & Francis Group (2013)

2. WAQUA/TRIWAQ - two- and three-dimensional shallow water flow model, Techni-
cal documentation, SIMONA report number 99-01, Rijkswaterstaat, latest online version
3.17 from November 2016 at http://simona.deltares.nl/release/doc/techdoc/
waquapublic/sim1999-01.pdf

3. Delft3D open source website, https://oss.deltares.nl/web/delft3d/home
4. Roest, M. R. T.: Partitioning for parallel finite difference computations in coastal water simu-
lation, Ph.D. thesis, Delft University of Technology, The Netherlands (1997)

5. Vollebregt, E. A. H.: Parallel software development techniques for shallow water model, Ph.D.
thesis, Delft University of Technology, The Netherlands (1997)

6. De Goede, E. D., Groeneweg, J., Tan, K. H., Borsboom, M. J. A., Stelling, G. S.: A domain
decomposition method for the three-dimensional shallow water equations. In: Simulation
Practice and Theory 3, 307–325 (1995)

7. Tan, K. H., Borsboom, M. J. A.: On generalized Schwarz coupling applied to advection-
dominated problems. In: Proc. 7th Int. Conf. on Domain Decomposition. AMS. (1994)

8. Tan, K. H.: Local coupling in domain decomposition, Ph.D. thesis, Utrecht University, The
Netherlands (1995)

9. Borsboom, M., Genseberger, M., van ´t Hof, B., Spee E.: Domain decomposition in shallow-
water modelling for practical flow applications. In: J. Erhel et al. (eds) Domain Decomposition
Methods in Science and Engineering XXI. Springer, Berlin (2014)

10. Genseberger, M., Spee, E., Voort, L.: Domain Decomposition in Shallow Lake Modelling
for Operational Forecasting of Flooding. In: Dickopf T., Gander M., Halpern L., Krause R.,
Pavarino L. (eds) Domain Decomposition Methods in Science and Engineering XXII. Lecture
Notes in Computational Science and Engineering, vol 104. Springer, Cham (2016).

11. Genseberger, M., Noordhuis, R., Thiange, C. X. O., Boderie, P. M. A.: Practical measures for
improving the ecological state of lake Marken using in-depth system knowledge. In: Lakes &
Reservoirs: Research & Management 21(1), 56–64 (2016)

12. Delft3D FM Suite website, https://www.deltares.nl/en/software/
delft3d-flexible-mesh-suite

13. Kernkamp, H. W. J., van Dam, A., Stelling, G. S., de Goede, E. D.: Efficient scheme for the
shallow water equations on unstructured grids with application to the Continental Shelf. In:
Ocean Dynamics 61(8), 1175–1188 (2011)

14. https://www.mcs.anl.gov/petsc
15. http://glaros.dtc.umn.edu/gkhome/views/metis
16. Gropp, W., Huss-Ledermann, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W., Snir, M.:
MPI: The Complete Reference Vol. 2. MIT Press (1998)

17. Mogé, M., Russcher, M. J., Emerson, A., Genseberger, M.: Scalable Delft3D Flexible Mesh
for Efficient Modelling of Shallow Water and Transport Processes. PRACE White Paper 284
(2019), https://prace-ri.eu/wp-content/uploads/WP284.pdf

18. Genseberger, M., Mogé, M., Russcher, M. J., Emerson, A.: Towards scalable Delft3D Flexible
Mesh on PRACE infrastructure for real life hydrodynamic and water quality applications.
Poster presented at 26th International Conference on Domain Decomposition Methods (2020)



A Variational Interpretation of Restricted
Additive Schwarz With Impedance Transmission
Condition for the Helmholtz Problem

Shihua Gong, Martin J. Gander, Ivan G. Graham, and Euan A. Spence

1 The Helmholtz problem

Motivated by the large range of applications, there is currently great interest in
designing and analysing preconditioners for finite element discretisations of the
Helmholtz equation

−(Δ + 𝑘2 )𝑢 = 𝑓 on Ω , (1)

on a 𝑑−dimensional domain Ω (𝑑 = 2, 3), with 𝑘 the (assumed constant, but pos-
sibly large) angular frequency. While the methods presented easily apply to quite
general scattering problems and geometries, we restrict attention here to the interior
impedance problem, where Ω is bounded, and the boundary condition is(

𝜕

𝜕𝑛
− i𝑘

)
𝑢 = 𝑔 on 𝜕Ω , (2)

where 𝜕𝑢/𝜕𝑛 is the outward-pointing normal derivative of 𝑢 on Ω.
The weak form of problem (1), (2) is to seek 𝑢 ∈ 𝐻1 (Ω) such that

𝑎(𝑢, 𝑣) = 𝐹 (𝑣) :=
∫
Ω
𝑓 �̄� 𝑑𝑥 +

∫
𝜕Ω
𝑔�̄� 𝑑𝑠, (3)

where 𝑎(𝑢, 𝑣) :=
∫
Ω
(∇𝑢.∇𝑣 − 𝑘2𝑢𝑣) − i𝑘

∫
𝜕Ω
𝑢𝑣, for 𝑢, 𝑣 ∈ 𝐻1 (Ω).
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2 Parallel iterative Schwarz method

To solve (1), (2), we shall consider domain decomposition methods, based on a set of
Lipschitz polyhedral subdomains {Ωℓ }𝑁ℓ=1, forming an overlapping cover of Ω and
equipped with a partition of unity: {𝜒ℓ }𝑁ℓ=1, such that

for each ℓ : supp 𝜒ℓ ⊂ Ωℓ , 0 ≤ 𝜒ℓ (𝒙) ≤ 1 when 𝒙 ∈ Ωℓ ,
and

∑
ℓ 𝜒ℓ (𝒙) = 1 for all 𝒙 ∈ Ω.

}
(4)

Then, the parallel Schwarz method for (1), (2) with Robin (impedance) transmis-
sion conditions is: given 𝑢𝑛 defined on Ω, we solve the local problems:

−(Δ + 𝑘2)𝑢𝑛+1ℓ = 𝑓 in Ωℓ , (5)(
𝜕

𝜕𝑛ℓ
− i𝑘

)
𝑢𝑛+1ℓ =

(
𝜕

𝜕𝑛ℓ
− i𝑘

)
𝑢𝑛 on 𝜕Ωℓ\𝜕Ω , (6)(

𝜕

𝜕𝑛ℓ
− i𝑘

)
𝑢𝑛+1ℓ = 𝑔 on 𝜕Ωℓ ∩ 𝜕Ω. (7)

Then the next iterate is the weighted sum of the local solutions

𝑢𝑛+1 :=
∑︁
ℓ

𝜒ℓ𝑢
𝑛+1
ℓ . (8)

Information is shared between neighbouring subdomains at each iteration via (8).
In [6], we analyse the iteration (5) – (8) in the function space

𝑈 (Ω) :=
{
𝑣 ∈ 𝐻1 (Ω) : Δ𝑣 ∈ 𝐿2 (Ω), 𝜕𝑣/𝜕𝑛 ∈ 𝐿2 (𝜕Ω)},

and its local analogues 𝑈 (Ωℓ). Using the fact that any function 𝑣 ∈ 𝑈 (Ωℓ) has
impedance trace (𝜕/𝜕𝑛 − i𝑘)𝑣 ∈ 𝐿2 (Γ) on any Lipschitz curve Γ ⊂ Ωℓ , we prove
in [6] that (5) – (8) is well-defined in the space 𝑈 (Ω). Moreover, introducing 𝑒𝑛ℓ =
𝑢 |Ωℓ − 𝑢𝑛ℓ , and letting e𝑛 = (𝑒𝑛1 , . . . , 𝑒𝑛𝑁 ), we prove in [6] that e𝑛+1 = T e𝑛, where
under certain geometric assumptions, T has the ‘power contraction’ property

∥T 𝑁 ∥ ≪ 1, (9)

with respect to the product norm on
∏
ℓ 𝑈0 (Ωℓ), where 𝑈0 (Ωℓ) is the subspace of

functions 𝑣 ∈ 𝑈 (Ωℓ), for which Δ𝑣 + 𝑘2𝑣 = 0 on Ωℓ . Analogously to [1], the norm
of 𝑣 is the 𝐿2 norm of its impedance data on 𝜕Ωℓ . See the remarks in §5, especially
(24), for a more precise explanation of (9).
The aim of this note is to show that a natural finite element analogue of (5) – (8)

corresponds to a preconditioned Richardson-type iterative method for the finite ele-
ment approximation of (1), (2), where the preconditioner is a Helmholtz-orientated
version of the popular Restricted Additive Schwarz method. This preconditioner
is given several different names in the literature – WRAS-H (Weighted RAS for
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Helmholtz) [9], ORAS (Optimized Restricted Additive Schwarz) [10, 2, 5], IM-
PRAS1 (RAS with impedance boundary condition) [7]. However it has not previ-
ously been directly connected via a variational argument to the iterative method (5)
– (8) in the Helmholtz case, although there are algebraic discussions (e.g., [3], [2,
§2.3.2]). We also demonstrate numerically in §5, that the finite element analogue of
(5) – (8) inherits the property (9) proved at the continuous level in [6].
Method (5)–(8) is an example of methods studiedmore generally in the Optimized

Schwarz literature (e.g., [4, 10]), where Robin (or more sophisticated) transmission
conditions are constructed with the aim of optimizing convergence rates. Although
the transmission condition (6) above can be justified directly as a first order absorbing
condition for the local Helmholtz problem (5) (without considering optimization),
thismethod is still often called ‘OptimizedRestrictedAdditive Schwarz’ (or ‘ORAS’)
and we shall continue this naming convention here. ORAS is arguably the most
successful one-level parallel method for Helmholtz problems. It can be applied on
very general geometries, does not depend on parameters, and can even be robust to
increasing 𝑘 [5]. More generally it can be combined with coarse spaces to improve
its robustness properties.

3 Variational formulation of RAS with impedance transmission
condition (ORAS)

Here we formulate a finite element approximation of (1), (2) and show that it
coincides with ORAS. We introduce a nodal finite element space Vℎ ⊂ 𝐻1 (Ω)
consisting of continuous piecewise polynomials of total degree ≤ 𝑝 on a conforming
mesh T ℎ. Functions in Vℎ are uniquely determined by their values at nodes in
Ω, denoted {𝑥 𝑗 : 𝑗 ∈ I}, for some index set I. The local space on Ωℓ is Vℎ

ℓ :=
{𝑣ℎ |Ωℓ : 𝑣ℎ ∈ Vℎ} with corresponding nodes denoted {𝑥 𝑗 : 𝑗 ∈ Iℓ }, for some
Iℓ ⊂ I.
Using the sesquilinear form 𝑎 and right-hand side 𝐹 appearing in (3), we can

define the discrete operators Aℎ, 𝐹ℎ : Vℎ ↦→ (Vℎ) ′ by

(Aℎ𝑢ℎ) (𝑣ℎ) := 𝑎(𝑢ℎ, 𝑣ℎ) and 𝐹ℎ (𝑣ℎ) = 𝐹 (𝑣ℎ), for all 𝑢ℎ, 𝑣ℎ ∈ Vℎ . (10)

Analogously, on each subdomain Ωℓ , we define Aℎ,ℓ : Vℎ
ℓ → (Vℎ

ℓ ) ′ by
(Aℎ,ℓ𝑢ℎ,ℓ) (𝑣ℎ,ℓ) := 𝑎ℓ (𝑢ℎ,ℓ , 𝑣ℎ,ℓ).We also need prolongations R⊤ℎ,ℓ , R̃⊤ℎ,ℓ : Vℎ

ℓ →
Vℎ defined for all 𝑣ℎ,ℓ ∈ Vℎ

ℓ by

(R⊤ℎ,ℓ𝑣ℎ,ℓ) (𝑥 𝑗 ) =
{
𝑣ℎ,ℓ (𝑥 𝑗 ) 𝑗 ∈ Iℓ ,
0 otherwise, and R̃⊤ℎ,ℓ𝑣ℎ,ℓ = R⊤ℎ,ℓ (𝜒ℓ𝑣ℎ,ℓ).

(11)
Note the subtlety in (11): The extension R⊤ℎ,ℓ𝑣ℎ,ℓ is defined nodewise: It coin-

cides with 𝑣ℎ,ℓ at nodes in Ωℓ and vanishes at nodes in Ω\Ωℓ . Thus R⊤ℎ,ℓ𝑣ℎ,ℓ ∈
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Vℎ ⊂ 𝐻1 (Ω). This is an 𝐻1− conforming finite element approximation of the zero
extension of 𝑣ℎ,ℓ to all of Ω. (The zero extension is not in 𝐻1 (Ω) in general.) We
define the restriction operator Rℎ,ℓ : V ′ℎ →V ′ℎ,ℓ by duality, i.e., for all 𝐹ℎ ∈ V ′ℎ,

(Rℎ,ℓ𝐹ℎ) (𝑣ℎ,ℓ) := 𝐹ℎ (R⊤ℎ,ℓ𝑣ℎ,ℓ), 𝑣ℎ,ℓ ∈ Vℎ
ℓ .

Then the ORAS preconditioner is the operator B−1
ℎ : V ′ℎ →Vℎ defined by

B−1
ℎ :=

∑︁
ℓ

R̃⊤ℎ,ℓA−1
ℎ,ℓRℎ,ℓ . (12)

This preconditioner can also be written in terms of operators Qℎ,ℓ : Vℎ → Vℎ
ℓ

defined for all 𝑢ℎ ∈ Vℎ by

𝑎ℓ (Qℎ,ℓ𝑢ℎ, 𝑣ℎ,ℓ) = 𝑎(𝑢ℎ,R⊤ℎ,ℓ𝑣ℎ,ℓ), for all 𝑣ℎ,ℓ ∈ Vℎ
ℓ , (13)

where R⊤ℎ,ℓ is defined in (11), and then B−1
ℎ =

∑
ℓ R̃⊤ℎ,ℓQℎ,ℓ . The corresponding

preconditioned Richardson iterative method can be written as

𝑢𝑛+1ℎ = 𝑢𝑛ℎ + B−1
ℎ (𝐹ℎ − Aℎ𝑢𝑛ℎ). (14)

The matrix realisation of (14) is given in §5.

4 Connecting the parallel iterative method with ORAS

In this section, we show that a natural finite element approximation of (5)–(8)
yields (14). First, to write (5) - (8) in a residual correction form, we introduce the
“corrections” 𝛿𝑛ℓ := 𝑢𝑛+1ℓ − 𝑢𝑛 |Ωℓ ,. With this definition we have

−(Δ + 𝑘2)𝛿𝑛ℓ = 𝑓 + (Δ + 𝑘2)𝑢𝑛 in Ωℓ , (15)(
𝜕

𝜕𝑛ℓ
− i𝑘

)
𝛿𝑛ℓ = 0 on 𝜕Ωℓ\𝜕Ω , (16)(

𝜕

𝜕𝑛ℓ
− i𝑘

)
𝛿𝑛ℓ = 𝑔 −

(
𝜕

𝜕𝑛ℓ
− i𝑘

)
𝑢𝑛 on 𝜕Ωℓ ∩ 𝜕Ω , (17)

and then 𝑢𝑛+1 = 𝑢𝑛 +
∑︁
ℓ

𝜒ℓ𝛿
𝑛
ℓ . (18)

Note, there is more subtlety here: Because of (8), 𝑢𝑛 |Ωℓ is not the same as 𝑢𝑛ℓ .
The theory in [6] can be used to show that (15)–(18) is still well-posed in 𝑈 (Ω).
Multiplying (15) by 𝑣ℓ ∈ 𝐻1 (Ωℓ), integrating by parts and using (16), (17), 𝛿𝑛ℓ
satisfies, for 𝑣ℓ ∈ 𝐻1 (Ωℓ),
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𝑎ℓ (𝛿𝑛ℓ , 𝑣ℓ) =
∫
Ωℓ
𝑓 𝑣ℓ +

∫
𝜕Ωℓ∩𝜕Ω

𝑔 𝑣ℓ

+
∫
Ωℓ
(Δ + 𝑘2)𝑢𝑛 𝑣ℓ −

∫
𝜕Ωℓ∩𝜕Ω

(
𝜕

𝜕𝑛ℓ
− i𝑘

)
𝑢𝑛 𝑣ℓ . (19)

To implement the finite element discretization of this, we will need to handle the
case when 𝑢𝑛 on the right-hand side is replaced by a given iterate 𝑢𝑛ℎ ∈ Vℎ and
when the test function 𝑣ℓ ∈ 𝐻1 (Ωℓ) is replaced by 𝑣ℎ,ℓ ∈ Vℎ

ℓ . The third term on
the right hand side of (19) then requires integration by parts to make sense. Using
the nodewise extension R⊤ℎ,ℓ we replace the third and fouth terms in (19) by∫

Ω
(Δ + 𝑘2)𝑢𝑛 R⊤ℎ,ℓ𝑣ℎ,ℓ −

∫
𝜕Ω

(
𝜕

𝜕𝑛
− i𝑘

)
𝑢𝑛 R⊤ℎ,ℓ𝑣ℎ,ℓ = −𝑎(𝑢𝑛,R⊤ℎ,ℓ𝑣ℎ,ℓ),

(20)

where the right-hand side is obtained from the left via integration by parts over Ω.
This leads to the FEM analogue of (15) – (18): Suppose 𝑢𝑛ℎ ∈ Vℎ is given. Then

𝑢𝑛+1ℎ := 𝑢𝑛ℎ +
∑︁
ℓ

R̃⊤ℎ,ℓ𝛿𝑛ℎ,ℓ , (21)

where (using (19), (20) and (10)), 𝑎ℓ (𝛿𝑛ℎ,ℓ , 𝑣ℎ,ℓ) = Rℎ,ℓ𝐹ℎ (𝑣ℎ,ℓ) − 𝑎(𝑢𝑛,R⊤ℎ,ℓ𝑣ℎ,ℓ).
Thus,

𝛿𝑛ℎ,ℓ = A−1
ℎ,ℓRℎ,ℓ (𝐹ℎ − Aℎ𝑢𝑛ℎ).

Combining this with (21), we obtain exactly (14).

5 Numerical results

Denoting the nodal bases for Vℎ and Vℎ
ℓ by {𝜑 𝑗 } and {𝜑ℓ, 𝑗 } respectively, we

introduce stiffness matrices A𝑖, 𝑗 := 𝑎(𝜑 𝑗 , 𝜑𝑖) and (Aℓ)𝑖, 𝑗 := 𝑎ℓ (𝜑ℓ, 𝑗 , 𝜑ℓ,𝑖), and the
load vector 𝑓𝑖 := 𝐹ℎ (𝜑𝑖). Then we can write (14) as

u𝑛+1 = u𝑛 + B−1 (f − Au𝑛). (22)

Here u𝑛 is the coefficient vector of 𝑢𝑛ℎ with respect to the nodal basis ofVℎ, and

B−1 =
∑︁
ℓ

R̃⊤ℓ A−1
ℓ Rℓ ,

where (R⊤ℓ )𝑝,𝑞 := (R⊤ℓ 𝜑ℓ,𝑞) (𝑥𝑝), (R̃⊤ℓ )𝑝,𝑞 := (R̃⊤ℓ 𝜑ℓ,𝑞) (𝑥ℓ, 𝑝), and Rℓ = (R⊤ℓ )⊤.
In this section, (motivated by (9)), we numerically investigate the contractive

property of the ORAS iteration (22). Letting u be the solution of Au = f, we can
combine with (22) to obtain the error propagation equation
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u𝑛+1 − u = E(u𝑛 − u), where E = I − B−1𝐴.

Since
∑
ℓ R̃⊤ℓ Rℓ = I, we can write

E =
∑︁
ℓ

R̃⊤ℓ (Rℓ − A−1
ℓ RℓA) = R̃⊤ (R −Q),

where R̃⊤ is the row vector of matrices: R̃⊤ = (R̃⊤1 , R̃⊤2 , · · · , R̃⊤𝑁 ), and R =
(R1; R2; · · · ; R𝑁 ), and Q = (A−1

1 R1A; A−1
2 R2A, · · · ,A−1

𝑁 R𝑁A) are column vectors.
Then it is easily seen that ER̃⊤ = R̃⊤T, where T := (R − Q)R̃⊤. Moreover, since
R̃⊤R = I, we have TRR̃⊤ = T, and so it follows that

E𝑠 = R̃⊤T𝑠R for any 𝑠 ≥ 1, (23)

As explained in [6, §5.1], T is a discrete version of the operator T appearing in (9)
above. In [6], we study fixed point iterations with matrix T and use these to illustrate
various properties of the fixed point operator T in the product norm described
above. In this paper we consider only the norms of E𝑠 . By (23), if T𝑠 is sufficiently
contactive, then E𝑠 will also be contractive.
To compute the norm of E𝑠 , we introduce the vector norm: ∥u∥21,𝑘 = u∗D𝑘u,

for u ∈ C𝑀 , where 𝑀 = dim(Vℎ) and, for all nodes 𝑥𝑝 , 𝑥𝑞 of Vℎ, (D𝑘)𝑝,𝑞 =∫
Ω
∇𝜑𝑝 · ∇𝜑𝑞 + 𝑘2𝜑𝑝𝜑𝑞 𝑑𝑥, . This is the matrix induced by the usual 𝑘−weighted

𝐻1 inner product onVℎ . We shall compute

∥E𝑠 ∥ := max
0≠v∈C𝑀

∥E𝑠v∥1,𝑘
∥v∥1,𝑘 , for integers 𝑠 ≥ 1,

which is equal to the square root of the largest eigenvalue of thematrixD−1
𝑘 (E∗)𝑠D𝑘E𝑠 .

This is computed using the SLEPc facility within the package FreeFEM++ [8]. In the
following numerical experiments, done on rectangular domains, we use conforming
Lagrange elements of degree 2, on uniform meshes with mesh size decreasing with
ℎ ∼ 𝑘−5/4 as 𝑘 increases, sufficient for avoiding the pollution effect.
We consider two different examples of domain decomposition. First we consider

a long rectangle of size (0, 2
3𝑁) × (0, 1), partitioned into 𝑁 non-overlapping strips of

equal width 2/3. We then extend each subdomain by adding neighbouring elements
whose distance from the boundary is ≤ 1/6. This gives an overlapping cover, with
each subdomain a unit square, except for the subdomains at the ends, which are
rectangles with aspect ratio 6/5. For this example, a rigorous estimate ensuring (9)
is proved in [6]. The result implies that

∥T 𝑁 ∥ ≤ 𝐶 (𝑁 − 1)𝜌 + O(𝜌2). (24)

Here, 𝜌 is the maximum of the 𝐿2 norms of the ‘impedance maps’ which describe the
exchange of impedance data between boundaries of overlapping subdomains within
a single iteration. The constant 𝐶 is independent of 𝑁 , but the hidden constant may
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𝑁 2 4 8 16
k ∥E∥ ∥E𝑠 ∥ ∥E𝑠+1 ∥ ∥E∥ ∥E𝑠−1 ∥ ∥E𝑠 ∥ ∥E∥ ∥E𝑠−1 ∥ ∥E𝑠 ∥ ∥E∥ ∥E𝑠−1 ∥ ∥E𝑠 ∥
20 5.6 0.52 0.05 5.8 5.24 0.18 5.8 4.5 0.11 5.9 3.4 0.17
40 9.0 1.0 0.094 9.1 8.5 0.46 9.1 8.1 0.34 9.1 7.6 0.36
80 14.3 1.9 0.17 14.3 13.1 0.78 14.3 13.0 0.61 14.3 12.6 0.66

Table 1: Strip partition of (0, 2
3𝑁 ) × (0, 1): Norms of powers of E (𝑠 = 𝑁 )

depend on 𝑁 . Thus for small enough 𝜌, T 𝑁 is a contraction. Conditions ensuring
this are explored in [6].
In Table 1 we observe the rapid drop in the norm of ∥E𝑠 ∥ compared with ∥E𝑠−1∥

(with 𝑠 = 𝑁). Moreover E𝑁 is a contraction when 𝑁 = 4, 8, 16. When 𝑁 = 2 we do
not have E2 contracting, but E3 certainly is. Although ∥𝐸𝑁 ∥ is increasing (apparently
linearly) with 𝑘 , ∥𝐸 𝑠 ∥ decreases rapidly for 𝑠 > 𝑁 , when 𝑘 is fixed. Note that ∥E∥ can
be quite large, and is growing as 𝑘 increases: thus the error of the iterative method
may grow initially before converging to zero. Also, although the right-hand side of
(24) grows linearly in 𝑁 for fixed 𝜌, the norm of 𝐸𝑁 does not exhibit substantial
growth. Thus we conclude that (24) may be pessimistic in its 𝑁-dependence. In fact
sharper estimates are proved and explored computationally in [6]. An interesting
open question is to find a lower bound for 𝑠 as a function of 𝑁 and 𝑘 which ensures
contractivity.
In [6] it is shown that the computation of 𝜌, or related more detailed quantities

can be done by solving eigenvalue problems on subdomains. This, combined with
estimates like (24) could be seen as an a priori condition for convergence, rather
like convergence predictions via condition number estimates. These always give a
sufficient condition for good performance (which is often not sharp).
In the next experiment the domain Ω is the unit square, divided into 𝑁 × 𝑁 equal

square subdomains in a “checkerboard” domain decomposition. Each subdomain is
extended by adding neighbouring elements a distance ≤ 1/4 of the width of the
non-overlapping subdomains, thus yielding an overlapping domain decomposition
with “generous” overlap. In Table 2 we tabulate ∥E𝑠−1∥ and ∥E𝑠 ∥, for 𝑠 = 𝑁2 (i.e.,

𝑁 × 𝑁 2 × 2 4 × 4 6 × 6 8 × 8
k ∥𝐸𝑠−1 ∥ ∥𝐸𝑠 ∥ ∥𝐸𝑠−1 ∥ ∥𝐸𝑠 ∥ ∥𝐸𝑠−1 ∥ ∥𝐸𝑠 ∥ ∥𝐸𝑠−1 ∥ ∥𝐸𝑠 ∥ GMRES

20 4.0e-1 8.8e-2 2.3e-3 1.2e-3 38 41 1.2e6 1.4e6 34
40 7.2e-1 1.6e-1 4.4e-2 2.8e-3 1.5e-3 1.0e-3 6.4e-5 5.3e-5 28
80 1.0 2.4e-1 1.5e-2 9.8e-3 3.9e-4 2.8e-4 1.9e-6 9.2e-7 26
160 1.8 5.0e-1 1.1e-2 6.3e-3 7.3e-4 5.3e-4 9.2e-5 7.5e-5 24

Table 2: Checkerboard partition of the unit square: Norms of powers of E (𝑠 = 𝑁 2),

the total number of subdomains). Here we do not see such a difference between these
two quantities, but we do observe very strong contractivity for E𝑠 , except in the case
of 𝑘 small and 𝑁 large. In the latter case the problem is not very indefinite: and
GMRES iteration counts are modest even though the norm of E𝑠 is large (we give
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Fig. 1: Norm of the power of the error propagation matrix (left: 𝑘 = 40, right: 𝑘 = 80)

these for the case 𝑁 = 8 in the column headed GMRES). In most of the experiments in
the checkerboard case, E𝑠 is contracting when 𝑠 is much smaller that 𝑁2. In Figure
1, we plot ∥E𝑠 ∥ against 𝑠 and observe that ∥E𝑠 ∥ < 1 for exponents 𝑠 ≪ 𝑁2.
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Application of Multilevel BDDC to the Problem
of Pressure in Simulations of Incompressible
Flow

Martin Hanek and Jakub Šístek

1 Introduction

We deal with the numerical solution of problems of incompressible flows and in-
vestigate the applicability of the Balancing Domain Decomposition by Constraints
(BDDC) by [2] for solving the arising linear systems. In [5], we extended the mul-
tilevel version of BDDC ([12, 7]) to nonsymmetric problems arising from steady
problems described by the Navier-Stokes equations. In the present contribution, we
are interested in solving unsteady problems, for which we employ the pressure-
correction operator-splitting scheme (see e.g. the overview paper by [4]). It presents
a very efficient approach for solving the problem by transforming the coupled Navier-
Stokes equations into a sequence of a scalar convection-diffusion problem for each
velocity component, a Poisson problem for pressure (corrector), and an 𝐿2-projection
problem in each time step.
In [10], we studied efficient solution techniques for the arising systems based on

Krylov subspace methods with one-level domain decomposition (DD) precondition-
ers from the PETSc library. A conclusion of the study was that while these relatively
simple preconditioners work well for the nonsymmetric problems for velocities and
the 𝐿2-projection problem, the known dependence of one-level DD methods on the
number of subdomains made the pressure Poisson problem increasingly difficult for
a solution with growing problem size, eventually becoming the bottleneck of the
simulations.
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In this paper, we want to investigate the applicability of several variants of BDDC
for the problem of pressure corrector. As long as the mesh is not changed, the matrix
and the preconditioner are set up just once for all time steps. This makes it interesting
to use variants of BDDC with more expensive setup, saving the number of iterations
in each time step, such as the BDDCmethodwith the adaptive selection of constraints
by [8], and its combination with the multilevel extension [11] implemented in our
BDDCML library.
Another strategy worth investigating for sequences of algebraic problems is a

recycling of the Krylov subspace across time steps, proposed e.g. by [3]. It has been
shown in the literature that if the differences of the successive right-hand sides are
not large, after expanding the new right-hand side in the pre-existing Krylov basis,
one may require only very few or even no additional iterations for convergence to
the full accuracy. Hence, it is another aim of this paper to investigate the benefits of
the approach by [3] to the present problem.

2 The Pressure-Correction Method

We consider a domain Ω ⊂ R3 with its boundary Γ consisting of three disjoint parts
Γ𝑆 , Γ∞, and Γ𝑂, Γ = Γ𝑆 ∪ Γ∞ ∪ Γ𝑂. Part Γ𝑆 is the interface between fluid and the
rigid body, Γ∞ is the inflow free-stream boundary, and Γ𝑂 is the outflow boundary.
The flow is governed by the Navier-Stokes equations of an incompressible viscous
fluid,

𝜕𝒖

𝜕𝑡
+ (𝒖 · ∇)𝒖 − 𝜈Δ𝒖 + ∇𝑝 = 0 in Ω,

∇ · 𝒖 = 0 in Ω,
(1)

where 𝒖 is the velocity vector of the fluid, 𝑡 denotes time, 𝜈 is the kinematic viscosity
of the fluid and 𝑝 is the kinematic pressure. System (1) is complemented by the
following initial and boundary conditions: 𝒖(𝑡 = 0, 𝒙) = 0 in Ω, 𝒖(𝑡, 𝒙) = 𝒖∞ on
Γ∞, 𝒖(𝑡, 𝒙) = 0 on Γ𝑆 , and −𝜈(∇𝒖)𝒏 + 𝑝𝒏 = 0 on Γ𝑂, with 𝒏 being the unit outer
normal vector of Γ.
System (1) can be efficiently solved with a pressure-correction method. In par-

ticular, we use the incremental pressure-correction method in the rotational form
discussed by [4]. Details of our implementation can be found in [10].
In this approach, we first define the pressure increment (corrector) 𝜓𝑛+1 = 𝑝𝑛+1 −

𝑝𝑛 + 𝜈∇ · 𝒖𝑛+1. In order to compute the velocity and pressure fields (𝒖𝑛+1, 𝑝𝑛+1) at
time 𝑡𝑛+1, three subproblems are subsequently solved.

1. The velocity field 𝒖𝑛+1 is obtained by solving the convection-diffusion problem
for each component of velocity

1
Δ𝑡

𝒖𝑛+1 + (𝒖𝑛 · ∇)𝒖𝑛+1 − 𝜈Δ𝒖𝑛+1 =
1
Δ𝑡

𝒖𝑛 − ∇(𝑝𝑛 + 𝜓𝑛) in Ω (2)

for 𝒖𝑛+1 = 𝒖∞ on Γ∞, 𝒖𝑛+1 = 0 on Γ𝑆 , and 𝜈(∇𝒖𝑛+1)𝒏 = 𝑝𝑛𝒏 on Γ𝑂.
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2. Next, the pressure corrector 𝜓𝑛+1 is obtained by solving the Poisson problem

−Δ𝜓𝑛+1 = − 1
Δ𝑡
∇ · 𝒖𝑛+1 in Ω (3)

for 𝜕𝜓
𝑛+1
𝜕𝒏 = 0 on Γ∞ ∪ Γ𝑆 and 𝜓𝑛+1 = 0 on Γ𝑂.

3. Finally, the pressure field 𝑝𝑛+1 is updated with

𝑝𝑛+1 = 𝑝𝑛 + 𝜓𝑛+1 − 𝜈∇ · 𝒖𝑛+1. (4)

Problems (2), (3), and (4) are solved by the finite element method (FEM) using
Taylor-Hood 𝑄2 − 𝑄1 hexahedral elements. In the resulting finite element mesh,
there are 𝑛𝒖 nodes with velocity unknowns and 𝑛𝑝 nodes with pressure unknowns,
with the ratio 𝑛𝒖/𝑛𝑝 being approximately 8.
For solving the algebraic problems arising from (2) and (4), we use the methods

identified as optimal by [10]. In particular, theGeneralizedMinimal Residualmethod
(GMRES) is used for solving problem (2), and the Conjugate Gradient (CG) method
is used for problem (4). Block Jacobi preconditioner using ILU(0) on subdomains is
used for both problems.
The main focus of this study is a scalable solution of the Poisson problem for

pressure corrector (3). We apply different one-level domain decomposition precon-
ditioners from the PETSc1 library and compare them with several settings of the
BDDC method from the BDDCML2 library. Each preconditioner is combined with the
CG method.
Problem (3) translates to an algebraic system with a discrete Laplacian matrix of

size 𝑛𝑝 × 𝑛𝑝 which is symmetric and positive definite for Γ𝑂 ≠ ∅, i.e. a nonempty
part with ‘do-nothing’ boundary condition. This is a well-studied case from the point
of view of DD methods, which are very suitable solvers for this task.
For a fixed mesh, only the right-hand side of (3) differs in the sequence for the

subsequent time steps. Hence, this problem offers large room for reusing information
across all time steps. For example, one may afford a preconditioner with a more
expensive setup if this leads to a lower number of iterations as long as each iteration
does not get much more expensive. This is our motivation for experimenting also
with the adaptive selection of constraints for BDDC.

3 Numerical results

We evaluate the strategies for solving (3) on the case of the flow past a sphere at
Reynolds number 300. In our simulations, we consider two sizes of the problem
mesh with the same geometry (see Fig. 1). The sphere diameter is 1 m, and the
solution domain is a cylinder with the radius of 6 m and the length of 25 m. The

1 https://www.mcs.anl.gov/petsc (version 3.10.4)
2 https://users.math.cas.cz/~sistek/software/bddcml.html (version 2.6)
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centre of the sphere lies on the cylinder axis and 5 m from the front wall of the
cylinder. Far-field velocity of the fluid is 𝒖∞ = (1, 0, 0)T ms−1, and the kinematic
viscosity is 𝜈 = 0.00333 m2s−1, so that the Reynolds number defined as Re = |𝒖∞ | 𝑑

𝜈
is equal to 300. The external boundary of the cylinder is considered as Γ∞ except the
rear face, which represents Γ𝑂 with ‘do-nothing’ boundary condition. Zero Dirichlet
boundary condition is prescribed on the surface of the sphere Γ𝑆 .

Fig. 1: Computational domain with meshing corresponding to Mesh 1, Reynolds number 300.
Velocity magnitude (left) and vortical structures illustrated by isosurfaces of the average corotation
([6]) coloured by the magnitude of vorticity (right).

The computational Mesh 1 consists of 1.8 million unknowns for velocity in each
component and 225 thousands for pressure, and it corresponds to the mesh used in
[9]. Mesh 2 is obtained by doubling the number of elements in each direction. Hence,
it has approx. 15 million unknowns for each velocity component and 1.9 millions
for pressure. The meshes were created in the Gmsh3 generator and divided into 16
and 128 subdomains, respectively, by the METIS4 graph partitioner to maintain ap-
proximately the same size of subdomain problems (approx. 15 thousand unknowns
per subdomain). The problems on Mesh 1 and Mesh 2 were solved using 16 and 128
CPU cores of the Salomon supercomputer at the IT4Innovations National Supercom-
puting Center in Ostrava, Czech Republic. The computational nodes of Salomon are
equipped with two 12-core Intel Xeon E5-2680v3 2.5 GHz processors and 128 GB
RAM.
This kind of simulations is usually performed for thousands of time steps. We

formally employ the non-dimensional time 𝑡 ′ = 𝑡 |𝒖∞ |
𝑑 , although for our setting of

|𝒖∞ | = 1 and 𝑑 = 1, the values are the same as for the physical time 𝑡.
In particular, the simulation of 200 s on Mesh 1 performed with time-step size

Δ𝑡 = 0.05 results in 4000 time steps, while the simulation on Mesh 2 with time-step
size Δ𝑡 = 0.025 results in 8000 time steps. The different values of the time steps are
motivated by an approximate preservation of the Courant number |𝒖∞ | Δ𝑡ℎ coupling
the resolution in time and space.
Since our aim is to test the behaviour for different preconditioners, we compute

only 30 time steps, and we report and compare the numbers of linear iterations and

3 https://gmsh.info/

4 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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Fig. 2: Number of linear iterations in each time step (left), and values of drag (𝐶𝐷) and lift (𝐶𝐿)
force coefficients during the whole simulation (right). Results for Mesh 1 are by [9] and for Mesh
2 from current simulations.

times for all time steps excluding the first time step. As you can see in the left part
of Fig. 2, the number of iterations stays almost constant during the whole simulation
for the BDDC method and within the same range for the block Jacobi method. This
justifies using the first 30 iterations for our comparisons. We also compare the drag
and lift force coefficients acting on the sphere with the results from [9] in Fig. 2. We
have got a good agreement for the two resolutions.
In the first iteration, the setup of the preconditioner and the factorization of

interior blocks of subdomain matrices are included. These operations are performed
just once for all time steps. Hence, the number of linear iterations and the time of
the whole solve (setup and iterations) is reported separately.

method #its. min–max(avg.) t./step [s] #its. step 1 t. step 1 [s] est. sim. [s]
block Jacobi + ILU(0) 63-169(108.3) 0.16 167 0.25 640
block Jacobi + ILU(1) 46-131(82.7) 0.25 130 0.37 1000
block Jacobi + ILU(2) 44-119(76.0) 0.46 118 0.61 1840
ASM–1 + ILU(0) 102-216(170.2) 0.36 209 0.43 1440
ASM–1 + ILU(1) 81-146(120.5) 0.48 140 0.54 1920
ASM–2 + ILU(0) 103-237(184.4) 0.48 230 0.57 1920
ASM–2 + ILU(1) 63-156(122.4) 0.60 148 0.67 2400
3-l. ad. BDDC + diag. 8-10(9.6) 0.32 14 75.74 1355
3-l. BDDC + diag. 10-12(11.5) 0.34 21 1.51 1361

Table 1: Mesh 1: Comparison of the number of linear iterations (minimum–maximum(average)
across all time steps), average time for solving one time step, values for the first step, and estimated
time of all time steps computed as the average time per step × 4000 + time for step 1. Here ‘diag.’
means scaling by diagonal entries of subdomain matrices, ‘2-l.’ and ‘3-l.’ stand for 2-level and 3-
level variants of the BDDC method, respectively, and ‘ad.’ denotes the adaptive version of BDDC.

The results of our simulations are summarized in Tables 1 and 2. The tested
preconditioners include block Jacobi and Additive Schwarz methods (ASM) from
PETSc. For ASM, we compare one and two layers of overlap (ASM–1 and ASM–2).
On subdomains, the incomplete LU factorization with different levels of allowed
fill-in (ILU(0), ILU(1), and ILU(2)) is considered. As for the BDDC options, we use



292 Martin Hanek and Jakub Šístek

method #its. min–max(avg.) t./step [s] #its. step 1 t. step 1 [s] est. sim. [s]
block Jacobi + ILU(0) 461-623(498.6) 1.15 611 1.41 9201
block Jacobi + ILU(1) 115-260(185.9) 0.71 258 0.98 5580
block Jacobi + ILU(2) 107-238(175.1) 1.08 236 1.39 8641
ASM–1 + ILU(0) 401-569(433.9) 1.60 557 2.05 12802
ASM–1 + ILU(1) 216-309(241.6) 1.36 300 1.64 10881
ASM–2 + ILU(0) 385-575(428.3) 1.95 550 2.43 15602
ASM–2 + ILU(1) 218-301(240.5) 1.79 294 2.14 14322

3-l. ad. BDDC + diag., 𝑟 = 0 14-19(15.6) 0.62 19 157.77 5118
3-l. ad. BDDC + diag., 𝑟 = 50 11-13(12.3) 0.44 19 132.88 3652
3-l. ad. BDDC + diag., 𝑟 = 100 11-13(11.9) 0.54 19 159.48 4479
3-l. ad. BDDC + diag., 𝑟 = 200 7-12(9.9) 0.51 19 160.92 4241
3-l. BDDC + diag., 𝑟 = 0 29-42(32.8) 1.18 42 2.86 9443
3-l. BDDC + diag., 𝑟 = 50 17-23(20.4) 0.89 40 3.14 7123
3-l. BDDC + diag., 𝑟 = 100 17-20(18.7) 0.75 40 2.83 6003
3-l. BDDC + diag., 𝑟 = 200 14-19(15.6) 0.81 40 2.92 6483
3-l. BDDC + arith., 𝑟 = 0 14-19(17.1) 0.59 30 4.87 4724
3-l. BDDC + arith., 𝑟 = 50 14-18(17) 0.55 29 4.07 4404
3-l. BDDC + arith., 𝑟 = 100 14-17(15.9) 0.55 30 5.00 4405
3-l. BDDC + arith., 𝑟 = 200 14-17(15.7) 0.55 30 5.04 4405
3-l. BDDC + diag., 𝑟 = 50 17-25(22.6) 0.71 40 5.31 5685
2-l. ad. BDDC + diag., 𝑟 = 0 14-19(15.2) 0.81 19 157.72 6638
2-l. ad. BDDC + diag., 𝑟 = 50 11-13(12.5) 0.68 19 158.83 5599
2-l. BDDC + arith., 𝑟 = 50 13-18(16.5) 0.80 27 4.27 6404
2-l. BDDC + diag., 𝑟 = 50 17-13(20.6) 1.01 38 4.80 8085

Table 2: Mesh 2: Comparison of the number of linear iterations (minimum–maximum(average)
across all time steps), average time for solving one time step, values for the first step, and estimated
time of all time steps computed as the average time per step × 8000 + time for step 1. Here ‘diag.’
means scaling by diagonal entries of subdomain matrices, ‘arith.’ means scaling by arithmetic
averaging, ‘2-l.’ and ‘3-l.’ stand for 2-level and 3-level variants of the BDDC method, respectively,
and ‘ad.’ denotes the adaptive version of BDDC. Parameter 𝑟 represents the maximum number of
the stored Krylov basis vectors in recycling the Krylov subspaces.

several settings of the BDDCML library. Namely, we consider the 2- and 3-level BDDC
methods, potentially with the adaptive selection of constraints for the coarse problem
as in [11]. Two sequential instances of the MUMPS sparse direct solver (version
5.1.2, [1]) are used for each subdomain, namely a Cholesky 𝐿𝐿𝑇 decomposition
of the block of unknows interior to the subdomain, and an 𝐿𝐷𝐿𝑇 factorization of
the saddle-point problems of BDDC (see [2] for details). In addition, a distributed
memory instance of MUMPS is used for the final coarse problem.
The following coarse spaces are considered in the BDDC method. For the non-

adaptive version, values at corners and arithmetic averages on each subdomain edge
and face are taken as the continuous coarse degrees of freedom. In the adaptive case,
a maximum of ten adaptive constraints is also considered on the faces.
We also compare results for two types of interface scaling, the standard one based

on arithmetic averages (arith) and the one based on diagonal entries of the subdomain
matrices (diag). In our computations, only the diagonal scaling is compatible with
the adaptive BDDC method, while the arithmetic scaling gives better results for the
non-adaptive version.
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We also test several values of the number of stored Krylov basis vectors 𝑟 in
the approach to recycling the Krylov subspace by [3]. However, we observe little
difference among the values of 𝑟 = 0, 𝑟 = 50, 𝑟 = 100, and 𝑟 = 200. We have chosen
𝑟 = 50 for the other simulations with the BDDC method, which is the default for
BDDCML. We have observed a larger improvement for reusing the solution from one
time step as the starting approximation for the subsequent problem. This effect can
be observed from the difference between the number of iterations in the first time
step and their average number. The iterations are terminated when the relative norm
of the residual gets below 10−6.
An estimated cost of solving the pressure problem for all time steps (est. sim.) is

also included in Tables 1 and 2. It is obtained as the time for the first step added to
the average time per other steps multiplied by the number of time steps.
We can see that for the smaller problem, the most efficient method is the block

Jacobi preconditioner with ILU(0) on subdomains, followed by the same precon-
ditioner with ILU(1). The two configurations of the BDDC preconditioner are less
efficient than these options.
However, for the larger problem, the most efficient method becomes BDDC

with adaptive constraints, and also the non-adaptive 3-level BDDC method is more
efficient than the one-level DD preconditioners, out of which the block Jacobi with
ILU(1) requires the least time.

4 Conclusions

We have applied several variants of the BDDCmethod and one-level DDmethods to
the Poisson problem of pressure corrector within a solution of an unsteady problem
of incompressible flow with two different meshes.
We have seen that while for a smaller problem, a simple one-level DD method

(block Jacobi) provides the fastest solution, the adaptive BDDC method becomes
advantageous for larger problems divided into more subdomains. Although the setup
of the preconditioner is significantly more expensive, its price gets outweighed by
the lower number of CG iterations required in each time step. In addition, recycling
the Krylov subspace basis is also slightly beneficial for a reasonable size of the stored
basis (50 vectors in our experiments).
The results are encouraging, and we can expect that for even larger problems

divided into more subdomains, the adaptive-multilevel BDDC method will be even
more beneficial. Confirming this expectation will be a subject of a future study as
well as other selection strategies for a suitable recycling basis.
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Predicting the Geometric Location of Critical
Edges in Adaptive GDSW Overlapping Domain
Decomposition Methods Using Deep Learning

Alexander Heinlein, Axel Klawonn, Martin Lanser, and Janine Weber

1 Introduction

For complex model problems with coefficient or material distributions with large
jumps along or across the domain decomposition interface, the convergence rate of
classic domain decomposition methods for scalar elliptic problems usually deterio-
rates. In particular, the classic condition number bounds [1, 12] will depend on the
contrast of the coefficient function. As a remedy, different adaptive coarse spaces,
e.g, [13, 4], have been developed which are obtained by solving certain generalized
eigenvalue problems on local parts of the interface, i.e., edges and/or faces. A selec-
tion of the resulting eigenmodes, based on a user-defined tolerance, is then used to
enrich the coarse space and retain a robust convergence behavior. However, the setup
and the solution of the eigenvalue problems usually take up a significant amount
of time in a parallel computation, and for many realistic coefficient distributions,
a relatively high number of the eigenvalue problems is unnecessary since they do
not result in any additional coarse basis functions. Unfortunately, it is not known a
priori, which eigenvalue problems are unnecessary and thus can be omitted.
In order to reduce the number of eigenvalue problems, we have proposed to

train a neural network to make an automatic decision which of the eigenvalue
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problems can be omitted in a preprocessing step. In [5, 7, 10], we have applied this
approach to a certain adaptive FETI-DP (Finite Element Tearing and Interconnecting
- Dual Primal) method [13] for elliptic model problems in two dimensions and
investigated the effect of different training data sets and different sizes of input
data for the neural network. In [8], we have additionally extended our approach to
three-dimensional model problems for the corresponding adaptive FETI-DP method
in three dimensions [11]. In [9], for the first time, we additionally applied our
proposed machine learning framework to an overlapping domain decomposition
method, i.e., the adaptive GDSW (Generalized Dryja-Smith-Widlund) method [3].
The purpose of [9] was to provide a general overview ofmethods combiningmachine
learning with domain decomposition methods, and thus, we have solely presented
some preliminary results for adaptive GDSW. Here, we extend the results shown
in [9] by providing numerical experiments for additional test problems. Furthermore,
we take a closer look at the choice of the ML threshold which is used for the
classification between critical edges, for which the eigenvalue problem is necessary,
and edges where the eigenvalue problem can be omitted. The specific choice of the
threshold is now, for the first time, motivated by the corresponding receiver operating
characteristic (ROC) curve and the precision-recall graph (please refer to [14, Sec.
5] for a definition of a precision-recall graph and a ROC curve).
We focus on a stationary diffusion problem in two dimensions and the adaptive

GDSW method [3]. The diffusion coefficient function is defined on the basis of
different subsections of a microsection of a dual-phase steel material.

2 Model Problem and Adaptive GDSW

As a model problem, we consider a stationary diffusion problem in two dimensions
with various heterogeneous coefficient functions 𝜌 : Ω := [0, 1] × [0, 1] → R, i.e.,
the weak formulation of

− div (𝜌∇𝑢) = 1 in Ω
𝑢 = 0 on 𝜕Ω. (1)

In this paper, we apply the proposed machine learning-based strategy to an adaptive
GDSW method. We decompose the domain Ω into 𝑁 ∈ N nonoverlapping subdo-
mains Ω𝑖 , 𝑖 = 1, . . . , 𝑁 , such that Ω =

⋃𝑁
𝑖=1 Ω𝑖 . Next, we introduce overlapping

subdomains Ω′𝑖 , 𝑖 = 1, ..., 𝑁 , which can be obtained from Ω𝑖 , 𝑖 = 1, ..., 𝑁 by re-
cursively adding 𝑘 layers of finite elements. In the numerical experiments presented
in this paper, we always choose an overlap of width 𝛿 = ℎ; this corresponds to
choosing 𝑘 = 1. Due to space limitations, we do not describe the standard GDSW
preconditioner in detail; see, e.g., [1] for a detailed description.
As discussed in [4], the condition number bound for the standard GDSW precon-

ditioner generally depends on the contrast of the coefficient function for completely
arbitrary coefficient distributions. As a remedy, additional coarse basis functions re-
sulting from the eigenmodes of local generalized eigenvalue problems are employed
to compute an adaptive coarse space which is robust and yields a coefficient contrast-
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independent condition number bound. In two dimensions, each of these eigenvalue
problems is associated with a single edge and its two neighboring subdomains. Thus,
the main idea for the adaptive GDSW (AGDSW) coarse space [3] is to build edge
basis functions based on local generalized eigenvalue problems. In particular, the
coarse basis functions are defined as discrete harmonic extensions of certain corre-
sponding edge eigenmodes. The specific eigenmodes which are necessary to retain
a robust convergence behavior are chosen depending on a user-defined tolerance
𝑡𝑜𝑙E ≥ 0, which has to be chosen in relation to the spectrum of the preconditioned
system. For a detailed description of the specific local edge eigenvalue problems and
the computation of the discrete harmonic extensions, we refer to [3]. In particular,
in the AGDSW approach, all eigenmodes with eigenvalues lower or equal to 𝑡𝑜𝑙E
are chosen to build the adaptive coarse space. Since the left-hand side of the edge
eigenvalue problem is singular (cf. [3, Sec. 5]), for each edge, we always obtain one
eigenvalue equal to zero. It corresponds to the null space of the Neumann matrix
of (1), which consists of the constant functions. The corresponding coarse basis
function is also part of the standard GDSW coarse space, and we denote it as the
first coarse basis function in this paper. Let us note that the first coarse basis func-
tion is always necessary for the scalability of the approach, even for the case of a
constant coefficient function. However, since it corresponds to the constant function
on the edge, it is known a priori and can be computed without actually solving the
eigenvalue problem. This is different to the ML-FETI-DP method since, for adaptive
FETI-DP [13], the eigenvalue equal to zero does not occur in the eigenvalue problem
as it is already captured by the primal vertex constraints; see also Section 3 for more
details.
As for most adaptive domain decomposition methods, for AGDSW, it is generally

not known a priori on which edges additional coarse basis functions are necessary
in order to obtain robustness. In general, building the adaptive coarse space, i.e, the
setup and the solution of the eigenvalue problems as well as the computation of the
discrete harmonic extensions, can make up the larger part of the time to solution in a
parallel implementation. Since the computation of the adaptive GDSW coarse space
is - similarly to the adaptive FETI-DP methods - based on local eigenvalue problems
associated with edges, we can apply the same machine learning strategy introduced
in [5, 7] to predict the location of necessary eigenvalue problems.

3 Machine Learning for Adaptive GDSW

Our approach is to train a neural network to make an automatic decision whether it
is necessary to solve a local eigenvalue problem for a specific edge to retain a robust
AGDSW algorithm. We denote this approach, which is inspired by the ML-FETI-
DP approach introduced in [5, 7], as ML-AGDSW. In particular, we use a dense
feedforward neural network, or more precisely, a multilayer perceptron [14, 2] to
make this decision. Since each eigenvalue problem for AGDSW is associated with
a single edge and both neighboring subdomains, we use samples of the coefficient
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Fig. 1: Sampling of the coefficient function; white color corresponds to a low coefficient and red
color to a high coefficient. In this representation, the samples are used as input data for a neural
network with two hidden layers. Only sampling points from slabs around the edge are chosen. Taken
from [10, Fig. 1].

function within the two adjacent subdomains as input data for the neural network;
cf. Fig. 1. In particular, we apply a sampling approach which is independent of
the finite element mesh, using a fixed number of sampling points for all mesh
resolutions; this is reasonable as long as we can resolve all geometric features of the
coefficient function. For more details on the computation of the sampling grid and
its generalization to more general subdomain geometries than square subdomains;
see [5].
As output for the neural network, we save the classification whether an adaptive

basis function has to be computed for the specific edge or not. As already mentioned,
in AGDSW, the first coarse basis function is always necessary but can be computed
without actually solving the eigenvalue problem. Hence, an eigenvalue problem will
only be marked as necessary in our approach if more than one coarse basis function
corresponds to an eigenvalue lower than the chosen tolerance 𝑡𝑜𝑙E . Therefore, for
ML-AGDSW, all critical edges, where more than the single constant constraint is
necessary, are classified as class 1. All other edges are classified as class 0. Let us
note that this is different to the definition of class 1 for ML-FETI-DP introduced
in [5, 7], where the eigenvalue 0 corresponding to the constant functions does not
occur in the eigenvalue problem.
For the numerical results presented in this paper, we train the neural network on

two regular subdomains sharing a straight edge and different types of coefficient
functions. Using the same techniques as in [7, 9], we have generated a training
and validation data set of 4 500 randomized coefficient distributions. In particular,
the coefficient distributions are not completely random but we impose some sort of
structure on the coefficients; see also [7] for a detailed discussion. For the first part of
this training set, we randomly generate the coefficient for each pixel, consisting of two
triangular finite elements, independently and only control the ratio of high and low
coefficient values. Here, we use 30%, 20%, 10%, and 5% of high coefficient values.
For the second part, we also control the distribution of the coefficients to a certain
degree by randomly generating either horizontal or vertical stripes of a maximum
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Fig. 2: Examples of three different randomly distributed coefficient functions obtained by using the
same randomly generated coefficient for a horizontal (left) or vertical (middle) stripe of a maximum
length of four finite element pixels, as well as by pairwise superimposing (right).

length of four or eight pixels, respectively; see Fig. 2. Additionally, we generate
new coefficient distributions by superimposing pairs of coefficient distributions with
horizontal and vertical stripes. We denote the resulting training data set by R1’. Let
us note that the generation of the randomized coefficient distributions as training
data for AGDSW is in complete analogy to our randomized training data for the
ML-FETI-DP approach in [7]. However, we explicitly built a separate set of labels
for the training and validation data for AGDSW since the classification of critical
edges can be different for adaptive GDSW and adaptive FETI-DP.
To generate the output data for the neural network, we solve the eigenvalue prob-

lem as described in [4] for each edge in the aforementioned training and validation
data. For all our training and validation data, we use a tolerance of 𝑡𝑜𝑙E = 0.01 to
generate the output for each edge.
Note that, for ML-FETI-DP, we additionally considered the extension to three

classes, where we distinguished between zero, one, or more than one constraints.
For the edges which require only one constraint, we used frugal constraints [6]
instead of solving the eigenvalue problem; see [5] for more details. Consequently,
the eigenvalue problem only had to be solved for edges withmore than one constraint.
However, this approach does not easily extend to AGDSW since we always obtain
at least one a priori known coarse basis function on each edge; as mentioned earlier,
we always obtain a constant eigenfunction corresponding to eigenvalue 0.

4 Numerical Results

In this section, we apply our machine learning approach to AGDSW.We will present
numerical results both for the training and validation data as well as for a specific test
problem and compare the resulting condition number estimates and iteration counts
with those obtained using both standard and adaptive GDSW; we use pcg with a
relative residual reduction of 1𝑒 − 8. For the numerical experiments, we consider a
discretization of the model problem Eq. (1) by piecewise linear finite elements.
First, we present results for the complete set of training data R1’ using cross-

validation and a fixed ratio of 20% validation data in Table 1. We observe that
choosing the ML threshold as 𝜏 = 0.5 to distinguish between class 0 and 1, i.e.,
assuming an equal distribution among the two classes, results in an accuracy which
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is comparable to the corresponding ML-FETI-DP approach; see [7, 9]. Besides the
accuracy values for the training data in Table 1, we also provide the ROC curve and
a precision-recall plot in Fig. 3. Both curves provide an evidence whether we obtain
a reliable machine learning model [14, Sec. 5]; see also Section 1. As mentioned
in Section 3, our aim is to identify all critical edges where an adaptive coarse
basis function is necessary for robustness. For the remainder of this paper, we will
refer to these critical edges as ’positive’ or ’positive edges’ and to edges where the
eigenvalue problem is unnecessary as ’negative’ or ’negative edges’. Thus, only false
negative edges are critical for the convergence ofML-AGDSW,whereas false positive
edges correspond to some unnecessary eigenvalue problems. Solving the eigenvalue
problems on false positive edges increases the computational effort of our algorithm
but does not negatively affect its convergence behavior; note that the additionally
computed eigenfunctions will not enter the coarse space since the tolerance criterion
will not be satisfied. When considering the precision-recall plot in Fig. 3 (right)
we observe that using the ML threshold 𝜏 = 0.4 compared to 𝜏 = 0.45 results in
a higher recall for the validation data while preserving nearly the same precision
value. This is caused by a decrease in the number of false negative edges compared
to 𝜏 = 0.45. Moreover, the precision for both training and validation data strongly
decreases when using ML thresholds smaller than 0.4. Since our predominant aim
is to avoid false negative edges while still preserving a sufficient accuracy of the
classification, using the ML threshold 𝜏 = 0.4 seems to work best for our purpose.
Besides, for 𝜏 = 0.4 the ROC curve for the validation data in Fig. 3 (left) is close to
the respective curve for the training data which suggests that we obtain a model with
good generalization properties. We will thus use 𝜏 = 0.4 for the classification of our
test problems and also provide comparative results for 𝜏 = 0.5.
As a test problem for our trained neural network, we use 10 different randomly

chosen subsections of a microsection of a dual-phase steel as shown in Fig. 4
(right). In all presented computations, we consider 𝜌 = 1𝑒6 in the black part of the
microsection and 𝜌 = 1 elsewhere. We use a regular decomposition of the domain
Ω := [0, 1] × [0, 1] into 8 × 8 square subdomains with an overlap of 𝛿 = ℎ, a
subdomain size of 𝐻/ℎ = 56, and a tolerance of 𝑡𝑜𝑙E = 0.01. For the test data,
we only solve the local eigenvalue problem on edges which are classified as class
1 by the neural network. For all edges classified as class 0, we do not solve the
eigenvalue problem and only enforce the constant constraint on the respective edge.
When considering the results for one specific mircosection in Table 2 as well as the
average values for all 10 different subsections in Table 3, we observe that, in both
cases, we are able to obtain no false negative edges for the classification using theML
threshold 𝜏 = 0.4. Analogously to the training and validation data in Table 1, using
the lower threshold 𝜏 = 0.4 compared to 𝜏 = 0.5 decreases the false negative rate
of the predictions and thus increases the robustness of our algorithm. In particular,
in Table 3, we obtain zero false negative edges for all 10 different microsection
subsections when using 𝜏 = 0.4. On the other hand, on average, we only solve 5.2
unnecessary eigenvalue problems. This implies that our framework is robust for
different heterogeneous coefficient distributions and can successfully be applied to
AGDSW.
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Fig. 3: ROC curve (left) and precision-recall plot (right) for the ML-AGDSW method. We define
precision as true positives divided by (true positives+false positives), and recall as true positives
divided by (true positives+false negatives). The thresholds used in Section 4 are indicated as circles.

training configuration threshold fp fn acc

R1’, full sampling 0.4 11.5% 2.7% 85.8%
0.5 6.7% 7.1% 86.2%

Table 1: Results on the complete training data set for the GDSWmethod and stationary diffusion;
the numbers are averages over all training configurations. See Table 2 for the column labeling.

Model Problem Algorithm 𝜏 cond it evp fp fn acc
standard GDSW - 3.66e06 500 0 - - -

Microsection adaptive GDSW - 162.60 95 112 - - -
Problem ML-AGDSW 0.5 9.64e4 98 25 2 2 0.95

ML-AGDSW 0.4 163.21 95 29 6 0 0.95

Table 2:Comparison of standard GDSW, adaptive GDSW, andML-AGDSW for a regular domain
decomposition with 8 × 8 subdomains and 𝐻/ℎ = 56 for the two-class model, with 𝑡𝑜𝑙E = 0.01.
We show the ML threshold (𝜏), the condition number (cond), the number of CG iterations (it),
the number of solved eigenvalue problems (evp), the number of false positives (fp), the number of
false negatives (fn), and the accuracy in the classification (acc). We define the accuracy (acc) as
the number of true positives and true negatives divided by the total number of edges.
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Optimized Coupling Conditions for Discrete
Fracture Matrix Models

Martin J. Gander, Julian Hennicker, and Roland Masson

1 Introduction

In [7, 8], we derived and studied an asymptotic model for Darcy flow in fractured
porous media, when the fracture aperture 𝛿 is approaching zero. We showed that
our new, general models coincide in special cases with common models from the
literature, as e.g. [11, 2, 10, 1]. Our general modeling approach leads to coupling
conditions, which are suitable for small fracture aperture and for a resolution of
low frequencies 𝑘 . It also permits several adaptations, one of which we explore
here, namely new coupling conditions with extended range of validity, obtained by
replacing the parameters in the asymptotic coupling conditions by new parameters,
which we then optimize w.r.t. the error for a given range of frequency components
𝑘 ∈ [𝑘min, 𝑘max] present in the numerical solution to be computed. Our results are
based on the explicit formula from [8] for the error for the solution of the asymptotic
model in Fourier space, which we adapt to generalized parameters. In order to
obtain explicit formulas for the optimized parameters, we make some simplifying
assumptions, and then solve the resulting optimization problem analytically using
asymptotic techniques for small fracture apertures. Our approach could also be
adapted to more general situations, and we could have chosen to use expansions for
𝛿 → 𝛿0 or 𝑘 → 𝑘∞, with 𝛿0 or 𝑘∞ a fixed constant, for example. In this sense,
we want to outline conceptually a technique to improve the model accuracy for the
model in [7], which can be adapted by the reader to the situation at hand. An ad hoc
generalisation to fracture networks would be to apply the matrix-fracture coupling
conditions, as derived in our manuscript, to each of the fracture segments and to
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Fig. 1: Geometry of the do-
main under consideration.

n2
x

y

a b0

n1

−δ δ

Ω1 Ω2Ωf

impose pressure continuity and flux conservation at the fracture intersections (see
e.g. [9], or [3] for an alternative formulation in the case of highly contrasted fracture
permeabilities). A rigorous treatment of cross points in domain decomposition is a
topic of substantial interest for current research (cf. [6], and references therein), and
its application to fracture intersections is a project for future work.

2 Model problem

In the domains illustrated in Fig. 1, we consider the system of PDEs

−divq 𝑗 +
b 𝑗
2
· ∇𝑢 𝑗 + (𝜂 𝑗 − div

b 𝑗
2
)𝑢 𝑗 = ℎ 𝑗 in Ω 𝑗 , 𝑗 = 1, 2, 𝑓 , (1)

q 𝑗 = (A 𝑗∇ −
b 𝑗
2
)𝑢 𝑗 in Ω 𝑗 , 𝑗 = 1, 2, 𝑓 , (2)

connected at 𝑥 = ±𝛿 with the coupling conditions

𝑢 𝑗 = 𝑢 𝑓 on 𝜕Ω 𝑗 ∩ 𝜕Ω 𝑓 , 𝑗 = 1, 2, (3)
q 𝑗 · n 𝑗 = q 𝑓 · n 𝑗 on 𝜕Ω 𝑗 ∩ 𝜕Ω 𝑓 , 𝑗 = 1, 2. (4)

The model coefficients are 𝜂 𝑗 : Ω 𝑗 → R≥0, b 𝑗 : Ω 𝑗 → R2, such that 𝜂 𝑗 −divb 𝑗 ≥ 0,
and coercive matrices A 𝑗 : Ω 𝑗 → R2×2. The model unknowns are q 𝑗 and 𝑢 𝑗 . For
this problem, we can eliminate the fracture unknowns in Fourier space, as described
in [8]: applying a Fourier transform in the direction tangential to the fracture, the
fracture Fourier coefficients have to satisfy specific ODEs which can be solved using
two of the four coupling conditions at the interfaces. Then, the fracture solution is
substituted into the remaining two coupling conditions. The resulting equations at
𝑥 = ±𝛿 for the coupling between the matrix domains, when the fracture has been
eliminated, are

q̂2 · n2 + q̂1 · n1 = −𝑎11

√︂
𝑎22
𝑎11

𝑘2 tanh
(
𝛿

√︂
𝑎22
𝑎11

𝑘2
)
(�̂�1 + �̂�2), (5)
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q̂2 · n2 − q̂1 · n1 =
𝑎11

√︃
𝑎22
𝑎11
𝑘2

tanh
(
𝛿
√︃
𝑎22
𝑎11
𝑘2

) (�̂�2 − �̂�1), (6)

under the simplifying assumption that ℎ 𝑓 ≡ 0, b 𝑓 = 0, 𝜂 𝑓 = 0, and A 𝑓 being
diagonal.

Asymptotic coupling for small 𝛿.We recall first the asymptotic coupling conditions
for small 𝛿 presented in [8]. For 𝛿→ 0, we can expand

tanh
(
𝛿

√︂
𝑎22
𝑎11

𝑘2
)
= 𝛿

√︂
𝑎22
𝑎11

𝑘2 − 𝛿3 1
3

√︂
𝑎22
𝑎11

𝑘2
3

+ O(𝛿5). (7)

Truncation after the next-to-leading-order term yields at 𝑥 = ±𝛿 the reduced order
coupling conditions

q̂red
1 · n1 + q̂red

2 · n2 = −𝛿𝑎22𝑘
2 (�̂�red

1 + �̂�red
2 ), (8)

q̂red
1 · n1 − q̂red

2 · n1 =
𝑎11
𝛿
(�̂�red

2 − �̂�red
1 ). (9)

3 Generalized coupling conditions and their optimization

The coupling conditions (8) and (9) are by construction most suitable for small
values of 𝛿, and also for small values of 𝑘 , due to a symmetry between 𝛿 and 𝑘 . In
practical numerical computations, the solution sought has however a certain range
of frequencies, 𝑘 ∈ [𝑘min, 𝑘max], not only low ones. To treat such a wider range of
frequencies, we use now a common technique from Optimized Schwarz methods in
domain decomposition [4, 5], which consists in keeping the structure of the reduced
order coupling conditions, and introducing new parameters as d.o.f. for a subsequent
optimization. In our case, the coupling conditions are of Robin type, and we replace
the occurring parameters in (8) and (9), 𝛿𝑎22 and 𝑎11

𝛿 , by newly introduced parameters
𝑝 and 𝑞, which gives the optimizable reduced coupling conditions

q̂red
1 · n1 + q̂red

2 · n2 = −𝑝𝑘2 (�̂�red
1 + �̂�red

2 ),
q̂red

1 · n1 − q̂red
2 · n1 = 𝑞(�̂�red

2 − �̂�red
1 ).

In [8], the error at the interfaces of the 𝛿-asymptotic reduced order solution in Fourier
space was derived, see the result after eq. (7.5) therein. The errors for our generalized
reduced order model can analogously be obtained, and we get for 𝑗 = 1, 2

𝑒 𝑗 := �̂� 𝑗 − �̂�red
𝑗

= 𝜌(𝑘, 𝑝) (�̂�2 + �̂�1) + (−1) 𝑗+1𝜏(𝑘, 𝑞) (�̂�2 − �̂�1),
(10)

where
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Fig. 2: Illustration of how to
find a solution to (14) and
(15).

𝜌(𝑘, 𝑝) = −1
2

√︁
𝑎11𝑎22𝑘2 tanh(𝛿

√︃
𝑎22
𝑎11
𝑘2) − 𝑝𝑘2

√
𝑘2 + 𝑝𝑘2

, (11)

𝜏(𝑘, 𝑞) = 1
2

√
𝑎11𝑎22𝑘2

tanh(𝛿
√︃
𝑎22
𝑎11

𝑘2)
− 𝑞

√
𝑘2 + 𝑞

. (12)

In order to minimize the error for a range of frequencies in a simulation, we need to
solve

min
𝑝,𝑞

max
𝑘∈(𝑘min ,𝑘max)

|𝑒 𝑗 (𝑘, 𝑝, 𝑞) |, (13)

for small 𝛿 ≪ 𝑘−1
max. Since (�̂�2 + �̂�1) and (�̂�2 − �̂�1) are linearly independent, our

objective functions to be minimized are |𝜌 | and |𝜏 |. The following lemma will be
applied without proof.

Lemma 1 The solution (𝑘∗, 𝑝∗, 𝑞∗) to

𝜕𝑘𝜌(𝑘∗, 𝑝∗) = 0 (14)
|𝜌(𝑘max, 𝑝

∗) | = |𝜌(𝑘∗, 𝑝∗) | (15)
|𝜏(𝑘max, 𝑞

∗) | = |𝜏(𝑘min, 𝑞
∗) | (16)

solves the relevant min-max problem (13).

We will first solve for the equation (16), and then for the independent problem (14)
and (15), cf. Fig. 2. Since we are interested in the case of fracture apertures, which
are not resolved by the mesh, i.e. 𝛿 ≪ 𝑘−1

max, we will solve the problem asymptotically
in 𝛿, for the leading and next–to–leading order terms of the expansions.
First, using the asymptotic expansion (7) in (12) yields

𝜏(𝑘, 𝑞) = 1
2

𝑎11
𝛿 + 𝑎22 𝛿𝑘

2

3 − 𝑞
|𝑘 | + 𝑞 + O(𝛿3). (17)

Inserting this into (16) implies
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𝑎11
𝛿 +

𝑎22 𝛿𝑘
2
min

3 − 𝑞∗
|𝑘min | + 𝑞∗ +

𝑎11
𝛿 +

𝑎22 𝛿𝑘
2
max

3 − 𝑞∗
|𝑘max | + 𝑞∗ = O(𝛿3). (18)

Hence,

𝑞∗ =
𝑎11
2𝛿
+ 𝑎22𝛿𝑘

2
max + 𝑘2

min
12

− 𝑘max + 𝑘min
4

+
[
( 𝑎11

2𝛿
)2 + 𝑎11 (𝑘min + 𝑘max)

4𝛿
+

( 𝑘min + 𝑘max
4

)2
+ 𝑎11𝑎22 (𝑘2

min + 𝑘2
max)

12

+ 𝑎22𝛿

12

(1
2
(𝑘min + 𝑘max)3 − (𝑘3

min + 𝑘3
max)

)
+

( 𝑎22𝛿

12
(𝑘min + 𝑘max)

)2] 1
2
.

(19)

We can now derive an asymptotic formula for the optimized error in the jump of 𝑢
across the fracture by substituting the optimized parameter 𝑞∗ into 𝜏, at 𝑘 = 𝑘𝑚𝑎𝑥 or
equivalently at 𝑘 = 𝑘min, and obtain

min
𝑞

max
𝑘∈(𝑘min ,𝑘max)

|𝜏(𝑘, 𝑞) |

= |𝜏(𝑘max, 𝑞
∗) | = |𝜏(𝑘min, 𝑞

∗) | = 𝑎22 (𝑘2
max − 𝑘2

min)
12𝑎11

𝛿2 + O(𝛿3).
(20)

This result can further be compared to the corresponding error of the original model,

max
𝑘∈(𝑘min ,𝑘max)

|𝜏(𝑘, 𝑎11
𝑑
) | = 𝑎22𝑘

2
max

6𝑎11
𝛿2 + O(𝑑3). (21)

We observe that the asymptotic constant in (20) is approximately half the value
of the asymptotic constant in (21). For solving for (14) and (15), we can proceed
analogously: first, we use the expansion (7) in (11), and obtain

𝜌(𝑘, 𝑝) = −1
2
𝑎22𝛿 − 𝑎2

22 𝛿
3𝑘2

3𝑎11
− 𝑝

(𝑝 + 1
|𝑘 | )

+ O(𝛿4). (22)

Substituting (22) into (14) and (15) implies

−−3𝑎11 (𝑎22𝑑 − 𝑝∗) + 2𝑎2
22𝑑

3𝑘∗2 (𝑘∗𝑝∗ + 1) + 𝑎2
22𝑑

3𝑘∗2

3𝑎11 (𝑘∗𝑝∗ + 1)2
= O(𝛿4), (23)

𝑎22𝛿 − 𝑎2
22 𝛿

3𝑘∗2

3𝑎11
− 𝑝∗

(𝑝∗ + 1
|𝑘∗ | )

+
𝑎22𝛿 − 𝑎2

22 𝛿
3𝑘2

max
3𝑎11

− 𝑝∗

(𝑝∗ + 1
|𝑘max | )

= O(𝛿4). (24)

Solving (23) and (24), we obtain the optimized parameters

𝑘∗ =
𝑘max

2
+ O(𝛿4) and 𝑝∗ = 𝑎22𝛿 −

𝑎2
22𝛿

3𝑘2
max

4𝑎11
+ O(𝛿4). (25)
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Finally, we obtain an asymptotic formula for the optimized error in the averaged
traces of 𝑢 at the interface, by substituting the optimized parameters into 𝜌,

min
𝑝

max
𝑘∈(𝑘min ,𝑘max)

|𝜌(𝑘, 𝑝) | = |𝜌(𝑘max, 𝑝
∗) | = |𝜌(𝑘∗, 𝑞∗) | = 𝑎2

22𝑘
3
max

24𝑎11
𝛿3 + O(𝛿4).

(26)

We can again compare this to the error of the original model,

max
𝑘∈(𝑘min ,𝑘max)

|𝜌(𝑘, 𝑎22𝛿) | =
𝑎2

22𝑘
3
max

6𝑎11
𝛿3 + O(𝛿4), (27)

and observe that the asymptotic constant in (26) is a fourth of the value of the
asymptotic constant in (27).

4 Numerical results

We will now illustrate our results numerically and compare the theoretical error of
the optimized problemwith parameters 𝑝∗ and 𝑞∗, for which we have the expressions
(25) and (19), with the theoretical error of the asymptotic model (8), (9) from [7, 8],
which employs the parameters

𝑞red =
𝑎11
𝛿

and 𝑝red = 𝑎22𝛿.

These parameters have been calculated analytically, for small fracture apertures. On
the other hand, we can solve the problem (13) numerically for any given data, and thus
obtain general optimized parameters, which will serve as reference parameters, and
which we will denote by 𝑝opt and 𝑞opt. We will also show plots of the corresponding
errors

max
𝑘∈(𝑘min ,𝑘max)

|𝜏(𝑘, 𝑞) | and max
𝑘∈(𝑘min ,𝑘max)

|𝜌(𝑘, 𝑝) |,

for 𝑞 ∈ {𝑞opt, 𝑞∗, 𝑞red} and 𝑝 ∈ {𝑝opt, 𝑝∗, 𝑝red}. When interpreting the results, the
reader is referred to (10). Please also note that the jump �̂�2− �̂�1 is of order 𝛿, as shown
in [8]. We present three different cases: homogeneous isotropic fractures, fracture
barriers, and fracture conduits. The fracture apertures are from 10−2 to 10−5 and the
frequency range is set to [𝑘min = 0, 𝑘max = 𝜋], on an infinite domain.
Homogeneous isotropic fracture. This is a fracture with the same properties as the
bulk domain, i.e. 𝑎11 = 𝑎22 = 1. The plots in Fig. 3 show the theoretical errors of
the reduced order solutions, and their convergence to the reference solution, with
𝛿→ 0. We observe that the error of the asymptotic optimized model is in very good
agreement with the error of the numerically optimized model for all 𝛿. The slight
difference in 𝜌 for 𝛿 = 10−5 is due to round-off error, as we have reached machine
precision. The error plots also reveal an advantage of the optimized models over the
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Fig. 3: Isotropic fracture, fracture barrier and fracture conduit (from top to bottom). Exact errors
for the asymptotic, asymptotic optimized, and numerically optimized parameters.

asymptotic model from [7]. The gain in accuracy can be analytically quantified by
the ratios of asymptotic constants in (20) and (21) for 𝜏, and in (26) and (27) for 𝜌.

Fracture barrier. Let us consider anisotropic diffusion coefficients in the fracture:
a very low normal diffusion 𝑎11 = 10−3 and a homogeneous tangential diffusion
𝑎22 = 1. Similar to the isotropic test case, we observe from the plots in Fig. 3 an
advantage of the optimized models over the asymptotic model from [7], which can
be quantified by looking at the asymptotic coefficients in (20) and (21) for 𝜏, and in
(26) and (27) for 𝜌. We observe that the error of the asymptotic optimized model is
in very good agreement with the error of the numerically optimized model for all
𝛿, except for 𝛿 = 10−2, where there is a small difference. This is due to the strong
heterogeneity and anisotropy of the fracture diffusion coefficients, which have not
been accounted for in the derivation of the optimized parameters.

Fracture conduit. Let us now consider a high tangential diffusion 𝑎22 = 103 and a
homogeneous normal diffusion 𝑎11 = 1. The results shown in Fig. 3 are comparable
to the results from the previous test case.
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5 Conclusion

We presented a newway to generalize the coupling conditions from [7, 8] for discrete
fracture matrix models to a wider range of frequencies arising in the numerical
solution. To do so, we conserved the structure of the original coupling conditions
obtained for small fracture apertures, but optimized the occurring parameters for
a given range of numerical frequencies, with the error as the objective function.
This led to the new optimized parameters given in (19) and (25), which minimize
the error committed by the reduced order model. We also quantified the error by
comparing the asymptotic coefficients in the equations (20) and (21) for the error
in the pressure jump across the fracture, and in (26) and (27) for the error in the
averaged pressure across the fracture. This comparison shows that the error using
the optimized coupling conditions is two to four times smaller than for the original
ones. We finally illustrated the theoretical results numerically for several test cases.
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Efficient Monolithic Solvers for Fluid-Structure
Interaction Applied to Flapping Membranes

D. Jodlbauer, U. Langer, and T. Wick

1 Introduction

This work is devoted to the efficient solution of variational-monolithic fluid-structure
interaction (FSI) initial-boundary value problems. Solvers for such monolithic sys-
tems were developed, e.g., in [7, 3, 5, 15, 12, 11, 13, 9, 2]. Due to the interface
coupling conditions, the development of robust scalable parallel solvers remains a
challenging task, and to the best of our knowledge only semi-cost optimal paral-
lel approaches could be derived [4, 9]. The main purpose of this work consists in
further numerical studies of the solver, developed in [9], for a benchmark problem
that is motivated by hemodynamic applications. Specifically, we consider channel
flow with elastic membranes and elastic solid walls. This situation is challenging
because of the thin elastic flaps and was the motivation for fluid-structure interaction
models such as immersed methods [6, 14]. However, we use arbitrary Lagrangian-
Eulerian coordinates (see e.g., [8]), because of its high accuracy of the coupling
conditions as the interface is tracked. For a careful evaluation of the performance of
our physics-based block FSI preconditioner from [9], we use sparse direct solvers
for the mesh, solid, and fluid subproblems. These sparse direct solvers should be
replaced by iterative solvers in the case of large-scale problems with a high number
of degrees of freedom. Therein, the flow part with well-known saddle-point structure
becomes very critical, which was not yet the case for our solver applied to the FSI
benchmarks in [11, 9]. The performance of our block FSI preconditioner and overall
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linear GMRES solver is evaluated in terms of iteration numbers as well as memory
storage. Moreover, iteration numbers of the nonlinear Newton solver are monitored.
Finally, a computational convergence analysis for flap tip displacements, drag and
lift for different spatial mesh levels is conducted.

2 FSI Model

Let the function spaces 𝑋 (including extensions of non-homogeneous Dirichlet
conditions) and �̂�0 (homogeneous Dirichlet conditions) be given. Our variational-
monolithic arbitrary Lagrangian-Eulerian FSI model from [17] (see also [9]) reads
in space-time formulation as follows: Find a global vector-valued velocity �̂�, global
vector-valued displacements �̂� = �̂�𝑠 + �̂� 𝑓 , and a scalar-valued fluid pressure 𝑝 𝑓 , i.e.,
�̂� := (�̂�, �̂�, 𝑝 𝑓 ) ∈ 𝑋 such that the fluid/solid momentum equation∫

𝐼

(
(𝐽 �̂� 𝑓 𝜕𝑡 �̂�, �̂�𝑣)Ω̂ 𝑓 + ( �̂� 𝑓 𝐽 (�̂�−1 (�̂� − �̂�) · ∇̂)�̂�), �̂�𝑣)Ω̂ 𝑓 + (𝐽�̂� 𝑓 �̂�−𝑇 , ∇̂�̂�𝑣)Ω̂ 𝑓
+⟨�̂� 𝑓 𝜈 𝑓 𝐽 (�̂�−𝑇 ∇̂�̂�𝑇 �̂� 𝑓 )�̂�−𝑇 , �̂�𝑣⟩Γ̂out + ( �̂�𝑠𝜕𝑡 �̂�, �̂�𝑣)Ω̂𝑠 + (�̂�Σ̂, ∇̂�̂�𝑣)Ω̂𝑠

)
𝑑𝑡

+(𝐽 (�̂�(0) − �̂�0), �̂�𝑣 (0))Ω̂ 𝑓 + (�̂�(0) − �̂�0, �̂�
𝑣 (0))Ω̂𝑠 = 0,

the 2nd solid eq.
∫
𝐼

(
�̂�𝑠 (𝜕𝑡 �̂�𝑠 − �̂� |Ω̂𝑠 , �̂�𝑢𝑠 )Ω̂𝑠

)
𝑑𝑡 + (�̂�𝑠 (0) − �̂�𝑠,0, �̂�𝑢𝑠 (0)) = 0,

the mass conservation
∫
𝐼

(
(𝑑𝑖𝑣 (𝐽�̂�−1�̂�), �̂�𝑝𝑓 )Ω̂ 𝑓

)
𝑑𝑡 = 0,

and the mesh motion
∫
𝐼
(�̂�mesh, ∇̂�̂�𝑢𝑓 )Ω̂ 𝑓 𝑑𝑡 = 0,

hold for all Ψ̂ = (�̂�𝑣 , �̂�𝑢, �̂�𝑝𝑓 ) ∈ �̂�0, with �̂�𝑢 = �̂�𝑢𝑓 + �̂�𝑢𝑠 . Furthermore, �̂� = 𝐼 +
∇̂�̂�, 𝐽 = 𝑑𝑒𝑡 (�̂�), �̂� 𝑓 = −𝑝 𝑓 𝐼+ �̂� 𝑓 𝜈 𝑓 (∇̂�̂� 𝑓 �̂�−1+ �̂�−𝑇 ∇̂�̂� 𝑓 ), Σ̂ = 2𝜇𝑠 �̂�+𝜆𝑠𝑡𝑟 (�̂�)𝐼, �̂� =
0.5(�̂�𝑇 �̂� − 𝐼), �̂�mesh = 𝛼𝑢∇̂�̂� 𝑓 , densities �̂�𝑠 , �̂� 𝑓 , kinematic viscosity 𝜈 𝑓 , and the
Lamé parameters 𝜇𝑠 , 𝜆𝑠 [9]. In compact form, the above problem reads: Find �̂� ∈ 𝑋
such that �̂�(�̂�) (Ψ̂) = 0 ∀ Ψ̂ ∈ �̂�0, where the FSI equations are combined in the
semi-linear form �̂�(�̂�) (Ψ̂).

3 Numerical solution and physics-based preconditioners

3.1 Newton linearization

The previous FSI model is discretized in time by an 𝐴 stable implicit finite difference
scheme and in space by Galerkin finite elements on quadrilaterals. The temporal and
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spatial discretization parameters are denoted by 𝑘 and ℎ, respectively. At time step
𝑡𝑛, we need to solve for𝑈𝑛+1ℎ at 𝑡𝑛+1 for which we utilize Newton’s method. At each
Newton step (index 𝑗), we have to solve a linear variational problem of the form

𝐴′(𝑈𝑛, 𝑗ℎ ) (𝛿𝑈ℎ,Ψℎ)︸                   ︷︷                   ︸
=𝐴𝛿𝑈

= −𝐴(𝑈𝑛, 𝑗ℎ ) (Ψℎ)︸             ︷︷             ︸
=𝐵

∀Ψℎ ∈ �̂�0
ℎ ⊂ �̂�0,

𝑈
𝑛, 𝑗+1
ℎ = 𝑈𝑛, 𝑗ℎ + 𝜆𝛿𝑈ℎ, 𝜆 ∈ (0, 1],

until |𝐵 𝑗 | ≤ 10−6 |𝐵0 |. The linesearch parameter is 𝜆 = 1 in our simulations. Thus,
we finally obtain the linear system of finite element equations

𝐴𝛿𝑈 = 𝐵

for determining the Newton correction 𝛿𝑈. We note that the finite element functions
and operators are identified with the correspondingmatrix and vector representations
via the finite element isomorphism. Up to 105 unknowns in 2𝑑, respectively, 104

unknowns in 3D, sparse direct solvers work still fine in the context of FSI problems.
However, for large-scale problems with considerable more unknowns, we should
use preconditioned iterative solvers in order to reduce the memory demand and the
computational costs in terms of arithmetical operations required.

3.2 Block structure of linear systems

Since the FSI problem is non-symmetric, a GMRES scheme (generalized minimal
residual) is a classical choice for the overall solution of the linear system arising
at each Newton iteration. In order to reduce the number of GMRES iterations, one
needs a suitable preconditioner 𝑃 for the systemmatrix 𝐴. In [9], we have constructed
a (left) preconditioner 𝑃 such that

𝑃−1𝐴𝛿𝑈 = 𝑃−1𝐵

with 𝑃−1 ≈ 𝐴−1 in the sense that 𝑃−1𝐴 is close to the identity matrix 𝐼. We refer the
reader to [16] for GMRES convergence results.
Observing the previous FSI model, we have three unknowns when global con-

tinuity of the displacements �̂� 𝑓 and �̂�𝑠 and �̂� 𝑓 and �̂�𝑠 is realized, which is due to
the variational-monolithic coupling scheme. Consequently, �̂�, �̂�, 𝑝 are obtained from
three principal problems: (𝑚) mesh motion, ( 𝑓 ) fluid, (𝑠) solid. This results into the
following 3 × 3 block system:

𝐴 :=

M C𝑚𝑠 0
C𝑠𝑚 S C𝑠 𝑓
C 𝑓 𝑚 C 𝑓 𝑠 F


.
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A brief analysis yields that the principal problems appear on the diagonal. The
coupling terms C∗∗ are on the off-diagonals. In [7], details on the influence of these
were studied on the overall solver behavior. Aiming for cost-optimal parallel schemes,
the interface coupling terms play however a crucial rule [9].

3.3 Physics-based preconditioner

We now concentrate on the construction of the preconditioner 𝑃−1, which is based
on a simplified LDU block factorization

𝐴 ≈


𝐼 0 0
0 𝐼 0

C 𝑓 𝑚M−1 C̃ 𝑓 𝑠S−1 𝐼



M 0 0
0 S 0
0 0 F



𝐼 M−1C𝑚𝑠 0
0 𝐼 S−1C𝑠 𝑓
0 0 𝐼


= 𝐿𝐷𝑈 = 𝑃,

where we neglect the coupling term C𝑠𝑚. We have (see [11][Section 6.4.3]) C̃ 𝑓 𝑠 =
C 𝑓 𝑠 − C 𝑓 𝑚M−1C𝑚𝑠 . Having such a decomposition, it is easy to compute the action
of the inverse. We note that, in Krylov subspace methods, we only need the action
of 𝑃−1 on the residual 𝑟 .
From linear algebra we know that 𝑃−1𝑟 = 𝑈−1𝐷−1𝐿−1𝑟 with 𝑃 = 𝐿𝐷𝑈 from

above. Consecutively solving with 𝐿, 𝐷 and𝑈 yields the following result:
Algorithm Evaluation of 𝑃−1𝑟 (matrix-vector multiplications):
1. Solve 𝑥𝑚 =M−1𝑟𝑚
2. Solve 𝑥𝑠 = S−1𝑟𝑠
3. Solve 𝑥 𝑓 = F −1 (𝑟 𝑓 − C 𝑓 𝑚𝑥𝑚 − C 𝑓 𝑠𝑥𝑠)
4. Update 𝑥𝑠 = 𝑥𝑠 − S−1C𝑠 𝑓 𝑥 𝑓
5. Update 𝑥𝑚 = 𝑥𝑚 −M−1C𝑚𝑠𝑥𝑠 □

It remains to discuss the solutions of the subproblemswith the systemmatricesM,
S and F . In our 2𝑑 numerical example presented in Sect. 4, we use the sparse direct
solver MUMPS1 that solves these smaller subproblems very efficiently. However, if
the subproblems are larger, we should replace the direct solvers forM−1, S−1 and
F −1 by preconditioned iterative solvers M̃−1, S̃−1 and F̃ −1; see [11, 9], where we
used AMG-based solvers for the subproblems. The implementation is based on the
open-source finite element package deal.II [1].

4 Flapping membranes with elastic solid walls

This example was originally inspired from [6], later extended by ourselves, and
the current configuration was recently used in [18] for optimal control with fluid-
structure interaction. The geometry is shown in Figure 1 (left). It consists of the

1 http://mumps.enseeiht.fr/
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fluid domain Ω̂Fluid := (0, 8) × (0.0, 1.61) \ Ω̂Flaps with inscribed flaps Ω̂Flaps :=
(1.9788, 2.0) × ((0, 0.7) ∪ (0.91, 1.61)). It is further surrounded by elastic arteries
Ω̂Artery := (0, 8) × ((−0.1, 0.0) ∪ (1.61, 1.71)) on the top and bottom of Ω̂.

Ω̂Fluid
Γ̂in Γ̂out 1.61 1.81

0.7

Ω̂Flaps

8

Ω̂Artery

1.9788 6

Ω̂Artery(0, 0)

Γ̂solid

Γ̂solid

Γ̂solid

Γ̂solid

Γ̂stress

0 0.5 1 1.5 2 2.5 3
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1
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m
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]

vmean(t)

Fig. 1: Geometry with inflow profile (left) and mean inflow velocity (right).

On the inflow boundary, Γ̂in := {0} × (0, 1.61), we prescribe a parabolic inflow
profile �̂�(0, 𝑦, 𝑡) := 6(1.61)−2𝑦(1.61 − 𝑦)𝑣mean (𝑡) for 𝑡 ∈ 𝐼 := [0, 3.6], where
𝑣mean (𝑡) is given by the profile in Figure 1 (right). At the outflow boundary the
do-nothing outflow condition Γ̂out is prescribed for �̂� and 𝑝. The elastic walls are
fixed at the left and right, i.e., on Γ̂solid, left := {0} × ((−0.1, 0.0) ∪ (1.61, 1.71)) and
Γ̂solid, right := {8} × ((−0.1, 0.0) ∪ (1.61, 1.71)), we prescribe �̂� = 0 and �̂� = 0.
The computations are performed on the time interval 𝐼 = (0, 3.6s). The fluid

parameters are given by the kinematic viscosity 𝜈 𝑓 = 10−1cm2 s−1, and density
�̂� 𝑓 = 102g cm−3. In the solid domains Ω̂Flaps and Ω̂Artery, we use a Poisson ratio
𝜈 = 0.4, and density 𝜌𝑠 = 102g cm−3. The Lamé parameters are given by 𝜇flaps𝑠 =
2.0 · 107g cm−1 s−2 in Ω̂Flaps, and 𝜇walls𝑠 = 1.0 · 109g cm−1 s−2 in Ω̂Artery.
We are interested in evaluating the number ofGMRES iterations per linear solve in

eachNewton step to achieve a reduction of 10−4.Moreover, wemonitor the number of
nonlinear iterations, the position of the tip (2, 0.91) of the upper elastic flap, and the
drag and lift (𝐹𝐷 , 𝐹𝐿) =

∫
Γ̂stress

𝐽
(
−𝑝𝐼 + �̂� 𝑓 �̂� 𝑓 (∇̂�̂��̂�−1 + �̂�−𝑇∇𝑣𝑇 )

)
�̂�−𝑇 �̂� 𝑑𝑠 with

Γ̂stress := (2, 8) × {1.61}.
Figure 2 shows that, during the whole simulation, we require an almost constant

number of 4 to 6 Newton iterations. Similarly, the average number of linear GMRES
iterations stays between 8 and 11 during refinement, although a slight increase
can be observed on the finer grids. The computational aspects of certain parts of
our simulation are summarized in Table 1. Our proposed iterative solver achieves
similar performance as the direct solver on the coarsest grid. On the finest grid,
with about 2 million dofs, the iterative variant is already about a factor of 2.3-times
faster. Furthermore, the memory footprint of the iterative variant is roughly halved
compared to the sparse direct solver; see Table 2. We note that for 2𝑑 problems,
sparse direct solvers are hard to beat in terms of performance. For larger problems,
we can split the application of the direct solver to the respective subproblems. This
reduces the amount of memory and flops required to compute the factorization.
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The resulting drag and lift values are visualized in Figure 3, the elongation of the
tip is plotted in Figure 4. All these functional evaluations show surprisingly good
agreement throughout the various levels of refinement. Only small differences are
visible at the tips. As expected due to the symmetry of the configuration, evaluating
the displacement, drag, or lift in the lower or upper part does not make a difference.

0 1 2 3

4

6

8

10

12

Time [s]

Av
g.

It
er

at
io

ns

` = 2
` = 3
` = 4

Fig. 2: Number of GMRES (higher values) and Newton iterations (lower values).

ℓ DoFs Assemble [s] Factorization [s] Application [s] Total [s]
2 8.7 · 103 1.6 · 10−1 3.2 · 10−1 6.7 · 10−3 3.3 · 10−1

3 3.4 · 104 6.2 · 10−1 1.7 · 100 2.8 · 10−2 1.7 · 100

4 1.3 · 105 2.5 · 100 9.5 · 100 1.2 · 10−1 9.6 · 100

5 5.4 · 105 1.0 · 101 5.7 · 101 5.4 · 10−1 5.7 · 101

6 2.1 · 106 4.1 · 101 4.2 · 102 2.3 · 100 4.2 · 102

ℓ DoFs Assemble [s] Factorization [s] Application [s] Total [s]
2 8.7 · 103 1.6 · 10−1 1.1 · 10−1 2.0 · 10−1 3.1 · 10−1

3 3.4 · 104 6.3 · 10−1 6.7 · 10−1 5.7 · 10−1 1.2 · 100

4 1.3 · 105 2.5 · 100 3.6 · 100 2.7 · 100 6.3 · 100

5 5.4 · 105 1.0 · 101 2.0 · 101 1.3 · 101 3.3 · 101

6 2.1 · 106 4.1 · 101 1.1 · 102 6.9 · 101 1.8 · 102

Table 1: Timings of a direct solver for the full FSI system (top) and our preconditioner with direct
solvers for the fluid, solid, and mesh subproblems. Average time for the assembly, factorization,
application of the preconditioner, and the total time for the a single linear system are given.

5 Conclusions and Outlook

We presented a preconditioner based on a block-LDU-decomposition of the linear
systems for a challenging 2𝑑 FSI problem. For a small number of degrees of freedoms,
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ℓ DoFs Matrix[B] Fluid[B] Mesh[B] Solid[B] 𝑃−1 [B] Full[B]
2 8.7 · 103 6.3 · 106 4.0 · 106 4.0 · 106 3.0 · 106 1.1 · 107 2.1 · 107

3 3.4 · 104 2.5 · 107 1.8 · 107 1.6 · 107 1.4 · 107 4.8 · 107 9.3 · 107

4 1.3 · 105 1.0 · 108 8.2 · 107 7.6 · 107 6.5 · 107 2.2 · 108 4.3 · 108

Table 2: Memory requirements using a direct solver (Full) for the whole system compared to our
preconditioner 𝑃−1, which uses direct solvers for fluid, solid and mesh.
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Fig. 3:Drag (left) and lift (right) evaluated at the artery behind the top flap, i.e., (2.0, 8.0) × {1.61}.
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Fig. 4: Displacement of the top flap at (2.0, 0.91) in x-direction (left) and y-direction (right).

a sparse direct solver for the full problem is hard to beat. Nonetheless, the reduction of
the sparse direct solver to the separate subproblems already leads to an improvement
of a factor 2 in terms of memory requirements. For large systems, the storage cost
and computational complexity of sparse direct solvers becomes a prohibitive barrier.
Replacing the solvers for the fluid, solid andmesh problems by iterative ormatrix-free
techniques may solve this issue. Implementing matrix-free solvers for FSI is a very
challenging task, mainly caused by the difficulties to treat the fluid subproblem. In
[10], we have applied the matrix-free technique successfully to fracture propagation.
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Adaptive Nonlinear Elimination
in Nonlinear FETI-DP Methods

Axel Klawonn, Martin Lanser, and Matthias Uran

1 Introduction

In recent years, we have formulated a unified framework that covers all nonlinear
FETI-DP as well as nonlinear BDDC methods; see [3]. Both belong to the class of
non-overlapping domain decomposition methods and can be used for the solution
of discrete nonlinear problems of the form 𝐴(�̄�) = 0. For example, such systems
arise from the discretization of nonlinear partial differential equations. In contrast
to the traditional Newton-Krylov-DD approach (see [3]), where we first linearize
the problem and then decompose it into subdomains, the order of operations is
turned around in nonlinear domain decomposition methods. A nonlinear elimination
of a subset of finite element unkowns before linearization allows us to interpret
nonlinear FETI-DP methods as nonlinear right-preconditioned Krylov methods; see
[3]. Although the unified framework covers arbitrary choices of elimination sets,
only a few different types of elimination sets have been considered so far. All of
them are based on the classification in interior, dual, and primal variables, which
is a natural thing to do in FETI-DP methods but obviously not problem-dependent.
In order to design a nonlinear FETI-DP method that fits optimally to an arbitrary
problem, it is necessary to use problem-dependent or adaptive elimination sets. In
this article, we describe, how to use the residual of the nonlinear FETI-DP saddle
point system to choose the elimination set. First studies were performed under our
guidance as part of a master thesis [6] and can also be found in [7]. The idea of using
the residual to determine an elimination set is adapted from Cai and Gong in [1],
where they have introduced the idea in the context of inexact Newton methods.
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2 Nonlinear FETI-DP

Before we describe the process of determining problem-dependent elimination sets,
let us first recall the most relevant ideas of nonlinear domain decomposition methods
and of the unified framework of nonlinear FETI-DP methods to introduce a suitable
notation. For a detailed description, we also refer to [2, 3] and the references therein.
Throughout this paper, we assume that we have a computational domainΩ ⊂ R𝑑 ,

𝑑 = 2, 3, which is divided into 𝑁 non-overlapping subdomainsΩ𝑖 , i.e.,Ω =
⋃𝑁
𝑖=1 Ω𝑖 .

Each subdomain is the union of finite elements and the associated finite element
spaces are denoted by𝑊 (𝑖) . We denote the product space of all finite element spaces
as 𝑊 = 𝑊 (1) × · · · × 𝑊 (𝑁 ) . In FETI-DP methods, we partition all variables into
interior (𝐼), dual (Δ), and primal (Π) variables, where only continuity in the primal
variables is prescribed and continuity in the dual variables is enforced by Lagrange
multipliers 𝜆 iteratively. Therefore, we further introduce a subspace 𝑊 ⊂ 𝑊 of
all finite element functions from 𝑊 that are continuous in the primal variables. A
simple choice of primal variables are subdomain vertices. For completeness, we also
introduce the subspace𝑊 ⊂ 𝑊 , which contains all finite element functions that are
continuous across the complete interface and it holds𝑊 ⊂ 𝑊 ⊂ 𝑊 .
As it was shown in [2], finding the solution of the fully assembled finite element

problem is equivalent to solving the nonlinear FETI-DP saddle point system

𝐴(�̃�, 𝜆) =
[
𝐾 (�̃�) + 𝐵𝑇𝜆 − 𝑓

𝐵�̃�

]
=

[
0
0

]
, �̃�, 𝑓 , 𝐾 (�̃�) ∈ 𝑊. (1)

This system is the basis for all nonlinear FETI-DP methods. Here, the linear con-
straints 𝐵�̃� = 0 together with Lagrange multipliers 𝜆 ∈ 𝑉 := range(𝐵) enforce
continuity in all dual variables.
As introduced in [3, 4], we use a nonlinear right-preconditioner 𝑀 (�̃�, 𝜆) that is

nonlinear in �̃� and linear in 𝜆; see [3, 4] for some desirable properties of 𝑀 . Instead
of 𝐴(�̃�, 𝜆) = 0, we now solve 𝐴(𝑀 (�̃�, 𝜆)) = 0 with a Newton-Krylov method.
Following [3], the application of a nonlinear right-preconditioner can be in-

terpreted as (partial) nonlinear elimination process (see also [5]), where different
choices of 𝑀 lead to different elimination sets. With this interpretation, it is obvious
to divide the overall set of variables into two different subsets 𝐸 and 𝐿, where 𝐸
contains all variables that should be nonlinearly eliminated by the preconditioner 𝑀 ,
and 𝐿 contains the remaining variables in which will be linearized.
After an appropriate rearrangement, we can represent all quantities in Eq. (1)

according to the variable split into the subsets 𝐸 and 𝐿. For example, we obtain
𝑓 =

[
𝑓 𝑇𝐸 𝑓 𝑇𝐿

]𝑇 and 𝐵 =
[
𝐵𝐸 𝐵𝐿

]
. Thus, we can write the nonlinear saddle point

system (Eq. (1)) as

𝐴(�̃�𝐸 , �̃�𝐿 , 𝜆) =

𝐾𝐸 (�̃�𝐸 , �̃�𝐿) + 𝐵𝑇𝐸𝜆 − 𝑓𝐸
𝐾𝐿 (�̃�𝐸 , �̃�𝐿) + 𝐵𝑇𝐿𝜆 − 𝑓𝐿

𝐵𝐸 �̃�𝐸 + 𝐵𝐿 �̃�𝐿


=


0
0
0


.
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With the application of the nonlinear right-preconditioner, we now aim to eliminate
all variables �̃�𝐸 , which correspond to the subset 𝐸 . Thus, our preconditioner is
implicitly defined by solving the nonlinear equation

𝐾𝐸 (𝑀�̃�𝐸 (�̃�𝐿 , 𝜆), �̃�𝐿) + 𝐵𝑇𝐸𝜆 − 𝑓𝐸 = 0, (2)

where we have 𝑀 (�̃�𝐸 , �̃�𝐿 , 𝜆) := (𝑀�̃�𝐸 (�̃�𝐿 , 𝜆), �̃�𝐿 , 𝜆), since, by construction, 𝑀 is
linear in �̃�𝐿 and 𝜆. After we have computed 𝑀 by solving Eq. (2) with Newton’s
method, we obtain the nonlinear Schur complement system

𝑆𝐿 (�̃�𝐿 , 𝜆) :=
[
𝐾𝐿 (𝑀�̃�𝐸 (�̃�𝐿 , 𝜆), �̃�𝐿) + 𝐵𝑇𝐿𝜆 − 𝑓𝐿

𝐵𝐸𝑀�̃�𝐸 (�̃�𝐿 , 𝜆) + 𝐵𝐿 �̃�𝐿

]
=

[
0
0

]
.

This can be solved with the traditional Newton-Krylov-FETI-DP approach ([2]); see
[3]. Putting it all together, in each of these (outer) Newton iterations, 𝑀 has to be
recomputed, resulting in two nested Newton loops. In case of an indefinite tangent
matrix, this approach might require further investigations since there are no provable
convergence statements for FETI-DP for indefinite linear problems so far. At least,
one should use GMRES instead of the CG method as Krylov subspace method.

3 A Problem-Dependent Choice of the Elimination Set

In [3], we have considered four different variants of Nonlinear-FETI-DP which are
denoted as NL-𝑖, 𝑖 = 1, . . . , 4. In all these methods, the elimination set is chosen a
priori with respect to the sets 𝐼, Δ, and Π. We have 𝐸NL−1 = ∅, 𝐸NL−2 =

[
𝐼 Δ Π

]
,

𝐸NL−3 =
[
𝐼 Δ

]
, and 𝐸NL−4 =

[
𝐼
]
. Let us note that the elimination sets are thus cho-

sen statically and that NL-4 has the smallest set among these variants. In our earlier
experiments, thesemethods often improved the nonlinear convergence behavior com-
pared to the traditional Newton-Krylov-FETI-DP approach; see [3]. Furthermore,
NL-3 and NL-4 show a high potential in reducing the computing time for large prob-
lems since the nonlinear elimination can be carried out completely independently
for each subdomain without the need for communication and synchronization. For
further information, we refer to [3] and the references therein.
However, we have also considered a model problem in [3] for which the perfor-

mance of NL-4 is worse than the traditional NK-FETI-DP approach. This demon-
strates that the choice of a good elimination set is essential for the performance
of nonlinear FETI-DP methods. At the same time, it also suggests that there are
problems for which the other NL-FETI-DP variants might perform poorly. Accord-
ingly, we should incorporate information about the problem into the choice of the
elimination set in order to construct a nonlinear FETI-DP method that is tailored to
the specific problem in the best possible way.
In this paper, we introduce aNonlinear-FETI-DPmethodwith problem-dependent

or adaptive elimination sets, which are determined with respect to the residual of the
nonlinear saddle point system Eq. (1). This strategy is inspired by an article by Gong



322 Axel Klawonn, Martin Lanser, and Matthias Uran

and Cai [1], where a similar approach was presented in the context of a nonlinear
elimination preconditioned inexact Newton method. The underlying idea is that the
elimination set contains all variables corresponding to large absolute values in the
nonlinear residual. First studies for the use in nonlinear FETI-DP methods are also
presented in [6, 7].
Let us first specify the residual that we consider. As usual, we are interested in

finding the solution (𝑢∗, 𝜆∗) of 𝐴(𝑢∗, 𝜆∗) = 0 with (𝑢∗, 𝜆∗) = 𝑀 (�̃�, 𝜆). Especially,
we are interested in the first component 𝑢∗, since the Lagrange multipliers are
only introduced to guarantee continuity of the final solution across the interface.
Therefore, we do not consider the complete residual of the nonlinear saddle point
system but only the part belonging to �̃�. Let us assume that we have finished the
𝑘-th outer iteration, i.e., we have computed 𝜆 (𝑘) = 𝜆 (𝑘−1) − 𝛿𝜆 (𝑘−1) and �̃� (𝑘) =

𝑔 (𝑘−1) − 𝛿�̃� (𝑘−1) , where 𝑔 (𝑘−1) :=
[
𝑀�̃�𝐸

(
�̃� (𝑘−1)
𝐿 , 𝜆 (𝑘−1)

)
, �̃� (𝑘−1)
𝐿

]
is the vector after

eliminating �̃�𝐸 and 𝛿𝜆 (𝑘−1) , 𝛿�̃� (𝑘−1) are the corresponding Newton updates. Thus,
𝑔 (𝑘−1) includes the solution of the inner Newton method in the 𝑘-th outer loop. Then,
the elimination set for iteration 𝑘 + 1 is built with respect to the residual

𝐴
(
�̃� (𝑘) , 𝜆 (𝑘)

) ���
�̃�
= 𝐾

(
�̃� (𝑘)

)
+ 𝐵𝑇𝜆 (𝑘) − 𝑓 ;

cf. the first line of Eq. (1). As the tilde indicates, all quantities are only assembled
in the primal variables and might have different values in a physical point belonging
to more than one subdomain. To obtain a single value for each global degree of
freedom, we make use of the dual assembly operator 𝑅𝑇Δ : 𝑊 → 𝑊 which yields the
residual

𝑟 (𝑘) := 𝑅𝑇Δ · 𝐴
(
�̃� (𝑘) , 𝜆 (𝑘)

) ���
�̃�
.

From 𝑅𝑇Δ𝐵
𝑇𝜆 (𝑘) = 0, we obtain

𝑟 (𝑘) = 𝑅𝑇Δ𝐾
(
�̃� (𝑘)

)
− 𝑅𝑇Δ 𝑓 = 𝑅𝑇Δ𝑅𝑇Π𝐾

(
𝑅Π �̃�

(𝑘)
)
− 𝑅𝑇Δ𝑅𝑇Π 𝑓 ,

where 𝑅𝑇Π : 𝑊 → 𝑊 is the assembly operator in the primal variables; see, e.g. [2].
From the last line of [3, Eq. 17], we obtain

𝐵𝑔 (𝑘−1) − 𝐵𝐸𝛿�̃� (𝑘−1)
𝐸 − 𝐵𝐿𝛿�̃� (𝑘−1)

𝐿 = 𝐵
(
𝑔 (𝑘−1) − 𝛿�̃� (𝑘−1)

)
= 0,

which automatically implies that �̃� (𝑘) is continuous across the interface. Thus, the
residual is identical to the fully assembled residual 𝑅𝑇Δ𝑅

𝑇
Π𝐾

(
𝑅Π𝑅Δ�̄�

(𝑘) ) −𝑅𝑇Δ𝑅𝑇Π 𝑓 =
𝑅𝑇𝐾

(
𝑅�̄� (𝑘)

) − 𝑅𝑇 𝑓 as long as we use a step length equal to 1 in the outer Newton
iteration, which we assume throughout this article for simplicity.
Next, we describe the process how to assign variables to the elimination set used

for the outer iteration 𝑘 + 1. Similar to [7], we introduce the following notation.
We assume that we have 𝑛 finite element nodes with 𝑙 degrees of freedom each and



Adaptive Nonlinear Elimination in Nonlinear FETI-DP Methods 323

introduce the two index setsN := {1, . . . , 𝑛} andD := {1, . . . , 𝑚}, where the overall
number of degrees of freedom belonging to �̄� or 𝑟 (𝑘) computes as 𝑚 = 𝑛 · 𝑙. Since
we have 𝑙 degrees of freedom for each finite element node, the residual vector 𝑟 (𝑘)

decomposes into 𝑛 subvectors 𝑟 (𝑘)(𝑖) ∈ R𝑙 , 𝑖 ∈ N , where the entries 𝑟
(𝑘)
(𝑖) 𝑗 , 𝑗 = 1, . . . , 𝑙,

belong to the corresponding degrees of freedomof finite element node 𝑖. Analogously
to [1], the idea is to assign those degrees of freedom to the elimination set 𝐸 (𝑘+1)
which correspond to a finite element node 𝑖 with at least one degree of freedom with
a high absolute residual value, i.e., ∥𝑟 (𝑘)(𝑖) ∥∞ ≥ 𝜌res · ∥𝑟 (𝑘) ∥∞, where 𝜌res ∈ (0, 1] is a
tolerance specified by the user. Let us note that thus all degrees of freedom belonging
to the same physical node are either all assigned to 𝐸 (𝑘+1) or not. Hence, the size
of the elimination set increases with a decreasing tolerance. Consequently, the index
set of degrees of freedom that belong to the elimination set writes

D (𝑘+1)𝐸 :=
{
𝑖1, . . . 𝑖𝑙 ∈ D | 𝑖 ∈ N , ∥𝑟 (𝑘)(𝑖) ∥∞ ≥ 𝜌res · ∥𝑟 (𝑘) ∥∞

}
.

For the final elimination set 𝐸 (𝑘+1) , we introduce a 𝛿res ∈ R and extend the index
set D (𝑘+1)𝐸 with the indices of degrees of freedom belonging to finite element nodes
with a distance of at most 𝛿res to any finite element node whose degrees of freedom
have been assigned to D (𝑘+1)𝐸 ; see c) and d) in Fig. 1. Denoting the coordinates of
finite element node 𝑖 with 𝑣𝑖 , the final elimination set writes

𝐸 (𝑘+1) := D (𝑘+1)𝐸

⋃ {
𝑖1, . . . , 𝑖𝑙 ∈ D

����� 𝑖 ∈ N , ∥𝑟 (𝑘)(𝑖) ∥∞ < 𝜌res · ∥𝑟 (𝑘) ∥∞,
∃ 𝑠 ∈ N , ∥𝑟 (𝑘)(𝑠) ∥∞ ≥ 𝜌res · ∥𝑟 (𝑘) ∥∞ : dist(𝑣𝑖 , 𝑣𝑠) ≤ 𝛿res

}
.

Following [1], this 𝛿res is introduced to avoid sharp jumps in the residual function.
With this strategy, we are able to construct a new elimination set 𝐸 (𝑘) in each
outer Newton iteration. However, if the problem at hand is completely unknown
and the initial value is somehow random, it might be disadvantageous to choose an
elimination set based on the initial residual. In such cases, we recommend to choose
𝐸 (1) = ∅ in the first iteration before switching to the elimination strategy.

4 Numerical Results

In this section, we present numerical results for a first problem-dependent nonlinear
FETI-DP variant. Since the elimination set is build with respect to the nonlinear
residual, we refer to this method as Nonlinear-FETI-DP-Res method or, shorter, NL-
Res.Within this section,we discuss different variants ofNL-Res specified by different
choices of 𝜌res and 𝛿res. Moreover, for a single (𝜌res, 𝛿res) pair, we compare the
numerical results to those of NL-𝑖, 𝑖 = 1, . . . , 4. We do not compare to the traditional
NK-FETI-DP approach since the NL-1 method without the computation of an initial
value (see [3, 2]) is closely related to it. To distinguish between different variants of
NL-Res in our tables and figures, we introduce the notation NL-R(𝜌res, 𝜂res), with
𝜂res · ℎ = 𝛿res and ℎ is the diameter of a finite element.
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The results shown in this section have all been computed using our sequential
MATLAB implementation. If we exceed 80 inner Newton iterations within a single
elimination process or if more than 40 outer Newton iterations are required, the sim-
ulation is terminated and considered as diverged. Inner and outer Newton iterations
reach convergence if ∥𝐾𝐸 (𝑀�̃�𝐸 (�̃�𝐿 , 𝜆), �̃�𝐿) + 𝐵𝑇𝐸𝜆 − 𝑓𝐸 ∥𝐿2 ≤ 1𝑒 − 12 (see Eq. (2))
and ∥𝐴(�̃�, 𝜆)∥𝐿2 ≤ 1𝑒 − 12, respectively. Here, we consider two-dimensional scalar
model problems of the form

−𝛼Δ4𝑢 − 𝛽Δ2𝑢 = 1 in Ω,

𝑢 = 0 on 𝜕Ω,

where 𝛼, 𝛽 : Ω → R and Δ𝑝𝑢 is the 𝑝-Laplace operator with 𝑝 = 2, 4. For model
problems from nonlinear elasticity (2D) with and without contact, we refer to [6, 7].
As a computational domain Ω, we always consider the unit square and a decom-

position into equally sized square subdomains of diameter 𝐻. Each subdomain is
discretized by equally sized piecewise linear finite elements (P1) of diameter ℎ. As
primal variables, we exclusively use subdomain vertices which is the most simple
choice. Analogously to [4], we have to measure the parallel potential of our non-

a) b) c) d)

Fig. 1: a) and b): Different types of coefficient distributions. We have 𝛼 = 1, 𝛽 = 0 in the white
areas and 𝛼 = 0, 𝛽 = 1 in the remaining (black) part. All channels as well as the cross have a width
of 𝐻/3. c) and d): First elimination sets for NL-Res(0.1,3) for coefficients presented in a) and b).
Red points belong to D (1)𝐸 and blue points are added due to a distance along main axes not larger
than 3ℎ to a red point; see Section 3.

linear FETI-DP methods by considering different metrics and indicators due to our
sequential MATLAB implementation. However, we have to look at slightly different
indicators compared to [4], since the structure of the elimination set of NL-Res is
flexible and not known a priori. As before, we measure the need for global communi-
cation by counting the number of Krylov iterations, which are denoted as “# Krylov
Its.“. In addition to that, we also count inner (“# Inner Its.“) and outer (“# Outer Its.“)
Newton iterations. Note that each outer Newton iteration requires a factorization of
the FETI-DP coarse problem, which is also true for each iteration in the elimination
process of NL-2. In contrast to this, in NL-3 and NL-4 no coarse components are
eliminated and thus a coarse factorization is only necessary in the outer loop. This
property offers a higher potential for parallelization and we therefore precisely dis-
tinguished in [3] between the number of necessary coarse and local factorizations to
measure the performance of the different nonlinear FETI-DP methods. In NL-Res,
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Table 1: Simulation results of different variants of the NL-Res approach as well as the NL-1method
without computation of an initial value and the best nonlinear FETI-DP method with a constant
non-empty elimination set which is NL-4 in this case. For the distribution of the coefficients; see
Fig. 1 a). Computational domain Ω = [0, 1]2; 8 × 8 square subdomains; P1 elements; 𝐻/ℎ = 16.

NL-1 NL-4 NL-R NL-R NL-R NL-R NL-R NL-R NL- R NL-R NL-R NL-R NL-R NL-R
no Init. (0.8,0) (0.8,3) (0.8,5) (0.5,0) (0.5,3) (0.5,5) (0.1,0) (0.1,3) (0.1,5) (0.01,0) (0.01,3) (0.01,5)

Inner Its. - 37 55 62 61 56 68 72 122 no 71 63 no 37
Outer Its. 15 8 14 13 13 13 13 12 18 conv. 11 12 conv. 6
Krylov Its. 307 155 287 270 267 268 256 240 355 inner 220 207 inner 112
Avg. Size
𝐸 [%] 0.00 89.44 0.04 0.33 0.51 0.17 1.41 2.10 1.48 loop 9.46 9.43 loop 23.75

the elimination set is chosen problem-dependent and can contain arbitrary parts of
the coarse problem and arbitrary parts of the local subdomains. Simply counting
local and coarse factorizations is thus not sufficient anymore. Here, to measure the
cost of the inner Newton iteration, we introduce the average size of the elimination
set as an additional indicator, which allows us to evaluate the efficiency of our non-
linear FETI-DP variants. A single iteration of the elimination process is expected
to be cheaper for a small elimination set. Accordingly, the most efficient nonlinear
FETI-DP method has minimal inner and outer iteration numbers and, at the same
time, the smallest average size of the elimination set.
First studies regarding the NL-Res approach have been carried out for the 𝑝-

Laplace problem in [6, 7]. For relatively simple distributions of nonlinearity, param-
eters 𝜌res and 𝛿res have been found in [7] such that the NL-Res variant yields quite
similar iteration numbers compared to the best NL-FETI-DP-𝑖 method, 𝑖 = 2, 3, 4,
but using a significantly smaller average size of the elimination set 𝐸 for each outer
Newton iteration. Additionally, for most tested pairs of 𝜌res and 𝛿res the NL-Res
method was at least robust and converged in an acceptable number of iterations.
However, in preliminary considerations of more complex distributions of nonlinear-
ity, we already observed a significant influence of the choice of parameters on the
convergence behavior of NL-Res, which complicates the right choice. The focus of
this article is to discuss this observation in detail. Therefore, we consider two very
complex distributions of nonlinearity; see a) and b) in Fig. 1. For both problems,
we obtain similar results; see Table 1 as well as Fig. 2. It turns out that NL-4 is the
best variant of the more traditional nonlinear FETI-DP methods. Compared to NL-1
without the computation of an initial value, the number of outer Newton iterations is
reduced by a factor of 2 to 3 for the largest problem sizes for both model problems.
The performance of the various NL-Res methods can be summarized as follows:

if the combination of 𝜌res and 𝛿res leads to extremely small elimination sets, the
performance of NL-Res is quite similar to that of NL-1 without the computation of
an initial value. However, with the right choice of parameters, we also find variants
of NL-Res that give iteration numbers at least as good as NL-4. In that case NL-
Res is superior due to the much smaller average size of 𝐸 . Let us remark that
NL-Res(0.01,5) seems to be a good choice for both problems. However, as already
mentioned, finding the right parameters is difficult. This is demonstrated by the
results presented in Table 1, where a small change in 𝛿res turns the best NL-Res
methods (NL-Res(0.01,5) and NL-Res(0.1,5)) into non-convergent variants (NL-
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Res(0.01,3) and NL-Res(0.1,3)). This hints that the elimination set cannot be chosen
completely arbitrarily and especially the optimal selection of parameters has to be
further analyzed. In ongoing research, we want to develop a heuristic that leads to
a more effective choice of elimination sets. This will also include adjustments of
the parameters during runtime in case of poor or no convergence. To summarize,

Fig. 2: Simulation results of different nonlinear FETI-DP methods including different variants of
NL-Res with problem-dependent choices of the elimination set for the p-Laplace equation with a
coefficient distribution as presented in Fig. 1 b); square subdomains; P1 finite elements; 𝐻/ℎ = 16.

choosing the right parameters is crucial for the performance of NL-Res methods, but
with the right parameters, NL-Res yields similar iteration numbers compared to the
best of the more traditional NL-FETI-DP-𝑖 methods, 𝑖 = 2, 3, 4. The advantage is a
variable elimination set, which is formed depending on the problem. This results in a
significantly smaller average size of the elimination set and thus less computational
effort in the inner loops.
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Globalization of Nonlinear FETI–DP Methods

S. Köhler, and O. Rheinbach

1 Introduction

Nonlinear FETI-DP (Finite Element Tearing and Interconnection - Dual Primal)
methods [10] are nonlinear generalizations of linear FETI-DP domain decomposition
methods [16, 5]. Nonlinear FETI-DP domain decomposition methods have shown
their robustness and scalability, e.g., for linear and nonlinear structural mechanics
problems [11], where results for up to 786 432 cores were presented. Related non-
linear domain decomposition methods (DDMs) are nonlinear BDDC methods [10]
(derived from linear Balancing Domain Decomposition by Constraints [4]), nonlin-
ear FETI-1methods [15] and theASPIN approach (Additive Schwarz Preconditioned
Inexact Newton) method [2, 9, 8].
The idea of nonlinear FETI-DP methods is to decompose the global problem

𝐾 (�̂�) = 𝑓 into local nonlinear problems 𝐾𝑖 (𝑢𝑖) = 𝑓𝑖 , 𝑖 = 1, . . . , 𝑁 , defined on
nonoverlapping subdomainsΩ𝑖 = 1, . . . , 𝑁 , and to enforce continuity on the interface
as Γ := ∪𝑁𝑖 𝜕Ω𝑖∩𝜕Ω using subassembly of primal variables andLagrangemultipliers
𝜆.
Nonlinear FETI-DP methods make use of nonlinear elimination, where different

methods result from different elimination sets. In [12], four different types of static
elimination sets were introduced, referred to as Nonlinear-FETI-DP-𝑥 (NL-𝑥), where
𝑥 = 1 (no elimination is applied), 𝑥 = 2 (primal, dual and inner variables are
eliminated), 𝑥 = 3 (dual and inner variables are eliminated) and 𝑥 = 4 (only the
inner variables are eliminated). Other choices of elimination sets include automatic
strategies to determine the elimination set [7, 18].
If a tangent is available, nonlinear problems are typically solved by Newton’s

method or related methods such as quasi-Newton, inexact Newton or Newton-like
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methods [14, 17]. However, without globalization Newton’s method may fail to
converge.
Common globalization methods are trust-region methods or line search methods.

In this paper,we study line searchmethods for the globalization of nonlinear FETI-DP
methods for nonlinear structural mechanics problems. We use an exact differentiable
penalty function [1] related to the augmented Lagrange approach, but we can use
the Hessian of the standard Lagrange function for a Newton-like descent method.

2 Nonlinear FETI-DP

Nonlinear FETI-DPmethods aremethods to solve the nonlinear saddle point problem

𝐾 (�̃�) + 𝐵𝑇𝜆 = 𝑓 ,
𝐵�̃� = 0, (1)

which directly corresponds to the linear FETI-DP saddle point problem [16].
Here, 𝐵 is the FETI-DP jump operator (as in linear FETI-DP methods), and
𝜆 is the vector of corresponding Lagrange multipliers. The nonlinear operator
𝐾 (�̃�) := 𝑅𝑇Π𝐾 (𝑅Π �̃�) is obtained from finite element subassembly of the block
operator 𝐾 (𝑢) = [𝐾1 (𝑢1), . . . , 𝐾𝑁 (𝑢𝑁 )]𝑇 in the primal variables using the opera-
tor 𝑅𝑇Π as in linear FETI-DP methods [16]. Here, this coupling provides a nonlinear
coarse problem for the method. Thus, 𝐾 represents a nonlinear coarse approximation
of the original problem.
Next, we perform the nonlinear elimination: we split the first row in (1) according

to disjoint index sets 𝐸, 𝐿 (eliminate or linearize) and solve in a first step

𝐾𝐸 (�̃�𝐸 , �̃�𝐿) − 𝑓𝐸 + 𝐵𝑇𝐸𝜆 = 0, (2)

for �̃�𝐸 , given �̃�𝐿 and 𝜆. Then, we can insert �̃�𝐸 into the remaining equations and
solve by linearization in �̃�𝐿 and 𝜆, and using the implicit function theorem. Let us
recall, that for NL-1 we have 𝐸 = ∅. For NL-2 the elimination set 𝐸 contains all
variables and 𝐿 = ∅, for NL-3 we eliminate the inner and dual variables [16], and
for NL-4 we eliminate only the inner variables. Automatic strategies to determine
the elimination set 𝐸 can also be considered but are not discussed here. Note that
the local nonlinear elimination uses an exact Newton method in the sense that we
perform a Newton iteration using a direct sparse solver for the Newton equation.
This can be afforded since this is an operation local to a subdomain. For NL-2 the
elimination involves also the (small) coarse space.
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3 Exact Differentiable Penalty Method with Nonlinear
Elimination

For∇𝐽 (�̃�) = 𝐾 (�̃�)− 𝑓 the equations in (1) are the first order optimality conditions for
the minimization of the energymin 𝐽 (�̃�) subject to the continuity constraint 𝐵�̃� = 0,
where 𝐽 (�̃�) := 𝐽 (𝑅Π �̃�) is obtained from the global energy 𝐽 (𝑢) =

∑𝑁
𝑖=1 𝐽

(𝑖) (𝑢𝑖).
Exact penalty method in nonlinear FETI-DP To be consistent with the vast
literature in optimization, we will now use the notation

min
𝑥∈R𝑛

𝐽 (𝑥) subject to (s.t.) 𝑐𝑖 (𝑥) = 0, 𝑖 = 1, . . . , 𝑝, (3)

where 𝐽, 𝑐𝑖 ∈ 𝐶3 (R𝑛), 𝑖 = 1, . . . , 𝑝. In the FETI-DP context, 𝑥 is �̃�, and 𝑐(𝑥) = 0 are
the continuity constraints 𝐵�̃� = 0.
Penalty methods replace the original constrained minimization problem by a

sequence of unconstrained minimization problems, where a penalty term, which
measures the constraint violation, is added to objective function. In [3] the exact
differentiable penalty function

𝑃(𝑥, 𝜆; 𝜇, 𝑀) = L(𝑥, 𝜆) + 𝜇
2
∥𝑐(𝑥)∥2 + 1

2
∥𝑀 (𝑥)∇𝑥L(𝑥, 𝜆)∥2, (4)

was introduced, where L is the Lagrange function, 𝜇 > 0 and 𝑀 : R𝑛 → R𝑚×𝑛,
𝑝 ≤ 𝑚 ≤ 𝑛. This penalty function is exact in the sense that for each local solution 𝑥 of
the original constrained minimization problem and the related Lagrange multipliers
�̂�, a finite penalty parameter 𝜇 exists such that for 𝜇 > 𝜇 the point 𝑥 is the first
component of a local minimum (𝑥, �̂�) of the penalty function 𝑃(𝑥, 𝜆). In this sense,
𝜇 → ∞ is not needed. The function 𝑃(· , · ; 𝜇, 𝑀) is closely related to augmented
Lagrange methods, but there are some differences. The most import advantage,
compared to standard augmented Lagrange, especially in the nonlinear FETI-DP
context, is the fact that we can use the standard Lagrange-Newton equation

[∇2
𝑥𝑥L(𝑥, 𝜆) ∇2

𝑥𝜆L(𝑥, 𝜆)
∇2
𝜆𝑥L(𝑥, 𝜆) 𝑂

] [
𝛿𝑥
𝛿𝜆

]
= −

[∇𝑥L(𝑥, 𝜆)
∇𝜆L(𝑥, 𝜆)

]
(5)

see, e.g. [1], to compute a Newton-like search direction. Therefore, we do not need
to modify the Hessian of L, as in the standard augmented Lagrange method.
A detailed analysis of 𝑃 can be found in [1, Chapter 4.3], including a proof of

the exactness of 𝑃 on 𝑋∗, where 𝑋∗ := {𝑥 ∈ R𝑛 | ∇𝑐(𝑥) has rank 𝑝}, under the
assumptions that 𝑀 ∈ 𝐶1 (𝑋∗) and 𝑀∇𝑐 is invertible on 𝑋∗.
We see that (5) is not affected by the penalty parameter 𝜇. Indeed, 𝜇 only affects

the acceptance criterion for this direction. Let us remark that in our context a good
choice for 𝑀 is 𝑀 (𝑥) = ∇𝑐(𝑥)𝑇 . Note that we assume that ∇𝑐 has full rank.
Let us remark that the standard method for the update of the penalty parameter

in [1] needs to compute (∇𝑐(𝑥)𝑇𝑀 (𝑥)𝑇 )−1𝑐(𝑥). In our context, this is computa-
tionally expensive. Instead, we consider an update strategy inspired by augmented
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Lagrange methods [6]: Set 𝜇𝑘+1 = 𝜀update 𝜇𝑘 whenever ∥𝑐(𝑥 (𝑘) )∥ ≥ 𝜌 ∥𝑐(𝑥 (𝑘+1) )∥
for 𝜀update > 1 and 𝜌 ∈ (0, 1). The drawback is that we cannot guarantee any
more that 𝜇 is increased only a finite number of times, which holds for the method
suggested in [1].
A standard convergence result (every limit point of a Newton-like algorithm is

a stationary point for 𝑃) can be obtained under standard assumptions, see e.g. [1],
quite similar to Assumption 3.1, which we use later on.
We recall that by nonlinear elimination of 𝑥𝐸 , we refer to solving

∇𝑥𝐸L(𝑥𝐸 , 𝑥𝐿 , 𝜆) = ∇𝑥𝐸 𝐽 (𝑥𝐸 , 𝑥𝐿) + ∇𝑥𝐸 𝑐(𝑥𝐸 , 𝑥𝐿)𝜆 = 0 (6)

for 𝑥𝐸 , given 𝑥𝐿 and 𝜆, which defines the implicit function 𝑔𝐸 (𝑥𝐿 , 𝜆). For simplicity,
we now write ∇𝐸 instead of ∇𝑥𝐸 and ∇𝐿 instead of ∇𝑥𝐿 . We allow 𝐸 = ∅ or 𝐿 = ∅,
then the related matrices or vectors are empty.
Combination with Nonlinear Elimination For the combination of𝑃(· , · ; 𝜇, 𝑀)
with nonlinear elimination, we replace 𝑥𝐸 by the elimination 𝑔𝐸 and define the
functions 𝔏(𝑥𝐿 , 𝜆) := L(𝑔𝐸 (𝑥𝐿 , 𝜆), 𝑥𝐿 , 𝜆), C(𝑥𝐿 , 𝜆) := 𝑐(𝑔𝐸 (𝑥𝐿 , 𝜆), 𝑥𝐿), and the
penalty function

P(𝑥𝐿 , 𝜆; 𝜇,M)

= 𝔏(𝑥𝐿 , 𝜆) + 𝜇2 ∥C(𝑥𝐿 , 𝜆)∥
2 + 1

2
∥M(𝑥𝐿 , 𝜆)∇𝐿𝔏(𝑥𝐿 , 𝜆)∥2,

(7)

where 𝜇 > 0 andM : R𝑛𝐿 × R𝑝 → R𝑝×𝑛𝐿 . According to the considerations above,
we defineM asM(𝑥𝐿 , 𝜆) := ∇𝐿𝑐

��𝑇
(𝑔𝐸 (𝑥𝐿 ,𝜆) ,𝑥𝐿 ) . By ∇𝐿𝑐

��
(𝑔𝐸 (𝑥𝐿 ,𝜆) ,𝑥𝐿 ) we mean the

evaluation of ∇𝐿𝑐 at the point (𝑔𝐸 (𝑥𝐿 , 𝜆), 𝑥𝐿). By our assumptions on 𝑐 it follows
thatM ∈ 𝐶1 (𝑋∗𝐿 × Λ∗), where 𝑋∗𝐿 × Λ∗ := {(𝑥𝐿 , 𝜆) | ∇𝑐

��
(𝑔𝐸 (𝑥𝐿 ,𝜆) ,𝑥𝐿 ) has rank 𝑝}.

The special choice of M has the advantage of being consistent with the case
𝐸 = ∅, 𝐿 = R𝑛. In this situation, we have P(· , · ; 𝜇,M) = 𝑃(· , · ; 𝜇, 𝑀). The
drawback is that for general selections of 𝐸, 𝐿 we cannot guarantee thatM has full
rank. In the context of four nonlinear FETI-DP NL-1, 2, 3, 4methods this means that
only for NL-4 (NL-1) the matrixM has full rank. In NL-3 the matrixM has only
zero entries and is empty in NL-2.
We cannot expect that all theoretical properties of 𝑃 are transferred toP. However,

the exactness remains valid as well as some other properties.

Theorem 1 ([13])
If (𝑥∗𝐸 , 𝑥∗𝐿 , 𝜆∗) is a KKT point of (3) and (𝑥∗𝐿 , 𝜆∗) ∈ 𝑋∗𝐿 × Λ∗, then (𝑥∗𝐿 , 𝜆∗) is a

stationary point of P(· , · ; 𝜇,M) and

P(𝑥∗𝐿 , 𝜆∗; 𝜇,M) = J (𝑥∗𝐿 , 𝜆∗) = 𝐽 (𝑔𝐸 (𝑥∗𝐸 , 𝜆∗), 𝑥∗𝐿) = 𝐽 (𝑥∗𝐸 , 𝑥∗𝐿).

Furthermore, if ∇2
𝑥𝑥L

��
(𝑥∗𝐸 ,𝑥∗𝐿 ,𝜆∗)

is positive definite on ker(∇𝑐
��𝑇
(𝑥∗𝐸 ,𝑥∗𝐿 )

), then there
exists a 𝜇 > 0 such that (𝑥∗𝐿 , 𝜆∗) is a local minimum of P(·, · ; 𝜇,M) for all 𝜇 > 𝜇.
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Init: (𝑥 (0)𝐿 , 𝜆(0) ) ∈ R𝑛𝐿× ∈ R𝑝 , 𝛽, 𝜂1 , 𝜌 ∈ (0, 1) , 𝜀update > 1, 𝜀tol , 𝜇0 , 𝜂2 , 𝜂3 , 𝑝 > 0.
for 𝑘 = 0, 1, . . . until convergence do
1. If ∥∇P (𝑘) ∥∞ ≤ 𝜀tol, STOP.
2. (a) Compute ∇𝔏 (𝑘) and ∇2𝔏 (𝑘) .

(b) Solve

[
∇2
𝐿𝐿𝔏

(𝑘) ∇2
𝐿𝜆𝔏

(𝑘)

∇2
𝜆𝐿𝔏

(𝑘) ∇2
𝜆𝜆𝔏

(𝑘)

] [
𝛿𝑥
(𝑘)
𝐿

𝛿𝜆(𝑘)

]
= −

[∇𝐿𝔏 (𝑘)
∇𝜆𝔏 (𝑘)

]
.

(c) Set 𝑑 (𝑘) :=

[
𝛿𝑥
(𝑘)
𝐿

𝛿𝜆(𝑘)

]
.

if ∇P (𝑘) 𝑇𝑑 (𝑘) ≤ −min{𝜂1 , 𝜂2 ∥𝑑 (𝑘) ∥𝑝 } ∥𝑑 (𝑘) ∥2. then

Set

[
𝛿𝑥
(𝑘)
𝐿

𝛿𝜆(𝑘)

]
:= −

[∇𝐿P (𝑘)
∇𝜆P (𝑘)

]
.

end
3. Compute the largest number 𝛼𝑘 ∈ {𝛽𝑙 | 𝑙 = 0, 1, 2, . . . } such that the Armijo ruleP(𝑥 (𝑘)𝐿 + 𝛼𝑘 𝛿𝑥 (𝑘)𝐿 , 𝜆(𝑘) + 𝛼𝑘 𝛿𝜆(𝑘) ; 𝜇𝑘 ,M) − P(𝑥 (𝑘)𝐿 , 𝜆(𝑘) ; 𝜇𝑘 ,M)

≤ 𝜂3 𝛼𝑘

(
∇𝐿P (𝑘) 𝑇 𝛿𝑥 (𝑘)𝐿 + ∇𝜆P (𝑘) 𝑇 𝛿𝜆(𝑘)

)
holds.

4. Set 𝑥 (𝑘+1)𝐿 = 𝑥 (𝑘)𝐿 + 𝛼𝑘 𝛿𝑥 (𝑘)𝐿 and 𝜆(𝑘+1) = 𝜆(𝑘) + 𝛼𝑘 𝛿𝜆(𝑘) .
5. if ∥ C(𝑥 (𝑘+1)𝐿 , 𝜆(𝑘+1) ) ∥ ≥ 𝜌 ∥ C(𝑥 (𝑘)𝐿 , 𝜆(𝑘) ) ∥ then

Set 𝜇𝑘+1 = 𝜀update 𝜇𝑘 .
else

Set 𝜇𝑘+1 = 𝜇𝑘 .
end

end

Fig. 1: Newton-like algorithm for the computation of stationary points of P.

Since P is an exact penalty function, we consider the unconstrained minimization
problem min𝑥𝐿 ,𝜆 P(𝑥𝐿 , 𝜆; 𝜇,M) to solve (3).
The same arguments, which show that (5) is a Newton-like direction for 𝑃, imply

that [
𝛿𝑥𝐿
𝛿𝜆

]
= −

[∇2
𝐿𝐿𝔏(𝑥𝐿 , 𝜆) ∇2

𝐿𝜆𝔏(𝑥𝐿 , 𝜆)
∇2
𝜆𝐿𝔏(𝑥𝐿 , 𝜆) ∇2

𝜆𝜆𝔏(𝑥𝐿 , 𝜆)
]−1 [∇𝐿𝔏(𝑥𝐿 , 𝜆)
∇𝜆𝔏(𝑥𝐿 , 𝜆)

]
(8)

is a Newton-like direction forP(· , · ; 𝜇,M) at (𝑥𝐿 , 𝜆). Let us remark that the solution
of (8) is equivalent to the solution of the standard Lagrange-Newton equation at the
point (𝑔𝐸 (𝑥𝐿 , 𝜆)), 𝑥𝐿 , 𝜆).
We outline a Newton-like minimization algorithm for P in Figure 1, where we de-

fine∇𝔏 (𝑘) := ∇𝔏(𝑥 (𝑘)𝐿 , 𝜆 (𝑘) ),∇2𝔏 (𝑘) := ∇2𝔏(𝑥 (𝑘)𝐿 , 𝜆 (𝑘) ),∇P (𝑘) := ∇P(𝑥 (𝑘)𝐿 , 𝜆 (𝑘) ; 𝜇𝑘 ,M)
and the blocks ∇2

𝐿𝐿𝔏
(𝑘) , etc.

For the main convergence result of the algorithm presented in Figure 1 we need
the following assumptions:

Assumption 3.1 The sequence
(
(𝑥 (𝑘)𝐿 , 𝜆 (𝑘) )

)
𝑘

generated by the Algorithm in Fig-
ure 1 is contained in a convex set Ω𝐿 × Λ and the following properties hold:

(a) The nonlinear elimination 𝑔𝐸 (𝑥𝐿 , 𝜆) exists for all (𝑥𝐿 , 𝜆) ∈ Ω𝐿 × Λ.
(b) The functions 𝐽 and 𝑐𝑖 , 𝑖 = 1, . . . , 𝑝 and their first, second and third derivatives

are bounded on 𝑔𝐸 (Ω𝐿 × Λ) ×Ω𝐿 .
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(c) The sequence (𝜇𝑘)𝑘 is bounded.

The boundedness assumption 3.1(b) is needed to ensure that 2.(c) in algorithm of
Figure 1 is a generalized angle condition. Furthermore, we need 3.1(c) to prove the
main convergence result.

Theorem 2 ([13])
Let Assumption 3.1 be fulfilled. Then every limit point of the sequence ((𝑥 (𝑘)𝐿 , 𝜆 (𝑘) ))𝑘

generated by the algorithm presented in Figure 1 is a stationary point of P.

4 Numerical Results

We consider a Neo-Hookean benchmark problem using stiff or almost incompress-
ible inclusions embedded in each subdomain. The strain energy density function for
the compressible part is given by 𝐽 (𝑥) = 𝜇

2 (tr(𝐹 (𝑥)𝑇𝐹 (𝑥)) − 2) − 𝜇 log(𝜓(𝑥)) +
𝜆
2 (log(𝜓(𝑥)))2, where 𝜓(𝑥) = det(𝐹 (𝑥)), 𝐹 (𝑥) = ∇𝜑(𝑥), 𝜑(𝑥) = 𝑥 + 𝑢(𝑥), 𝑢(𝑥)
denotes the displacement and 𝜇 and 𝜆 are the Lamé constants. The nearly incom-
pressible part is given by 𝐽 (𝑥) = 𝜇

2 (tr( 1
𝜓 (𝑥) 𝐹 (𝑥)𝑇𝐹 (𝑥)) − 2) + 𝜅2 (𝜓(𝑥) − 1)2, where

𝜅 = 𝜆(1+𝜇)
3𝜇 , see, e.g. [18]. As material parameters, we use 𝐸 = 210 and 𝜈 = 0.3 for

the matrix material, 𝐸 = 210 000 and 𝜈 = 0.3 for the stiff inclusions, and, finally,
𝐸 = 210 and 𝜈 = 0.499 for the (mildly) almost incompressible inclusions. For the
discretization, we use 𝑃 2 elements, which are not stable for the incompressible case.
As Krylov methods, we use GMRES or CG: During the factorizations, it is

detected whether 𝐷𝐾 is positive definite; in this case, we use CG, otherwise GMRES
is used. In Table 1 we see that Newton’s method, without globalization, will not
converge in the case without inclusions for the body force (0,−20)𝑇 , and in the cases
with inclusions even for the smaller body force (0,−10)𝑇 . In Table 2 we see that,
using the algorithm in Figure 1 using the four different nonlinear FETI-DP methods
NL-1, NL-2, NL-3, and NL-4, we have convergence even for the higher body force
(0,−60)𝑇 . The cases (0,−10)𝑇 and (0,−20)𝑇 converge as well, but are not presented
here. The failure of NL-1, 2 to converge despite globalization is due to the fact that
we reached the stopping criterion, max{ ∥𝑥 (𝑘+1)−𝑥 (𝑘) ∥∞ , ∥𝜆(𝑘+1)−𝜆(𝑘) ∥∞ }

max{ ∥𝑥 (𝑘) ∥∞ , ∥𝜆(𝑘) ∥∞ } < 10−8. This
indicates that no sufficient progress is reached, and we abort the simulation since
we are limited to machine precision. This example also illustrates that nonlinear
elimination can help to achieve convergence.
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Multilevel Active-Set Trust-Region (MASTR)
Method for Bound Constrained Minimization

Alena Kopaničáková and Rolf Krause

1 Introduction

We consider a minimization problem of the following type:

min
x∈R𝑛

𝑓 (x)
subject to x ∈ F ,

(P)

where 𝑓 : R𝑛 → R is possibly non-convex, but twice continuously differentiable
objective function. The feasible set F := {x ∈ R𝑛 | l ≤ x ≤ u} is defined in terms of
the pointwise lower bound l ∈ R𝑛 and the upper bound u ∈ R𝑛. We assume that the
function 𝑓 arises from the finite element (FE) discretization of a partial differential
equations (PDEs). Here, 𝑛 ∈ N denotes the dimension of the finite element space and
it is typically very large. Problems of this type arise commonly in many scientific
applications, for example in fracture mechanics [11].
Multilevel methods are known to be optimal solution strategies for systems arising

from the discretization of, usually elliptic, PDEs, as their convergence rate is often
independent of the problem size and the number of required arithmetic operations
grows proportionally with the number of unknowns. These methods have been orig-
inally designed for unconstrained PDEs [2]. Their extension to constrained settings
is not trivial as the coarse levels are often not capable of resolving the finest-level
constraints sufficiently well, especially if the constraints are oscillatory [13]. The
initial attempts to incorporate the constraints into the multilevel framework were as-
sociated with solving linear complementarity problems, see for instance [14, 1, 8, 5].
The devised methods employed various constraint projection rules for constructing
the coarse-level variable bounds, such that coarse-level corrections are admissible by
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the finest level. Unfortunately, these projection rules tend to be overly restrictive. As
a consequence, the resulting multilevel methods converge significantly slower than
standard linear multigrid. In order to enhance the convergence speed, Kornhuber
proposed an active-set multigrid method [12]. The method utilizes a truncated basis
approach and recovers the convergence rate of the unconstrained multigrid, once the
exact active-set is detected [9, 12].
In the field of nonlinear optimization, very few existing nonlinear multilevel algo-

rithms can be readily employed. For instance, Vallejos proposed a gradient projection
based multilevel method [15]. Twomultilevel line-search methods, designed for con-
vex optimization problems, are proposed in [10]. These methods utilize constraint
projection rules developed in [8] and a variant of the active-set strategy from [12].
In the context of non-convex optimization problems, Youett et al. proposed filter
trust-region algorithm [16], which employs active-set multigrid method [12] for the
solution of arising linearized problems. Furthermore, Gratton et al. proposed a
variant of the recursive multilevel trust-region (RMTR) method [7] by utilizing the
constraint projection rules from [5]. To our knowledge, this is currently the only in-
herently nonlinear multilevel method, which provides global convergence guarantees
for non-convex bound constrained optimization problems.
In the presented work, we propose to enhance the convergence speed of the

RMTR method introduced in [7]. More precisely, we present an active-set variant,
called Multilevel Active-Set Trust-Region (MASTR) method. The MASTR method
employs an active-set strategy, which determines, which components of the fine-
level solution vector are active. These components are then held fixed and cannot be
altered by the coarser levels. To this aim, we have to construct coarse-level models
such that their minimization yields corrections, which fulfill this requirement. Here,
we employ coarse-level models of the Galerkin type together with the truncated
basis method [12]. In contrast to [10], the practical implementation of the proposed
coarse-levelmodels does not require any unconventionalmodifications to existing FE
software packages. As it will be demonstrated by our numerical results, employing
the active-set approach leads to significant speedup of the RMTR method.

2 Recursive multilevel trust-region (RMTR) method

In this work, we minimize (P) using a novel variant of the RMTR method [7].
RMTR combines the global convergence properties of the trust-region (TR) method
with the efficiency of multilevel methods. By design, the RMTR method employs a
hierarchy of 𝐿 levels. Each level 𝑙 is associated with a mesh T 𝑙 , which encapsulates
the computational domain Ω ∈ R𝑑 , where 𝑑 ∈ N. The mesh T 𝑙 is used to construct
the first-order finite-element space 𝑉 𝑙 , spanned by the basis functions {𝑁 𝑙𝑘}𝑘∈N 𝑙 ,
where N 𝑙 denotes the set of nodes of the mesh T 𝑙 . The support of a given basis
function 𝑁 𝑙𝑘 is defined as 𝜔

𝑙
𝑘 = {𝑥 ∈ Ω | 𝑁 𝑙𝑘 (𝑥) ≠ 0}.

The transfer of data between subsequent levels of the multilevel hierarchy is
carried out using three transfer operators, namely prolongation I𝑙+1𝑙 : R𝑛𝑙 → R𝑛𝑙+1 ,
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restriction R𝑙𝑙+1 := (I𝑙+1𝑙 )𝑇 and projection P𝑙𝑙+1 : R𝑛𝑙+1 → R𝑛𝑙 . In this work, all
transfer operators are assembled using 𝐿2-projection.
a

Algorithm
On each level 𝑙, the RMTR method approximates (P) by means of some level-
dependent objective function ℎ𝑙 : R𝑛𝑙 → R and feasible set F 𝑙 := {x𝑙 ∈ R𝑛𝑙 | l𝑙 ≤
x𝑙 ≤ u𝑙}. The function ℎ𝑙 is approximately minimized in order to obtain a coarse-
level correction. This correction is then interpolated to the subsequent finer level,
𝑙 + 1, where it is used to improve the current iterate.
More precisely, the algorithm starts on the finest level, 𝑙 = 𝐿, with an initial

iterate x𝐿0 and passes through all levels until the coarsest level, 𝑙 = 1, is reached. On
each level 𝑙, the algorithm performs 𝜇1 pre-smoothing steps to improve the current
iterate x𝑙0. The smoothing is performed using the TR method [3]. Thus, on each TR
iteration 𝑖, the search direction s𝑙𝑖 is obtained by approximately solving the following
minimization problem:

min
s𝑙𝑖 ∈R𝑛

𝑙
𝑚𝑙𝑖 (x𝑙𝑖 + s𝑙𝑖) :=ℎ𝑙 (x𝑙𝑖) + ⟨∇ℎ𝑙 (x𝑙𝑖), s𝑙𝑖⟩ +

1
2
⟨s𝑙𝑖 ,∇2ℎ𝑙 (x𝑙𝑖) s𝑙𝑖⟩,

such that x𝑙𝑖 + s𝑙𝑖 ∈ F 𝑙 , (1)
∥s𝑙𝑖 ∥∞ ≤ Δ𝑙𝑖 ,

where𝑚𝑖 is the second-order Taylor approximation of ℎ𝑙 . The symbolΔ𝑙𝑖 > 0 denotes
a TR radius, which controls the size of the correction s𝑙𝑖 . In contrast to line-search
methods, the correction s𝑙𝑖 is used only if 𝜌𝑙𝑖 > 𝜂1, where 𝜌𝑙𝑖 =

ℎ𝑙 (x𝑙𝑖)−ℎ𝑙 (x𝑙𝑖+s𝑙𝑖)
𝑚𝑙 (x𝑙𝑖)−𝑚𝑙 (x𝑙𝑖+s𝑙𝑖)

and

𝜂1 > 0. Otherwise, s𝑙𝑖 is disposed of and the size of the TR radius is reduced. The
result of the pre-smoothing, the iterate x𝑙𝜇1 , is then used to initialize the solution
vector on the subsequent coarser level, i.e., x𝑙−1

0 := P𝑙−1
𝑙 x𝑙𝜇1 .

Once the coarsest level is reached, we apply 𝜇1 steps of the TR method to obtain
the updated iterate x1

𝜇1 . The algorithm then returns to the finest level. To this end,
the correction obtained on the level 𝑙, i.e., x𝑙

𝜇𝑙
− x𝑙0, is transfered to the level 𝑙 + 1, by

means of the prolongation operator, thus s𝑙+1𝜇1+1 := I𝑙+1𝑙 (x𝑙𝜇𝑙 − x𝑙0). Here, the symbol
𝜇𝑙 denotes a sum of all iterations taken on a given level 𝑙. However, the quality of the
prolongated coarse-level correction s𝑙+1𝜇1+1 := I𝑙+1𝑙 (x𝑙𝜇𝑙 − x𝑙0) has to be assessed before
it is accepted on the level 𝑙 + 1. For this reason, we define a multilevel TR ratio as

𝜌𝑙+1𝜇1+1 :=
ℎ𝑙+1 (x𝑙+1𝜇1 )−ℎ

𝑙+1 (x𝑙+1𝜇1 +s
𝑙+1
𝜇1+1)

ℎ𝑙 (x𝑙0)−ℎ𝑙 (x𝑙𝜇𝑙 )
. The correction s𝑙+1𝜇1+1 is accepted if 𝜌

𝑙+1
𝜇1+1 > 𝜂1. If

𝜌𝑙+1𝜇1+1 ≤ 𝜂1, the correction s𝑙+1𝜇1+1 is rejected. Additionally, the TR radius has to be
updated accordingly. At the end, the RMTR algorithm performs 𝜇2 post-smoothing
steps at a given level 𝑙. This process is repeated on every level until the finest level
is reached.
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a
Construction of level-dependent objective functions and feasible sets
In this section, we discuss how to construct the objective function ℎ𝑙 and feasible set
F 𝑙 . For the finest level, 𝑙 = 𝐿, we assume that ℎ𝐿 := 𝑓 and F 𝐿 := F . In coherence
with the RMTR convergence theory [7], the coarse-level functions {ℎ𝑙}𝐿−1

𝑙=1 have to
be constructed such that they are at least twice continuously differentiable, and at
least first-order consistent with the function ℎ𝑙+1. Here, we create a level-dependent
objective function ℎ𝑙 as follows:

ℎ𝑙 (x𝑙 + s𝑙) := ⟨R𝑙𝑙+1∇ℎ𝑙+1𝜇1 , s
𝑙⟩ + 1

2
⟨s𝑙 , (R𝑙𝑙+1∇2ℎ𝑙+1𝜇1 I𝑙+1𝑙 )s𝑙⟩, (2)

where s𝑙 = x𝑙 − x𝑙0, and R𝑙𝑙+1∇ℎ𝑙+1𝜇1 , R𝑙𝑙+1∇2ℎ𝑙+1𝜇1 I𝑙+1𝑙 represent the restricted gradient
and the Hessian from the level 𝑙 + 1, evaluated after 𝜇1 pre-smoothing steps, respec-
tively. As we will see in Section 3, employing coarse-level models of this particular
type allows for straightforward incorporation of the active set strategy within the
multilevel settings.
For all levels 𝑙 < 𝐿, the level-dependent feasible set F 𝑙 is created by intersecting

the set L𝑙 with the set S 𝑙 , thus as F 𝑙 := L𝑙 ∩ S 𝑙 . The purpose of the set S 𝑙 :=
{x𝑙 ∈ R𝑛𝑙 | tl𝑙 ≤ x𝑙 ≤ tu𝑙} is to ensure that the size of the prolongated coarse-level
correction remains bounded by the TR radius Δ𝑙𝜇1 , i.e., ∥I𝑙+1𝑙 s𝑙 ∥∞ ≤ Δ𝑙𝜇1 . To this
end, we construct S 𝑙 by employing the projection rules especially designed for TR
bounds in [7].
The function of the set L𝑙 := {x𝑙 ∈ R𝑛𝑙 | vl𝑙 ≤ x𝑙 ≤ vu𝑙} is to guarantee that the

prolongated coarse-level correction produces a feasible trial point, i.e., x𝑙+1𝜇1 +I𝑙+1𝑙 s𝑙 ∈
F 𝑙+1. Following [5, 7], we can construct vl𝑙 , vu𝑙 in a component-wise manner as

(vl𝑙)𝑘 := (x𝑙0)𝑘 + max
𝑗∈N 𝑙+1∩ 8𝜔𝑙

𝑘

[(vl𝑙+1 − x𝑙+1𝜇1 ) 𝑗 ],

(vu𝑙)𝑘 := (x𝑙0)𝑘 + min
𝑗∈N 𝑙+1∩ 8𝜔𝑙

𝑘

[(vu𝑙+1 − x𝑙+1𝜇1 ) 𝑗 ],
(3)

where (·)𝑘 denotes the 𝑘-th component of a given vector. Note that the support𝜔𝑙𝑘 of
the basis function 𝑁 𝑙𝑘 (associated with 𝑘-th node of the mesh T 𝑙) determines which
components of the variable bounds vl𝑙+1 and vu𝑙+1 have to be taken into account
while constructing vl𝑙 , vu𝑙 .

3 Multilevel active-set trust-region (MASTR) method

In this section, we present how to incorporate the active-set strategy into the RMTR
framework. The devised algorithm has a form of the standard V-cycle. The key idea
behind the proposed MASTR method is to identify an active-set
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A𝑙 (x𝑙𝜇1 ) := {𝑘 ∈ {1, . . . , 𝑛𝑙} | (vl𝑙)𝑘 = (x𝑙𝜇1 )𝑘 or (vu𝑙)𝑘 = (x𝑙𝜇1 )𝑘}, (4)

before descending to the coarser level. Here, the vectors vl𝑙 , vu𝑙 denote lower and
upper bounds that define the set L𝑙 and are obtained using formula (3). The com-
ponents of the solution vector x𝑙𝜇1 , that are active are then held fixed and cannot be
altered by the coarser levels. To this end, the level-dependent objective functions
{ℎ𝑎}𝑙−1

𝑎=1 and feasible sets {L𝑎}𝑙−1
𝑎=1 have to be constructed such that the minimization

process on a given level yields coarse-level corrections, which fulfil this require-
ment. Following [12, 9], we construct {ℎ𝑎}𝑙−1

𝑎=1 and {L𝑎}𝑙−1
𝑎=1 using a truncated basis

method.
a

Construction of truncated FE spaces
The truncated basis method [12] constructs truncated FE spaces {X̃ 𝑙}𝐿−1

𝑙=1 , spanned
by truncated basis functions {𝑁 𝑙𝑘}𝑘∈N 𝑙 by exploiting the fact that the basis functions
on level 𝑙, can be written as linear combination of basis functions on level 𝑙 + 1,
i.e., 𝑁 𝑙𝑘 =

∑𝑛𝑙+1
𝑝=1 (I𝑙+1𝑙 )𝑝𝑘𝑁 𝑙+1𝑝 . In contrast to the classical multilevel approaches with

canonical Galerkin restriction, the actual shape and support of the truncated basis
functions depend on the current fine-level iterate. In particular, the value of the
truncated basis functions is set to zero at all active nodes of the finer levels, i.e., their
support vanishes at the active nodes. More precisely, we can construct truncated
basis functions in a recursive manner as

𝑁 𝑙𝑘 =
𝑛𝑙+1∑︁
𝑝=1
(̃I𝑙+1𝑙 )𝑝𝑘𝑁 𝑙+1𝑝 , (5)

where Ĩ𝑙+1𝑙 is truncated prolongation operator defined by

(̃I𝑙+1𝑙 )𝑝𝑘 =
{

0, if 𝑝 ∈ A𝑙+1 (x𝑙𝜇1 ),
(I𝑙+1𝑙 )𝑝𝑘 , otherwise.

(6)

The operator Ĩ𝑙+1𝑙 is obtained from the prolongation operator I𝑙+1𝑙 by setting the 𝑝-th
row of I𝑙+1𝑙 to zero, for all 𝑝 ∈ A𝑙+1 (x𝑙𝜇1 ). The application of Ĩ𝑙+1𝑙 in (5) removes
contributions of basis functions associated with active nodes on level 𝑙 + 1, defined
by the set A𝑙+1 (x𝑙𝜇1 ).

Remark 1 For the level 𝐿 − 1, the recursive formula (5) employs {𝑁𝐿𝑘 }𝑘∈N 𝐿 , instead
of {�̃�𝐿𝑘 }𝑘∈N 𝐿 .

a
Construction of level-dependent objective functions and feasible sets
Using truncated FE spaces {X̃ 𝑙}𝐿−1

𝑙=1 , we can now construct level-dependent objective
functions {ℎ𝑙}𝐿−1

𝑙=1 and feasible sets {F 𝑙}𝐿−1
𝑙=1 . In particular, for a given level 𝑙 < 𝐿,

the level-dependent objective function ℎ𝑙 : R𝑛𝑙 → R is created as follows:
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ℎ𝑙 (x𝑙 + s𝑙) := ⟨(̃I𝑙+1𝑙 )𝑇∇ℎ𝑙+1𝜇1 , s
𝑙⟩ + 1

2
⟨s𝑙 , (̃I𝑙+1𝑙 )𝑇∇2ℎ𝑙+1𝜇1 Ĩ𝑙+1𝑙 )s𝑙⟩, (7)

where we used truncated transfer operator Ĩ𝑙+1𝑙 to restrict gradient ∇ℎ𝑙+1𝜇1 and Hes-
sian∇2ℎ𝑙+1𝜇1 from level 𝑙+1 to level 𝑙. The application of Ĩ𝑙+1𝑙 in (7) removes the compo-
nents of fine-level gradient/Hessian associated with the active-setA𝑙+1 (x𝑙𝜇1 ). Please
note that the formulation (7) does not require explicit representation of {X̃ 𝑙}𝐿−1

𝑙=1 .
The construction of each level-dependent feasible set L𝑙 can be performed using

projection rules defined by (3). However, formulas (3) are now determined by the
support of the truncated basis functions, spanning X̃ 𝑙 . Since the support of basis
functions spanning X̃ 𝑙 is different from the support of the basis functions span-
ning X 𝑙 , fewer components of a fine-level variable bounds are taken into account
by (3). This yields less restrictive coarse-level constraints and allows for larger coarse
grid corrections.

4 Numerical results

We study the performance of the proposed MASTR method using three nu-
merical examples. Examples are defined on domain Ω := [0, 1]2 with bound-
ary Γ = 𝜕Ω, decomposed into three parts: Γ𝑙 = {0} × [0, 1], Γ𝑟 = {1} × [0, 1],
and Γ 𝑓 = [0, 1] × {0, 1}. The discretization is performed using a uniform mesh
and Q1 Lagrange finite elements.

Ex.1. MEMBRANE: Let us solve the following minimization problem [4]:

min
𝑢∈X

𝑓 (𝑢) :=
1
2

∫
Ω
∥∇𝑢(𝑥)∥2 𝑑𝑥 +

∫
Ω
𝑢(𝑥) 𝑑𝑥,

subject to lb(𝑥) ≤ 𝑢, on Γ𝑟 ,
(8)

where X := {𝑢 ∈ 𝐻1 (Ω) | 𝑢 = 0 on Γ𝑙}. The lower bound lb is defined on the right
part of the boundary, Γ𝑟 , by the upper part of the circle with the radius, 𝑟 = 1, and
the center, 𝐶 = (1;−0.5;−1.3). Thus, the lower bound is defined as

lb(𝑥) =
{
(−2.6 +

√︁
2.62 − 4((𝑥2 − 0.5)2 − 1.0 + 1.32))/2, if 𝑥 = 1,

−∞, otherwise,

where the symbols 𝑥1, 𝑥2 denote spatial coordinates.

Ex.2. IGNITION: Following [2, 10], we minimize following optimization problem:

min
𝑢∈X

𝑓 (𝑢) :=
1
2

∫
Ω
∥∇𝑢(𝑥)∥2 − (𝑢𝑒𝑢 − 𝑒𝑢) 𝑑𝑥 −

∫
Ω
𝑓 (𝑥)𝑢 𝑑𝑥,

subject to lb(𝑥) ≤ 𝑢 ≤ ub(𝑥), a.e. in Ω.
(9)
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Fig. 1: The convergence of the MASTR method (red color) and RMTR without an active-set
strategy (black color). The blue color illustrates the size of an active set detected by the MASTR
algorithm. Left:MEMBRANE. Middle: IGNITION. Right:MOREBV.

The variable bounds and right-hand side are defined as

lb(𝑥) = −8(𝑥1 − 7/16)2 − 8(𝑥2 − 7/16)2 + 0.2, ub(𝑥) = 0.5,

𝑓 (𝑥) = (9𝜋2 + 𝑒 (𝑥2
1−𝑥3

1 ) sin(3𝜋𝑥2) (𝑥2
1 − 𝑥3

1) + 6𝑥1 − 2) sin(3𝜋𝑥1),

where X := {𝑢 ∈ 𝐻1 (Ω) | 𝑢 = 0 on Γ}, and 𝑓 ∈ 𝐿2 (Ω).

Ex.3. MOREBV:We consider the following non-convex minimization problem [6]:

min
𝑢∈X

𝑓 (𝑢) :=
∫
Ω
∥Δ𝑢(𝑥) − 0.5(𝑢(𝑥) + ⟨𝑒, 𝑥⟩ + 1)3∥22 𝑑𝑥,

subject to lb(𝑥) ≤ 𝑢, a.e. in Ω,
(10)

where X := {𝑢 ∈ 𝐻1 (Ω) | 𝑢 = 0 on Γ} and 𝑒 denotes a unit vector. The lower bound
is defined as lb(𝑥) = sin(5𝜋𝑥1) sin(𝜋𝑥2) sin(𝜋(1 − 𝑥1)) sin(𝜋(1 − 𝑥2)), where 𝑥1, 𝑥2
denote spatial coordinates.
a

Convergence study
We compare the convergence behavior of the the proposed MASTR method with
the standard RMTR method (without the active-set strategy). Both methods are
implemented as part of the open-source library UTOPIA [17].
For all experiments, we consider the RMTRmethod configured with 6-levels. The

multilevel hierarchy is obtained by uniformly refining the coarsest level mesh, con-
sisting of 10× 10 elements. This gives rise to 289× 289 elements on the finest level,
which corresponds to 83, 521 dofs. The performed study considers an RMTR setup
with one trust-region pre/post-smoothing step. On all levels 𝑙 > 1, the trust-region
subproblems (1) are solved using one iteration of successive coordinate minimiza-
tion [7]. On the coarsest level, we employ the Semismooth-Newton method. The
algorithms terminate, if E (x𝐿) < 10−9 is satisfied. The criticality measure E (x) is
defined as E (x) := ∥P (x − ∇ 𝑓 (x)) − x∥, where P is the orthogonal projection onto
the feasible set F .
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Aswe can see fromFigure 1, using an active-set approach is beneficial, as it allows
for significant speed up. We can also observe that during the active-set identification
phase (first few V-cycles), both approaches are comparable. However, once the exact
active-set is detected,MASTR accelerates and converges faster than standard RMTR.

Funding This work was funded by the Swiss National Science Foundation (SNF) under the project
ML2 (grant no. 197041), Platform for Advanced and Scientific Computing (PASC) under the project
ExaTrain and by the MATH+ (distinguished scholar R. Krause).
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A Multigrid Preconditioner for Jacobian-free
Newton-Krylov Methods

Hardik Kothari, Alena Kopaničáková, and Rolf Krause

1 Introduction

The numerical solution of partial differential equations (PDEs) is often carried
out using discretization techniques, such as the finite element method (FEM), and
typically requires the solution of a nonlinear system of equations. These nonlinear
systems are often solved using some variant of the Newton method, which utilizes
a sequence of iterates generated by solving a linear system of equations. However,
for problems such as inverse problems, optimal control problems, or higher-order
coupled PDEs, it can be computationally expensive, or even impossible to assemble
a Jacobian matrix.
The Jacobian-free Newton Krylov (JFNK) methods exploit the finite difference

method to evaluate the action of a Jacobian on a vector, without requiring the
knowledge of the analytical form of the Jacobian and still retain local quadratic
convergence of the Newton method. Even though JFNK methods are quite effec-
tive, the convergence properties of the Krylov subspace methods deteriorate with
increasing problem size. Hence, it is desirable to reduce the overall computational
cost by accelerating the convergence of the Krylov methods. To this end, many pre-
conditioning strategies have been proposed in the literature, see e.g., [5]. We aim
to employ multigrid (MG) as a preconditioner to accelerate the convergence of the
Krylov subspace methods. Unfortunately, it is not straightforward to incorporate the
MG method into the JFNK framework, as the standard implementations of the MG
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method require either a matrix representation of the Jacobian or an analytical form
of the Jacobian.
In this work, we propose a matrix-free geometric multigrid preconditioner for the

Krylovmethods used within the JFNK framework. The proposedmethod exploits the
finite difference technique to evaluate the action of Jacobian on a vector on all levels
of multilevel hierarchy and does not require explicit knowledge of the Jacobian.
Additionally, we employ polynomial smoothers which can be naturally extended
to a matrix-free framework. Compared to other matrix-free MG preconditioners
proposed in the literature, e.g., [1, 2, 6, 7], ourmethod does not require the knowledge
of the analytical form of the Jacobian, and no additional modifications are required
in the assembly routine to compute the action of a Jacobian on a vector.

Jacobian-free Newton-Krylov methods:TheNewtonmethod is themost frequently
used iterative scheme for solving nonlinear problems. Newton method is designed
to find a root 𝒙∗ ∈ R𝑛 of some nonlinear equation 𝐹 (𝒙∗) = 0. The iteration process
has the following form:

𝒙 (𝑘+1) = 𝒙 (𝑘) + 𝛼𝛿𝒙 (𝑘) , for 𝑘 = 0, 1, 2, . . . ,

where 𝛼 > 0 denotes a line-search parameter and 𝛿𝒙 (𝑘) denotes a Newton direc-
tion. The correction 𝛿𝒙 (𝑘) is obtained by solving the following linear system of
equations: 𝐽 (𝒙 (𝑘) )𝛿𝒙 (𝑘) = −𝐹 (𝒙 (𝑘) ), where 𝐽 (𝒙 (𝑘) ) = ∇𝐹 (𝒙 (𝑘) ). In the context of
this work, we assume that the 𝐹 is obtained as a gradient of some energy func-
tional Ψ, i.e., 𝐹 (𝒙 (𝑘) ) ≡ ∇Ψ(𝒙 (𝑘) ). In this way, the Jacobian 𝐽 will be a symmetric
matrix, which in turn allows us to use a multigrid preconditioner. In the JFNK
methods [5], the solution process is performed without explicit knowledge of the Ja-
cobian 𝐽. Instead, the application of a Jacobian to a vector is approximated using the
finite difference scheme, given as 𝐽 (𝒙 (𝑘) )𝒖 ≈ 𝐹 (𝒙(𝑘)+𝜖𝒖)−𝐹 (𝒙(𝑘) )

𝜖 , where we choose

𝜖 =
1

𝑛∥𝒖∥2
∑𝑛
𝑖=1
√
𝜀𝑝 (1+ |𝑥 (𝑘)𝑖 |) and 𝜀𝑝 denotes the machine precision. The value of

the finite difference interval 𝜖 is chosen, such that the approximation of the Jacobian
is sufficiently accurate and is not spoiled by the roundoff errors.

2 Matrix-free Multigrid Preconditioner

The multigrid method is one of the most efficient techniques for solving linear
systems of equations stemming from the discretization of the PDEs. In the case
of geometric multigrid methods, we employ a hierarchy of nested meshes {Tℓ }𝐿ℓ=0,
which encapsulate the computational domain Ω. Through the following, we use the
subscript ℓ = 0, . . . , 𝐿 to denote a level, where 𝐿 denotes the finest level and 0
denotes the coarsest level. We denote the number of unknowns on a given level as
{𝑛ℓ }𝐿ℓ=0.
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The multigrid method relies on three main ingredients. Firstly, a set of trans-
fer operators is required to pass the information between the subsequent levels
of the multilevel hierarchy. Secondly, suitable smoothers are needed to damp the
high-frequency components of the error associated with a given level ℓ. Finally, an
appropriate coarse level solver is required to eliminate the low-frequency compo-
nents of the error. As the JFNKmethods are inherently matrix-free, these ingredients
have to be adapted, such that they give rise to a matrix-free multigrid preconditioner.

Transfer Operators: In the standard multigrid method, the interpolation 𝑰ℓℓ−1 :
R𝑛ℓ−1 → R𝑛ℓ and restriction 𝑹ℓ−1

ℓ : R𝑛ℓ → R𝑛ℓ−1 operators are employed to pro-
longate the correction to a finer level and restrict the residual to a coarser level,
respectively. The presented multigrid method requires an evaluation of the action of
a Jacobian on a vector on all levels of the multilevel hierarchy. Therefore, the current
Newton iterate also has to be transferred to the coarser levels. To this aim, we employ
a projection operator 𝑷ℓ−1

ℓ : R𝑛ℓ → R𝑛ℓ−1 . In our numerical experiments, we use
𝑹ℓ−1
ℓ := (𝑰ℓℓ−1)⊤ and 𝑷ℓ−1

ℓ = 2−𝑑 (𝑰ℓℓ−1)⊤, where 𝑑 denotes the spatial dimension in
which the problem is defined. The scaling factor 2−𝑑 in the definition of the projec-
tion operator 𝑷ℓ−1

ℓ is added to ensure that the constant functions are preserved when
projecting them from a fine space to a coarse space.

Smoothers: We utilize the three-level Chebyshev semi-iterative method [2], as its
implementation does not require explicit matrix representation. This method is con-
vergent if all eigenvalues of the Jacobian lie within a bounded interval. Our aim here
is to reduce only the high-frequency components of the error associated with a given
level ℓ. Therefore, we focus on the interval [0.06𝜆ℓ , 1.2𝜆ℓ], where 𝜆ℓ is an estimated
largest eigenvalue of the Jacobian on the level ℓ. We estimate the eigenvalue 𝜆ℓ
at the beginning of each Newton iteration. More precisely, we employ the Power
method, which we terminate within 30 iterations or when the difference between the
subsequent estimates is lower than 10−2. As an initial guess for the Power method, a
random vector is provided at the first Netwon step. While for the subsequent Newton
steps, we utilize the eigenvector associated with the largest eigenvalue, obtained
during the previous eigenvalue estimation process, as an initial guess.

The coarse level solver: In the traditional multigrid method, a direct solver is used
to eliminate the remaining low-frequency components of the error on the coarsest
level. In the Jacobian-free framework, we replace the direct solver with a Krylov-
subspace method, e.g., CG method. However, to obtain an accurate solution, a
large number of iterations may be required. To reduce the amount of work, we
employ a preconditioner based on the limited memory BFGS (L-BFGS) quasi-
Newton method [8]. The L-BFGS preconditioner is created during the very first call
to the CG method by storing a few secant pairs. Following [8], we collect the secant
pairs using the uniform sampling method, which allows us to capture the whole
spectrum of the Jacobian.
By design, the CG method is suitable for solving the symmetric positive definite

systems. When solving the non-convex problems, the arising linear systems might
be indefinite, which can render the CG method ineffective. To ensure the usability of
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Algorithm 1: Jacobian-free Multigrid - + (a1, a2)-cycle
1 Function: sℓ ← � MG(x (:)ℓ , � (x (:)ℓ ) , bℓ , ℓ)
2 sℓ ← � 0 ; ⊲ Initialize correction

3 if ℓ ≠ 0 then
4 sℓ ← � Smoother(sℓ , x (:)ℓ , � (x (:)ℓ ) , bℓ , a1) ; ⊲ Pre-smoothing

5 rℓ−1 ← � Xℓ−1ℓ (bℓ − � (x (:)ℓ )sℓ ) ; ⊲ Restrict the residual

6 x (:)ℓ−1 ← � Vℓ−1ℓ x (:)ℓ ; ⊲ Restrict Newton iterate

7 cℓ−1 ← � MG(x (:)ℓ−1, � (x
(:)
ℓ−1) , rℓ−1, ℓ − 1) ; ⊲ Recursion

8 sℓ ← � sℓ + Oℓℓ−1cℓ−1 ; ⊲ Update the correction

9 sℓ ← � Smoother(sℓ , x (:)ℓ , � (x (:)ℓ ) , bℓ , a2) ; ⊲ Post-smoothing

10 else
11 _2+ ← � 0 ; ⊲ Initialize shifting parameter

12 s0, _2 ← � CG(s0, x (:)0 , � (x (:)0 ) , r0, _2+, a∗) ; ⊲ Coarse level solver

13 while _2 < 0 do
14 _2+ ← � Wmin(_2 , _2+) ; ⊲ Update shifting parameter

15 s0, _2 ← � CG(s0, x (:)0 , � (x (:)0 ) , r0, _2+, a∗) ; ⊲ Shifted CG solver

subspace method, e.g., CG method. However, to obtain an accurate solution, a
large number of iterations may be required. To reduce the amount of work, we
employ a preconditioner based on the limited memory BFGS (L-BFGS) quasi-
Newton method [8]. The L-BFGS preconditioner is created during the very first call
to the CG method by storing a few secant pairs. Following [8], we collect the secant
pairs using the uniform sampling method, which allows us to capture the whole
spectrum of the Jacobian.

By design, the CG method is suitable for solving the symmetric positive definite
systems. When solving the non-convex problems, the arising linear systems might
be indefinite, which can render the CG method ineffective. To ensure the usability of
the CG method, we propose a few modifications. Firstly, we terminate the iteration
process, as soon as the negative curvature is encountered [9]. At this point, we also
compute the Rayleigh quotient, given as _2 =

(
p>Gp
p>p

)
, which gives an estimate of the

eigenvalue encountered at the current iterate (that will be also negative). Secondly,
we shift the whole spectrum of the Jacobian by adding a multiple of identity, given
as GB = G + (−_2)O, where O denotes an identity matrix. The shifting strategy is
applied recursively, until the modified GB becomes positive definite. Please note,
the application of the GB to a vector can be evaluated trivially in the Jacobian-
free framework. The shifting parameter W has to be chosen to be large enough that
we do not require many shifting iterations and it has to be small enough that the
_min (GB) ≈ −_min (G).

The multigrid algorithm equipped with the shifting strategy is described in Al-
gorithm 1.

the CG method, we propose a few modifications. Firstly, we terminate the iteration
process, as soon as the negative curvature is encountered [9]. At this point, we also
compute the Rayleigh quotient, given as 𝜆𝑐 =

(
𝒑⊤𝑨𝒑
𝒑⊤𝒑

)
, which gives an estimate of the

eigenvalue encountered at the current iterate (that will be also negative). Secondly,
we shift the whole spectrum of the Jacobian by adding a multiple of identity, given
as 𝑨𝑠 = 𝑨 + (−𝜆𝑐)𝑰, where 𝑰 denotes an identity matrix. The shifting strategy is
applied recursively, until the modified 𝑨𝑠 becomes positive definite. Please note,
the application of the 𝑨𝑠 to a vector can be evaluated trivially in the Jacobian-
free framework. The shifting parameter 𝛾 has to be chosen to be large enough that
we do not require many shifting iterations and it has to be small enough that the
𝜆min (𝑨𝑠) ≈ −𝜆min (𝑨).
The multigrid algorithm equipped with the shifting strategy is described in Al-

gorithm 1.

3 Numerical Experiments

We investigate the performance of the proposed MG preconditioner through three
examples. We note, for these examples the analytical form of the Jacobian can be
computed, but following the JFNK methods, we restrict ourselves from using this
information or assembling the Jacobian on the coarsest level. We use discretize then
optimize approach, where the discretization is done with the first order FE method.
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Bratu: Let us consider a domain Ω := (0, 1)2. The solution of Bratu problem is
obtained by solving the following energy minimization problem:

min
𝑢∈𝐻1 (Ω)

Ψ𝐵 (𝑢) =
∫
Ω

1
2
∥∇𝑢∥2 − 𝜆 exp(𝑢) 𝑑𝒙,

such that 𝑢 = 0 on Γ,
(1)

where we choose 𝜆 = 5 and Γ = 𝜕Ω denotes the boundary. In our experiments, the
mesh T0 is triangular and consists of 25 elements in each direction.

Minimal Surface:We consider again a domain Ω := (0, 1)2. This experiment aims
to find the surface of minimal area described by the function 𝑢 by solving the
following convex minimization problem:

min
𝑢∈𝐻1 (Ω)

Ψ𝑀 (𝑢) =
∫
Ω

√︁
(1 + ∥∇𝑢∥2) 𝑑𝒙,

such that 𝑢 = 0 on Γ𝐷1 ,

𝑢 = 𝑥(1 − 𝑥) on Γ𝐷2 ,

(2)

where, Γ𝐷1 = {[0, 𝑦) ∪ [1, 𝑦)} and Γ𝐷2 = {(𝑥, 0] ∪ (𝑥, 1]}. We consider mesh T0 as
in the previous example.

Hyperelasticity: At the end, we investigate a finite strain deformation of a beam,
Ω = (0, 10)×(0, 1)×(0, 1), with the rotational deformation applied on the boundaries
Γ𝐷1 = {0} × [0, 1] × [0, 1], and Γ𝐷2 = {10} × [0, 1] × [0, 1]. We consider Neo-
Hookean material model, and seek for the displacement field 𝒖 by solving the
following non-convex minimization problem:

min
𝒖∈[𝐻1 (Ω) ]3

Ψ𝑁 (𝒖) =
∫
Ω

𝜇

2
(𝐼𝐶 − 3) − 𝜇(ln(𝐽)) + 𝜆

2
(ln(𝐽))2 𝑑𝒙,

such that 𝒖 = 0 on Γ𝐷1 ,

𝒖 = 𝒖2 on Γ𝐷2 ,

(3)

where 𝒖2 = (0, 0.5(0.5+ (𝑦−0.5) cos(𝜋/6) − (𝑧−0.5) sin(𝜋/6) − 𝑦), 0.5(0.5+ (𝑦−
0.5) sin(𝜋/6)+(𝑧−0.5) cos(𝜋/6)−𝑧)). Here, 𝐽 := det(𝑭) denotes the determinant of
the deformation gradient 𝑭 := 𝑰 + ∇𝒖. The first invariant of the right Cauchy-Green
tensor is computed as 𝐼𝐶 := trace(𝑪), where 𝑪 = 𝑭⊤𝑭. For our experiment, the
Lamé parameters 𝜇 = 𝐸

2(1+𝜈) and 𝜆 = 𝐸𝜈
(1+𝜈) (1−2𝜈) are obtained by setting the value

of Young’s modulus 𝐸 = 10 and Poisson’s ratio 𝜈 = 0.3. On the coarse level, the
domain is discretized using hexahedral mesh, denoted as T0, with 10 elements in
𝑥-directions and 1 elements in 𝑦 and 𝑧 directions.

Setup for the solution strategy: We solve the proposed numerical examples
using the inexact JFNK (IN) method with a cubic backtracking line-search al-
gorithm [3]. At each IN iteration, the search direction is required to satisfy
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∥𝐽 (𝒙 (𝑘) )𝛿𝒙 (𝑘)+𝐹 (𝒙 (𝑘) )∥ ≤ 𝜂 (𝑘) ∥𝐹 (𝒙 (𝑘) )∥, where 𝜂 (𝑘) = min(0.5, ∥𝐹 (𝒙 (𝑘) )∥). The
algorithm terminates if ∥𝐹 (𝒙 (𝑘) )∥ < 10−6. We solve 𝐽 (𝒙 (𝑘) )𝛿𝒙 (𝑘) = −𝐹 (𝒙 (𝑘) ), us-
ing three different solution strategies: the CG method without any preconditioner
(CG), the CG method with L-BFGS preconditioner (CG-QN), and the CG method
with the multigrid preconditioner (CG-MG). The L-BFGS preconditioner is con-
structed during the first inexact Newton iteration by storing 20 secant pairs. The
V-cycle MG preconditioner performs 5 pre-smoothing and 5 post-smoothing steps.
On the coarse level, we use the CG-QN method with the spectral shift, which is acti-
vated only if the negative curvature is encountered. We employ a shifting parameter
𝛾 = 5, in Algorithm 1. The coarse level solver terminates if ∥𝒓0∥ ≤ 10−12, or if the
maximum number of iterations, given by the number of unknowns, is reached.
The performance of all solution strategies is evaluated for increasing problem

size on successively finer refinement levels. The refinement levels are denoted by
𝐿0, 𝐿1 . . . , 𝐿5, where 𝐿0 denotes the coarse level, equipped with mesh T0. The
number of levels in the multilevel hierarchy is increased with the refinement level,
e.g., MG employs 2 levels for the 𝐿1 refinement level and 6 levels for the 𝐿5
refinement level.We assess the performance of themethods bymeasuring the number
of required gradient evaluations (GE). In multilevel settings, the number of effective
gradient evaluations is computed as GE =

∑𝐿
ℓ=0 2−𝑑 (𝐿−ℓ)GEℓ , where GEℓ denotes

the number of gradient calls on a given level ℓ.
We note, the discretization of the minimization problem is performed using the

finite element framework libMesh [4], while the presented solution strategies are
implemented as a part of the open-source library UTOPIA [10].

Influence of different preconditioners on the performance of the JFNK method:
Table 1 and 2 illustrate the performance of the INmethodwith different linear solvers.
As we can see, for the smaller problems (𝐿1, 𝐿2), the IN method with the CG and
the CG-QN outperforms the IN method with the CG-MG method. However, as the
problem size increases, the IN method with CG-MG is significantly more efficient
than with CG or CG-QN. For instance, for the Bratu example and 𝐿5 refinement
level, the CG-MG method outperforms the other methods by an order of magnitude.
The nonlinearity of the Bratu problem is not affected by the problem size and

therefore the number of IN iterations remains constant for all refinement levels. We
can also observe that the behavior of the CG-MG method is level-independent. The
number of required gradient evaluations is therefore bounded after few refinements,
as the cost of the coarse level solver becomes negligible. The same behavior can not
be observed for the minimal surface problem, as this problem is strongly nonlinear
and the nonlinearity of the problem grows with increasing problem size. Due to this
reason, the number of IN iterations and the total gradient evaluations also increases
for the minimal surface problem. However, we note, that increase is more prevalent
for IN method equipped with the CG or the CG-QN methods than with the CG-MG
method.
For the hyperelasticity example, the stored energy functional is non-convex hence

the negative curvature is quite often encountered on the coarse level. We notice that
with increasing problem size, the negative curvature is encountered fewer times. As
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Levels Bratu Minimal surface Hyperelasticity
CG CG-QN CG-MG CG CG-QN CG-MG CG CG-QN CG-MG

𝐿1 176 107 264 360 229 596 467 546 868
𝐿2 367 233 253 835 501 567 626 655 372
𝐿3 767 476 244 2009 1170 662 1349 1464 426
𝐿4 1582 1097 239 3544 2201 782 1971 1954 733
𝐿5 3377 2345 238 6154 4316 931 – – –

Table 1: The number of total gradient evaluations required in inexact JFNK method.

Levels Bratu Minimal surface Hyperelasticity
# IN # CG-MG # AGE # IN # CG-MG # AGE #IN # CG-MG # AGE

𝐿1 3 7 39.32 6 13 45.85 9 28 34.66
𝐿2 3 9 28.25 7 18 31.51 5 15 25.12
𝐿3 3 9 27.10 8 25 26.50 5 20 20.95
𝐿4 3 9 26.61 9 32 24.45 5 39 18.76
𝐿5 3 9 26.53 9 41 22.79 – – –

Table 2: The total number of inexact JFNK iterations (# IN), the total number of CG-MG iterations
(# CG-MG), and the average number of gradient evaluations per total linear iteration (# AGE).

Levels CG CG-QN Shifted CG-QN
# IN # CG-MG #GE # IN # CG-MG #GE # IN # CG-MG #GE

𝐿1 9 3010 51094 9 130 2057 9 28 868
𝐿2 5 16 44866 5 1017 14814 5 15 372
𝐿3 5 21 1265 5 26 512 5 20 426
𝐿4 6 39 733 6 39 733 5 39 733

Table 3: The total number of inexact JFNK iterations (# IN), the total number of CG-MG iterations
(# CG-MG), and the total number of gradient evaluations (# GE) with CG, CG-QN, and shifted
CG-QN methods. The experiment was performed for the hyperelasticity example.

a consequence, a huge amount of coarse level gradient evaluations is required to shift
the spectrum of the Jacobian for smaller problems. Therefore, the average number of
gradient evaluations per CG-MG decreases as the problem size increases, as we can
observe in Table 2. Nevertheless, IN method equipped with the CG-MG outperforms
the CG and the CG-QN methods, see Table 1. Interestingly, the use of the L-BFGS
preconditioner is less effective, as in the first IN iteration, the CG method terminates
before the whole spectrum of the Jacobian can be captured.

Effect of the coarse level solver on the performance of the multigrid: Due to
the non-convexity of the stored energy function, for the hyperelasticity problem, it
becomes essential to shift the spectrum of the Jacobian on the coarse level to retain
the performance of the multigrid preconditioner. If only CG or CG-QN method
is used, the total number of effective gradient evaluations blows up, as we can
see in Table 3. This is due to the fact, that the coarse level solver (CG/CG-QN
method) terminates as soon as the negative curvature is encountered. Therefore,
the low-frequency components of the error are not eliminated and the multigrid
preconditioner becomes unstable. In contrast, if we employ the shifting strategy,
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the multigrid preconditioner becomes stable and the total number of the gradient
evaluations grows in proportion with the number of required linear iterations.
In conclusion, the performed experiments demonstrate that the proposed Jacobian-

free multigrid is a robust and stable preconditioner when applied to problems of var-
ious types. Additionally, we observe level-independence behavior, if the nonlinearity
or non-convexity of the problem is not influenced by the discretization parameter.
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Overlapping DDFV Schwarz Algorithms on
Non-Matching Grids

Martin J. Gander, Laurence Halpern, Florence Hubert, and Stella Krell

1 Introduction

Ever since the publication of the first book on domain decomposition
methods by Smith, Bjørstad, and Gropp [8], where non-matching
grids were used for overlapping Schwarz methods (see on the right),
and the methods worked very well, a theoretical understanding of
their convergence remained open.
We are interested in a better understanding of such Schwarz methods for Discrete
Duality Finite Volume (DDFV) discretizations for anisotropic diffusion,

L(𝑢) := −div(𝐴∇𝑢) = 𝑓 in Ω, 𝑢 = 0 on 𝜕Ω, 𝐴(𝑥, 𝑦) :=
(
𝐴𝑥𝑥 𝐴𝑥𝑦
𝐴𝑥𝑦 𝐴𝑦𝑦

)
, (1)

where Ω is an open bounded domain of R2, and 𝐴 is a uniformly symmetric positive
definitematrix. DDFVoptimized Schwarzmethods have been developed for (1) in [5,
4], because these techniques are especially well suited for anisotropic diffusion [6, 3,
1]. We study here for the first time a new overlapping DDFV Schwarz algorithm with
classical Dirichlet transmission conditions that can handle non-matching grids, due
to carefully chosen additional unknowns in theDDFVscheme.Weprove convergence
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𝔐11 𝔐12 𝔐22

Ω1 = Ω11 ∪Ω12 Ω22

Γ1Γ2

𝔐11 𝔐21 𝔐22

Ω11 Ω2 = Ω21 ∪Ω22

Γ1Γ2

Fig. 1: Primal non-matching meshes associated to the decomposition Ω = Ω1 ∪ Ω2. Left: primal
mesh𝔐1 = 𝔐11 ∪𝔐12 for Ω1 in red. Right: primal mesh𝔐2 = 𝔐21 ∪𝔐22 for Ω2 in black. Both
meshes𝔐 𝑗 are completed to the entire domain to investigate the limit of the method.

of the DDFVSchwarz algorithm in the case of matching grids, and show numerically
that for some non-matching grids convergence is still achieved to monodomain
DDFV solutions. Finally, undermesh refinement, the Schwarz limit always converges
to the underlying continuous monodomain solution.

2 Overlapping DDFV Schwarz algorithm

The continuous parallel Schwarz method for (1) and two subdomains Ω1 and Ω2,
Ω̄ = Ω̄1 ∪ Ω̄2 reads

−div(𝐴∇𝑢𝑙+1𝑗 ) = 𝑓 in Ω 𝑗 , 𝑢
𝑙+1
𝑗 = 0 on 𝜕Ω 𝑗 ,d, 𝑢

𝑙+1
𝑗 = 𝑢𝑙𝑖 on Γ 𝑗 , 𝑗 = 1, 2, (2)

where 𝑖 = 𝑗 + 1 mod 2 and 𝜕Ω 𝑗 = 𝜕Ω 𝑗 ,d ∪ Γ 𝑗 with Γ 𝑗 ∩ 𝜕Ω = ∅. Each subdomain
Ω̄ 𝑗 can be partitioned into Ω̄ 𝑗 𝑗 ∪ Ω̄ 𝑗𝑖 with Ω 𝑗𝑖 = Ω𝑖 𝑗 = Ω 𝑗 ∩Ω𝑖 . We now introduce
the technical description of DDFV, see [1] for more details.
The meshes. Consider for 𝑗 = 1, 2 a DDFV mesh T𝑗 = (𝔐 𝑗 ,𝔐∗𝑗 , 𝜕𝔐 𝑗 , 𝜕𝔐∗𝑗 ) of the
domain Ω 𝑗 defined as follows: the primal mesh𝔐 𝑗 = 𝔐 𝑗 𝑗 ∪𝔐 𝑗𝑖 is a set of disjoint
open polygonal control volumes k ⊂ Ω 𝑗 such that ∪k = Ω 𝑗 . Here𝔐 𝑗 𝑗 (resp.𝔐 𝑗𝑖)
stands for the control volumes inΩ 𝑗 𝑗 (resp. inΩ 𝑗𝑖). In particular, this implies that no
primal control volume of𝔐 𝑗 is crossed by Γ𝑖 . Note also that in general the meshes in
the overlap need not be the same,𝔐 𝑗𝑖 ≠ 𝔐𝑖 𝑗 , as shown in Fig. 1. We call the special
case when𝔐 𝑗𝑖 = 𝔐𝑖 𝑗 the conforming case, and otherwise the non-conforming case.
We denote by 𝜕𝔐 𝑗 (resp. 𝜕𝔐 𝑗 ,d, 𝜕𝔐Γ 𝑗 ) the set of edges of the control volumes
in 𝔐 𝑗 included in 𝜕Ω 𝑗 (resp. 𝜕Ω 𝑗 ,d, Γ 𝑗 ) with 𝜕𝔐 𝑗 = 𝜕𝔐 𝑗 ,d ∪ 𝜕𝔐Γ 𝑗 . To each
primal cell k, we associate a center 𝑥k. To each vertex 𝑥k∗ of the primal mesh, we
associate a dual cell as shown in Fig. 2, by joining the surrounding centers. We use
analogous notation for the dual mesh,𝔐∗𝑗 , 𝜕𝔐

∗
𝑗 , 𝜕𝔐

∗
𝑗 ,d and 𝜕𝔐

∗
Γ 𝑗
. The set of dual

cells can be portioned into𝔐∗𝑗 = 𝔐∗𝑗 𝑗 ∪𝔐∗𝑗𝑖∪𝔐∗𝑗 ,Γ𝑖 corresponding to cells included
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𝔐∗11 𝔐∗1,Γ2
𝔐∗12 𝜕𝔐∗Γ1

Ω1 = Ω11 ∪Ω12

Γ1Γ2

𝜎𝑥d 𝜎∗

n𝜎k

n𝜎∗k∗ d𝜎,𝜎∗
𝑢l∗

𝑢k∗

𝑢k
𝑢l

𝑢k

𝑢k∗

𝑢l∗

𝑢l

n𝜎∗k∗
n𝜎k

𝜕𝔇1,d 𝔇∗11 𝔇1,Γ2 𝔇12 𝜕𝔇Γ1

Ω1 = Ω11 ∪Ω12

Γ1Γ2
𝑢1,k1 𝑢1,k2

𝑢1,k∗

𝑢1,l∗

d = d11 ∪ d12 ∈ 𝔇1,Γ2 , d1𝑠 = (𝑥k𝑠 , 𝑥k∗ , 𝑥l∗ )

d11 d12𝑥d

𝑢𝑙1,k1

𝑢𝑙+12,k2

𝑢𝑙+12,k∗ = 𝑢
𝑙
1,k∗

𝑢𝑙+11,l∗ = 𝑢
𝑙
1,l∗

𝑢𝑙+1l

d11 ⊂ d ∈ 𝔇1,Γ2 , d22 ∈ 𝜕𝔇2,Γ2

𝜎∗1 𝜎∗2

n𝜎∗1k∗ n𝜎∗2k∗

Fig. 2: Different dual cell sets (top left) and diamond cell sets (bottom left). Notations in the
diamond cell (top right). Diamond cell in𝔇𝑗,Γ𝑖 and 𝜕𝔇𝑗,Γ 𝑗 (bottom right).

in Ω 𝑗 𝑗 , Ω 𝑗𝑖 or crossing Γ𝑖 as shown in Fig. 2. For both meshes, the intersection of
two control volumes that is not empty or reduced to a vertex is called an edge. We
define the diamond cells d𝜎,𝜎∗ as the quadrangles whose diagonals are a primal
edge 𝜎 = k|l = (𝑥k∗ , 𝑥l∗ ) and a corresponding dual edge 𝜎∗ = k∗ |l∗ = (𝑥k, 𝑥l). The
set of diamond cells is called the diamond mesh, denoted by𝔇𝑗 .
For any c in T𝑗 , we denote by 𝑚c its Lebesgue measure, by Ec the set of its edges,

and 𝔇c := {d𝜎,𝜎∗ ∈ 𝔇𝑗 , 𝜎 ∈ Ec}. For d = d𝜎,𝜎∗ with vertices (𝑥k, 𝑥k∗ , 𝑥l, 𝑥l∗ ),
we denote by 𝑥d the center of d, that is the intersection of the primal edge 𝜎 and the
dual edge 𝜎∗, by 𝑚d its measure, by 𝑚𝜎 the length of 𝜎, by 𝑚𝜎∗ the length of 𝜎∗, by
𝑚𝜎k∗ the length of 𝜕k∗ ∩Ω 𝑗 , by 𝑚𝜎l the length of d ∩ 𝜕Ω 𝑗 , and by 𝑚𝜎k the length
of [𝑥k, 𝑥d]. n𝜎k is the unit vector normal to 𝜎 oriented from 𝑥k to 𝑥l, and n𝜎∗k∗ is
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the unit vector normal to 𝜎∗ oriented from 𝑥k∗ to 𝑥l∗ . We can split the set 𝔇𝑗 into
𝔇𝑖𝑛𝑡
𝑗 ∪𝔇𝑒𝑥𝑡

𝑗 with 𝔇𝑖𝑛𝑡
𝑗 = 𝔇𝑗 𝑗 ∪𝔇𝑗𝑖 ∪𝔇𝑗 ,Γ𝑖 , 𝔇𝑒𝑥𝑡

𝑗 = 𝜕𝔇𝑗 ,d ∪ 𝜕𝔇Γ 𝑗 corresponding
to cells included in Ω 𝑗 𝑗 , Ω 𝑗𝑖 or crossing Γ𝑖 or boundary diamond cells as shown in
Fig. 2.
The unknowns: the DDFV method associates to all primal control volumes k ∈
𝔐 𝑗 ∪ 𝜕𝔐 𝑗 an unknown value 𝑢 𝑗 ,k, and to all dual control volumes k∗ ∈ 𝔐∗𝑗 ∪ 𝜕𝔐∗𝑗
an unknown value 𝑢 𝑗 ,k∗ . We denote the approximate solution on the mesh T𝑗 by 𝑢T𝑗 =
((𝑢 𝑗 ,k)k∈(𝔐 𝑗∪𝜕𝔐 𝑗) , (𝑢 𝑗 ,k∗ )k∗∈(𝔐∗𝑗∪𝜕𝔐∗𝑗 ) ) ∈ RT𝑗 .When 𝑓 is a continuous function, we
define 𝑓T𝑗 = P

T𝑗
𝑐 𝑓 the evaluation of 𝑓 on the mesh T𝑗 defined for all control volumes

c ∈ T𝑗 by 𝑓c := 𝑓 (𝑥c).
Operators. DDFV schemes can be described by two operators: a discrete gradient
∇𝔇 𝑗 and a discrete divergence divT𝑗 , which are dual to each other, see [1]. Let
∇𝔇𝑗 : 𝑢T𝑗 ∈ RT𝑗 ↦→

(
∇D𝑢T𝑗

)
D∈𝔇𝑗

∈ (R2)𝔇𝑗 and divT𝑗 : 𝜉𝔇𝑗 = (𝜉 𝑗 ,d)D∈𝔇𝑗 ∈
(R2)𝔇𝑗 ↦→ divT𝑗 𝜉𝔇𝑗 ∈ RT𝑗 be defined as

∇D𝑢T𝑗 :=
1

2𝑚D
((𝑢 𝑗 ,l − 𝑢 𝑗 ,k)𝑚𝜎n𝜎k + (𝑢 𝑗 ,l∗ − 𝑢 𝑗 ,k∗ )𝑚𝜎∗n𝜎∗k∗

)
, ∀D ∈ 𝔇𝑗 ,

divk𝜉𝔇𝑗 :=
1
𝑚k

∑︁
D∈𝔇k

𝑚𝜎 (𝜉 𝑗 ,d, n𝜎k), ∀k ∈ 𝔐 𝑗 ,

divk
∗
𝜉𝔇𝑗 :=

1
𝑚k∗

∑︁
D∈𝔇k∗

𝑚𝜎∗ (𝜉 𝑗 ,d, n𝜎∗k∗ ), ∀k∗ ∈ 𝔐∗𝑗 .

DDFV scheme on Ω 𝑗 for Dirichlet boundary conditions on Γ 𝑗 . For 𝑢T 𝑗 ∈ RT𝑗 ,
𝑓T 𝑗 ∈ RT𝑗 and ℎT 𝑗 ∈ R

𝜕𝔐Γ 𝑗∪𝜕𝔐∗Γ 𝑗 , the linear system denoted by LT 𝑗Ω 𝑗 (𝑢T 𝑗 , 𝑓T 𝑗 , ℎT 𝑗 ) =
0 refers to

−divk
(
𝐴𝔇𝑗∇𝔇𝑗𝑢T 𝑗

)
= 𝑓k, ∀ k ∈ 𝔐 𝑗 , (3)

−divk∗
(
𝐴𝔇𝑗∇𝔇𝑗𝑢T 𝑗

)
= 𝑓k∗ , ∀ k∗ ∈ 𝔐∗𝑗 , (4)

𝑢 𝑗 ,k = 0, ∀ k ∈ 𝜕𝔐 𝑗 ,d, 𝑢 𝑗 ,k∗ = 0, ∀ k∗ ∈ 𝜕𝔐∗𝑗 ,d, (5)

𝑢 𝑗 ,l − 𝑚d𝑖
𝑚d
𝑢 𝑗 ,k 𝑗 = ℎ 𝑗 ,l, ∀ l ∈ 𝜕𝔐Γ 𝑗 , 𝑢 𝑗 ,k∗ = ℎ 𝑗 ,k∗ , ∀ k∗ ∈ 𝜕𝔐∗Γ 𝑗 , (6)

where for all l ∈ 𝜕𝔐Γ 𝑗 , we note that the edge associated to l belongs both to a
diamond cell d ∈ 𝔇𝑖,Γ 𝑗 whose vertices are denoted by 𝑥k1 , 𝑥k2 , 𝑥k∗ , 𝑥l∗ with 𝑥k𝑠 ∈
Ω𝑖𝑠 and to a boundary diamond cell d 𝑗 𝑗 ∈ 𝜕𝔇𝑖,Γ 𝑗 whose vertices are denoted by
𝑥k 𝑗 , 𝑥k∗ , 𝑥l∗ . We denote by the half-diamond d𝑖𝑖 the triangle whose vertices are
𝑥k𝑖 , 𝑥k∗ , 𝑥l∗ and by the half-diamond d 𝑗 𝑗 the triangle whose vertices are 𝑥k 𝑗 , 𝑥k∗ , 𝑥l∗
(See Fig. 2 bottom right). It is classical to see that this discrete formulation is well
posed, see [1].
DDFV Schwarz method. The overlapping DDFV Schwarz method performs for an
arbitrary initial guess ℎ0

T 𝑗 ∈ R
𝜕𝔐Γ 𝑗∪𝜕𝔐∗Γ 𝑗 , and 𝑙 = 1, 2, . . . the following steps (below

either ( 𝑗 , 𝑖) = (1, 2) or ( 𝑗 , 𝑖) = (2, 1)):
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• Compute the solutions 𝑢𝑙+1T 𝑗 ∈ RT𝑗 of L
T 𝑗
Ω 𝑗
(𝑢𝑙+1T 𝑗 , 𝑓T 𝑗 , ℎ𝑙T 𝑗 ) = 0.

• Set ℎ𝑙+1𝑗 ,k∗ = 𝑢
𝑙+1
𝑖,k∗ for all k

∗ ∈ 𝜕𝔐∗Γ 𝑗 , noting that k∗ ∈ 𝔐∗𝑖,Γ 𝑗 .
• Compute ℎ𝑙+1𝑗 ,l : there exists a unique value 𝑢

𝑙+1
l such that

(
𝐴d∇D𝑖𝑖𝑢𝑙+1T𝑖 , n𝜎k𝑖

)
=

(
𝐴d∇D 𝑗 𝑗𝑢𝑙+2T 𝑗 , n𝜎k𝑖

)
defined by

𝑢𝑙+1l =
𝑚d𝑖
𝑚d

𝑢𝑙+2𝑗 ,k 𝑗 +
𝑚d 𝑗

𝑚d
𝑢𝑙+1𝑖,k𝑖 + 𝜆d

(
𝑢𝑙+1𝑖,l∗ − 𝑢𝑙+1𝑖,k∗

)
,

with 𝜆d =
𝐴dn𝜎k 𝑗 ·

(
𝑚d𝑖𝑚𝜎∗𝑗

n 𝑗
𝜎∗k∗−𝑚d 𝑗𝑚𝜎∗𝑖 n𝑖

𝜎∗k∗

)
𝑚d𝑚𝜎𝐴dn𝜎k1 .n𝜎k1

which equals zero in the case of
classical DDFVmeshes, ie 𝑥d = (𝑥k 𝑗 , 𝑥k𝑖 ) ∩ (𝑥k∗ , 𝑥l∗ ), see Fig 2. We then obtain

ℎ𝑙+1𝑗 ,l :=
𝑚d 𝑗

𝑚d
𝑢𝑙+1𝑖,k𝑖 + 𝜆d

(
𝑢𝑙+1𝑖,l∗ − 𝑢𝑙+1𝑖,k∗

)
.

3 Convergence of overlapping DDFV Schwarz

The main difficulty to prove convergence of a Schwarz algorithm on non-matching
grids is to identify its limit. In the conforming case, we will show that the limit
is solution of a classical DDFV scheme on the entire domain, referred to as the
monodomain solution. In the non-matching case, we will define two classical DDFV
schemes on the entire domain, one associated to each subdomain, and then study
numerically if convergence of the subdomain sequences occurs to their corresponding
monodomain solution. To construct the monodomain solutions, consider T̄𝑗 the
DDFV discretization of Ω associated to the primal mesh �̄� 𝑗 = 𝔐 𝑗 𝑗 ∪𝔐 𝑗𝑖 ∪𝔐𝑖𝑖 .
Note that in the conforming case, 𝔐 𝑗𝑖 = 𝔐𝑖 𝑗 , the extended meshes T̄1 and T̄2
coincide, and we denote them by T̄ . The solution �̄�ddfv𝑗 of the classical monodomain
DDFV scheme for homogeneous Dirichlet conditions is solution of the variational
formulation (see e.g. [3])

𝑎 𝑗 (�̄�ddfv𝑗 , �̄� T̄𝑗 ) :=
∑︁
d∈�̄�𝑗

𝑚d𝐴d∇d�̄� T̄𝑗 · ∇d�̄� T̄𝑗 =
1
2

∑︁
k∈�̄� 𝑗

𝑚k 𝑓k�̄�k + 1
2

∑︁
k∗∈�̄�∗𝑗

𝑚k∗ 𝑓k∗ �̄�k∗ .

In each subdomain, we solveLT𝑗Ω 𝑗 (𝑢
𝑙+1
T𝑗 , 𝑓T𝑗 , ℎ

𝑙
T𝑗 ) = 0, and extend the solution 𝑢𝑙+1T𝑗

to RT̄𝑗 using the previous iterate on the neighboring domain,

�̄�𝑙+1T̄𝑗 =

{
𝑢𝑙+1T𝑗 on R

𝔐 𝑗∪𝔐∗𝑗 ,

𝑢𝑙T𝑖 on R
𝔐∗𝑖,Γ 𝑗∪𝔐𝑖𝑖∪𝔐∗𝑖𝑖 .

(7)
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Introducing 𝑉 𝑗 = {�̄� T̄𝑗 ∈ RT̄𝑗 such that �̄�
𝔐𝑖𝑖∪𝔐∗𝑖𝑖∪𝔐∗𝑖,Γ 𝑗 = 0}, by construction of the

extension, we have �̄�𝑙+1T̄𝑗 −�̄�
𝑙
T̄𝑖 ∈ 𝑉 𝑗 and for all �̄� T̄𝑗 ∈ 𝑉 𝑗 we have 𝑎 𝑗 (�̄�

𝑙+1
T̄𝑗 −�̄�

ddfv
𝑗 , �̄� T̄𝑗 ) =

0 since there exists (𝜓𝑙+1k∗ )k∗∈𝔐∗𝑖,Γ 𝑗 and (𝜓
𝑙+1
k𝑖 )l∈𝜕𝔐Γ 𝑗

such that

𝑎 𝑗 (�̄�𝑙+1T̄𝑗 , �̄� T̄𝑗 ) =
1
2

∑︁
k∈�̄� 𝑗

𝑚k 𝑓k�̄�k + 1
2

∑︁
k∗∈�̄�∗𝑗

𝑚k∗ 𝑓k∗ �̄�k∗ +
∑︁

k∗∈𝔐∗𝑖,Γ 𝑗

�̄�k∗𝜓
𝑙+1
k∗ +

∑︁
l∈𝜕𝔐Γ 𝑗

�̄�k𝑖𝜓
𝑙+1
k𝑖 .

Theorem 1 If the meshes are conforming, M𝑖 𝑗 = M 𝑗𝑖 , then the DDFV Schwarz
algorithm converges in the discrete DDFV 𝐻1 semi-norm

∥�̄� T̄𝑗 ∥𝐻1 :=
( ∑︁

d∈�̄�𝑗
𝑚d∥∇d�̄� T̄𝑗 ∥2

) 1
2
. (8)

Proof IfM𝑖 𝑗 =M 𝑗𝑖 , then 𝑎 𝑗 = 𝑎𝑖 := 𝑎, and we obtain that 𝑎(�̄�𝑙+1T̄𝑗 − �̄�
𝑙
T̄𝑖 , �̄� T̄𝑗 ) = 0

for all �̄� T̄𝑗 ∈ 𝑉 𝑗 and thus �̄�𝑙+1T̄𝑗 − �̄�
𝑙
T̄𝑖 is the orthogonal projection of �̄�

ddfv
𝑗 − �̄�𝑙T̄𝑖 onto

𝑉 𝑗 with respect to the scalar product induced by 𝑎. Now because RT̄ = 𝑉1 + 𝑉2, we
can apply [7, Lemma 2.12 and Theorem 2.15] (see also [2, Fig. 2.4]) to conclude
that the proposed overlapping DDFV Schwarz method converges geometrically to
the monodomain DDFV solution in the norm induced by 𝑎 or equivalently for the
discrete DDFV 𝐻1 semi-norm (8). □

If the meshes are non-conforming, M𝑖 𝑗 ≠ M 𝑗𝑖 , we have two monodomain solu-
tions, one from extending each subdomain mesh to the overall domain, and nei-
ther convergence nor the limit of the DDFV Schwarz algorithm is known. We
thus study now numerically its convergence, for both the conforming and non-
conforming cases. We use a strong anisotropy 𝐴 =

( 1.5 0.5
0.5 15

)
and a manufactured

solution 𝑢𝑒 (𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦) sin(𝜋(𝑥 + 𝑦)) putting the corresponding source
term 𝑓 and non homogeneous boundary conditions on (−0.75, 0.75) × (0, 1). The
overlap is (−0.25, 0.25) × (0, 1). The meshes are built using refinements of the
meshes shown in Fig. 1. For both families,𝔐11 is the triangle mesh and𝔐22 is the
square mesh, and in the conforming case 𝔐12 and 𝔐21 are both the square mesh,
while in the nonconforming case 𝔐12 is the triangle mesh and 𝔐21 is the square
mesh. Note that the dual meshes exhibit a large variety of polygonal cells. Tables 1
and 2 show a detailed error analysis of the results we obtain, stopping the algorithm
as soon as ∥𝑢𝑙 − 𝑢𝑙−1∥𝐿2 ≤ 1𝑒 − 13 with

∥�̄� T̄𝑗 ∥𝐿2 :=
√︄ ∑︁
k∈�̄� 𝑗

𝑚k�̄�
2
k +

√√ ∑︁
k∗∈�̄� 𝑗

∗∪𝜕�̄�∗𝑗

𝑚k∗ �̄�
2
k∗ .

In the third column we see that the algorithm converges in all cases in the relative
discrete 𝐻1−norm (8) defined for 𝑢T − 𝑣T by ∥𝑢T − 𝑣T ∥ := ∥𝑢T−𝑣T ∥𝐻1

∥𝑣T ∥𝐻1
. The fourth

column in Table 1 shows convergence to the monodomain solution for conforming
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#cells cellsize ∥𝑢𝑙+1−𝑢𝑙 ∥𝐻1 ∥𝑢𝑙−�̄�ddfv ∥𝐻1 ∥𝑢𝑙−P𝜏𝑐𝑢𝑒 ∥𝐻1 order ∥𝑢𝑙−P𝜏𝑐𝑢𝑒 ∥𝐿2 order
140 3.5E-01 2.080E-15 4.062E-16 1.355E-01 — 1.086E-01 —
458 1.8E-01 1.360E-15 1.022E-15 5.945E-02 1.19 2.897E-02 1.91
1634 8.8E-02 3.662E-14 1.911E-15 3.104E-02 0.94 7.998E-03 1.86
6146 4.4E-02 2.537E-14 8.703E-15 1.563E-02 0.99 2.071E-03 1.95
23810 2.2E-02 2.694E-14 1.945E-14 7.737E-03 1.01 5.228E-04 1.99
93698 1.1E-02 3.561E-14 3.139E-14 3.832E-03 1.01 1.311E-04 2.00

Table 1: Conforming overlap: convergence of the Schwarz algorithm ∥𝑢𝑙+1−𝑢𝑙 ∥𝐻1 → 0 and con-
vergence to the monodomain solution �̄�ddfv for all mesh sizes; convergence under mesh refinement
of the limit of the Schwarz algorithm to the exact solution of order 1 in 𝐻1 and order 2 in 𝐿2.

#cells cellsize ∥𝑢𝑙+1−𝑢𝑙 ∥𝐻1 ∥𝑢𝑙−�̄�ddfv ∥𝐻1 order ∥𝑢𝑙−P𝜏𝑐𝑢𝑒 ∥𝐻1 order ∥𝑢𝑙−P𝜏𝑐𝑢𝑒 ∥𝐿2 order
166 3.5E-01 3.497E-15 3.875E-02 — 1.469E-01 — 1.207E-01 —
562 1.8E-01 1.079E-14 1.833E-02 1.08 5.987E-02 1.29 2.930E-02 2.04
2050 8.8E-02 8.451E-14 6.271E-03 1.55 3.233E-02 0.89 8.178E-03 1.84
7810 4.4E-02 6.264E-14 1.830E-03 1.78 1.677E-02 0.95 2.153E-03 1.93
30466 2.2E-02 4.514E-14 5.152E-04 1.83 8.448E-03 0.99 5.498E-04 1.97

Table 2: Non conforming overlap: as for Table 1, but only convergence under mesh refinement to
the monodomain solution �̄�ddfv .

#cells cellsize ∥𝑢𝑙−𝑢𝑙−1 ∥𝐻1 ∥𝑢𝑙−�̄�ddfv ∥𝐻1 ∥𝑢𝑙−P𝜏𝑐𝑢𝑒 ∥𝐻1 order ∥𝑢𝑙−P𝜏𝑐𝑢𝑒 ∥𝐿2 order
166 3.54E-01 1.183E-13 2.412E-14 7.521E-03 — 1.366E-03 —
562 1.77E-01 7.843E-14 1.569E-14 3.769E-03 1.00 3.315E-04 2.04
2050 8.84E-02 7.024E-14 1.448E-14 1.886E-03 1.00 8.154E-05 2.02
7810 4.42E-02 7.071E-14 2.165E-14 9.434E-04 1.00 2.022E-05 2.01
30466 2.21E-02 7.668E-14 1.193E-13 4.718E-04 1.00 5.034E-06 2.00

Table 3: Case 𝑢𝑒 (𝑥, 𝑦) = 𝑥𝑦 and 𝐴 = 𝐼𝑑 and convergence of ∥𝑢𝑙−�̄�ddfv ∥𝐻1 as in the conforming
case of Table 1, even thought the mesh is non-conforming!

meshes as proved in Theorem 1, but only convergence under mesh refinement in the
non-conforming case in Table 2. The remaining columns show that the limits of the
Schwarz algorithm converge always under mesh refinement to the evaluation P𝜏𝑐𝑢𝑒
of the exact solution 𝑢𝑒 on the meshes, of order 1 in 𝐻1 and order 2 in 𝐿2, for an
illustration of the converged solution, see Fig. 3.
We observe however also several cases where �̄�ddfv corresponds to the limit of

𝑢𝑙 even in the nonconforming case, e.g. for 𝑢𝑒 = 0 or 𝑢𝑒 (𝑥, 𝑦) = 𝑥𝑦 with 𝐴 = 𝐼𝑑 as
shown in Table 3. The complete understanding of convergence to the mono-domain
solution in the non-conforming case thus requires a deeper study of the limiting
equations of the overlapping Schwarz process when discretized by nonconforming
DDFV.
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Fig. 3: 𝑢𝑙1 (left) and 𝑢𝑙2 (right) after 𝑙 = 21 iterations on the primal non-conforming meshes with
refinement 2, corresponding to 562 unknowns.
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On the Nonlinear Dirichlet-Neumann Method
and Preconditioner for Newton’s Method

F. Chaouqui, M. J. Gander, P. M. Kumbhar, and T. Vanzan

1 Introduction

We consider a nonlinear Partial Differential Equation (PDE)

L(𝑢) = 𝑓 in Ω, 𝑢 = 𝑔 on 𝜕Ω, (1)

where Ω ⊂ R𝑑 for 𝑑 ∈ {1, 2, 3} is an open bounded domain with a polygonal
boundary 𝜕Ω, and 𝑓 , 𝑔 ∈ 𝐿2 (Ω). We suppose that (1) admits a unique weak solution
in some Hilbert space 𝑢 ∈ X( e.g. 𝐻1 (Ω)). For instance, for a quasilinear operator L
in divergence form, explicit assumptions can be found in [1] and references therein,
see also [7, Chapter 8-9] and [5, Chapter 9]. Let us divideΩ into two nonoverlapping
subdomains Ω1 and Ω2 and define Γ 𝑗 = 𝜕Ω 𝑗 \ 𝜕Ω, 𝑗 = 1, 2. Let 𝑢 𝑗 be the restriction
of 𝑢 to Ω 𝑗 . The nonlinear Dirichlet-Neumann (DN) method starts from an initial
guess 𝜆0 and computes for 𝑛 ≥ 1 until convergence

L(𝑢𝑛1 ) = 𝑓1, in Ω1, L(𝑢𝑛2 ) = 𝑓2, in Ω2
𝑢𝑛1 = 𝑔1, on 𝜕Ω1 \ Γ, 𝑢𝑛2 = 𝑔2, on 𝜕Ω2 \ Γ
𝑢𝑛1 = 𝜆𝑛 on Γ, N2𝑢

𝑛
2 = −N1𝑢

𝑛
1 on Γ,

(2)

where 𝜆𝑛 = (1−𝜃)𝜆𝑛−1+𝜃𝑢𝑛−1
2 |Γ ,with 𝜃 ∈ (0, 1) , 𝑓 𝑗 := 𝑓 |Ω 𝑗 and 𝑔 𝑗 := 𝑔 |𝜕Ω 𝑗\Γ for 𝑗 =

1, 2. The operatorsN𝑗 represent the outward nonlinearNeumann conditions thatmust
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be imposed on the interface Γ and are usually found through integration by parts of the
variational formulation of the PDE. For instance, ifL(𝑢) = −𝜕𝑥 ((1+𝛼𝑢2)𝜕𝑥𝑢), then
N𝑗𝑢 = (−1) 𝑗+1 (1 + 𝛼𝑢2

|Γ)𝜕𝑥𝑢 |Γ. For the well-posedness of the Dirichlet-Neumann
method, we further assume that N𝑗𝑢 defines a bounded linear functional over X.
System (2) can be formulated as an iteration over the substructured variable 𝜆 as

𝜆𝑛 = 𝐺 (𝜆𝑛−1) := (1 − 𝜃)𝜆𝑛−1 + 𝜃NtD2

(
−DtN1

(
𝜆𝑛−1, 𝜓1

)
, 𝜓2

)
, (3)

where 𝜓 𝑗 = ( 𝑓 𝑗 , 𝑔 𝑗 ), 𝑗 = 1, 2, represent the force term and boundary conditions,
while the nonlinear Dirichlet-to-Neumann (DtN 𝑗 ) and Neumann-to-Dirichlet oper-
ators (NtD 𝑗 ) are defined as DtN 𝑗 (𝜆, 𝜓 𝑗 ) := N𝑗𝑢 𝑗 , and NtD 𝑗 (𝜑, 𝜓 𝑗 ) := 𝑣 𝑗 |Γ, with

L(𝑢 𝑗 ) = 𝑓 𝑗 in Ω 𝑗 , L(𝑣 𝑗 ) = 𝑓 𝑗 in Ω 𝑗 ,
𝑢 𝑗 = 𝑔 𝑗 on 𝜕Ω 𝑗 \ Γ, 𝑣 𝑗 = 𝑔 𝑗 on 𝜕Ω 𝑗 \ Γ,
𝑢 𝑗 = 𝜆 on Γ N𝑗𝑣 𝑗 = 𝜑 on Γ.

(4)

If 𝑢ex ∈ 𝐻1 (Ω) is the solution of (1), then it must have continuous Dirichlet trace
and Neumann flux along the interface Γ. Defining 𝑢Γ := 𝑢ex |Γ, 𝜑 := N1𝑢ex |Γ and
using the operators DtN 𝑗 and NtD 𝑗 , these necessary properties are equivalent to

DtN1 (𝑢Γ, 𝜓1) = −DtN2 (𝑢Γ, 𝜓2), and NtD1 (𝜑, 𝜓1) = NtD2 (−𝜑, 𝜓2). (5)

2 Nilpotent property and quadratic convergence

It is well known, see e.g. [9, 4], that if L is linear and the subdomain decomposition
is symmetric, then the DN method converges in one iteration for 𝜃 = 1/2. Indeed, if
L is linear, one can work on the error equation, i.e. 𝜓 𝑗 = 0, and the symmetry of the
decomposition is sufficient to guarantee DtN1 (·, 0) ≡ DtN2 (·, 0), so that

𝜆1 =
1
2

(
𝜆0 + NtD2

(
−DtN1 (𝜆0, 0)

)
, 0

)
=

1
2

(
𝜆0 + NtD2

(
−DtN2 (𝜆0, 0)

)
, 0

)
=

1
2
(𝜆0 − NtD2 (DtN2 (𝜆0, 0), 0) = 0,

(6)

where in the third equalitywe used linearity, and in the lastNtD2 (DtN2 (𝜆, 𝜓), 𝜓) = 𝜆.
Can the nonlinear DN method also converge in one iteration?
On the one hand, the relation NtD 𝑗 (DtN 𝑗 (𝜆, 𝜓), 𝜓) = 𝜆 holds even in the nonlin-

ear case, simply because the nonlinear DtN 𝑗 operator is the inverse of the nonlinear
NtD 𝑗 operator. On the other hand, due to the nonlinearity ofL, one cannot rely on the
error equation, cannot state that NtD2 (−𝜑) = −NtD2 (𝜑), and the symmetry of the
decomposition is not sufficient to guarantee DtN1 (𝜆, 𝜓1) ≡ DtN2 (𝜆, 𝜓2), because of
the boundary conditions and the force term.
A straight forward observation is that if the nonlinear DN method converges in

one iteration, then 𝐺 (𝜆) = 𝜆ex, ∀𝜆, that is 𝐺 (·) is a constant. A necessary and
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Fig. 1: Subdomain solutions of the nonlinear DNmethod after one iteration (left), and exact solution
(right). The parameters are 𝑔 = 5 and 𝑘 = 2.

sufficient condition for the nonlinear DN method to converge in one iteration is then

0=𝐺 ′(𝜆)= 1
2
+1

2
(NtD2 (−DtN1 (𝜆, 𝜓1), 𝜓2)) ′ =⇒ (NtD2 (−DtN1 (𝜆, 𝜓1), 𝜓2)) ′=−1.

(7)
Clearly, (7) is satisfied if NtD2 (−DtN1 (𝜆, 𝜓1), 𝜓2) = −𝜆. We consider a toy example
in which this condition is satisfied. Let L = −𝜕𝑥

((1 + 𝑢2)𝜕𝑥𝑢
)
, 𝑢(0) = 𝑔 ∈ R+,

𝑢(1) = −𝑔 and 𝑓 (𝑥) = sin((2𝑘)𝜋𝑥). On the left plot of Fig. 1, we show the subdomain
solutions 𝑢1 and 𝑢2 obtained from (2) after the first iteration. The two contributions
sum to zero, which is the value of 𝜆ex. Thus, after one iteration we obtain the exact
solution shown in the right panel.
Even though the nilpotent property does not hold in general, we show in the

following Theorem that the nonlinear DNmethod can exhibit quadratic convergence.

Theorem 1 (Quadratic convergence of nonlinear DN)
For any one-dimensional nonlinear problem L(𝑢) = 𝑓 such that DtN′1 (𝜆ex, 𝜓1) ·

DtN′2 (𝜆ex, 𝜓2) > 0 with 𝜆ex := 𝑢ex |Γ, there exists a 𝜃 ∈ (0, 1) such that the nonlinear
Dirichlet-Neumann method converges quadratically.

Proof A sufficient condition for quadratic convergence is that the Jacobian of 𝐺 (·),
defined in (3), is zero at 𝜆ex := 𝑢ex |Γ, that is 𝐺 ′(𝜆ex) = 0. A direct calculation shows

𝐺 ′(𝜆) = (1 − 𝜃) + 𝜃NtD′2 (−DtN1 (𝜆, 𝜓1), 𝜓2) ·
(−DtN′1 (𝜆, 𝜓1)

)
. (8)

Setting 𝜆 = 𝜆ex and using the optimality condition DtN1 (𝜆ex, 𝜓1) = −DtN2 (𝜆ex, 𝜓2)
of (5), the above equation changes to

𝐺 ′(𝜆ex) = (1 − 𝜃) + 𝜃NtD′2 (DtN2 (𝜆ex, 𝜓2), 𝜓2) ·
(−DtN′1 (𝜆ex, 𝜓1)

)
. (9)

If DtN′1 (𝜆ex, 𝜓1) = DtN′2 (𝜆ex, 𝜓2) held true, then using the identity

NtD′2 (DtN2 (𝜆, 𝜓2), 𝜓2) ·
(
DtN′2 (𝜆, 𝜓2)

)
= 1,
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Fig. 2: In the left panels, we show the convergence curves, and in the right panels we plot 𝐺𝜃 (𝜆) .
The top-row refers to a symmetric decomposition, and the bottom-row to an asymmetric one.

obtained by differentiating NtD 𝑗 (DtN 𝑗 (𝜆, 𝜓 𝑗 ), 𝜓 𝑗 ) = 𝜆, we would easily get that
𝜃 = 1/2 leads to 𝐺 ′(𝜆ex) = 0. Nevertheless, variational calculus shows that to
calculate DtN′𝑗 (𝜆, 𝜓 𝑗 ), one has to solve a linear PDE which does not depend on 𝜓 𝑗
anymore, but whose coefficients still depend on the subdomain solutions 𝑢ex |Ω1 and
𝑢ex |Ω2 . In general then, DtN′1 (𝜆ex, 𝜓1) ≠ DtN′2 (𝜆ex, 𝜓2). However, DtN 𝑗 being one
dimensional functions, we have DtN′1 (𝜆ex, 𝜓1) = 𝛿DtN′2 (𝜆ex, 𝜓2), for some 𝛿 ∈ R+
if DtN′1 (𝜆ex, 𝜓1) · DtN′2 (𝜆ex, 𝜓2) > 0. Inserting this into (9), we obtain 𝐺 ′(𝜆ex) = 0
if 𝜃 = 1

1+𝛿 ∈ (0, 1). □

To illustrate Theorem 1 numerically, we consider L(𝑢) = −𝜕𝑥 ((1 + 𝛼𝑢2)𝜕𝑥𝑢),
Ω = (0, 1), 𝑓 (𝑥) = 100𝑥, 𝑢(0) = 0 and 𝑢(1) = −20. In the top-row of Fig. 2, we
set the interface Γ to 𝑥 = 1/2. In the left panel, we plot the convergence curves for
𝜃 = 1/2 and for 𝜃q := 1

1+𝛿 . In this setting, 𝛿 = 1.006 and 𝜃q = 0.498, so due to the
symmetry of the decomposition, 𝜃q is still very close to 1/2. In the right panel, we
plot 𝐺 𝜃 (𝜆) and see that as 𝜃 changes, the minimum of 𝐺 𝜃 (𝜆) moves, such that it is
attained at 𝜆 = 𝜆ex for 𝜃 = 𝜃q.
Next, in the bottom row of Fig 2, we consider the same equation and boundary

conditions, but Γ is now at 𝑥 = 0.3. The decomposition is asymmetric, with 𝛿 = 0.43
and 𝜃q = 0.699. The left panel shows clearly that for 𝜃 = 1/2 the convergence is
linear, while for 𝜃 = 𝜃q, the DN method converges quadratically. In the right panel,
we observe that 𝐺1/2 (𝜆) does not have a local extremum at 𝜆 = 𝜆ex, while 𝐺 𝜃𝑞 (𝜆)
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Fig. 3: Convergence behavior of nonlinear DN for different mesh sizes in 1D (left) and 2D (right).

does. Theorem 1 does not easily generalize to higher dimensions, since DtN′𝑗 are then
matrices, and the relaxation parameter would have to be an operator. Numerically
we observed for symmetric decompositions fast convergence for 𝜃 = 0.5, while for
asymmetric decompositions, 𝜃 needs to be tuned for good performance.

3 Mesh independent convergence

One of the attractive features of the DNmethod for linear problems is that it achieves
mesh independent convergence. Does this also hold for the nonlinear DNmethod (2)?
We first define the nonlinear DN method for multiple subdomains. Motivated by
the definition of the DN method for the linear case in [2], we divide the domain
Ω := (0, 𝐿) × (0, 𝐿) into 𝑁 nonoverlapping subdomains Ω 𝑗 = (Γ 𝑗−1, Γ 𝑗 ) × (0, 𝐿),
with Γ0 = 0 and Γ𝑁 = 𝐿. The nonlinear DN method for multiple subdomains is then
defined for the interior subdomains by

L(𝑢𝑛𝑗 ) = 𝑓 𝑗 in Ω 𝑗 ,

N𝑗𝑢𝑛𝑗 (Γ 𝑗−1, ·) = −N𝑗−1𝑢
𝑛
𝑗−1 (Γ 𝑗−1, ·) on Γ 𝑗−1,

𝑢𝑛𝑗 (Γ 𝑗 ) = (1 − 𝜃)𝑢𝑛−1
𝑗 (Γ 𝑗 , ·) + 𝜃𝑢𝑛−1

𝑗+1 (Γ 𝑗 , ·) on Γ 𝑗 ,

where 𝜃 ∈ (0, 1), and for the left and right most subdomains by

L(𝑢𝑛1 ) = 𝑓1, in Ω1, L(𝑢𝑛𝑁 ) = 𝑓𝑁 , in Ω𝑁 ,
𝑢𝑛1 (Γ, ·) = 𝑔(0), N𝑁𝑢𝑛𝑁 (Γ𝑁−1, ·) = −N𝑁−1𝑢

𝑛
𝑁−1 (Γ𝑁−1, ·),

𝑢𝑛1 (Γ1, ·) = (1−𝜃)𝑢𝑛−1
1 (Γ1, ·)+𝜃𝑢𝑛−1

2 (Γ1, ·), 𝑢𝑛𝑁 (𝐿, ·) = 𝑔(𝐿).

We perform two experiments, one in 1D and one in 2D. For the 1D case, we
consider the nonlinear diffusion equation −𝜕𝑥

((1 + 𝑢2)𝜕𝑥𝑢
)
= 0, with 𝑢(0) = 0 and

𝑢(1) = 20. We divide the domainΩ = (0, 1) into ten equal subdomains. We then plot
the relative error of the nonlinear DN for four differentmesh sizes ℎ = 1e-2, ℎ = 2e-3,
ℎ = 1e-3, and ℎ = 1e-4. The left plot in Fig. 3 shows that the convergence rate of the
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nonlinear DN is independent of mesh size, while it is quadratic for Newton’sMethod.
We repeat a similar experiment in 2D, but now the domain Ω = (0, 1) × (0, 1) is
divided into four equal subdomains. Even in 2D, we observe the mesh independent
convergence of the nonlinear DN method, see the right plot of Fig. 3.

4 Dirichlet-Neumann Preconditioned Exact Newton (DNPEN)

In Section 2, we observed that under some special conditions on the exact solution
of the nonlinear problem and 𝜃, the nonlinear DN method (2) can be nilpotent.
Moreover, the nonlinear DN method can also converge quadratically. But to achieve
this, we need to tune the parameter 𝜃 according to some a priori knowledge of the
exact solution of the nonlinear problem. Thus in general, the nonlinear DN method
converges linearly (as shown in Fig 3).
Iterativemethods can be used as preconditioners to achieve faster convergence, see

[4] for the linear case, and [8] for a historical introduction including also the nonlinear
case. It was proposed in [6, 3] to use the nonlinear RestrictedAdditive Schwarz (RAS)
and nonlinear Substructured RAS (SRAS) methods as preconditioner for Newton’s
method. We use the same idea here and apply Newton’s method to the fixed point
equation of the nonlinear DN method (3), which represents a systematic way of
constructing non-linear preconditioners [8]. The fixed point version of (3) can be
written as

F (𝜆) := 𝜆 − 𝐺 (𝜆) = 𝜃𝜆 − 𝜃NtD2 (−DtN1 (𝜆, 𝜓1) , 𝜓2) . (10)

Applying Newton to (10) we obtain a new method called Dirichlet Neumann Pre-
conditioned Exact Newton (DNPEN) method.
We saw in Section 2 that the DN method can be nilpotent in certain cases. Can

DNPEN still be nilpotent? Let 𝜆ex denote the fixed point of the iteration (3). Let us
assume that the Dirichlet Neumann method converges in one iteration. This means
that 𝐺 defined in (3) satisfies 𝜆ex = 𝐺 (𝜆0) for any initial guess 𝜆0. This shows that
the map 𝐺 is constant, and hence F ′(𝜆) reduces to the identity matrix. Moreover,
one step of Newton’s method applied to (3) can then be written as

𝜆1 = 𝜆0 − (F ′(𝜆0))−1F (𝜆0) = 𝜆0 − F (𝜆0) = 𝐺 (𝜆0) = 𝜆ex,

and hence DNPEN will also be nilpotent in that case. We further have also the
following result.

Theorem 2 The convergence of DNPEN does not depend on the relaxation param-
eter 𝜃 in the DN preconditioner.

Proof The function F from (10) corresponding to DNPEN can we rewritten as
F (𝜆) = 𝜃K(𝜆, 𝜓1, 𝜓2), whereK(𝜆, 𝜓1, 𝜓2) := 𝜆−NtD2 (−DtN1 (𝜆, 𝜓1) , 𝜓2). Thus,
Newton’s iteration reads
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Fig. 4: Comparison of DNPEN (with optimal 𝜃) with unpreconditioned Newton, nonlinear DN
(with optimal 𝜃) and RASPEN for a symmetric partition (left) and an asymmetric partition (right).

𝜆𝑘+1=𝜆𝑘−
(
𝐽F (𝜆𝑘)

)−1
F (𝜆𝑘)=𝜆𝑘−

(
𝜃𝐽K(𝜆𝑘)

)−1
𝜃K(𝜆𝑘)=𝜆𝑘−

(
𝐽K(𝜆𝑘)

)−1
K(𝜆𝑘),

which shows that the Newton correction does not depend on the relaxation parameter
𝜃. The iterates of Newton’s method will thus only depend on K, and DNPEN has 𝜃
independent convergence. □

The above theorem shows that when using DNPEN, one does not need to search
for an optimal choice of 𝜃, in contrast to the nonlinear DN method (2).
We now compare the convergence of DNPEN, the unpreconditioned Newton

method, the nonlinear DN method (2) and RASPEN [6]. We consider the nonlinear
diffusion problem −𝜕𝑥

( (
1 + 𝑢2) 𝜕𝑥𝑢) = 𝑓 on Ω = (0, 1) decomposed into two

equally sized subdomains, with 𝑢(0) = 0, 𝑢(1) = 10 and 𝑓 (𝑥) = sin(10𝜋𝑥). For both
DN andDNPEN,we choose the optimal relaxation parameter provided in Theorem 1.
The left plot in Fig. 4 shows that the iterative DN converges quadratically using the
optimal parameter and is very similar to DNPEN with no significant gain in the
number of iterations. The convergence curves also show that the unpreconditioned
Newton method is slower than all preconditioned ones, and DNPEN has a slight
advantage over RASPEN.
We repeat the same experiment but now using an asymmetric partition of the

domain Ω. The right plot in Fig. 4 shows that for this configuration, DNPEN is
the fastest while again unpreconditioned Newton is the slowest among the methods
considered. Moreover, DNPEN is significantly faster than the nonlinear DNmethod.
Finally, we illustrate numerically that the convergence of DNPENdoes not depend

on 𝜃. We know that in general, the nonlinear DN method converges linearly, and it
is not always possible to find an optimal 𝜃 such that it converge quadratically. We
again consider the symmetric partition of the domain and use the same boundary
conditions and force term as above. However, instead of the optimal 𝜃, we consider
two non-optimal 𝜃’s, namely 𝜃 = 0.1 and 𝜃 = 0.9. The left plot in Fig. 5 shows
the linear convergence of nonlinear DN for both 𝜃 = 0.1, and 𝜃 = 0.9, and both
are slower than the unpreconditioned Newton method. However, DNPEN converges
much faster than Newton’s method and in the same number of iterations for the two
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Fig. 5: Comparison of DNPEN with the unpreconditioned Newton method and nonlinear DN (left)
and with RASPEN (right) for two different non optimal 𝜃’s.

different values 𝜃 = 0.1 and 𝜃 = 0.9. The right plot in Fig. 5 shows that DNPEN is
still faster than RASPEN for both values 𝜃 considered.

5 Conclusion

While iterative DN methods are known to converge linearly, we proved that one can
obtain quadratic converge for some one-dimensional nonlinear problems and for a
well chosen relaxation parameter 𝜃. Under specific conditions, the nonlinear DN
method can also become a direct solver, like in the linear case. We then extended
DN to multiple subdomains and numerically showed that its convergence is mesh
independent. We finally introduced the nonlinear preconditioner DNPEN, proved
that the convergence of DNPEN does not depend on the relaxation parameter 𝜃,
and observed numerically that DNPEN is faster than unpreconditioned Newton,
nonlinear DN and RASPEN in all our examples.
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Nonlinear Optimized Schwarz Preconditioner
for Elliptic Optimal Control Problems

Gabriele Ciaramella, Felix Kwok, and Georg Müller

1 Introduction
Consider the nonlinear optimal control problem

min
𝑦,𝑢

𝐽 (𝑦, 𝑢) :=
1
2
∥𝑦 − 𝑦𝑑 ∥2𝐿2 +

𝜈

2
∥𝑢∥2

𝐿2 + 𝛽∥𝑢∥𝐿1 ,

s.t. − Δ𝑦 + 𝑐𝑦 + 𝑏𝜑(𝑦) = 𝑓 + 𝑢 in Ω, 𝑦 = 0 on 𝜕Ω,
𝑢 ∈ 𝑈ad := {𝑣 ∈ 𝐿2 (Ω) : |𝑣 | ≤ �̄� in Ω},

(1)

where ∥ · ∥𝐿𝑟 denotes the usual norm for 𝐿𝑟 (Ω) with 1 ≤ 𝑟 ≤ ∞, the functions
𝑦𝑑 , 𝑓 ∈ 𝐿2 (Ω) are given, and the scalar parameters 𝑏, 𝑐, 𝛽 ≥ 0 and 𝜈, 𝛽 ≥ 0
are known. Our model includes problems such as the simplified Ginzburg-Landau
superconductivity equation as well as inverse problems where 𝐿1-regularization
is used to enhance sparsity of the control function 𝑢. For simplicity, the domain
Ω ⊂ R2 is assumed to be a rectangle (0, �̃�) × (0, �̂�). The function 𝜑 : R → R
is assumed to be of class 𝐶2, with locally bounded and locally Lipschitz second
derivative and such that 𝜕𝑦𝜑(𝑦) ≥ 0. These assumptions guarantee that theNemytskii
operator 𝑦(·) ↦→ 𝜑(𝑦(·)) is twice continuously Fréchet differentiable in 𝐿∞ (Ω). In
this setting, the optimal control problem (1) is well posed in the sense that there
exists a minimizer (𝑦, 𝑢) ∈ 𝑋 × 𝐿2 (Ω), with 𝑋 := 𝐻1

0 (Ω) ∩ 𝐿∞ (Ω), cf. [7, 1]. Our
goal is to derive efficient nonlinear preconditioners for solving (1) using domain
decomposition techniques.
Let (𝑦, 𝑢) ∈ 𝑋 × 𝐿2 (Ω) be a solution to (1). Then there exists an adjoint variable

𝑝 ∈ 𝑋 such that (𝑦, 𝑢, 𝑝) satisfies the system [6, Theorem 2.3]
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−Δ𝑦 + 𝑐𝑦 + 𝑏𝜑(𝑦) = 𝑓 + 𝑢 in Ω with 𝑦 = 0 on 𝜕Ω,
−Δ𝑝 + 𝑐𝑝 + 𝑏𝜑′(𝑦)𝑝 = 𝑦 − 𝑦𝑑 in Ω with 𝑝 = 0 on 𝜕Ω,

𝑢 = 𝜇(𝑝),

where 𝜇 : 𝐿∞ (Ω) → 𝐿2 (Ω) is

𝜇(𝑝) =max(0, (−𝛽 − 𝑝)/𝜈) +min(0, (𝛽 − 𝑝)/𝜈)
−max(0,−�̄� + (−𝑝 − 𝛽)/𝜈) −min(0, �̄� + (−𝑝 + 𝛽)/𝜈). (2)

We remark that for 𝛽 = 0, the previous formula becomes 𝜇(𝑝) = P𝑈ad (−𝑝/𝜈), which
is the usual projection formula that leads to the optimality condition 𝑢 = P𝑈ad (−𝑝/𝜈);
see [7]. Moreover, if 𝛽 = 0with �̄� = ∞, one obtains that 𝜇(𝑝) = −𝑝/𝜈, which implies
the usual optimality condition 𝜈𝑢+ 𝑝 = 0, where 𝜈𝑢+ 𝑝 is the gradient of the reduced
cost functional 𝐽 (𝑢) = 𝐽 (𝑦(𝑢), 𝑢) [7].
Eliminating the control using 𝜇(𝑝), the first-order optimality system becomes

−Δ𝑦 + 𝑐𝑦 + 𝑏𝜑(𝑦) = 𝑓 + 𝜇(𝑝) in Ω with 𝑦 = 0 on 𝜕Ω,
−Δ𝑝 + 𝑐𝑝 + 𝑏𝜑′(𝑦) (𝑝) = 𝑦 − 𝑦𝑑 in Ω with 𝑝 = 0 on 𝜕Ω.

(3)

This nonlinear and nonsmooth system admits a solution (𝑦, 𝑝) ∈ 𝑋2 [1, 7].

2 Optimized Schwarz method and preconditioner
In this section, we introduce an optimized Schwarz method (OSM) for solving the
optimality system (3). We consider the non-overlapping decomposition of Ω shown

Ω1Γ0 Γ1 · · · Ω 𝑗Γ 𝑗−1 Γ 𝑗 · · · Ω𝑁Γ𝑁−1 Γ𝑁𝐿

𝐿 𝐿 𝐿

Fig. 1: Non-overlapping domain decomposition.

in Fig. 1 and given by disjoint subdomains Ω 𝑗 , 𝑗 = 1, . . . , 𝑁 such that Ω = ∪𝑁𝑗=1Ω 𝑗 .
The sets Γ 𝑗 := Ω 𝑗 ∩ Ω 𝑗+1, 𝑗 = 1, . . . , 𝑁 − 1 are the interfaces. Moreover, we define
Γext
𝑗 := 𝜕Ω 𝑗 ∩ 𝜕Ω, 𝑗 = 1, . . . , 𝑁 , which represent the external boundaries of the
subdomains. The optimality system (3) can be written as a coupled system of 𝑁
subproblems defined on the subdomains Ω 𝑗 , 𝑗 = 1, . . . , 𝑁 , of the form

−Δ𝑦 𝑗 + 𝑐𝑦 𝑗 + 𝑏𝜑(𝑦 𝑗 ) = 𝑓 𝑗 + 𝜇(𝑝 𝑗 ) in Ω 𝑗 , (4a)
−Δ𝑝 𝑗 + 𝑐𝑝 𝑗 + 𝑏𝜑′(𝑦 𝑗 ) (𝑝 𝑗 ) = 𝑦 𝑗 − 𝑦𝑑, 𝑗 in Ω 𝑗 (4b)
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𝑦 𝑗 = 0, 𝑝 𝑗 = 0 on Γext
𝑗 , (4c)

𝑞 𝑦 𝑗 + 𝜕𝑥𝑦 𝑗 = 𝑞 𝑦 𝑗+1 + 𝜕𝑥𝑦 𝑗+1 on Γ 𝑗 , (4d)
𝑞 𝑝 𝑗 + 𝜕𝑥 𝑝 𝑗 = 𝑞 𝑝 𝑗+1 + 𝜕𝑥 𝑝 𝑗+1 on Γ 𝑗 , (4e)
𝑞 𝑦 𝑗 − 𝜕𝑥𝑦 𝑗 = 𝑞 𝑦 𝑗−1 − 𝜕𝑥𝑦 𝑗−1 on Γ 𝑗−1, (4f)
𝑞 𝑝 𝑗 − 𝜕𝑥 𝑝 𝑗 = 𝑞 𝑝 𝑗−1 − 𝜕𝑥 𝑝 𝑗−1 on Γ 𝑗−1, (4g)

for 𝑗 = 1, . . . , 𝑁 , where for 𝑗 ∈ {1, 𝑁} the boundary conditions at Γ0 and Γ𝑁 ,
respectively, must be replaced with homogeneous Dirichlet conditions. Here, 𝑞 > 0
is a parameter that can be optimized to improve the convergence of the OSM; see,
e.g, [5, 2]. The system (4) leads to the OSM, which, for a given (𝑦0

𝑗 , 𝑝
0
𝑗 )𝑁𝑗=1, consists

of solving the subdomain problems below for y𝑘𝑗 := (𝑦𝑘𝑗 , 𝑝𝑘𝑗 ), 𝑘 = 1, 2, 3, . . . :

−Δ𝑦𝑘𝑗 + 𝑐𝑦𝑘𝑗 + 𝑏𝜑(𝑦𝑘𝑗 ) = 𝑓 𝑗 + 𝜇(𝑝𝑘𝑗 ) in Ω 𝑗 , (5a)

−Δ𝑝𝑘𝑗 + 𝑐𝑝𝑘𝑗 + 𝑏𝜑′(𝑦𝑘𝑗 ) (𝑝𝑘𝑗 ) = 𝑦𝑘𝑗 − 𝑦𝑑, 𝑗 in Ω 𝑗 (5b)

y𝑘𝑗 = 0, on Γext
𝑗 , (5c)

𝑞 y𝑘𝑗 + 𝜕𝑥y𝑘𝑗 = 𝑞 y𝑘−1
𝑗+1 + 𝜕𝑥y𝑘−1

𝑗+1 on Γ 𝑗 , (5d)

𝑞 y𝑘𝑗 − 𝜕𝑥y𝑘𝑗 = 𝑞 y𝑘−1
𝑗−1 − 𝜕𝑥y𝑘−1

𝑗−1 on Γ 𝑗−1, (5e)

Now, we use the OSM to introduce a nonlinear preconditioner by setting y 𝑗 :=
(𝑦 𝑗 , 𝑝 𝑗 ), 𝑗 = 1, . . . , 𝑁 , and defining the solution maps 𝑆 𝑗 as

𝑆1 (y2) = y1 solution to (4) with 𝑗 = 1 and y2 given,
𝑆 𝑗 (y 𝑗−1, y 𝑗+1) = y 𝑗 solution to (4) with 2 ≤ 𝑗 ≤ 𝑁 − 1 and y 𝑗±1 given,

𝑆𝑁 (y𝑁−1) = y𝑁 solution to (4) with 𝑗 = 𝑁 and y𝑁−1 given.

Hence, using the variable y = (y1, . . . , y𝑁 ), we can rewrite (4) as

FP (y) = 0, where FP (y) :=



y1 − 𝑆1 (y2)
y2 − 𝑆2 (y1, y3)

...
y𝑁−1 − 𝑆𝑁−1 (y𝑁−2, y𝑁 )

y𝑁 − 𝑆𝑁 (y𝑁−1)


. (6)

This is the nonlinearly preconditioned form of (3) induced by the OSM (4)-(5), to
which we can apply a generalized Newton method. For a given initialization y0, a
Newton method generates a sequence (y𝑘)𝑘∈N defined by

solve 𝐷FP (y𝑘) (d𝑘) = −FP (y𝑘) and update y𝑘+1 = y𝑘 + d𝑘 . (7)

Notice that at each iteration of (7) one needs to evaluate the residual function FP (y𝑘),
which requires the (parallel) solution of the 𝑁 subproblems (4). The computational
cost is therefore equivalent to one iteration of the OSM (5). As an inner solver for the
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subproblems, which involve the (mildly) non-differentiable function 𝜇, a semismooth
Newton can be employed.
We now discuss the problem of solving the Jacobian linear system in (7). Let

d = (d1, . . . , d𝑁 ), where d 𝑗 = (𝑑𝑦, 𝑗 , 𝑑𝑝, 𝑗 ), 𝑗 = 1, . . . , 𝑁 . Then a direct calculation
(omitted for brevity) shows that the action of the operator 𝐷FP (y) on the vector d is
given by 𝐷FP (y) (d) = d − ỹ(d), where ỹ := (ỹ1, . . . , ỹ𝑁 ), and each ỹ 𝑗 = ( �̃� 𝑗 , 𝑝 𝑗 )
satisfies the linearized subdomain problems

−Δ�̃� 𝑗 + 𝑐�̃� 𝑗 + 𝑏𝜑′(𝑦 𝑗 ) �̃� 𝑗 = 𝐷𝜇(𝑝 𝑗 ) (𝑝 𝑗 ) in Ω 𝑗 , (8a)
−Δ𝑝 𝑗 + 𝑐𝑝 𝑗 + 𝑏𝜑′′(𝑦 𝑗 ) [𝑝 𝑗 , �̃� 𝑗 ] = �̃� 𝑗 in Ω 𝑗 (8b)

ỹ 𝑗 = 0, on Γext
𝑗 , (8c)

𝑞 ỹ 𝑗 + 𝜕𝑥 ỹ 𝑗 = 𝑞 d 𝑗+1 + 𝜕𝑥d 𝑗+1 on Γ 𝑗 , (8d)
𝑞 ỹ 𝑗 − 𝜕𝑥 ỹ 𝑗 = 𝑞 d 𝑗−1 − 𝜕𝑥d 𝑗−1 on Γ 𝑗−1, (8e)

where

𝐷𝜇(𝑝) (𝑝) =1
𝜈

[
−Gmax (−𝛽 − 𝑝) − Gmin (𝛽 − 𝑝)

+ Gmax (−𝑝 − 𝛽 − 𝜈�̄�) + Gmin (−𝑝 + 𝛽 + 𝜈�̄�)
]
𝑝,

with Gmax (𝑣) (𝑥) =
{

1 if 𝑣(𝑥) > 0,
0 if 𝑣(𝑥) ≤ 0,

and Gmin (𝑣) (𝑥) =
{

1 if 𝑣(𝑥) ≤ 0,
0 if 𝑣(𝑥) > 0,

and where the boundary values for 𝑗 ∈ {1, 𝑁} have to be modified as in (4). Note that
this is the same linearized problem that must be solved repeatedly within the inner
iterations of semismooth Newton, so its solution cost is only a fraction of the cost
required to calculate FP (y). Our matrix-free preconditioned semismooth Newton
algorithm that corresponds to the Newton procedure (7) is summarized in Algorithm
1.

3 Numerical experiments
Webeginwith a two subdomain case forΩ = (0, 1)2, 𝑦𝑑 (𝑥, 𝑦) = 10 sin(4𝜋𝑥) sin(3𝜋𝑦),
𝑓 = 0, 𝑐 = 1 and 𝜑(𝑦) = 𝑦 + exp(𝑦). The domain Ω is discretized with a uniform
mesh of 51 interior points on each edge of the unit square. The discrete optimality
system is obtained by the finite difference method. Fig. 2 shows an example of the
solution computed for 𝑏 = 10, 𝜈 = 10−7, �̄� = 103 and 𝛽 = 10−2. Here, we can observe
how the computed optimal state (middle) has the same shape as the target 𝑦𝑑 (left),
but the control constraints and the 𝐿1-penalization prevent the control function from
making the state equal to the desired target.
To study the efficiency and the robustness of the proposed numerical framework,

we test the nonlinearly preconditioned Newton for several values of parameters 𝜈, 𝛽,
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Algorithm 1Matrix-free preconditioned generalized Newton method
Require: Initial guess y0, tolerance 𝜖 , maximum number of iterations 𝑘max.
1: Compute 𝑆1 (y0

2) , 𝑆 𝑗 (y0
𝑗−1, y0

𝑗+1) , 𝑗 = 2, . . . , 𝑁 − 1, and 𝑆𝑁 (y0
𝑁−1) .

2: Set 𝑘 = 0 and assemble FP (y0) using (6).
3: while ∥FP (y𝑘) ∥ ≥ 𝜖 and 𝑘 ≤ 𝑘max do
4: Compute d𝑘 by solving𝐷FP (y𝑘) (d𝑘) = −FP (y𝑘) using a matrix-free Krylov method, e.g.,

GMRES (together with a routine for solving (8) to compute the action of 𝐷FP (y𝑘) on a
vector d).

5: Update y𝑘+1 = y𝑘 + d𝑘 .
6: Set 𝑘 = 𝑘 + 1.
7: Compute 𝑆1 (y𝑘2 ) , 𝑆 𝑗 (y𝑘𝑗−1, y𝑘𝑗+1) , 𝑗 = 2, . . . , 𝑁 − 1, and 𝑆𝑁 (y𝑘𝑁−1) .
8: Assemble FP (y𝑘) using (6).
9: end while
10: Output: y𝑘 .

Fig. 2: Target 𝑦𝑑 (left), optimal state 𝑦 (middle), and optimal control 𝑢 (right) computed for 𝑏 = 10,
𝜈 = 10−7 and 𝛽 = 10−2.

but the control constraints and the 𝐿1-penalization prevent the control function from
making the state equal to the desired target.
To study the efficiency and the robustness of the proposed numerical framework,

we test the nonlinearly preconditioned Newton for several values of parameters 𝜈, 𝛽,
�̄�, 𝑏 and 𝑞, and compare the obtained number of iterations with the ones performed
by a (damped) semismooth Newton applied directly to (3). Moreover, to improve the
robustness of our preconditioned Newton method, we implemented the following
continuation procedure with respect to the regularization parameter 𝜈: for 𝑘 = 1, we
set 𝜈1 = 10−1 and solve the Jacobian system (7) once to obtain y2. Next, we decrease
𝜈 by a factor of 4 (𝜈2 = 𝜈1/4), do another solve and update step (7), and so on. When
we reach the true 𝜈 prescribed by the problem, we set 𝜈𝑘 = 𝜈 and repeat (7) until
convergence; see [3] for convergence results for similar continuation procedures. We
apply the same continuation procedure on semismooth Newton applied directly to
(3) for comparison. Note that because only one Jacobian solve is performed before
𝜈 is updated, there are cases where semismooth Newton with continuation diverges,
even when its counterpart without continuation converges, see Tab. 1. We initialize
the four methods by randomly chosen vectors. The number of iterations performed
by both methods to reach a tolerance of 10−8 are reported in Tab. 1, where the
symbol× indicates divergence. These results show that if the preconditioned Newton
converges, then it outperforms the semismooth Newton applied directly to the full

Fig. 2: Target 𝑦𝑑 (left), optimal state 𝑦 (middle), and optimal control 𝑢 (right) computed for 𝑏 = 10,
𝜈 = 10−7 and 𝛽 = 10−2.

�̄�, 𝑏 and 𝑞, and compare the obtained number of iterations with the ones performed
by a (damped) semismooth Newton applied directly to (3). Moreover, to improve the
robustness of our preconditioned Newton method, we implemented the following
continuation procedure with respect to the regularization parameter 𝜈: for 𝑘 = 1, we
set 𝜈1 = 10−1 and solve the Jacobian system (7) once to obtain y2. Next, we decrease
𝜈 by a factor of 4 (𝜈2 = 𝜈1/4), do another solve and update step (7), and so on. When
we reach the true 𝜈 prescribed by the problem, we set 𝜈𝑘 = 𝜈 and repeat (7) until
convergence; see [3] for convergence results for similar continuation procedures. We
apply the same continuation procedure on semismooth Newton applied directly to
(3) for comparison. Note that because only one Jacobian solve is performed before
𝜈 is updated, there are cases where semismooth Newton with continuation diverges,
even when its counterpart without continuation converges, see Tab. 1. We initialize
the four methods by randomly chosen vectors. The number of iterations performed
by both methods to reach a tolerance of 10−8 are reported in Tab. 1, where the
symbol× indicates divergence. These results show that if the preconditioned Newton
converges, then it outperforms the semismooth Newton applied directly to the full
system (3). However, the preconditioned Newton does not always converge due to
the lack of damping.With continuation, however, our method always converges, with
an iteration count comparable (for moderate values of 𝜈) or much lower (for small
𝜈) than for the semismooth Newton method.
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�̄� = 103 �̄� = ∞
𝑞 𝑏 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7

1 0 4 - 5 - 2 - 5 6- 9 -11-11 4 -11-41-12 3 - 5 - 2 - 5 3- 9 - 2 - 9 3-12-3-12
10 0 4 - 5 - 2 - 5 6- 9 -11-11 8 -11-41-12 3 - 5 - 2 - 5 3- 8 - 2 - 9 3-11-3-12

𝛽
=

0 100 0 3 - 5 - 2 - 5 6- 9 -11-11 × -11-41-12 3 - 5 - 2 - 5 3- 9 - 2 - 9 3-11-3-12
1 10 6 - 6 - 4 - 7 ×-10-12-12 × -12-38-16 6 - 6 - 4 - 7 ×-10-22-23 ×-15-×-15
10 10 5 - 6 - 4 - 7 7-10-12-12 × -12-38-16 5 - 6 - 4 - 7 ×-10-22-23 ×-14-×-15
100 10 4 - 6 - 4 - 7 6-10-12-12 × -13-38-16 4 - 6 - 4 - 7 6-10-22-23 ×-13-×-15
1 0 5 - 5 - 3 - 6 6- 9 - 8 -11 × -12-43-13 4 - 5 - 3 - 6 5- 9 - 6 -10 ×-12-8-15
10 0 4 - 5 - 3 - 6 6- 9 - 8 -11 × -11-43-13 4 - 5 - 3 - 6 4- 9 - 6 -10 ×-12-8-15

𝛽
=

10
−2

100 0 4 - 5 - 3 - 6 6-10- 8 -11 11-12-43-13 4 - 5 - 3 - 6 5- 9 - 6 -10 7-12-8-15
1 10 6 - 6 - 4 - 6 ×-11-10-12 × -12-× -17 6 - 6 - 4 - 6 ×-10-18-× ×-13-×-15
10 10 5 - 6 - 4 - 6 ×-11-10-12 × -13-× -17 5 - 6 - 4 - 6 ×-10-18-× ×-14-×-15
100 10 4 - 6 - 4 - 6 6-11-10-12 9 -13-× -17 4 - 6 - 4 - 6 6-10-18-× ×-13-×-15

Table 1: Two subdomains: outer iterations of preconditioned Newton (left value), preconditioned
Newton with continuation (middle-left value), semismooth Newton applied to the original problem
(middle-right value), and semismooth Newton with continuation applied to the original problem
(right value).

To better gauge the cost of the continuation strategy, we show the total number
of inner iterations required by ‘pure’ preconditioned Newton versus the one with
continuation in Tab. 2. The reported numbers are computed as

∑
𝑘 max 𝑗=1,2 it 𝑗 ,𝑘 ,

where 𝑘 is the iteration count and it 𝑗 ,𝑘 , 𝑗 = 1, 2, are the number of inner iterations
required by the two subdomain solves performed at the 𝑘th outer iteration. (The max
accounts for the fact that the two subdomain problems are supposed to be solved in
parallel.) The results show that the continuation procedure actually reduces the total
number of inner iterations for the most part, except for some very easy cases, such
as 𝛽 = 𝑏 = 0, �̄� = ∞ (where the problem is in fact linear).
Finally, Tab. 3 shows the total number of GMRES iterations required for solving

(7) (with or without continuation), together with the GMRES iteration count for
semismooth Newton (with or without continuation); the latter is preconditioned by
block Jacobi, using −Δ + 𝑐𝐼 as diagonal blocks. We see that for the “easy” case of
𝜈 = 10−3, semismooth Newton requires fewer GMRES steps than preconditioned
Newton, but the situation reverses for smaller 𝜈. In fact, for a well-chosen Robin
parameter such as 𝑞 = 10, the advantage of preconditionedNewtonwith continuation
can be quite significant in these harder cases. All these numerical observations show
clearly the efficiency of the proposed computational framework.
We now consider a multiple subdomain case. This time, the mesh is refined to

have 101 interior points on each edge of Ω. We then fix 𝑞 = 100 and repeat the
experiments above for 𝑁 = 4, 8, 16 subdomains. In Tab. 4, we compare the GMRES
iteration counts for preconditioned Newton (with and without continuation) to those
of semismooth Newton applied to (3). We see that preconditioned Newton with
continuation works well in all cases, and for smaller 𝜈 values, the iteration count is
much lower than for semismooth Newton. The outer iteration counts are omitted for
brevity, but we observed a behaviour similar to the two-subdomain case, and one
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�̄� = 103 �̄� = ∞
𝑞 𝑏 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7

1 0 6 - 5 31 - 12 × - 18 2 - 5 3 - 8 3 - 11
10 0 5 - 5 26 - 11 96 - 19 2 - 5 3 - 8 3 - 11

𝛽
=

0 100 0 2 - 5 18 - 13 × - 19 2 - 5 2 - 8 3 - 11
1 10 × - 17 × - 35 × - 47 27 - 17 × - 34 × - 60
10 10 21 - 14 × - 31 103 - 43 21 - 14 × - 32 × - 53
100 10 8 - 14 26 - 32 × - 43 8 - 14 45 - 30 × - 47
1 0 13 - 8 32 - 16 84 - 25 8 - 8 10 - 14 × - 25
10 0 10 - 8 22 - 17 33 - 23 7 - 8 11 - 15 × - 24

𝛽
=

10
−2

100 0 7 - 6 15 - 15 104 - 20 7 - 6 12 - 13 × - 22
1 10 × - 17 × - 33 × - 45 28 - 17 × - 32 × - 47
10 10 20 - 14 × - 33 × - 48 20 - 14 × - 30 × - 46
100 10 10 - 14 23 - 30 125 - 44 10 - 14 40 - 26 × - 44

Table 2: Two subdomains: total number of inner iterations of preconditioned Newton (left value)
and preconditioned Newton with continuation (right value).

�̄� = 103 �̄� = ∞
𝑞 𝑏 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7

1 0 143 - 128 - 26 - 17 279-163-303-123 139-175-1255-155 100 - 128 - 26 - 17 170-140- 69 - 46 × -149-371- 66
10 0 90 - 75 - 26 - 17 179-101-303-123 254-108-1255-155 64 - 75 - 26 - 17 114- 88 - 69 - 46 × - 92 -371- 66

𝛽
=

0 100 0 73 - 90 - 26 - 17 177-114-303-123 × -125-1255-155 73 - 90 - 26 - 17 60 - 88 - 69 - 46 54 - 93 -371- 66
1 10 266 - 204 - 49 - 66 × -251-397-255 × -268-1479-457 256 - 204 - 49 - 66 × -240-2000-1172 × -379- × -928
10 10 124 - 88 - 49 - 66 226-129-397-255 × -168-1479-457 117 - 88 - 49 - 66 × -152-2000-1172 × -190- × -928
100 10 122 - 155 - 49 - 66 139-239-397-255 × -274-1479-457 122 - 155 - 49 - 66 161-234-2000-1172 × -250- × -928
1 0 226 - 164 - 31 - 42 290-198-187-123 × -223-1065-168 188 - 164 - 31 - 42 246-168- 183 - 109 × -218-522-380
10 0 111 - 95 - 31 - 42 178-121-187-123 × -130-1065-168 115 - 95 - 31 - 42 143-124- 183 - 109 × -145-522-380

𝛽
=

10
−2

100 0 135 - 118 - 31 - 42 179-158-187-123 333-175-1065-168 135 - 118 - 31 - 42 145-147- 183 - 109 165-173-522-380
1 10 273 - 235 - 49 - 54 × -238-299-233 × -228- × -416 261 - 235 - 49 - 54 × -254-1362- × × -311- × -752
10 10 139 - 124 - 49 - 54 × -158-299-233 × -164- × -416 138 - 124 - 49 - 54 × -161-1362- × × -179- × -752
100 10 122 - 162 - 49 - 54 141-251-299-233 215-300- × -416 122 - 162 - 49 - 54 167-219-1362- × × -303- × -752

Table 3:Two subdomains:GMRES iterations of preconditionedNewton (left value), preconditioned
Newton with continuation (middle-left value), semismooth Newton applied to the original problem
(middle-right value), and semismooth Newton with continuation applied to the original problem
(right value).

�̄� = 103 �̄� = ∞
𝑁 𝑏 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7 𝜈 = 10−3 𝜈 = 10−5 𝜈 = 10−7

4 0 94 - 116 - 131 - 157 × -185-541-329 × - 196 -1974- 436 92 - 112 - 131 - 157 64 -115- 151 -246 58 -128-513- 528
8 0 178 - 157 - 176 - 217 × -244-503-365 × - 259 -2261- 455 121 - 155 - 176 - 217 83 -180- 140 -322 59 -204-438- 537

𝛽
=

0 16 0 228 - 229 - 217 - 301 × -383-747-509 × - 384 -2915- 554 159 - 238 - 217 - 301 130-281- 195 -444 × -314-201- 569
4 10 145 - 184 - 202 - 234 218-287-447-517 × - 382 -1207- 910 143 - 186 - 202 - 234 171-276- 633 -506 × -296- × -1238
8 10 192 - 247 - 232 - 314 286-381-453-557 × - 498 -1475- 979 196 - 247 - 232 - 314 214-368- 621 -552 × -368- × -1217
16 10 272 - 346 - 364 - 425 × -625-648-777 × - 744 -1361-1180 280 - 345 - 364 - 425 327-549- 819 -765 × -510- × -1200
4 0 177 - 139 - 169 - 204 221-220-389-301 399- 255 -1745- 439 179 - 135 - 169 - 204 175-196- 340 -315 243-273-992- 649
8 0 231 - 191 - 266 - 277 × -291-448-383 × - 340 -1594- 487 231 - 199 - 266 - 277 275-264- 350 -385 300-360-983- 658

𝛽
=

10
−2

16 0 319 - 241 - 314 - 372 552-395-667-528 × - 452 -2244- 630 227 - 234 - 314 - 372 438-365- 517 -529 520-449-899-1714
4 10 145 - 201 - 209 - 248 230-312-369-500 380- 408 -1536- 851 147 - 201 - 209 - 248 193-312- 982 -492 × -392- × -1320
8 10 196 - 262 - 267 - 323 356-408-402-574 × - 641 -1625-1020 193 - 261 - 267 - 323 247-406-1041-568 × -488- × -1396
16 10 268 - 365 - 368 - 444 538-660-577-794 × -1017-2000-1312 260 - 365 - 368 - 444 432-599-1425-790 × -702- × -1686

Table 4:Multiple subdomains: GMRES iterations of preconditioned Newton (left value), precon-
ditioned Newton with continuation (middle-left value), semismooth Newton applied to the original
problem (middle-right value), and semismooth Newton with continuation applied to the original
problem (right value).
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which is robust for the mesh sizes ℎ = 1
26 ,

1
51 ,

1
101 ; see [2, 4] for related scalability

discussions.

4 Further discussion and conclusion
This short manuscript represents a proof of concept for using domain decomposition-
based nonlinear preconditioning to efficiently solve nonlinear, nonsmooth optimal
control problems governed by elliptic equations. However, several theoretical and
numerical issues must be addressed as part of a complete development of these tech-
niques. From a theoretical point of view, to establish concrete convergence results
based on classical semismooth Newton theory, it is crucial to study the (semismooth-
ness) properties of the subdomain solution maps S 𝑗 , which are implicit function
of semismooth maps. Another crucial point is the proof of well-posedness of the
(preconditioned) Newton linear system. From a domain decomposition perspective,
more general decompositions (including cross points) must be considered. Finally,
a detailed analysis of the scalability of the GMRES iterations is necessary.
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SParse Approximate Inverse (SPAI) Based
Transmission Conditions for Optimized
Algebraic Schwarz Methods

Martin J. Gander, Lahcen Laayouni, and Daniel B. Szyld

1 Introduction

There have been various studies on algebraic domain decomposition methods, see
e.g. [1], [2], [6], [7], [8] and references therein. Algebraic Optimized Schwarz Meth-
ods (AOSMs) were introduced in [4] to solve block banded linear systems arising
from the discretization of PDEs on irregular domains. AOSMs mimic Optimized
Schwarz Methods (OSMs) [5] algebraically by optimizing transmission blocks be-
tween subdomains. We propose here a new approach for obtaining transmission
blocks using SParse Approximate Inverse (SPAI) techniques [9]. SPAI permits the
approximation of the required parts of an inverse needed in the optimal transmis-
sion blocks, without knowing the entire inverse that would be infeasible in practice,
and is naturally parallel, like the domain decomposition iteration itself. Using SPAI
with different numbers of diagonals in a predefined sparsity pattern gives rise to
approximations in the transmission blocks which can be interpreted as differential
transmission operators at the continuous level of various degrees, and this can be
used to compute a theoretical convergence factor of the resulting AOSM. We can
therefore compare the performance of the SPAI AOSM also theoretically, and show
that a direct SPAI application without taking into account the entire non-linear struc-
ture of the convergence estimate of AOSM leads to suboptimal performance.We thus
propose also a modified SPAI-like technique that minimizes the entire convergence
estimate and restores the expected performance.
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2 Algebraic Optimized Schwarz Methods

We are interested in solving linear systems of the form

𝐴𝑢 = 𝑓 ,

where the 𝑛×𝑛matrix 𝐴 arises from a finite element or finite difference discretization
of a partial differential equation, and has a block banded structure of the form

𝐴 =



𝐴11 𝐴12
𝐴21 𝐴22 𝐴23

𝐴32 𝐴33 𝐴34
𝐴43 𝐴44


, (1)

where 𝐴𝑖 𝑗 are blocks of size 𝑛𝑖 × 𝑛 𝑗 , 𝑖, 𝑗 = 1, . . . , 4, and 𝑛 =
∑
𝑖 𝑛𝑖 . We suppose

that 𝑛1 ≫ 𝑛2 and 𝑛4 ≫ 𝑛3, representing two large subdomains; for generalizations
to more subdomains, see [4, Section 6]. We consider Algebraic Optimized Schwarz
methods of additive and multiplicative type, whose iteration operators are based on
the following modifications inspired by OSM,

𝑇𝑂𝑅𝐴𝑆 = 𝐼 −
2∑︁
𝑖=1

�̃�𝑇𝑖 �̃�
−1
𝑖 𝑅𝑖𝐴, and 𝑇𝑂𝑅𝑀𝑆 =

1∏
𝑖=2
(𝐼 − �̃�𝑇𝑖 �̃�−1

𝑖 𝑅𝑖𝐴), (2)

where

�̃�1 =


𝐴11 𝐴12
𝐴21 𝐴22 𝐴23

𝐴32 𝑆1


, �̃�2 =


𝑆2 𝐴23
𝐴32 𝐴33 𝐴34

𝐴43 𝐴44


, (3)

with 𝑆1 = 𝐴33 + 𝐷1 and 𝑆2 = 𝐴22 + 𝐷2. Here 𝐷1 and 𝐷2 are transmission matrices
to be chosen for fast convergence. The asymptotic convergence factor of AOSM
depends on the product of the following two norms (see [4, Theorem 3.2]),

∥ (𝐼 + 𝐷1𝐵33)−1 [𝐷1𝐵12 − 𝐴34𝐵13] ∥, ∥ (𝐼 + 𝐷2𝐵11)−1 [𝐷2𝐵32 − 𝐴21𝐵31] ∥, (4)

where the 𝐵matrices involve certain columns of inverses of submatrices of 𝐴, namely


𝐵31
𝐵32
𝐵33


:=


𝐴11 𝐴12
𝐴21 𝐴22 𝐴23

𝐴32 𝐴33


−1 

0
0
𝐼


,


𝐵11
𝐵12
𝐵13


:=


𝐴22 𝐴23
𝐴32 𝐴33 𝐴34

𝐴43 𝐴44


−1 

𝐼
0
0


. (5)

We can easily derive the optimal choice for the transmission matrices, see [4],

𝐷1,opt = −𝐴34𝐴
−1
44 𝐴43 and 𝐷2,opt = −𝐴21𝐴

−1
11 𝐴12, (6)

which make (4) zero. The corresponding AOSM then converges in two iterations for
ORAS, so one can not do better than this. Computing these optimal blocks 𝐷1,opt
and 𝐷2,opt is however equivalent to computing the Schur complements
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𝑆1,opt = 𝐴33 − 𝐴34𝐴
−1
44 𝐴43 and 𝑆2,opt = 𝐴22 − 𝐴21𝐴

−1
11 𝐴12 (7)

corresponding to the submatrices[
𝐴33 𝐴34
𝐴43 𝐴44

]
and

[
𝐴11 𝐴12
𝐴21 𝐴22

]
, (8)

and is thus very expensive, due to the large inverses 𝐴−1
44 and 𝐴

−1
11 . In the next

section we propose sparse approximations of the optimal transmission blocks using
predefined sparsity patterns.

3 Sparse approximations of optimal transmission blocks

The new idea to determine approximations 𝐷1,app and 𝐷2,app that make the norms in
(4) small and are cheap to compute is to use a SParse Approximate Inverse (SPAI)
technique to make the differences

∥𝐷1𝐵12 − 𝐴34𝐵13∥ and ∥𝐷2𝐵32 − 𝐴21𝐵31∥ (9)

small by approximating the inverse blocks 𝐴−1
11 and 𝐴

−1
44 in (6). Due to the sparsity

of 𝐴34, 𝐴43, 𝐴21, and 𝐴12, we need only to approximate small subblocks of 𝐴−1
11 and

𝐴−1
44 using SPAI.
To gain insight into the quality and performance of such SPAI approximations of

𝐷1,opt and 𝐷2,opt, we consider the model problem Δ𝑢 = 𝑓 inΩ = (0, 1)2, discretized
by a standard five point finite difference stencil, which leads to a system matrix of
the form (1) with, e.g.,

𝐴11 =
1
ℎ2



𝑇 𝐼

𝐼
. . .

. . .

. . .
. . . 𝐼
𝐼 𝑇


, 𝐴12 =

1
ℎ2



0 0 0
...

...
0 0 0
𝐼 0 0


, 𝐴21 =

1
ℎ2


0 . . . 0 𝐼
0 . . . 0 0
0 . . . 0 0


, (10)

where 𝑇 = spdiag( [1,−4, 1]). To approximate the block inverse 𝐴−1
11 in 𝐷2,opt =

−𝐴21𝐴
−1
11 𝐴12 withmatrices from (10) using SPAI naively, wewould solve for amatrix

𝑀 of the same large size as 𝐴11 the minimization problem | |𝐴11𝑀 − 𝐼 | |𝐹 −→ min,
which requires solving a least squares problem for each column, and where one
specifies a sparsity pattern for 𝑀 . Because of the sparsity structure of 𝐴12 and 𝐴21
however in (10), we see that we need the SPAI approximation only of the last diagonal
block (bottom right) of M, which we denote by 𝑀𝑏𝑟 . Thus, it is not necessary to
compute the entire SPAI approximation 𝑀 , it is sufficient to just solve the least
squares problems corresponding to the last few columns in 𝑀 which contain 𝑀𝑏𝑟 ,
and furthermore these least squares problems are also small due to the sparsity of
𝐴11. Doing this for our model problem using a diagonal sparsity pattern for 𝑀 leads
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to

𝐷𝑏𝑟2,app := 𝑀𝑏𝑟 = −ℎ2



0.2222
0.2015

. . .

0.2015
0.2222


. (11)

In order to understand to what type of transmission conditions this approximation
leads, it is best to look at the corresponding Schur complement approximation 𝑆2,app
of 𝑆2,opt from (7), see also [3, Section 4.1], which is also modified only at the bottom
right,

𝑆𝑏𝑟2,app = 𝐴
𝑏𝑟
22 − [𝐴21𝑀𝐴12]𝑏𝑟 = 1

ℎ2𝑇 −
1
ℎ2𝐷

𝑏𝑟
2,app

1
ℎ2 . (12)

Rearranging this expression into

𝑆𝑏𝑟2,app =
1
ℎ2



−2 1/2
1/2 −2 1/2

. . .
. . .

. . .

1/2 −2 1/2
1/2 −2


+ 1

2ℎ2



−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2


− 1
ℎ2



0.7778
0.7895

. . .

0.7895
0.7778


(13)

and neglecting the fact that the first and last entry from the diagonal SPAI approxi-
mation are slightly different from the others, we can interpret this as a second order
transmission operator at the continuous level, see [3, Section 4.1],

B1 = −𝜕𝑢
𝜕𝑛
+ ℎ

2
𝜕2𝑢

𝜕𝑦2 −
1
ℎ

0.7895𝑢. (14)

With the analogous result approximating the Schur complement 𝑆1,opt by SPAI, the
corresponding OSM at the continuous level with overlap of one mesh size ℎ would
then have in Fourier space the convergence factor (see [3, Section 4.1])

𝜌1 (𝑘, ℎ) =

�������
|𝑘 | − 0.7895

1
ℎ
− ℎ

2
𝑘2

|𝑘 | + 0.7895
1
ℎ
+ ℎ

2
𝑘2

������� 𝑒
−𝑘ℎ, (15)

where 𝑘 > 0 corresponds to the frequency in Fourier space, which allows us to asses
the quality of this approximation theoretically for our model Poisson equation.
Using a tridiagonal SPAI approximation of the term 𝐴−1

11 leads to

𝐷𝑏𝑟2,app = −ℎ2



0.2446 0.0504
0.0552 0.2557 0.0521

0.0516 0.2540 0.0516
0.0516 0.2540 0.0516

. . .
. . .

. . .


. (16)
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Fig. 1: Comparison of the convergence factors as function of the Fourier frequency 𝑘 for the
classical Schwarz method, algebraic SPAI transmission conditions (left) and the modified SPAI
transmission conditions (right).

As observed for the Schur complement in (12), the changes occur only in the bottom
right block, which we can rewrite in the form (where we did not specify the slightly
different boundary terms for simplicity in the last matrix)

𝑆𝑏𝑟2,app =
1
ℎ2



−2 1/2
1/2 −2 1/2

. . .
. . .

. . .

1/2 −2 1/2
1/2 −2


+ 0.0516

ℎ2



−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2


− 1
ℎ2



. . .

. . .

0.6428
. . .

. . .



.

(17)
This can again be interpreted as a second order transmission operator, namely

B3 = −𝜕𝑢
𝜕𝑛
+ 0.0516 ℎ

𝜕2𝑢

𝜕𝑦2 −
1
ℎ

0.6428𝑢, (18)

and the corresponding convergence factor in Fourier space with overlap ℎ is

𝜌3 (𝑘, ℎ) =

�������
|𝑘 | − 1

ℎ
0.6428 − 0.0516ℎ𝑘2

|𝑘 | + 1
ℎ

0.6428 + 0.0516ℎ𝑘2

������� 𝑒
−𝑘ℎ . (19)

The two convergence factors 𝜌1 from the diagonal SPAI approximation and 𝜌3 from
the tridiagonal SPAI approximation are very similar, there is no apparent benefit
one would expect when going from a diagonal to a tridiagonal approximation, like
when going from a zeroth order optimized (OO0) to a second order optimized
(OO2) transmission condition [5, Theorem 4.5 and 4.8]. This is also clearly visible
in Figure 1 on the left: SPAI(1) and SPAI(3) have a comparable and much larger low
frequency (𝑘 small) contraction factor than OO0 and OO2.
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We thus add further diagonals in the SPAI approximation, and obtain with five
diagonals

𝐷𝑏𝑟2,app = −ℎ2



0.2302 0.0478 0.0084 0.001
0.0521 0.2559 0.0570 0.0113 0.0017

0.0106 0.0573 0.2577 0.0573 0.0106
. . .

. . .
. . .

. . .
. . .


. (20)

Proceeding as before, and using the matrix spdiag( [1,−4, 6,−4, 1]) which corre-
sponds to a fourth-order derivative, we can show that the resulting transmission
operator in Fourier space is a fourth-order operator given by

B5 = −𝜕𝑢
𝜕𝑛
+ 𝑞 ℎ 𝜕

2𝑢

𝜕𝑦2 −
𝑝

ℎ
𝑢 + ℎ30.0106

𝜕4𝑢

𝜕𝑦4 , (21)

where 𝑞 = 0.0573 + 4 × 0.0106, 𝑟 = 0.2577 − 6 × 0.0106, and 𝑝 = 1 − 𝑟 − 2𝑞. The
corresponding convergence factor in Fourier is

𝜌5 (𝑘, ℎ) =

�������
|𝑘 | − 1

ℎ
𝑝 − 𝑞ℎ𝑘2 − ℎ30.0106𝑘4

|𝑘 | − 1
ℎ
𝑝 − 𝑞ℎ𝑘2 − ℎ30.0106𝑘4

������� 𝑒
−𝑘ℎ . (22)

We see in Figure 1 on the left that this approximation now manages to put a zero
into the convergence factor, like the OO0 does already with the diagonal approx-
imation, but still the low frequency behavior of the SPAI transmission conditions
is much worse than the low frequency behavior of the OO0 and OO2 transmission
conditions. It seems that it is not sufficient to just minimize the norms (9) using SPAI
approximations to obtain a transmission condition similar in the quality of the OO0
and OO2 transmission conditions.
We therefore now minimize instead the entire norms in (4) using a generic op-

timization algorithm, namely Nelder Mead, which leads to algebraic transmission
conditions and associated AOSMs we call ModSPAI(1), ModSPAI(3), and Mod-
SPAI(5), see Figure 1, right. More specifically, ModSPAI(1) is obtained by mini-
mizing the norms in (4) with respect to the vectors 𝑑𝑖0 where 𝐷𝑖 = −spdiags(𝑑𝑖0, 0),
𝑖 = 1, 2. ModSPAI(3) is obtained by minimizing the corresponding norms w.r.t to
the vectors 𝑑𝑖−1, 𝑑

𝑖
0, and 𝑑

𝑖
1 such that 𝐷𝑖 = −spdiags( [𝑑𝑖−1, 𝑑

𝑖
0, 𝑑

𝑖
1],−1 : 1), 𝑖 = 1, 2.

Similarly, ModSPAI(5) depends on the vectors 𝑑𝑖−2, 𝑑
𝑖
−1, 𝑑

𝑖
0, 𝑑

𝑖
1, and 𝑑

𝑖
2 where

𝐷𝑖 = −spdiags( [𝑑𝑖−2, 𝑑
𝑖
−1, 𝑑

𝑖
0, 𝑑

𝑖
1, 𝑑

𝑖
2],−2 : 2), 𝑖 = 1, 2. By introducing these quanti-

ties we expect to decrease significantly the corresponding convergence factors. We
clearly see that the minimization of the entire product in (4) is essential to obtain
AOSMs which have similar performance as OO0 and OO2. It is therefore impor-
tant to develop an adapted nonlinear SPAI technique to make the norms (4) small,
since the generic optimization we used here is too costly in practice, requiring the
knowledge of the entire Schur complements to be performed.
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Fig. 2: Convergence history of SPAI based AOSMs compared to the optimal choice of transmis-
sion blocks and OO0 and OO2. Left: iterative methods; Right: GMRES. Top: additive; Bottom:
multiplicative.

4 Numerical experiments

To illustrate the performance of the new SPAI AOSMs we consider the advection-
reaction-diffusion equation, 𝜂𝑢 − ∇ · (𝑎∇𝑢) + 𝑏 · ∇𝑢 = 𝑓 , where 𝑎 = 𝑎(𝑥, 𝑦) > 0,
𝑏 = [𝑏1 (𝑥, 𝑦), 𝑏2 (𝑥, 𝑦)]𝑇 , 𝜂 = 𝜂(𝑥, 𝑦) ≥ 0, with 𝑏1 = 𝑦 − 1

2 , 𝑏2 = −𝑥 + 1
2 ,

𝜂 = 𝑥2 cos(𝑥 + 𝑦)2, and 𝑎 = 1 + (𝑥 + 𝑦)2𝑒𝑥−𝑦 . We perform the experiments on the
unit square domain Ω = (0, 1) × (0, 1), which we decompose into two subdomains
Ω1 = (0, 𝛽) × (0, 1) and Ω2 = (𝛼, 1) × (0, 1), where 0 < 𝛼 ≤ 𝛽 < 1. After
discretization with a finite difference method, the corresponding matrix 𝐴 is of size
1024× 1024, with a decomposition into two subdomains where the blocks 𝐴11, 𝐴12,
𝐴21, and 𝐴22 are of size 480×480, 480×32, 32×480, and 32×32 respectively. The
parameter of OO0 is evaluated numerically and is given by 𝑝 = 51.72. Similarly, the
parameters of OO2 are given numerically by 𝑝 = 7.9515 and 𝑞 = 0.3786. In Figure
2, we present the evolution of the 2-norm of the error as a function of the number
of iterations for our methods used as iterative solvers (left) and as preconditioners
(right). Since our SPAI and ModSPAI AOSMs are purely algebraic, they can be
applied to many different types of equations and discretizations.
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Concluding Remarks

We proposed a new SPAI approach which permits the inexpensive computation of
transmission conditions in algebraic optimized Schwarz methods. Our analysis for a
model Poisson problem showed that in order to completely capture optimized trans-
mission conditions, it is either necessary to increase the bandwidth in the new SPAI
approach, or to also include a second term in the optimization, for which a new non-
linear SPAI technique would need to be developed. For data-sparse approximations
of transmission operators using H-matrix techniques, see [10].
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A Parareal Architecture for Very Deep
Convolutional Neural Network

Chang-Ock Lee, Youngkyu Lee, and Jongho Park

1 Introduction

Due to the large number of layers in deep neural networks (DNNs) [11, 12], DNN
training is time-consuming and there are demands to reduce training time these
days. Recently, multi-GPU parallel computing has become an important topic for
accelerating DNN training [2, 6]. In particular, Günther et al. [6] considered the layer
structure of ResNet [8] as the forward Euler discretization of a specific ODE and
applied a nonlinear in-time multigrid method [3] by regarding the learning process
of the network as an optimal control problem.
In this work, we propose a novel paradigm of multi-GPU parallel computing

for DNNs, called parareal neural network. In general, DNN has a feed-forward
architecture. That is, the output of DNN is obtained from the input by sequential
compositions of functions representing layers. We observe that sequential computa-
tions can be interpreted as time steps of a time-dependent problem. In the field of
numerical analysis, after a pioneering work of Lions et al. [14], there have been nu-
merous researches on parallel-in-time algorithms to solve time-dependent problems
in parallel; see, e.g., [5, 15, 16]. Motivated by these works, we present a methodology
to transform a given feed-forward neural network to another neural network called
parareal neural network which naturally adopts parallel computing. The parareal
neural network consists of fine structures which can be processed in parallel and
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a coarse structure which approximates the fine structures by emulating one of the
parallel-in-time algorithms called parareal [14].
Note that both the proposed parareal neural network and the work of Günther

et al. [6] seem to be very closely related in that they parallelize and accelerate the
training of neural networks using a parallel time integration approach. However,
unlike the work of Günther et al., the proposed network has the advantage of being
more general by focusing on layer propagation in an arbitrary feed-forward network.
The parareal neural network can significantly reduce the time for inter-GPU

communication because the fine structures do not communicate with each other but
communicate only with the coarse structure. Therefore, the proposed methodology
is effective in reducing the elapsed time for dealing with very deep neural networks.
Numerical results confirm that the parareal neural network gives similar or better
performance to the original network even with less training time.

2 The parareal algorithm

The parareal algorithm proposed by Lions et al. [14] is a parallel-in-time algorithm
to solve time-dependent differential equations. For the purpose of description, the
following system of ordinary differential equations is considered:

¤u(𝑡) = 𝐴u(𝑡) in [0, 𝑇], u(0) = u0, (1)

where 𝐴: R𝑚 → R𝑚 is an operator, 𝑇 > 0, and u0 ∈ R𝑚. The time interval [0, 𝑇] is
decomposed into 𝑁 subintervals 0 = 𝑇0 < 𝑇1 < · · · < 𝑇𝑁 = 𝑇 . First, an approximated
solution {𝑈1

𝑗 }𝑁𝑗=0 on the coarse grid {𝑇𝑗 }𝑁𝑗=0 is obtained by the backward Euler
method. The key step of the parareal algorithm is to correct residuals {𝑆𝑘𝑗 }𝑁−1

𝑗=1
occurring in each interface. It is well-known that the algorithm converges to the
exact solution uniformly [1, 4]. We briefly summarize the parareal in Algorithm 1.

3 Parareal neural networks

In this section, we propose a methodology to design a parareal neural network by
emulating the parareal algorithm introduced in Section 2 from a given feed-forward
neural network. The resulting parareal neural network has an intrinsic parallel struc-
ture and is suitable for parallel computation using multiple GPUs with distributed
memory simultaneously.
Let 𝑓𝜃 : 𝑋 → 𝑌 be a feed-forward neural network, where 𝑋 and 𝑌 are the spaces

of inputs and outputs, respectively, and 𝜃 is a vector consisting of parameters. Since
manymodern neural networks such as [9, 10, 17] have block-repetitive substructures,
wemay assume that 𝑓𝜃 can be written as the composition of three functions𝐶𝛿 : 𝑋 →
𝑊0, 𝑔𝜑:𝑊0 → 𝑊1, and ℎ𝜀:𝑊1 → 𝑌 , i.e.,
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Algorithm 1: The parareal algorithm for (1)
Let ∆Tj = Tj+1 −Tj and 0 = T0 < T1 < · · · < TN = T .
for j ← 0 to N − 1 do

Solve
U1

j+1 − U1
j

∆Tj
= AU1

j+1, U1
0 = u0

end
for k ← 1, 2, . . . do

for j ← 0 to N − 1 in parallel do
Solve Ûuk

j (t) = Auk
j (t) in [Tj ,Tj+1], uk

j (Tj ) = Uk
j .

end
for j ← 0 to N − 1 do

Sk
j+1 = uk

j (Tj+1) − Uk
j+1, Sk

0 = 0.

Solve
δk
j+1 − δk

j

∆Tj
= Aδk

j+1 + Sk
j , δ

k
0 = 0.

Uk+1
j+1 = Uk

j+1 + δ
k
j+1.

end
end

fθ = hε ◦ gφ ◦ Cδ, θ = δ ⊕ φ ⊕ ε,

where W0 and W1 are vector spaces, gφ is a block-repetitive substructure of fθ
with parameters φ, Cδ is a preprocessing operator with parameters δ, and hε is a
postprocessing operator with parameters ε. Note that ⊕ represents a concatenation.

For appropriate vector spaces X0, X1, . . . , XN , we further assume that gφ can be
partitioned into N subnetworks {g j

φ j
: Xj−1 → Xj}Nj=1 which satisfy the followings:

• X0 = W0 and XN = W1,
• φ =

⊕N
j=1 φ j ,

• gφ = gN
φN
◦ gN−1

φN−1
◦ · · · ◦ g1

φ1
.

In forward and backward propagations through gφ , propagations are done sequen-
tially through the subnetworks {g j

φ j
}N
j=1. Regarding the subnetworks as subintervals

of a time-dependent problem and adopting the idea of the parareal algorithm intro-
duced in Section 2, we construct a new neural network f̄θ̄ : X → Y which contains
{g j
φ j
}N
j=1 as parallel subnetworks; the precise definition for parameters θ̄ will be

given in (4).
Since the dimensions of the spaces {Xj}N−1

j=0 are different for each j in general, we
introduce preprocessing operators C j

δ j
: X → Xj−1 such that C1

δ1
= Cδ and C j

δ j
for

j = 2, . . . ,N play similar roles to Cδ ; particular examples will be given in Section 4.
We write xj ∈ Xj−1 and yj ∈ Xj as follows:

xj = C j
δ j
(x) for x ∈ X, yj = g

j
φ j
(xj). (2)

𝑓𝜃 = ℎ𝜀 ◦ 𝑔𝜑 ◦ 𝐶𝛿 , 𝜃 = 𝛿 ⊕ 𝜑 ⊕ 𝜀,

where 𝑊0 and 𝑊1 are vector spaces, 𝑔𝜑 is a block-repetitive substructure of 𝑓𝜃
with parameters 𝜑, 𝐶𝛿 is a preprocessing operator with parameters 𝛿, and ℎ𝜀 is a
postprocessing operator with parameters 𝜀. Note that ⊕ represents a concatenation.
For appropriate vector spaces 𝑋0, 𝑋1, . . . , 𝑋𝑁 , we further assume that 𝑔𝜑 can be

partitioned into 𝑁 subnetworks {𝑔 𝑗𝜑 𝑗 : 𝑋 𝑗−1 → 𝑋 𝑗 }𝑁𝑗=1 which satisfy the followings:

• 𝑋0 = 𝑊0 and 𝑋𝑁 = 𝑊1,
• 𝜑 =

⊕𝑁
𝑗=1 𝜑 𝑗 ,

• 𝑔𝜑 = 𝑔𝑁𝜑𝑁 ◦ 𝑔𝑁−1
𝜑𝑁−1 ◦ · · · ◦ 𝑔1

𝜑1 .

In forward and backward propagations through 𝑔𝜑 , propagations are done sequen-
tially through the subnetworks {𝑔 𝑗𝜑 𝑗 }𝑁𝑗=1. Regarding the subnetworks as subintervals
of a time-dependent problem and adopting the idea of the parareal algorithm intro-
duced in Section 2, we construct a new neural network 𝑓𝜃 : 𝑋 → 𝑌 which contains
{𝑔 𝑗𝜑 𝑗 }𝑁𝑗=1 as parallel subnetworks; the precise definition for parameters 𝜃 will be
given in (4).
Since the dimensions of the spaces {𝑋 𝑗 }𝑁−1

𝑗=0 are different for each 𝑗 in general, we
introduce preprocessing operators 𝐶 𝑗𝛿 𝑗 : 𝑋 → 𝑋 𝑗−1 such that 𝐶1

𝛿1
= 𝐶𝛿 and 𝐶 𝑗𝛿 𝑗 for

𝑗 = 2, . . . , 𝑁 play similar roles to𝐶𝛿 ; particular examples will be given in Section 4.
We write x 𝑗 ∈ 𝑋 𝑗−1 and y 𝑗 ∈ 𝑋 𝑗 as follows:

x 𝑗 = 𝐶 𝑗𝛿 𝑗 (x) for x ∈ 𝑋, y 𝑗 = 𝑔 𝑗𝜑 𝑗 (x 𝑗 ). (2)



388 C.-O. Lee, Y. Lee, and J. Park

Then, we consider neural networks 𝐹 𝑗𝜂 𝑗 : 𝑋 𝑗 → 𝑋 𝑗+1 with parameters 𝜂 𝑗 for
𝑗 ≥ 1 such that it approximates 𝑔 𝑗+1𝜑 𝑗+1 well while it has a cheaper computational cost
than 𝑔 𝑗+1𝜑 𝑗+1 , i.e., 𝐹

𝑗
𝜂 𝑗 ≈ 𝑔 𝑗+1𝜑 𝑗+1 and dim(𝜂 𝑗 ) ≪ dim(𝜑 𝑗+1). Emulating the coarse grid

correction of the parareal algorithm, we assemble a network called coarse network
with building blocks 𝐹 𝑗𝜂 𝑗 . With inputs x 𝑗+1, y 𝑗 , and an output y ∈ 𝑌 , the coarse
network is described as follows:

r𝑁 = 0, r 𝑗 = y 𝑗 − x 𝑗+1 for 𝑗 = 1, . . . , 𝑁 − 1, (3a)

r̃1 = r1, r̃ 𝑗+1 = r 𝑗+1 + 𝐹 𝑗𝜂 𝑗 (r̃ 𝑗 ) for 𝑗 = 1, . . . , 𝑁 − 1, (3b)
ỹ = y𝑁 + r̃𝑁 . (3c)

That is, in the coarse network, the residual r 𝑗 at the interface between layers 𝑔 𝑗𝜑 𝑗
and 𝑔 𝑗+1𝜑 𝑗+1 propagates through shallow neural networks 𝐹1

𝜂1 , . . . , 𝐹
𝑁−1
𝜂𝑁−1 . Then the

propagated residual is added to the output.
Finally, the parareal neural network 𝑓𝜃 corresponding to the original network 𝑓𝜃

is defined as

𝑓𝜃 (x) = ℎ𝜀 (ỹ), 𝜃 = ©«
𝑁⊕
𝑗=1
(𝛿 𝑗 ⊕ 𝜑 𝑗 )ª®¬

⊕ ©«
𝑁−1⊕
𝑗=1

𝜂 𝑗
ª®¬
⊕ 𝜀. (4)

That is, 𝑓𝜃 is composed of the preprocessing operators {𝐶 𝑗𝛿 𝑗 }, parallel subnetworks
{𝑔 𝑗𝜑 𝑗 }, the coarse network {𝐹 𝑗𝜂 𝑗 }, and the postprocessing operator ℎ𝜀 . Figure 1(b)
illustrates 𝑓𝜃 .
Since each 𝑔 𝑗𝜑 𝑗 ◦𝐶 𝑗𝛿 𝑗 lies in parallel, all computations related to 𝑔

𝑗
𝜑 𝑗 ◦𝐶 𝑗𝛿 𝑗 can be

done independently. Therefore, multiple GPUs can be utilized to process {𝑔 𝑗𝜑 𝑗 ◦𝐶 𝑗𝛿 𝑗 }
simultaneously for each 𝑗 . In this case, one may expect significant decrease of the
elapsed time for training 𝑓𝜃 compared to the original network 𝑓𝜃 . On the other hand,
the coarse network cannot be parallelized since {𝐹 𝑗𝜂 𝑗 } is computed in the sequential
manner. One should choose 𝐹 𝑗𝜂 𝑗 whose computational cost is as cheap as possible in
order to reduce the bottleneck effect of the coarse network.
Now, we want show that the proposed parareal neural network 𝑓𝜃 is consistently

constructed in the sense that it recovers the original neural network 𝑓𝜃 in the setting
where nonlinearity is removed. By collecting all the residuals in each interface and
dealing with them sequentially, the following proposition is obtained.

Proposition 1 (Consistency)
Assume that the original network 𝑓𝜃 is linear and 𝐹 𝑗𝜂 𝑗 = 𝑔

𝑗+1
𝜑 𝑗+1 for 𝑗 = 1, . . . , 𝑁−1.

Then we have 𝑓𝜃 (x) = 𝑓𝜃 (x) for all x ∈ 𝑋 .

Proposition 1 presents a guideline on how to design the coarse network of 𝑓𝜃 .
Under the assumption that 𝑓𝜃 is linear, a sufficient condition to ensure that 𝑓𝜃 = 𝑓𝜃
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Fig. 1: A feed-forward neural network and its corresponding parareal neural network: (a) Feed-
forward neural network 𝑓𝜃 , (b) Parareal neural network 𝑓𝜃 with 𝑁 parallel subnetworks (𝑁 = 3).

is 𝐹 𝑗𝜂 𝑗 = 𝑔
𝑗+1
𝜑 𝑗+1 for all 𝑗 . Therefore, we can say that it is essential to design the coarse

network with 𝐹 𝑗𝜂 𝑗 ≈ 𝑔 𝑗+1𝜑 𝑗+1 to ensure that the performance of 𝑓𝜃 is as good as that of
𝑓𝜃 . Detailed examples will be given in Section 4.

4 Application to ResNet-1001

The proposed parareal neural network can be applied to a general feed-forward
neural network. However, since most of the current very deep neural networks have
residual structures, we applied it to ResNet-1001 [9], which is one of the typical very
deep convolutional neural network for classification problems. First, we describe the
structure of ResNet-1001 with the terminology introduced in Section 3. Inputs for
ResNet-1001 are 3-channel images with 32×32 pixels, i.e., 𝑋 = R3×32×32. The output
space 𝑌 is given by 𝑌 = R𝑚, where 𝑚 is the number of classes of images. ResNet-
1001 has a block-repetitive substructure consisting of 333 residual units (RUs), so
that we may set 𝑔𝜑:𝑊0 → 𝑊1 as the composition of those RUs with𝑊0 = R16×32×32

and𝑊1 = R256×8×8. Then the preprocessing operator 𝐶𝛿 : 𝑋 → 𝑊0 is a single 3 × 3
convolution layer and the postprocessing operator ℎ𝜀: 𝑊1 → 𝑌 consists of global
average pooling and fully connected layers.
The design of a parareal neural network with 𝑁 parallel subnetworks for ResNet-

1001, denoted as Parareal ResNet-𝑁 , can be completed by specifying the structures
𝑔
𝑗
𝜑 𝑗 , 𝐶

𝑗
𝛿 𝑗
, and 𝐹 𝑗𝜂 𝑗 . For convenience, the original neural network ResNet-1001 is

called Parareal ResNet-1. We assume that 𝑁 = 3𝑁0 for some positive integer 𝑁0.
We note that 𝑔𝜑 can be decomposed as
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𝑔𝜑 = 𝑔𝑁𝜑𝑁 ◦ · · · ◦ 𝑔2𝑁0+1
𝜑2𝑁0+1

◦ 𝑔2𝑁0
𝜑2𝑁0
◦ · · · ◦ 𝑔𝑁0+1

𝜑𝑁0+1
◦ 𝑔𝑁0

𝜑𝑁0
◦ · · · ◦ 𝑔1

𝜑1 ,

where each of 𝑔 𝑗𝜑 𝑗 : 𝑋 𝑗−1 → 𝑋 𝑗 consists of ⌈333/𝑁⌉ RUs with

𝑋 𝑗 =



R64×32×32 for 𝑗 = 1, . . . , 𝑁0,

R128×16×16 for 𝑗 = 𝑁0 + 1, . . . , 2𝑁0,

R256×8×8 for 𝑗 = 2𝑁0 + 1, . . . , 𝑁,
𝜑 =

𝑁⊕
𝑗=1

𝜑 𝑗 .

The main role of the preprocessing operator 𝐶 𝑗𝛿 𝑗 : 𝑋 → 𝑋 𝑗−1 is to transform an
input x ∈ 𝑋 to fit in the space 𝑋 𝑗−1. In this perspective, we simply set 𝐶1

𝛿1
= 𝐶𝛿 and

𝐶
𝑗
𝛿 𝑗
for 𝑗 > 1 consists of a 1 × 1 convolution to match the number of channels after

appropriate number of 3 × 3 max pooling layers with stride 2 to match the image
size. For the coarse network, we first define a coarse RU consisting of two 3 × 3
convolutions and skip-connection. If the downsampling is needed, then the stride of
first convolution in coarse RU is set to 2. We want to define 𝐹 𝑗𝜂 𝑗 : 𝑋 𝑗 → 𝑋 𝑗+1 having
smaller number of (coarse) RUs than 𝑔 𝑗+1𝜑 𝑗+1 but a similar coverage to 𝑔

𝑗+1
𝜑 𝑗+1 . Let 𝑁𝑐 be

the number of coarse RUs in 𝐹 𝑗𝜂 𝑗 of the coarse network. Note that the receptive field
of 𝑔 𝑗𝜑 𝑗 covers the input size 32 × 32. In the case of 𝑁 = 3, even if we construct 𝐹 𝑗𝜂 𝑗
with 𝑁𝑐 = 4 coarse RUs, it can cover 31 × 31 pixels which are similar coverage to
the parallel subnetwork 𝑔 𝑗𝜑 𝑗 . Generally, if we use 𝑁 parallel subnetworks (𝑁 ≥ 3),
each 333/𝑁 RUs in 𝑔 𝑗𝜑 𝑗 can be approximated by the 𝑁𝑐 RUs in 𝐹 𝑗𝜂 𝑗 whenever we
select 𝑁𝑐 = ⌈12/𝑁⌉.

5 Numerical results

In this section, we present numerical results of the Parareal ResNet-𝑁 with various 𝑁 .
First, we present details on the datasets we used. The CIFAR-𝑚 (𝑚 = 10, 100) dataset
consists of 32 × 32 colored natural images and includes 50,000 training and 10,000
test samples with 𝑚 classes. The SVHN dataset is composed of 32×32 colored digit
images; there are 73,257 and 26,032 samples for training and test, respectively, with
additional 531,131 training samples. However, we did not use the additional ones for
training. MNIST is a classic dataset which contains handwritten digits encoded in
28 × 28 grayscale images. It includes 55,000 training, 5,000 validation, and 10,000
test samples. In our experiments, the training and validation samples are used as
training data and the test samples as test data. We adopted a data augmentation
technique in [13] for CIFAR datasets; four pixels are padded on each side of images,
and 32×32 crops are randomly sampled from the padded images and their horizontal
flips.
All neural networks in this section were trained using the stochastic gradient

descent with the batch size 128, weight decay 0.0005, momentum 0.9, and weights
initialized as in [7]. The initial learning rate is set to 0.1, and is reduced by a factor
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Table 1: Error rates (%) on the CIFAR-10, CIFAR-100, MNIST, and SVHN datasets of
Parareal ResNet-𝑁 (𝑁 = 1, 3, 6, 12, 18) with 𝑁𝑐 = ⌈12/𝑁 ⌉.

𝑁
Parameters
per subnetwork

Parameters of
coarse network

Total
Parameters CIFAR-10 CIFAR-100 MNIST SVHN

1 - - 10.3M 4.96 21.13 0.34 3.17
3 3.4M 5.6M 15.9M 4.61 21.14 0.31 3.11
6 1.7M 5.7M 16.1M 4.20 20.87 0.31 3.21
12 0.9M 5.8M 16.2M 4.37 20.42 0.28 3.25
18 0.6M 8.9M 19.4M 4.02 20.40 0.33 3.29

Table 2: Forward/backward computation time for Parareal ResNet-𝑁 (𝑁 = 1, 3, 6, 12, 18). The
time is measured in one iteration for CIFAR-100 dataset input x ∈ R3×32×32 with batch size 128.

Virtual wall-clock time (ms)

𝑁 Preprocessing Parallel
subnetworks

Coarse
network Postprocessing Total

1 0.25/6.46 443.81/1387.62 - 0.06/3.18 444.12/1397.26

3 0.25/6.45 131.92/458.87 10.01/97.60 0.06/3.71 142.24/566.63
6 0.27/6.42 67.59/219.72 14.68/137.08 0.06/3.33 82.60/366.55
12 0.28/6.59 48.47/113.33 17.97/149.52 0.06/3.63 66.78/273.07
18 0.29/6.17 30.40/77.84 27.87/163.25 0.06/3.64 58.62/250.90
24 0.29/6.58 22.71/58.04 41.03/242.87 0.06/3.54 64.09/311.03

of 10 in the 80th and 120th epochs. All networks were implemented in Python with
PyTorch and all computations were performed on a cluster equipped with Intel Xeon
Gold 5515 (2.4GHz, 20C), NVIDIA Titan RTX and the operating system Ubuntu
18.04 64bit.
With fixed 𝑁𝑐 = ⌈12/𝑁⌉, we report the classification results of Parareal ResNet

with respect to various 𝑁 on datasets CIFAR-10, CIFAR-100, SVHN, and MNIST.
Table 1 shows that the error rates of Parareal ResNet-𝑁 are usually smaller than
ResNet-1001.
Next, we investigate the elapsed time for forward and backward propagations

of parareal neural networks. Table 2 shows the virtual wall-clock time for forward
and backward computation of Parareal ResNet-𝑁 with various 𝑁 for the input x ∈
R3×32×32. As shown in Table 2, the larger 𝑁 , the shorter the computing time of the
parallel subnetworks 𝑔 𝑗𝜑 𝑗 , while the longer the computing time of the coarse network.
This is because as 𝑁 increases, the depth of each parallel subnetwork 𝑔 𝑗𝜑 𝑗 becomes
shallower while the number of 𝐹 𝑗𝜂 𝑗 in the coarse network increases. On the other
hand, each preprocessing operator 𝐶 𝑗𝛿 𝑗 is designed to be the same as or similar to
the preprocessing operator 𝐶𝛿 of the original neural network and the postprocessing
operator ℎ𝜀 is the same as the original one. Therefore, the computation time for the
pre- and postprocessing operators does not increase even as 𝑁 increases.
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Table 3: The wall-clock time and relative speedup on the CIFAR-100 dataset. The wall-clock time
is the total time taken to train a given network by 200 epochs.

Network Parameters Wall-clock time (h:m:s) Relative speedup (%)

ResNet-1001 10.3M 22:44:53 0.0
Parareal ResNet-3 15.9M 16:28:38 27.6
Parareal ResNet-6 16.1M 11:48:13 48.1

Finally, we meausure the wall-clock time of the Parareal ResNet with the CIFAR-
100 dataset. Table 3 shows that Parareal ResNet’s wall clock time is reduced by about
half as 𝑁 increases to 6.
In conclusion, despite the large number of layers, the parareal neural network can

accelerate the training of the very deep CNN using multiple-GPU. To the best of our
knowledge, the proposed methodology is a new kind of multi-GPU parallelism in
the field of deep learning.
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Construction of 4D Simplex Space-Time Meshes
for Local Bisection Schemes

David Lenz

1 Introduction

Space-time finite element methods (FEMs) approximate the solution to a PDE ‘all-
at-once’ in the sense that a solution is produced at all times of interest simultaneously.
This is achieved by treating time as just another variable and discretizing the entire
space-time domain with finite elements. Naturally, discretizing the entire space-
time domain creates a linear system with many more degrees of freedom (DOFs)
than discretizing just the spatial domain. Adaptive mesh refinement can produce
space-time discretizations that yield accurate solutions with relatively few degrees
of freedom. For example, Langer & Schafelner [4] compared space-time FEMs
using uniformly and adaptively refined meshes; they found that obtaining the same
approximation error for their tests required more degrees of freedom on the uniform
meshes by one to two orders of magnitude.
A technical challenge in the implementation of adaptive mesh refinement is,

of course, the mesh refinement scheme. In order to refine a geometric element
while introducing as few new DOFs as possible, algorithms typically employ a
“red-green” approach (uniform refinement with closure) or an element bisection
approach. Here we focus on bisection schemes in four dimensions but note that work
on arbitrary-dimensional red-green schemes was recently undertaken by Grande [3].
Stevenson [7] has studied a bisection algorithm for arbitrary-dimensional simplicial
meshes,which is a good candidate for four-dimensional space-timemeshes.However,
the algorithm relies on a mesh precondition that is difficult to satisfy.
In this article, we weaken this strict precondition for certain space-time meshes.

We prove that the precondition on four-dimensional simplex meshes can be reduced
to a precondition on an underlying three-dimensional mesh. This means that the
condition needs only be checked on a much smaller mesh. In addition, if one cannot

David Lenz
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immediately verify the precondition, refinements to this smaller three-dimensional
mesh can be made to automatically satisfy the precondition.
In section 2, we describe a particular method for creating four-dimensional space-

time meshes. Meshes of this type have a structure which will be exploited in section
3, where we summarize key concepts from Stevenson’s bisection algorithm and then
prove our main result. Finally, we conclude with some remarks on how this relaxed
precondition can be used in practice.

2 Four-Dimensional Space-Time Mesh Construction

When applying space-time FEMs to solve a PDE, it is generally necessary to create
a space-time mesh that corresponds to a given spatial domain. A convenient method
for doing so is to repeatedly extrude spatial elements (typically triangles or tetra-
hedra) into higher-dimensional space-time prisms and then subdivide these prisms
into simplicial space-time elements (tetrahedra or pentatopes). We refer to mesh
generation methods of this type as extrusion-subdivision schemes.
The method of extrusion-subdivision has appeared in several places in recent

years. This idea was applied to moving meshes by Karabelas & Neumüller [6] and
is discussed in a report by Voronin [9], where it is described in the context of
an extension to the MFEM library [1]. For stationary (non-moving) domains, the
extrusion step is straightforward, but subdividing the space-time prisms can be done
in several ways. Behr [2] describes a method for subdividing space-time prisms
using Delaunay triangulations, while subdivision based on vertex orderings is used
in [6], [9].
In this paper, we consider space-time meshes produced by extrusion-subdivision

where prism subdivision is defined in terms of vertex labels. In particular, we will
assume that a 𝑘-coloring has been imposed on the mesh; that is, each vertex in the
mesh has one of 𝑘 labels (colors) attached to it and no two vertices connected by an
edge share the same label.
Before we describe our particular prism subdivision method, we need to establish

some notation. Let 𝑑 be the spatial dimensionality of the problem and suppose
𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝑑−1) ∈ R𝑑 . For any 𝑟 ∈ R, we define the map 𝜓𝑟 : R𝑑 → R𝑑+1 by

𝜓𝑟 (𝑎) = (𝑎0, 𝑎1, . . . , 𝑎𝑑−1, 𝑟). (1)

For a simplex 𝑇 = conv(𝑎, 𝑏, 𝑐, 𝑑) (here 𝑎, 𝑏, 𝑐, 𝑑 ∈ R𝑑), we define

𝜓𝑟 (𝑇) = conv(𝜓𝑟 (𝑎), 𝜓𝑟 (𝑏), 𝜓𝑟 (𝑐), 𝜓𝑟 (𝑑)); (2)

that is, 𝜓𝑟 (𝑇) is the embedding of 𝑇 into R𝑑+1 space-time within the plane 𝑥𝑑+1 = 𝑟 .
Next, the extrusion operator Φ𝑟 ,𝑠 produces the set of all points between 𝜓𝑟 (𝑇)

and 𝜓𝑠 (𝑇). This is the convex hull of points in 𝜓𝑠 (𝑇) and 𝜓𝑟 (𝑇), which is a right
tetrahedral prism:

Φ𝑟 ,𝑠 (𝑇) = conv(𝜓𝑟 (𝑇), 𝜓𝑠 (𝑇)). (3)
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We make one final notational definition to declutter the following exposition. Given
a series of real values S = {𝑠0, . . . , 𝑠𝑀 }, we define

ΦS𝑖 (𝑇) = Φ𝑠𝑖 ,𝑠𝑖+1 (𝑇) where 𝑠𝑖 ∈ S, for 0 ≤ 𝑖 ≤ 𝑀 − 1. (4)

We refer to S as a collection of “time-slices”, which determine how spatial elements
are extruded into space-time prisms. The value 𝑠𝑖 is thus the “𝑖𝑡ℎ time-slice”. For
most problems, the set of initial time-slices is fixed ahead of time, so it is often
convenient to omit the superscript S. We adopt this shorthand for the remainder of
this paper. For an illustration of the operators 𝜓 and Φ in two spatial dimensions,
see figure 1.

Fig. 1: Extrusion of a 2D simplex into a 3D simplex prism. Left: The spatial element. Center:
Copies of the spatial element embedded in space-time. Right: The space-time prism element.

For the remainder of this article, we will focus on the case 𝑑 = 3; that is, problems
in four-dimensional space-time.1 Let T be a conforming tetrahedral mesh with a 4-
coloring,2 and let the symbols 𝐴, 𝐵, 𝐶, 𝐷 denote the four labels to be associated with
each vertex of T . Let S be a set of time-slices which define the extrusion of spatial
elements into space-time prisms (cf. equation (4)). We will use the following rule to
subdivide the tetrahedral prisms formed by extruding elements of T .

Fig. 2 Space-time triangular
prism subdivision based on
a coloring of the underlying
spatial mesh.
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1 Due to the inherent difficulty in visualizing four-dimensional objects on a two-dimensional page,
we will continue to illustrate figures in three-dimensional space-time. These figures are meant only
as a guide for the reader to develop some geometric intuition.
2 Not every tetrahedral mesh admits a 4-coloring, although all are 5-colorable. We discuss how to
handle meshes which are not 4-colorable at the end of section 3.
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Definition 1 (Subdivision Rule)
Let 𝑇 ∈ T be a tetrahedron with vertices 𝑣𝐴, 𝑣𝐵, 𝑣𝐶 , 𝑣𝐷 , where the subscript of
each vertex denotes its color label. For a given time slice 𝑠𝑖 ∈ S, let 𝑥𝐴 = 𝜓𝑠𝑖 (𝑣𝐴)
and 𝑥 ′𝐴 = 𝜓𝑠𝑖+1 (𝑣𝐴) (and likewise for B, C, D). The rule for subdividing Φ𝑖 (𝑇) is to
create the pentatopes:

𝜏1 = conv(𝑥𝐴, 𝑥𝐵, 𝑥𝐶 , 𝑥𝐷 , 𝑥 ′𝐷)
𝜏2 = conv(𝑥𝐴, 𝑥𝐵, 𝑥𝐶 , 𝑥 ′𝐶 , 𝑥 ′𝐷)
𝜏3 = conv(𝑥𝐴, 𝑥𝐵, 𝑥 ′𝐵, 𝑥 ′𝐶 , 𝑥 ′𝐷)
𝜏4 = conv(𝑥𝐴, 𝑥 ′𝐴, 𝑥 ′𝐵, 𝑥 ′𝐶 , 𝑥 ′𝐷)

(5)

An illustration of this subdivision rule is given in figure 2. Because the labeling of
each vertex is shared by all elements, this subdivision scheme always produces a
conforming mesh of pentatopes. However, we omit the detailed proof because of
space constraints.

3 Conforming Bisection of Space-Time Simplicial Elements

The aim of this section is to outline Stevenson’s bisection algorithm [7]3, with partic-
ular attention on themesh precondition for its validity. Then, we show that space-time
meshes produced by extrusion-subdivision (using definition 1) will always meet this
precondition if the underlying spatial mesh is 4-colorable. The upshot of this is that
all of the work to make an admissible mesh can be done in three dimensions instead
of four. This is especially useful in light of the fact that there are many more meshing
utilities for three-dimensional domains than four-dimensional domains.
The following definitions are due to Stevenson [7].

Definition 2 A tagged pentatope 𝑡 is an ordering of the vertices of some pentatope
𝜏 = conv(𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4), together with an integer 0 ≤ 𝛾 ≤ 3 called the type. We
write

𝑡 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4)𝛾 (6)

to denote this ordering-type pair.

Definition 3 The reflection of a tagged pentatope 𝑡 is another tagged pentatope 𝑡𝑅
such that the bisection rule produces the same child pentatopes for 𝑡 and 𝑡𝑅. The
unique reflection of 𝑡 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4)𝛾 is

𝑡𝑅 =



(𝑥4, 𝑥3, 𝑥2, 𝑥1, 𝑥0)𝛾 if 𝛾 = 0
(𝑥4, 𝑥1, 𝑥3, 𝑥2, 𝑥0)𝛾 if 𝛾 = 1
(𝑥4, 𝑥1, 𝑥2, 𝑥3, 𝑥0)𝛾 if 𝛾 = 2, 3

. (7)

3 The bisection rule studied by Stevenson has also been studied by Maubach [5] and Traxler [8].
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Definition 4 Two tagged pentatopes 𝑡 and 𝑡 ′ are reflected neighbors if they share a
common hyperface, have the same integer type, and the vertex order of 𝑡 ′ matches
the vertex order of 𝑡 or 𝑡𝑅 in all but one position.

The notion of reflected neighbors is critical to our proof of the main result, so it
is worth illustrating the concept with some examples.

Example 1 Let 𝑡 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑦)1 and 𝑡 ′ = (𝑧, 𝑥0, 𝑥1, 𝑥2, 𝑥3)1. Then 𝑡 and 𝑡 ′ are
NOT reflected neighbors. Although the relative ordering of their shared vertices is
consistent, the taggings differ in every position.

Example 2 Let 𝑡 = (𝑥0, 𝑧, 𝑥1, 𝑥2, 𝑥3)1 and 𝑡 ′ = (𝑥3, 𝑦, 𝑥2, 𝑥1, 𝑥0)1. Then 𝑡 and 𝑡 ′ are
reflected neighbors. To see this, we note that 𝑡𝑅 = (𝑥3, 𝑧, 𝑥2, 𝑥1, 𝑥0)1; thus 𝑡𝑅 and 𝑡 ′
differ only in the second position. Likewise, we could have shown that 𝑡 ′𝑅 and 𝑡 differ
on at most one position.

Definition 5 The tagging of two pentatopes 𝑡 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4)𝛾 and 𝑡 ′ =
(𝑥 ′0, 𝑥 ′1, 𝑥 ′2, 𝑥 ′3, 𝑥 ′4)𝛾 which share a hyperface is said to be consistent if the follow-
ing condition is met:

1. If 𝑥0, 𝑥4 or 𝑥 ′0, 𝑥
′
4 is contained in the shared hyperface, then 𝑡 and 𝑡

′ are reflected
neighbors (N.B. these are the bisection edge for each element; see definition 6).

2. Otherwise, the two children of 𝑡 and 𝑡 ′ which share the common hyperface are
reflected neighbors.

A consistent tagging of a mesh is a tag for each element in the mesh such that any
two neighboring elements are consistently tagged.

In essence, definition 5 states that in a consistently tagged mesh, any pair of
neighboring elements are either reflected neighbors or they do not share a common
refinement edge. Furthermore, when two elements do not share a common refinement
edge, their adjacent children will be reflected neighbors after one round of bisection.

Definition 6 (Bisection Rule)
Given a tagged pentatope 𝑡 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4)𝛾 , applying the bisection rule

produces the children:

𝑡1 = (𝑥0, 𝑥
′, 𝑥1, 𝑥2, 𝑥3)𝛾′ 𝑡2 =



(𝑥4, 𝑥

′, 𝑥3, 𝑥2, 𝑥1)𝛾′ if 𝛾 = 0
(𝑥4, 𝑥

′, 𝑥1, 𝑥3, 𝑥2)𝛾′ if 𝛾 = 1
(𝑥4, 𝑥

′, 𝑥1, 𝑥2, 𝑥3)𝛾′ if 𝛾 = 2, 3
, (8)

where 𝑥 ′ = (𝑥0 + 𝑥4)/2 and 𝛾′ = (𝛾 + 1) mod 4. We say that edge 𝑥0𝑥4 is the
refinement edge.

We can now state the main result of this section.

Proposition 1 Let T ⊂ R3 be a 4-colorable tetrahedral mesh and T ′ ⊂ R4 be the
pentatope mesh produced by extrusion-subdivision according to definition 1. Then
T ′ admits a consistent tagging.
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Proof We will prove the result by constructing a consistent tagging of T ′ directly
from a 4-coloring of T . Every simplex is tagged according to its position within
its extruded space-time prism from definition 1. For the above four pentatopes in
definition 1, we make the following tagging (in each case 𝑡𝑖 is a tagging of 𝜏𝑖):

𝑡1 = (𝑥𝐷 , 𝑥𝐶 , 𝑥𝐵, 𝑥𝐴, 𝑥 ′𝐷)0 𝑡2 = (𝑥𝐶 , 𝑥𝐵, 𝑥𝐴, 𝑥 ′𝐷 , 𝑥 ′𝐶 )0
𝑡3 = (𝑥𝐵, 𝑥𝐴, 𝑥 ′𝐷 , 𝑥 ′𝐶 , 𝑥 ′𝐵)0 𝑡4 = (𝑥𝐴, 𝑥 ′𝐷 , 𝑥 ′𝐶 , 𝑥 ′𝐵, 𝑥 ′𝐴)0

(9)

To show that a tagging of T ′ is consistent, it suffices to consider an arbitrary ele-
ment of T ′ and show that each of its neighbors satisfy the conditions in definition 5.
Let 𝜏 ∈ T ′ be an abitrary element. Since T ′ is created by extrusion-subdivision,
there is some time-slice 𝑠𝑖 and 𝑇 ∈ T such that 𝜏 ⊂ Φ𝑖 (𝑇).
We will show that each neighbor 𝜏′ satisfies the consistency condition in defini-

tion 5. There are three cases, illustrated in figure 3:

1. 𝜏 and 𝜏′ are both pentatopes within the same space-time prism.
2. 𝜏 and 𝜏′ belong to different space-time prisms extruded from the same spatial
element; for instance, 𝜏 ⊂ Φ𝑖 (𝑇) and 𝜏′ ⊂ Φ𝑖+1 (𝑇).

3. 𝜏 and 𝜏′ belong to different space-time prisms within the same space-time slab;
for instance, 𝜏 ⊂ Φ𝑖 (𝑇) and 𝜏′ ⊂ Φ𝑖 (𝑇 ′).

Fig. 3 Different types of
neighboring elements. The
three shaded elements are the
three types of neighbors for
the bold simplex given at left.

We verify consistency of the tagging scheme with repeated applications of defi-
nition 1 and few geometric arguments, which ensures that all cases are covered.
Consider Case (1). Since 𝜏 and 𝜏′ are neighbors, they must be a pair 𝜏𝑖 , 𝜏𝑖+1

(𝑖 = 1, 2, 3) from definition 1, since only consecutive pairs in our list are neighbors.
In this case, the adjacent children of each pentatope are reflected neighbors. To make
this point explicit, consider the neighboring tagged elements 𝑡1, 𝑡2. The children
formed by bisecting these pentatopes are:

𝑡1 →
{
(𝑥𝐷 , 𝑧1, 𝑥𝐶 , 𝑥𝐵, 𝑥𝐴)1
(𝑥 ′𝐷 , 𝑧1, 𝑥𝐴, 𝑥𝐵, 𝑥𝐶 )1

𝑡2 →
{
(𝑥𝐶 , 𝑧2, 𝑥𝐵, 𝑥𝐴, 𝑥

′
𝐷)1

(𝑥 ′𝐶 , 𝑧2, 𝑥
′
𝐷 , 𝑥𝐴, 𝑥𝐵)1

(10)

where 𝑧𝑖 are the new midpoints of the bisected edges. From here we note that the
second child of 𝑡1 is the reflected neighbor of 𝑡2. The same exercise shows that the
pairs 𝑡2, 𝑡3 and 𝑡3, 𝑡4 also share this property, and thus all are consistently tagged.
In Case (2), 𝜏 and 𝜏′ are neighbors in different space-time slabs; without loss

of generality, 𝜏 ⊂ Φ𝑖 (𝑇) and 𝜏′ ⊂ Φ𝑖+1 (𝑇) for some 𝑇 ∈ T . With two space-time
prisms, we have three sets of vertices at different time-slices. Denote vertices in the
highest (latest) time hyperplane with double primes (”), the middle hyperplane with
single primes (’), and the lowest (earliest) hyperplane with no primes; see figure 4.
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Fig. 4 Illustration of vertex
labeling when considering
consecutive space-time time
prisms in two spatial dimen-
sions.
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Since 𝜏 and 𝜏′ belong to consecutive timeslices, the shared hyperface between
the two must be conv(𝑥 ′𝐴, 𝑥 ′𝐵, 𝑥 ′𝐶 , 𝑥 ′𝐷). Thus 𝜏 = conv(𝑥𝐴, 𝑥 ′𝐴, 𝑥 ′𝐵, 𝑥 ′𝐶 , 𝑥 ′𝐷) and 𝜏′ =
conv(𝑥 ′𝐴, 𝑥 ′𝐵, 𝑥 ′𝐶 , 𝑥 ′𝐷 , 𝑥 ′′𝐷). According to the tagging scheme described above, the
tags on these two pentatopes are

𝑡 = (𝑥𝐴, 𝑥 ′𝐷 , 𝑥 ′𝐶 , 𝑥 ′𝐵, 𝑥 ′𝐴)0 𝑡 ′ = (𝑥 ′𝐷 , 𝑥 ′𝐶 , 𝑥 ′𝐵, 𝑥 ′𝐴, 𝑥 ′′𝐷)0, (11)

and thus their child elements are

𝑡 →
{
(𝑥𝐴, 𝑧, 𝑥 ′𝐷 , 𝑥 ′𝐶 , 𝑥 ′𝐵)1
(𝑥 ′𝐴, 𝑧, 𝑥 ′𝐵, 𝑥 ′𝐶 , 𝑥 ′𝐷)1

𝑡 ′→
{
(𝑥 ′𝐷 , 𝑧′, 𝑥 ′𝐶 , 𝑥 ′𝐵, 𝑥 ′𝐴)1
(𝑥 ′′𝐷 , 𝑧′, 𝑥 ′𝐴, 𝑥 ′𝐵, 𝑥 ′𝐶 )1

, (12)

where 𝑧, 𝑧′ are new vertices created by bisecting 𝜏 and 𝜏′. This is indeed a consistent
tagging, as the second child of 𝑡 and the first child of 𝑡 ′ are reflected neighbors.
Finally, consider Case (3). Since T ′ is conforming, when 𝜏 ⊂ Φ𝑖 (𝑇) and 𝜏′ ⊂

Φ𝑖 (𝑇 ′) they must share a vertical edge like 𝑥𝐴𝑥 ′𝐴, which is always a bisection edge.
Since vertex labels are “global” labels, both 𝜏 and 𝜏′ agree on the order in which the
labeled vertices appear. Furthermore, 𝜏 and 𝜏′ share all but one vertex in common.
Since all but one vertex is shared, both pentatopes have the same labels for the same
vertices, and vertex order is uniquely determined by vertex label, the vertex orders
agree on all but one position. Hence the tagged pentatopes are reflected neighbors.
Thus all three cases result in consistent taggings. Therefore, the tagging defined

by equation (9) is consistent. □

The critical piece of this proof is the tagging scheme defined in equation (9).
Furthermore, since the vertex orders are determined by the 4-coloring on T , a
consistent tagging of the space-time mesh can be constructed in linear time.

Corollary 1 LetT andT ′ be as in proposition 1. Given a 4-coloring onT , the space-
time mesh T ′ can be consistently tagged in 𝑂 (𝑁) time, where 𝑁 is the number of
vertices in T ′.

Not every tetrahedral mesh is 4-colorable, but this can be worked around. First,
we note that regular tetrahedral meshes are 4-colorable, so for rectilinear domains
one can start with a coarse regular mesh and bisect until a desired resolution is met.
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In addition, Traxler [8] has shown that tetrahedral meshes over simply connected
domains are 4-colorable iff every edge is incident to an even number of tetrahedra.
Finally, any tetrahedral mesh can be made 4-colorable by dividing each element

via barycentric subdivision and then choosing the following colors: each vertex of
the original mesh is colored A, the new center of each edge is colored B, the new
center of each face is colored C, and the new center of each tetrahedron is colored D.
Barycentric subdivision creates new elements with one of each kind of point, which
means that this is indeed a 4-coloring of the subdivided mesh.

4 Conclusions

We described a method for creating four-dimensional simplex space-time meshes
from a given spatial mesh which has a 4-coloring. This procedure was based on
the general extrusion-subdivision framework, with a new subdivision rule which is
defined in terms of vertex labels (colors). We then proved that meshes of this form
always satisfy the strict precondition of Stevenson’s bisection algorithm, which can
be used to adaptively refine space-time meshes. Finally, we showed that even when a
tetrahedral mesh is not 4-colorable, the barycentric subdivision of the mesh will be.
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Coefficient-Robust A Posteriori Error
Estimation for H(curl)-elliptic Problems

Yuwen Li

1 Introduction

Adaptive mesh refinement (AMR) is a popular tool in numerical simulations as it
is able to resolve singularity from nonsmooth data and irregular space domains.
A building block of AMR is a posteriori error estimation, see, e.g., [10] for a
classical introduction. On the other hand, preconditioners are discrete operators used
to accelerate Krylov subspace methods for solving sparse linear systems (cf. [11]).
Recently, [7, 6] introduced a novel framework linking posteriori error estimation and
preconditioning in the Hilbert space. Such an approach yields many old and new
error estimators for boundary value problems posed on de Rham complexes.
In particular, for the positive-definite H(curl) problem, [6] presents a new residual

estimator robust w.r.t. high-contrast constant coefficients. In this paper, we extend the
idea in [6] to theH(curl) interface problem and derive new a posteriori error estimates
robust w.r.t. both extreme coefficient magnitude as well as large coefficient jump.
The analysis avoids regularity assumptions used in existing works. We numerically
compare the performance of the estimator in [6] with the one analyzed in [9].

1.1 H(curl)-Elliptic Problems

Let Ω ⊂ R𝑑 with 𝑑 ∈ {2, 3} be a bounded Lipschitz domain, and 𝑛 be a unit vector
normal to 𝜕Ω. Let ∇× be the usual curl in R3, ∇× = (𝜕𝑥2 ,−𝜕𝑥1 )· in R2. We define

𝑉 =
{
𝑣 ∈ [𝐿2 (Ω)]𝑑 : ∇ × 𝑣 ∈ [𝐿2 (Ω)] 𝑑 (𝑑−1)

2 , 𝑣 ∧ 𝑛 = 0 on 𝜕Ω
}
,

Yuwen Li
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where 𝑣 ∧ 𝑛 = 𝑣 × 𝑛 in R3, 𝑣 ∧ 𝑛 = 𝑣 · 𝑛⊥ in R2 with 𝑛⊥ the counter-clockwise
rotation of 𝑛 by 𝜋

2 , and [𝑋]𝑑 the Cartesian product of 𝑑 copies of 𝑋 . Let (·, ·)Ω0

denote the 𝐿2 (Ω0) inner product and (·, ·) = (·, ·)Ω. Given 𝑓 ∈ 𝐿2 (Ω) and positive
𝜀, 𝜅 ∈ 𝐿∞ (Ω), the H(curl)-elliptic boundary value problem seeks 𝑢 ∈ 𝑉 s.t.

(𝜀∇ × 𝑢,∇ × 𝑣) + (𝜅𝑢, 𝑣) = ( 𝑓 , 𝑣), ∀𝑣 ∈ 𝑉. (1)

The space 𝑉 is equipped with the 𝑉-norm and energy inner product based on

(𝑣, 𝑤)𝑉 = (𝜀∇ × 𝑣,∇ × 𝑤) + (𝜅𝑣, 𝑤), ∀𝑣, 𝑤 ∈ 𝑉.

Let Tℎ be a conforming tetrahedral or hexahedral partition of Ω. Problem (1)
is often discretized using the Nédélec edge element space 𝑉ℎ ⊂ 𝑉 . The discrete
problem is to find 𝑢ℎ ∈ 𝑉ℎ s.t.

(𝜀∇ × 𝑢ℎ,∇ × 𝑣) + (𝜅𝑢ℎ, 𝑣) = ( 𝑓 , 𝑣), ∀𝑣 ∈ 𝑉ℎ . (2)

The semi-discrete Maxwell equation is an important example of (1). In this case,
𝜀 is the reciprocal of the magnetic permeability and 𝜅 is proportional to 1/𝜏2,
where 𝜏 is the time stepsize. Therefore, we are interested in 𝜀 with large jump and
potentially huge 𝜅. In particular, we assume 𝜅 > 0 is a constant,Ω1 ⊂ Ω,Ω2 ⊂ Ω are
non-overlapping and simply-connected polyhedrons aligned with Tℎ, Ω̄ = Ω̄1 ∪ Ω̄2,
and

𝜀 |Ω1 = 𝜀1, 𝜀 |Ω2 = 𝜀2, (3)

where 𝜀1 ≥ 𝜀2 > 0 are constants. The interface is Γ := Ω̄1 ∩ Ω̄2. A posteriori error
analysis for more general 𝜀, 𝜅 is beyond the scope of this work but is possible by
making monotonicity-type assumptions on distributions of 𝜀 and 𝜅, cf. [2, 3].
Throughout the rest of this paper, we say 𝛼 ≼ 𝛽 provided 𝛼 ≤ 𝐶𝛽, where 𝐶 is an

absolute constant depending solely on Ω, the aspect ratio of elements in Tℎ, and the
polynomial degree used in 𝑉ℎ .We say 𝛼 ≃ 𝛽 if 𝛼 ≼ 𝛽 and 𝛽 ≼ 𝛼. Given a Lipschitz
manifold Σ ⊂ Ω, by ∥ · ∥Σ we denote the 𝐿2 (Σ) norm.

2 Nodal Auxiliary Space Preconditioning

The key idea in [6] is nodal auxiliary space preconditioning, originally proposed in
[4] for solving discrete H(curl) and H(div) problems. The auxiliary 𝐻1 space here is

𝑊 =
{
𝑤 ∈ 𝐿2 (Ω) : ∇𝑤 ∈ [𝐿2 (Ω)]𝑑 , 𝑤 |𝜕Ω = 0

}
,

endowed with the inner product

(𝑤1, 𝑤2)𝑊 = (𝜀∇𝑤1,∇𝑤2) + (𝜅𝑤1, 𝑤2)
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and the induced 𝑊-norm. The next regular decomposition (with mixed boundary
condition, cf. [6, 4]) is widely used in the analysis of H(curl) problems.
Theorem 1 Given 𝑣 ∈ 𝑉 |Ω1 , there exist 𝜑 ∈ 𝑊 |Ω1 , 𝑧 ∈ [𝑊 |Ω1 ]𝑑 , s.t. 𝑣 = ∇𝜑 + 𝑧,

∥𝑧∥𝐻1 (Ω1) ≤ 𝐶0∥∇ × 𝑣∥,
∥𝜑∥𝐻1 (Ω1) ≤ 𝐶0 (∥𝑣∥ + ∥∇ × 𝑣∥),

where 𝐶0 is a constant depending only on Ω1.
To derive a posteriori error bounds for (2) uniform w.r.t. constant 𝜀 ≪ 𝜅, the work

[6] utilizes the following modified regular decomposition.
Theorem 2 Given 𝑣 ∈ 𝑉 |Ω1 , there exist 𝜑 ∈ 𝑊 |Ω1 , 𝑧 ∈ [𝑊 |Ω1 ]𝑑 , s.t. 𝑣 = ∇𝜑 + 𝑧 and

∥𝜑∥𝐻1 (Ω1) + ∥𝑧∥ ≤ 𝐶1∥𝑣∥,
|𝑧 |𝐻1 (Ω1) ≤ 𝐶1 (∥𝑣∥ + ∥∇ × 𝑣∥),

where 𝐶1 is a constant depending only on Ω1.

In the following, we give a new regular decomposition robust w.r.t. constant 𝜅
and piecewise constant 𝜀. See also [5] for a weighted Helmholtz decomposition.
Theorem 3 Given 𝑣 ∈ 𝑉 , there exist 𝜑 ∈ 𝑊 and 𝑧 ∈ [𝑊]𝑑 , s.t. 𝑣 = ∇𝜑 + 𝑧 and

∥𝜅 1
2 𝜑∥𝐻1 (Ω) + ∥𝑧∥𝑊 ≤ 𝐶2∥𝑣∥𝑉 ,

where 𝐶2 is a constant depending solely on Ω, Ω1, Ω2.
Proof The proof is divided into two cases. When 𝜀1 ≥ 𝜅, we use Theorem 1 on Ω1
to obtain 𝜑1 ∈ 𝐻1 (Ω1), 𝑧1 ∈ [𝐻1 (Ω1)]𝑑 both vanishing on 𝜕Ω1\Γ s.t.

𝑣 |Ω1 = ∇𝜑1 + 𝑧1,

∥𝑧1∥𝐻1 (Ω1) ≼ ∥∇ × 𝑣∥Ω1 ,

∥𝜑1∥𝐻1 (Ω1) ≼ ∥𝑣∥Ω1 + ∥∇ × 𝑣∥Ω1 .

(4)

When 𝜀1 < 𝜅, applying Theorem 2 to 𝑣 |Ω1 yields 𝜑1 ∈ 𝐻1 (Ω1), 𝑧1 ∈ [𝐻1 (Ω1)]𝑑 s.t.

𝑣 |Ω1 = ∇𝜑1 + 𝑧1, 𝜑1 |𝜕Ω1\Γ = 0, 𝑧1 |𝜕Ω1\Γ = 0,
∥𝜑1∥𝐻1 (Ω1) + ∥𝑧1∥Ω1 ≼ ∥𝑣∥Ω1 ,

|𝑧1 |𝐻1 (Ω1) ≼ ∥𝑣∥Ω1 + ∥∇ × 𝑣∥Ω1 ,

(5)

In either case, it holds that

∥𝜅 1
2 𝜑1∥𝐻1 (Ω1) + ∥𝑧1∥𝑊 |Ω1

≼ ∥𝑣∥𝑉 |Ω1
. (6)

First let �̂�1 ∈ 𝐻1 (R𝑑\Ω2) and 𝑧1 ∈ [𝐻1 (R𝑑\Ω2)]𝑑 be zero extensions of 𝜑1 and
𝑧1 to R𝑑\Ω2, respectively. Then we take �̃�1 ∈ 𝐻1 (Ω), 𝑧1 ∈ 𝐻1 (Ω) to be the Stein
universal extensions of �̂�1, 𝑧1 to R𝑑 satisfying
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∥�̃�1∥Ω2 ≼ ∥𝜑1∥Ω1 , ∥�̃�1∥𝐻1 (Ω2) ≼ ∥𝜑1∥𝐻1 (Ω1) ,

∥𝑧1∥Ω2 ≼ ∥𝑧1∥Ω1 , ∥𝑧1∥𝐻1 (Ω2) ≼ ∥𝑧1∥𝐻1 (Ω1) .
(7)

On Ω2, applying Theorem 1 (if 𝜀2 ≥ 𝜅) or Theorem 2 (if 𝜀2 < 𝜅) to 𝑤 = 𝑣 |Ω2 −
∇�̃�1 |Ω2 − 𝑧1 |Ω2 (𝑤 ∧ 𝑛 = 0 on 𝜕Ω2), we have 𝜑2 ∈ 𝐻1

0 (Ω2), 𝑧2 ∈ [𝐻1
0 (Ω2)]𝑑 s.t.

𝑣 |Ω2 − ∇�̃�1 |Ω2 − 𝑧1 |Ω2 = ∇𝜑2 + 𝑧2, (8a)

∥𝜅 1
2 𝜑2∥𝐻1 (Ω2) + ∥𝑧2∥𝑊 |Ω2

≼ ∥𝑣∥𝑉 |Ω2
+ ∥𝜅 1

2∇�̃�1∥Ω2 + ∥𝑧1∥𝑉 |Ω2
. (8b)

Here (8b) follows from similar reasons for (6). Define 𝜑 ∈ 𝐻1
0 (Ω), 𝑧 ∈ [𝐻1

0 (Ω)]𝑑 as

𝜑 :=

{
𝜑1 on Ω1

�̃�1 + 𝜑2 on Ω2
, 𝑧 :=

{
𝑧1 on Ω1

𝑧1 + 𝑧2 on Ω2
,

and obtain 𝑣 = ∇𝜑 + 𝑧 on Ω. If 𝜀1 ≥ 𝜅, it follows from (8b), (7), (4), 𝜀2 ≤ 𝜀1 that

∥𝜅 1
2 𝜑∥𝐻1 (Ω2) + ∥𝑧∥𝑊 |Ω2

≼ ∥𝑣∥𝑉 |Ω2
+ 𝜅

1
2 ∥𝜑1∥𝐻1 (Ω1) + (𝜅

1
2 + 𝜀

1
2
2 )∥𝑧1∥Ω1 + 𝜀

1
2
2 |𝑧1 |𝐻1 (Ω1)

≼ ∥𝑣∥𝑉 |Ω2
+ 𝜅

1
2 ∥𝑣∥ + 𝜀

1
2
1 ∥∇ × 𝑣∥Ω1 .

(9)

Similarly when 𝜀1 < 𝜅, it follows from (8b), (7), (5), 𝜀2 ≤ 𝜀1 < 𝜅 that

∥𝜅 1
2 𝜑∥𝐻1 (Ω2) + ∥𝑧∥𝑊 |Ω2

≼ ∥𝑣∥𝑉 |Ω2
+ 𝜅

1
2 ∥𝑣∥Ω1 . (10)

Combining (6), (9), (10) completes the proof. □

Remark 1 The work [12] gives a robust regular decomposition for the H(curl) inter-
face problem with 𝜅 = 𝑠𝜀, 𝑠 ∈ (0, 1]. In contrast, Theorem 3 is able to deal with
large jump of 𝜀 as well as large 𝜅 ≫ 𝜀.

Given a Hilbert space 𝑋 , let 𝑋 ′ denote its dual space, and ⟨·, ·⟩ the action of 𝑋 ′
on 𝑋 . We introduce bounded linear operators 𝐴 : 𝑉 → 𝑉 ′, 𝐴Δ : 𝐻1

0 (Ω) → 𝐻−1 (Ω),
𝐴𝑊 : 𝑊𝑑 → ([𝑊]𝑑) ′ as

⟨𝐴𝑣, 𝑤⟩ = (𝜀∇ × 𝑣,∇ × 𝑤) + (𝜅𝑣, 𝑤), 𝑣, 𝑤 ∈ 𝑉,
⟨𝐴Δ𝑣, 𝑤⟩ = (∇𝑣,∇𝑤) + (𝑣, 𝑤), 𝑣, 𝑤 ∈ 𝐻1

0 (Ω),
⟨𝐴𝑊𝑣, 𝑤⟩ = (𝜀∇𝑣,∇𝑤) + (𝜅𝑣, 𝑤), 𝑣, 𝑤 ∈ [𝑊]𝑑 .

Let 𝑟 ∈ 𝑉 ′ be the residual given by

⟨𝑟, 𝑣⟩ = ( 𝑓 , 𝑣) − (𝜀∇ × 𝑢ℎ,∇ × 𝑣) − (𝜅𝑢ℎ, 𝑣), 𝑣 ∈ 𝑉. (11)

Clearly the inclusion 𝐼 : [𝑊]𝑑 ↩→ 𝑉 and the gradient operator ∇ : 𝑊 → 𝑉 are
uniformly bounded w.r.t. 𝜀 and 𝜅. Then using such boundedness, Theorem 3, and
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the fictitious space lemma (cf. [8, 4] and Corollary 5.1 in [6]), we obtain the uniform
spectral equivalence of two continuous operators

𝐴−1 ≃ 𝐵 := ∇(𝜅𝐴Δ)−1∇′ + 𝐼 𝐴−1
𝑊 𝐼
′, (12)

where 𝐼 ′ : 𝑉 ′ → ([𝑊]𝑑) ′ and ∇′ : 𝑉 ′ → 𝑊 ′ are adjoint operators. By 𝐴−1 ≃ 𝐵
from 𝑉 ′ to 𝑉 in (12) we mean ⟨𝑅, 𝐴−1𝑅⟩ ≃ ⟨𝑅, 𝐵𝑅⟩, ∀𝑅 ∈ 𝑉 ′. It is noted that
𝐴(𝑢 − 𝑢ℎ) = 𝑟 ∈ 𝑉 ′. Therefore a direct consequence of (12) is

∥𝑢 − 𝑢ℎ∥2𝑉 = ⟨𝐴(𝑢 − 𝑢ℎ), 𝑢 − 𝑢ℎ⟩ = ⟨𝑟, 𝐴−1𝑟⟩ ≃ ⟨𝑟, 𝐵𝑟⟩
= ⟨∇′𝑟, (𝜅𝐴Δ)−1∇′𝑟⟩ + ⟨𝐼 ′𝑟, 𝐴−1

𝑊 𝐼
′𝑟⟩ = 𝜅−1∥∇′𝑟 ∥2

𝐻−1 (Ω) + ∥𝐼 ′𝑟 ∥2( [𝑊 ]𝑑)′ .
(13)

3 A Posteriori Error Estimates

The goal of this paper is to derive a robust two-sided bound ∥𝑢 − 𝑢ℎ∥𝑉 ≃ 𝜂ℎ . The
quantity 𝜂ℎ is computed from 𝑢ℎ and split into element-wise error indicators for
AMR. Such local error indicators are used to predict element errors in the current
grid and mark those tetrahedra/hexahedra with large errors for subdivision.
When deriving the error estimator, we assume that the source 𝑓 is piecewise

𝐻1-regular w.r.t. Tℎ. By Sℎ we denote the collection of (𝑑 − 1)-simplexes in Tℎ
that are not contained in 𝜕Ω. Each 𝑆 ∈ Sℎ shared by 𝑇 +𝑆 , 𝑇−𝑆 ∈ Tℎ is assigned with
a unit normal 𝑛𝑆 pointing from 𝑇 +𝑆 to 𝑇−𝑆 . Let ℎ, ℎ𝑠 be the mesh size functions
s.t. ℎ|𝑇 = ℎ𝑇 := diam(𝑇) ∀𝑇 ∈ Tℎ, ℎ𝑠 |𝑆 = ℎ𝑆 := diam(𝑆) ∀𝑆 ∈ Sℎ. The weighted
mesh size functions are

ℎ̄ := min
{
ℎ√
𝜀
,

1√
𝜅

}
, ℎ̄𝑠 := min

{
ℎ𝑠√
𝜀𝑠
,

1√
𝜅

}
,

where 𝜀𝑠 |𝑆 = max{𝜀𝑇 +
𝑆
, 𝜀𝑇−

𝑆
} ∀𝑆 ∈ Sℎ. For each 𝑇 ∈ Tℎ, 𝑆 ∈ Sℎ, let Ω𝑇 denote the

union of elements in Tℎ sharing an edge with 𝑇 , and Ω𝑆 = ∪𝑆∈Sℎ ,𝑆⊂𝜕𝑇Ω𝑇 . For each
𝑆 ∈ Sℎ, let ⟦𝜔⟧𝑆 = 𝜔 |𝑇 +

𝑆
− 𝜔 |𝑇−

𝑆
be the jump of 𝜔 across 𝑆.We define

𝑅1 |𝑇 = −∇ · ( 𝑓 − 𝜅𝑢ℎ) |𝑇 , 𝐽1 |𝑆 = ⟦ 𝑓 − 𝜅𝑢ℎ⟧𝑆 · 𝑛𝑆 ,
𝑅2 |𝑇 = ( 𝑓 − (∇×)∗ (𝜀∇ × 𝑢ℎ) − 𝜅𝑢ℎ) |𝑇 , 𝐽2 |𝑆 = −⟦𝜀∇ × 𝑢ℎ⟧𝑆 ∧ 𝑛𝑆 ,

where (∇×)∗ = ∇× in R3 and (∇×)∗ = (−𝜕𝑥2 , 𝜕𝑥1 ) in R2. By the element-wise
Stokes’ (in R3) or Green’s (in R2) formula, we have

⟨∇′𝑟, 𝜓⟩ = ⟨𝑟,∇𝜓⟩ =
∑︁
𝑇 ∈Tℎ
(𝑅1, 𝜓)𝑇 +

∑︁
𝑆∈Sℎ
(𝐽1, 𝜓)𝑆 , 𝜓 ∈ 𝐻1

0 (Ω), (14)

⟨𝐼 ′𝑟, 𝜑⟩ = ⟨𝑟, 𝜑⟩ =
∑︁
𝑇 ∈Tℎ
(𝑅2, 𝜑)𝑇 +

∑︁
𝑆∈Sℎ
(𝐽2, 𝜑)𝑆 , 𝜑 ∈ [𝑊]𝑑 . (15)
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In view of (13), it remains to estimate ∥∇′𝑟 ∥𝐻−1 (Ω) and ∥𝐼 ′𝑟 ∥ ( [𝑊 ]𝑑)′ . Let (·, ·)Sℎ
denote the inner product

∑
𝑆∈Sℎ (·, ·)𝑆 and ∥ · ∥Sℎ the corresponding norm. Let

𝑄ℎ (resp. 𝑄𝑠ℎ) be the 𝐿
2 projection onto the space of discontinuous and piecewise

polynomials of fixed degrees on Tℎ (resp. 𝑆ℎ). The estimation of ∥∇′𝑟 ∥𝐻−1 (Ω) is
standard (cf. [6]) and given as

∥ℎ𝑅1∥ + ∥ℎ
1
2
𝑠 𝐽1∥Sℎ − oscℎ,1 ≼ ∥∇′𝑟 ∥𝐻−1 (Ω) ≼ ∥ℎ𝑅1∥ + ∥ℎ

1
2
𝑠 𝐽1∥Sℎ , (16)

where oscℎ,1 := ∥ℎ(𝑅1 − 𝑄ℎ𝑅1)∥ + ∥ℎ
1
2
𝑠 (𝐽1 − 𝑄𝑠ℎ𝐽1)∥Sℎ is the data oscillation.

We also need the second data oscillation oscℎ,2 := ∥ ℎ̄(𝑅2 − 𝑄ℎ𝑅2)∥ + ∥ ℎ̄
1
2
𝑠 (𝐽2 −

𝑄𝑠ℎ𝐽2)∥Sℎ . In the next lemma, we derive two-sided bounds for ∥𝐼 ′𝑟 ∥ ( [𝑊 ]𝑑)′ .
Lemma 1 It holds that

∥ ℎ̄𝑅2∥ + ∥𝜀− 1
4 ℎ̄

1
2
𝑠 𝐽2∥Sℎ − oscℎ,2 ≼ ∥𝐼 ′𝑟 ∥ ( [𝑊 ]𝑑)′ ≼ ∥ ℎ̄𝑅2∥ + ∥𝜀− 1

4 ℎ̄
1
2
𝑠 𝐽2∥Sℎ .

Proof The proof is similar to Lemma 4.4 of [6] except the use of the modified
Clément-type interpolation Π̃ℎ : [𝐿2 (Ω)]𝑑 → 𝑉0

ℎ proposed in [3] for dealing with
huge jump of 𝜀. Here 𝑉0

ℎ ⊆ 𝑉ℎ is the lowest order edge element space. For any
𝑣 ∈ [𝑊]𝑑 and 𝑇 ∈ Tℎ, the analysis in Theorem 4.6 of [3] implies that

∥𝑣 − Π̃ℎ𝑣∥𝑇 ≼ ℎ𝑇𝜀 |−
1
2

𝑇 ∥𝜀
1
2∇𝑣∥Ω𝑇 ≤ ℎ𝑇𝜀 |

− 1
2

𝑇 ∥𝑣∥𝑊 |Ω𝑇 , (17)

∥∇(𝑣 − Π̃ℎ𝑣)∥𝑇 ≼ 𝜀 |−
1
2

𝑇 ∥𝜀
1
2∇𝑣∥Ω𝑇 ≤ 𝜀 |

− 1
2

𝑇 ∥𝑣∥𝑊 |Ω𝑇 . (18)

The 𝐿2-boundedness of Π̃ℎ implies that

∥𝑣 − Π̃ℎ𝑣∥𝑇 ≼ ∥𝑣∥Ω𝑇 ≤ 𝜅−
1
2 ∥𝑣∥𝑊 |Ω𝑇 . (19)

A direct consequence of (17) and (19) is

∥𝑣 − Π̃ℎ𝑣∥𝑇 ≼ ℎ̄𝑇 ∥𝑣∥𝑊 |Ω𝑇 . (20)

Given a face/edge 𝑆 ∈ Sℎ, let𝑇 be the element containing 𝑆 over which 𝜀 is maximal.
Using a trace inequality, (20), ℎ−1

𝑆 ≤ ℎ̄−1
𝑆 𝜀
− 1

2
𝑆 , (18), ℎ̄𝑆 ≃ ℎ̄𝑇 , we have

∥𝑣 − Π̃ℎ𝑣∥2𝑆 ≼ ℎ−1
𝑆 ∥𝑣 − Π̃ℎ𝑣∥2𝑇 + ∥𝑣 − Π̃ℎ𝑣∥𝑇 ∥∇(𝑣 − Π̃ℎ𝑣)∥𝑇

≼ ℎ−1
𝑆 ℎ̄

2
𝑇 ∥𝑣∥2𝑊 |Ω𝑇 + ℎ̄𝑇𝜀 |

− 1
2

𝑇 ∥𝑣∥2𝑊 |Ω𝑇 ≼ 𝜀 |
− 1

2
𝑇 ℎ̄𝑆 ∥𝑣∥2𝑊 |Ω𝑇 .

(21)

It follows from 𝑟 |𝑉ℎ = 0, (15), the Cauchy–Schwarz inequality that

∥𝐼 ′𝑟 ∥ ( [𝑊 ]𝑑)′ = sup
𝑣∈[𝑊 ]𝑑 , ∥𝑣 ∥𝑊=1

⟨𝑟, 𝑣⟩ = sup
𝑣∈[𝑊 ]𝑑 , ∥𝑣 ∥𝑊=1

⟨𝑟, 𝑣 − Π̃ℎ𝑣⟩
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≼
(∥ ℎ̄𝑅2∥ + ∥𝜀−

1
4

𝑠 ℎ̄
1
2
𝑠 𝐽2∥Sℎ

)
sup

𝑣∈[𝑊 ]𝑑
∥𝑣 ∥𝑊=1

(∥ ℎ̄−1 (𝑣 − Π̃ℎ𝑣)∥ + ∥𝜀
1
4
𝑠 ℎ̄
− 1

2
𝑠 (𝑣 − Π̃ℎ𝑣)∥Sℎ

)
.

Then the upper bound of ∥𝐼 ′𝑟 ∥ ( [𝑊 ]𝑑)′ is a consequence of the above inequality and
(20), (21). The uniform lower bound of ∥𝐼 ′𝑟 ∥ ( [𝑊 ]𝑑)′ w.r.t. 𝜀, 𝜅 follows from the
bubble function technique explained in [10] and extremal definitions of ℎ̄, ℎ̄𝑠 , 𝜀𝑠 . □

For each 𝑇 ∈ Tℎ, we define the error indicator

𝜂ℎ (𝑇) = 𝜅−1ℎ2
𝑇 ∥𝑅1∥2𝑇 + ℎ̄|2𝑇 ∥𝑅2∥2𝑇 +

∑︁
𝑆∈Sℎ ,𝑆⊂𝜕𝑇

{
𝜅−1ℎ𝑆 ∥𝐽1∥2𝑆 + ℎ̄𝑠 |𝑆 ∥𝜀−

1
4 𝐽2∥2𝑆

}
.

Combining (13), (16) and Lemma 1 leads to the robust a posteriori error estimate∑︁
𝑇 ∈Tℎ

𝜂ℎ (𝑇) − oscℎ,1 − oscℎ,2 ≼ ∥𝑢 − 𝑢ℎ∥2𝑉 ≼
∑︁
𝑇 ∈Tℎ

𝜂ℎ (𝑇). (22)

Remark 2 Our analysis for (22) is based on regular decomposition and minimal
regularity while the theoretical analysis of recovery estimators in [3] hinges on
Helmholtz decomposition and full elliptic regularity of the underlying domain. Our
estimator 𝜂ℎ (𝑇) is robust w.r.t. both large jump of 𝜀 and extreme magnitude of 𝜀, 𝜅.

4 Numerical Demonstration of Robustness

In the end, we focus on (1) with constant and positive 𝜀 and 𝜅, which is a special case
of the interface problem considered before. In this case, the error indicator 𝜂ℎ (𝑇)
reduces to the one derived in [6]. For constant 𝜀 and 𝜅, the classical a posteriori error
estimator for (2) (cf. [1, 9]) reads

𝜂ℎ (𝑇) = 𝜅−1ℎ2
𝑇 ∥𝑅1∥2𝑇 + 𝜀−1ℎ2

𝑇 ∥𝑅2∥2𝑇 +
∑︁

𝑆∈Sℎ ,𝑆⊂𝜕𝑇

{
𝜅−1ℎ𝑆 ∥𝐽1∥2𝑆 + 𝜀−1ℎ𝑆 ∥𝐽2∥2𝑆

}
.

Although weighted with 𝜀, 𝜅, this estimator is not fully robust w.r.t. 𝜀 and 𝜅. In fact,
the ratio ∥𝑢 − 𝑢ℎ∥𝑉/(

∑
𝑇 ∈Tℎ 𝜂ℎ (𝑇))

1
2 may tend to zero as 𝜀 ≪ 𝜅, i.e., the constant 𝐶

in the lower bound 𝐶 (∑𝑇 ∈Tℎ 𝜂ℎ (𝑇))
1
2 ≤ ∥𝑢 − 𝑢ℎ∥𝑉 + h.o.t. is not uniform.

To validate the result, we test 𝜂ℎ (𝑇) and 𝜂ℎ (𝑇) by the lowest order edge element
discretization of (1) defined on Ω = [0, 1]2 with the exact solution 𝑢(𝑥1, 𝑥2) =(

cos(𝜋𝑥1) sin(𝜋𝑥2), sin(𝜋𝑥1) cos(𝜋𝑥2)
)
. The initial partition of Ω is a 4× 4 uniform

triangularmesh.A sequence of nested grids is computed by uniformquad-refinement.
Let 𝑒 = ∥𝑢−𝑢ℎ∥𝑉 , 𝜂 = (∑𝑇 ∈Tℎ 𝜂ℎ (𝑇))

1
2 and 𝜂 = (∑𝑇 ∈Tℎ 𝜂ℎ (𝑇))

1
2 . Numerical results

are shown in Table 1. In its last row, we compute effectivity index “eff” of 𝜂 (resp. 𝜂),
which is the algorithmic mean of 𝑒/𝜂 (resp. 𝑒/𝜂) over all grid levels. It is observed
that the performance of 𝜂 is uniformly effective for all 𝜀, 𝜅, while the efficiency of 𝜂
deteriorates for small 𝜀 and large 𝜅.
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Table 1: Convergence history of the lowest order edge element and error estimators

number 𝑒 𝜂 �̃� 𝑒 𝜂 �̃� 𝑒 𝜂 �̃�
of 𝜀 = 0.1 𝜀 = 0.1 𝜀 = 0.1 𝜀 = 10−3 𝜀 = 10−3 𝜀 = 10−3 𝜀 = 10−5 𝜀 = 10−5 𝜀 = 10−5

elements 𝜅 = 10 𝜅 = 10 𝜅 = 10 𝜅 = 103 𝜅 = 103 𝜅 = 103 𝜅 = 105 𝜅 = 105 𝜅 = 105

32 8.42e-1 3.72 3.94 8.24 3.72e+1 1.46e+3 8.24e+1 3.72e+2 1.46e+6
128 4.35e-1 2.04 2.04 4.30 2.04e+1 3.80e+2 4.30e+1 2.04e+2 3.80e+5
512 2.19e-1 1.04 1.04 2.18 1.06e+1 9.70e+1 2.18e+1 1.06e+2 9.64e+4
2048 1.10e-1 5.26e-1 5.26e-1 1.10 5.36 2.48e+1 1.10e+1 5.36e+1 2.42e+4
8192 5.49e-2 2.64e-1 2.64e-1 5.49e-1 2.69 6.61 5.49 2.69e+1 6.06e+3
eff N/A 2.13e-1 2.11e-1 N/A 2.09e-1 3.33e-2 N/A 2.09e-1 3.51e-4
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Convergence of Parareal for a Vibrating String
with Viscoelastic Damping

Martin J. Gander, Thibaut Lunet, and Aušra Pogoželskytė

1 Model equation for a vibrating string

We consider an elastic string of length 𝐿, attached at its two end points, vibrating
in a plane due to an initial deformation corresponding to a pinch in the middle, see
Figure 1. Its deformation is represented by a scalar function 𝑢(𝑥, 𝑡), with 𝑥 ∈ [0, 𝐿],
𝑡 ∈ [0, 𝑇], and 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0. This simple configuration is the basis for
more complex problems that can model guitar and piano strings (see, e.g., [6, 2]), or
similar musical instruments.
Generally, such a problem is modeled using the wave equation, possibly adding a

first order damping term to produce the so called Telegrapher’s equation,

𝜕𝑡𝑡𝑢(𝑥, 𝑡) = 𝑐2 𝜕𝑥𝑥𝑢(𝑥, 𝑡) − 𝑅 𝜕𝑡𝑢(𝑥, 𝑡) , (1)

with 𝑐 the wave velocity and 𝑅 a damping parameter; setting 𝑅 = 0 leads back to the
wave equation. The vibration period of the string is defined as

𝑇𝑊 := 2𝐿/𝑐 . (2)

0 L

Fig. 1: Vibrating string attached at its two end points, with initial deformation after being plucked.
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Fig. 2: Solution of the wave equation (A), the Telegrapher’s equation with 𝑅 = 1 (B), and the wave
equation with viscoelastic damping 𝛾 = 0.03 (C). The dashed line is the initial condition, 𝑢0, of all
the equations for reference. Left: 𝑡 = 9

8 𝑇𝑊 . Right: 𝑡 = 𝑇𝑊 .

Equation (1) does however not model the physical behavior of the string in Figure 1
accurately. To illustrate this, we show the numerical solution of (1) in Figure 2, at
time 𝑡 = 9

8 𝑇𝑊 (left), and 𝑡 = 𝑇𝑊 (right). Curve A represents the wave equation
solution (𝑅 = 0): the string forms a central, unphysical plateau during the oscillation
and comes back to the same plucked initial position after one oscillation (𝑡 = 𝑇𝑊 ).
Adding the damping term (𝑅 = 1, curveB) reduces the amplitude of the vibration, but
the shape still corresponds to the unphysical shape produced by the wave equation.
To correct this, we replace the damping term in (1) by a modified one,

𝜕𝑡𝑡𝑢(𝑥, 𝑡) = 𝑐2 𝜕𝑥𝑥𝑢(𝑥, 𝑡) + 𝛾 𝜕𝑡 𝑥𝑥𝑢(𝑥, 𝑡) , (3)

where 𝛾 is a different damping parameter. We call this the wave equation with
viscoelastic damping. A numerical solution of (3) is shown in Figure 2, curve C,
which now looks closer to what we would expect from physics. The viscoelastic
damping term in (3) is of prime importance when modeling string vibration. As
shown in [5], 𝑢(𝑥, 𝑡) is a linear combination of string modes1,

𝜉𝑛 (𝑥) := sin
( 𝜅𝜋𝑥
𝐿

)
, 𝜅 ∈ N∗ , (4)

with 𝜅 the mode number. In the physical world, when vibrating, eachmode is damped
at a different rate: high frequency modes (large 𝜅) are damped quickly while low
frequency modes (small 𝜅) persist longer. The viscoelastic term can model this
behaviour while the damping term in (1), also called fluid term2, introduces the
same damping for all modes.

1 Thosemodes are also the eigenfunctions of the one dimensional LaplacianwithDirichlet boundary
conditions.
2 Actually, a more accurate model for a vibrating guitar string in [6] considers both fluid and
viscoelastic terms. But for simplicity, we will consider here only the viscoelastic term.
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To do Fourier analysis, we take the initial condition to be a string mode (4). This
leads to a closed form solution of (3),

𝑢(𝑥, 𝑡) = 𝑒−𝜇𝜅 𝑡
[
cos(�̃�𝜅 𝑡) +

𝜔2
𝜅

2
sin(�̃�𝜅 𝑡)

]
sin

( 𝜅𝜋𝑥
𝐿

)
, (5)

with 𝜇𝜅 := 𝛾 𝜅
2 𝜋2

2𝐿2 , �̃�𝜅 := 𝜔𝜅

√︃
1 − (

𝜅 𝜋
2

𝛾
𝑐𝐿

)2 and 𝜔𝜅 := 𝑐 𝜅 𝜋𝐿 , provided the mode
number 𝜅 is low enough for the mode to still be oscillating. This is equivalent to the
discriminant when solving (3) being negative, which means

𝜔2
𝜅 <

4𝑐4

𝛾2 ⇐⇒ 𝜅 <
2
𝜋

𝑐𝐿

𝛾
=

2
𝜋
W, (6)

where we introducedW := 𝑐𝐿
𝛾 , which is the equivalent of a Reynolds (or Peclet)

number for advection. Indeed, equation (3) is purely hyperbolic whenW → +∞
(vibration with no damping) and purely parabolic when W → 0 (no vibration).
Furthermore, the number of vibrating modes is limited by the value ofW (see (6)).
For one given mode,W also defines, together with 𝑇𝑊 (see (2)), the lifespan of the
vibration

𝜏𝜅 :=
1
𝜇𝜅

=
W
𝜅2𝜋2𝑇𝑊 , (7)

which represents the time for the mode amplitude to be reduced to 36.8% = 𝑒−1 of
its initial value. AsW gets larger, 𝜏𝜅 increases, hence a numerical simulation may
require more time steps to keep a good accuracy (for a more complete investigation,
see Section 3). This can greatly increase computation time, so we now investigate
the possibility of using time parallelization to speedup computations.

2 The Parareal algorithm

Time parallel time integration received sustained attention over the last decades, for
a review, see [8]. Renewed interest in this area was sparked by the invention of the
Parareal algorithm [13] for solving initial value problems of the form

d𝒖
d𝑡

= L(𝒖(𝑡), 𝑡), 𝒖(0) = 𝒖0, 𝑡 ∈ [0, 𝑇] , (8)

with L : R𝑝 × R+ → R𝑝 , 𝒖(𝑡) ∈ R𝑝 , 𝒖0 ∈ R𝑝 , 𝑝 being the total number of
degrees of freedom, and 𝑇 a positive real value. Problem (8) often arises from the
spatial discretization of a (non-)linear system of partial differential equations (PDEs)
through the method-of-lines.
For Parareal, one decomposes the global time interval [0, 𝑇] into 𝑁 time

subintervals [𝑇𝑛−1, 𝑇𝑛] of size Δ𝑇 , 𝑛 = 1, . . . , 𝑁 , where 𝑁 is the number of processes
to be considered for the time parallelization. In the following, we denote by 𝑼𝑛 the
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approximation of 𝒖 at time 𝑇𝑛, i.e., 𝑼𝑛 ≈ 𝒖(𝑇𝑛). Let F 𝑛𝐹𝑇𝑛−1→𝑇𝑛 (𝑼𝑛−1) denote the
result of approximately integrating (8) on the time subinterval [𝑇𝑛−1, 𝑇𝑛] from a
given starting value 𝑼𝑛−1 using a fine propagator F and 𝑛𝐹 time steps (with time
step Δ𝑡𝐹 := (𝑇𝑛−1 −𝑇𝑛)/𝑛𝐹). Similarly, Parareal also needs a coarse propagator G
(using for example 𝑛𝐺 time steps), which has to be much cheaper than F resulting
in less accuracy (i.e. 𝑛𝐹 ≫ 𝑛𝐺).
The Parareal algorithm consists of a prediction step and a correction iteration.

In the prediction step, Parareal computes an initial guess for the starting values𝑼0
𝑛

at the beginning of each time subinterval using the coarse propagator,

𝑼0
0 = 𝒖0, 𝑼0

𝑛 = G𝑛𝐺𝑇𝑛−1→𝑇𝑛 (𝑼
0
𝑛−1), 𝑛 = 1, . . . , 𝑁 . (9)

A correction iteration is then applied in Parareal, using the fine propagator F on
each time subinterval concurrently,

𝑼𝑘𝑛 = F 𝑛𝐹𝑇𝑛−1→𝑇𝑛 (𝑼
𝑘−1
𝑛−1) + G𝑛𝐺𝑇𝑛−1→𝑇𝑛 (𝑼

𝑘
𝑛−1) − G𝑛𝐺𝑇𝑛−1→𝑇𝑛 (𝑼

𝑘−1
𝑛−1) , (10)

where 𝑼𝑘𝑛 denotes the approximation of 𝒖 at time 𝑇𝑛 at the 𝑘-th iteration of Para-
real (𝑘 = 1, . . . , 𝐾 , 𝑛 = 1, . . . , 𝑁). While the application of F can be performed
independently for each time subinterval, Parareal remains limited by the sequential
nature of the coarse integration performed by G𝑛𝐺𝑇𝑛−1→𝑇𝑛 in (10). Parareal will thus
reduce the total computational time compared to a direct time-serial integration only
if the application ofG is cheap enough and if the total number of Parareal iterations
𝐾 is small. A more complete description of parallel speedup for Parareal can be
found in [1].
While this algorithm works well for parabolic problems, it is known to struggle

when the problem of interest is close to hyperbolic (see, e.g., [16, 7, 15]). In our case,
this happens whenW becomes large in (3), similarly to what one obtains for the
Navier-Stokes equations, asW plays the same role as the Reynolds number. In the
latter case, keeping the same accuracy for the fine solver when the Reynolds number
increases is very important (c.f., [14, Sec. 3.5]), as the use of the fine solver with
incorrect mesh resolution can lead to a misinterpretation of Parareal convergence
results (see, e.g., [10, Sec. 4]). Hence in the next section, we investigate the accuracy
of our space time discretization and its link toW and other parameters.

3 Space mesh requirement for fixed error tolerance

We solve (3) numerically using a uniform spatial mesh with 𝑛𝑥 points (𝑥 𝑗 := 𝑗 Δ𝑥,
with Δ𝑥 := 𝐿

𝑛𝑥+1 ). Denoting by 𝑢 𝑗 (𝑡) ≈ 𝑢(𝑥 𝑗 , 𝑡) and ¤𝑢 𝑗 (𝑡) ≈ 𝜕𝑡𝑢(𝑥 𝑗 , 𝑡), we define

v(𝑡) := [𝑢1 (𝑡), ..., 𝑢𝑛𝑥 (𝑡), ¤𝑢1 (𝑡), ..., ¤𝑢𝑛𝑥 (𝑡)]⊤. (11)

We use second-order centered finite differences, which leads to a tridiagonal square
matrix 𝐴 of size 𝑛𝑥 . Applying the method-of-lines to (3) yields
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W 𝜅 = 1 𝜅 = 2 𝜅 = 4
𝑛𝑥 𝑛𝑡 𝜖 𝑛𝑥 𝑛𝑡 𝜖 𝑛𝑥 𝑛𝑡 𝜖

100 305 619 1.008% 432 219 1.007% 610 78 1.009%
1000 965 19555 1.012% 1365 6916 1.012% 1929 2444 1.014%
10000 3050 618060 1.015% 4314 218550 1.014% 6100 77258 1.014%

Table 1: Mesh resolution needed for one percent relative error when varying 𝑛𝑥 according toW
and 𝜅 , with 𝜎 = 10. The number of time steps 𝑛𝑡 is set to simulate [0, 𝑇 ] with 𝑇 ≈ 𝜏𝜅 .

𝑑v
𝑑𝑡

=

(
0 𝐼
𝑐2𝐴 𝛾𝐴

)
v = 𝐿v , (12)

with 𝐼 the identity matrix of size 𝑛𝑥 . For the time integration, we use a second
order SDIRK2 scheme, integrating up to 𝑇 = 𝜏𝜅 with 𝑛𝑡 time steps (𝑡𝑖 := 𝑖Δ𝑡 with
Δ𝑡 := 𝑇/𝑛𝑡 ). We keep a constant CFL number,

𝜎 :=
𝑐 Δ𝑡
Δ𝑥

= 10 . (13)

We define the relative numerical error as

𝜖 := max
𝑡 ∈{0,𝑡1 ,...,𝑡𝑛𝑡 }

u(𝑡) − utheory (𝑡)


2
∥u(0)∥2

, (14)

with u(𝑡) the part of v(𝑡) containing only 𝑢 values, and utheory (𝑡) the analytic solution
from (5) evaluated at the grid points 𝑥 𝑗 .
Looking at similar problems (e.g. advection-diffusion [9]), one can expect that

when we keep a fixed mesh resolution in space (and in time), the error increases
with 𝜅 andW. Hence, we assume that the minimal value of 𝑛𝑥 for which the error
𝜖 is lower than a given tolerance follows a law of the form

𝑛𝑥,min = 𝐶𝜅𝛼W𝛽 . (15)

We compute 𝑛𝑥,min for different values of 𝜅 andW using a trial and error procedure,
and then the parameters 𝐶, 𝛼 and 𝛽 are determined by least square regression.
Setting 𝜖 ≤ 0.01 (i.e., less than 1% error) with 𝜎 = 10, we find for our space time
discretization

𝑛𝑥,min ≈ 30.5
√
𝜅W . (16)

In Table 1, we use (16) to give the values (𝑛𝑥 , 𝜖) for several combinations of 𝜅 and
W, which confirms well our empirical law (16). Furthermore, we also indicate the
number of time steps 𝑛𝑡 required to compute the whole time interval [0, 𝜏𝜅 ] (i.e.,
the time period during which the mode vibrates, with 𝜏𝜅 defined in (7)). This shows
an important increase in the problem size withW, since generally 𝑛𝑡 ≫ 𝑛𝑥 , which
motivates time parallelization for such problems.
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Fig. 3: Convergence of Parareal for the wave equation with viscoelastic damping, using 𝑁 = 32
and 𝑚 = 8. Left: 𝜅 = 1, varyingW. Right:W = 1000, varying 𝜅 .

4 Numerical experiment with Parareal

We apply Parareal to the wave equation with viscoelastic damping (3), using 𝑁
processors. We use the same space-time discretization as in Section 3, such that 𝑛𝑥
and the time step Δ𝑡𝐹 of the fine solver are fully determined byW and the mode
number 𝜅 of the initial condition (4) (see Table 1). We denote by 𝑚 the ratio between
the coarse and the fine time step, i.e. 𝑚 = Δ𝑡𝐺/Δ𝑡𝐹 , and we set the number of time-
steps per time-interval for the coarse and fine solver (𝑛𝐹 and 𝑛𝐺) such that 𝑛𝐺 ≥ 1
and that the final time of simulation 𝑇 is close to 𝜏𝜅 . Finally we compute the error of
Parareal for each iteration as

𝐸 𝑘 := max
𝑛∈{1,...,𝑁 }

U𝑘
𝑛 − U𝐹𝑛


∥U0∥ , (17)

where U𝐹𝑛 is the solution at the end of each time sub-interval obtained by the fine
solver run sequentially.
In Figure 3, we plot the Parareal error at each iteration for different values of

the parameters 𝜅 andW. We observe two convergence dynamics: for the first few
iterations, the error decreases super-linearly and rapidly goes below the fine solver
accuracy of 1%, in around five iterations. Then, after about 10 iterations, divergence
sets in and a bump forms until the last iteration when Parareal must converge to
the fine solution after 𝑘 = 𝑁 iterations [11]. This bump is due to the amplification
of higher frequency modes in the Parareal iteration, and if Parareal is initialized
with a random initial guess, we get the grey dashed convergence (or more divergence)
curves in Figure 3, which shows how important the initialization here is and that
Parareal struggles to generically solve such close to being hyperbolic problems.
While this bump is not so much influenced by low initial modes 𝜅, it does increase
withW. Especially when 𝑁 gets large, this turns out to be problematic for larger
values ofW, i.e., when the problem becomes more hyperbolic, even with a good
coarse initial approximation, see Figure 4.
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Fig. 4: Influence of 𝑁 and the coarse solver’s phase error on Parareal convergence. Left:W =
1000, 𝑚 = 8, varying 𝑁 . Right: 𝑁 = 32, 𝑛𝐹 = 𝑛𝐺 , and larger damping parameter for coarse
solver, results from Figure 3 (left) in dotted lines andW is indicated for the fine solver.

A similar bump has been observed in [10] for the advection equation, and it is due
to the amplification of high frequency error components in the Parareal iteration
[10], because of the hyperbolic nature of advection: the Parareal correction step
amplifies these high frequencies, which are present even in a smooth low frequency
initial guess due to round-off error. The more processors one uses, the more these
high frequency components are amplified, and the higher the bump becomes, even
with a smooth low frequency initial guess. A theoretical way to avoid this problem is
to impose very high regularity [3]. A more practical way is to reduce the number of
processors 𝑁 in order to limit the amplification induced by the Parareal iterations.
For our problem, we show in Figure 4 (left) the impact of reducing 𝑁 , and as
expected, the bump is reduced and even disappears for low values of 𝑁 . However,
this limits the number of processors that can be used, and is thus also less useful in
practice for parallel computations.
It has been shown for advection in [15] that removing the phase error of the

coarse solver greatly improves convergence of Parareal. In order to simulate a
coarse solver almost free of phase error, we consider using the same space-time
discretization for both the coarse and fine solver, but with a larger damping parameter
for the coarse solver. This is not useful in practice either since it makes the coarse
solver as expensive as the fine solver (see [12] that can make using the same grids
practical), but gives us further theoretical insight. We set the ratio between the coarse
and fine damping parameter (around 5) such that the error between the two is equal to
the one obtained when Δ𝑡𝐺 = 𝑚 Δ𝑡𝐹 with 𝑚 = 8 (results in Figure 3 (left)). We plot
the convergence of Parareal in Figure 4 (right), and see that now the convergence
for the first iterations is slightly slower than in Figure 3, but the bump is no longer
present in the later iterations.
To conclude, we have shown that under the condition that the fine solver has

a sufficient mesh accuracy for the problem considered (determined by 𝜅 andW),
Pararealwith a smooth low frequency initial guess obtained from the coarse solver
converges for the first few iterations when applied to low frequency modes, which
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have the longest vibration time (see (7)). However divergence occurs afterward, due to
the amplification of higher frequencymodes by the Parareal iteration.We have then
shown that removing the phase error between the coarse and fine solver can improve
Parareal convergence. Designing inexpensive coarse solvers for hyperbolic-type
problems that do not produce phase error with the fine solver may allow Parareal
to become more efficient for such problems: for direct constructions using dispersion
correction for the advection equation in 1D, see [4], and for a rapid coarse solver
based on the same mesh as the fine solver but solved by diagonalization for general
hyperbolic problems, see [12].
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Consistent and Asymptotic-Preserving
Finite-Volume Robin Transmission Conditions
for Singularly Perturbed Elliptic Equations

Martin J. Gander, Stephan B. Lunowa, and Christian Rohde

1 Introduction

Adaptive Dirichlet-Neumann and Robin-Neumann algorithms for singularly-
perturbed advection-diffusion equations were introduced in [2], accounting for trans-
port along characteristics, see also [6] for the discrete setting and damped versions
using a modified quadrature rule to recover the hyperbolic limit. Non-overlapping
Schwarz DDMs with Robin transmission conditions (TCs) applied to advection-
diffusion equations were analyzed in [10, 1] and a stabilized finite-element method
for singularly perturbed problems was discussed in [9], see also [3, 4] and references
therein for heterogeneous couplings. However, the behavior of these DDMs in the
limit of vanishing diffusion has not been addressed.
Our goal is to develop finite volume Robin TCs such that the associated non-

overlapping DDM is consistent and asymptotic-preserving (AP). Consistent here
means that, for fixed mesh size, the discrete DDM iterates converge to the discrete
solution on the entire domain, and AP means that the singular limit in the DDM
yields a convergent limit DDM (for more on AP, see e.g. [7]). We first show that the
continuous DDM is only AP under a strict condition on the Robin transmission pa-
rameter, see Theorem 1. In contrast, our new discrete DDM is AP without restriction
on this parameter, see Theorem 3, and fast convergence is automatically recovered
in the hyperbolic limit. While our analysis is in 1D, we show numerical experiments
also in 2D; for the nonlinear space-time case with triangular meshes, see [5].
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2 The continuous problem and non-overlapping DDM

We consider for 𝜈 ≥ 0, 𝑎 > 0 and 𝑓 ∈ 𝐿2 (−1, 1) the stationary advection-diffusion
equation with homogeneous Dirichlet boundary conditions, i.e.,

L(𝑢) := 𝜈𝜕𝑥𝑥𝑢 − 𝑎𝜕𝑥𝑢 = 𝑓 in Ω := (−1, 1), 𝑢(−1) = 0 , 𝜈𝑢(1) = 0 . (1)

In the singular limit 𝜈 = 0, the PDE in (1) becomes (trivially) advective, and the
boundary condition collapses into the inflow condition 𝑢(−1) = 0 only. It is easy to
see that there exists a unique weak solution 𝑢 ∈ 𝐻1 (−1, 1) of (1) for 𝜈 ≥ 0.
We apply a non-overlapping DDM with two sub-domains Ω1 = (−1, 0) and

Ω2 = (0, 1) to (1). The problem (1) is then rewritten using at 𝑥 = 0 the Robin TCs

B1 (𝑢) = 𝜈𝜕𝑥𝑢 − 𝑎𝑢 + 𝜆𝑢 , B2 (𝑢) = −𝜈𝜕𝑥𝑢 + 𝑎𝑢 + 𝜆𝑢 , 𝜆 > 0 . (2)

Definition 1 (Continuous DDM) Let 𝑢0
2 ∈ 𝐻1 (Ω2). For 𝑛 ∈ IN, the 𝑛-th (continu-

ous) DDM-iterate (𝑢𝑛1 , 𝑢𝑛2 ) ∈ 𝐻1 (Ω1) × 𝐻1 (Ω2) is given as solution of

𝜈𝜕𝑥𝑥𝑢
𝑛
𝑗 − 𝑎𝜕𝑥𝑢𝑛𝑗 = 𝑓 in Ω 𝑗 , 𝑗 = 1, 2 , (3)

𝑢𝑛1 (−1) = 0 , 𝜈𝑢𝑛2 (1) = 0 , (4)
𝜈B1 (𝑢𝑛1 ) = 𝜈B1 (𝑢𝑛−1

2 ) , B2 (𝑢𝑛2 ) = B2 (𝑢𝑛1 ) at 𝑥 = 0 . (5)

Note that (3)-(5) is equivalent to (1) in the limit 𝑛→∞. In the limit when 𝜈 → 0,
we get the stationary advection equation, and the two Robin TCs (5) degenerate into
one Dirichlet TC. Note that the multiplication of B1 by 𝜈 is necessary to remove the
TC in the limit 𝜈 → 0. The errors 𝑒𝑛𝑗 := 𝑢 |Ω 𝑗 − 𝑢𝑛𝑗 satisfy (3)-(5) with 𝑓 ≡ 0 due to
linearity. Therefore, we have by direct solution

𝑒𝑛1 (𝑥) = 𝐴𝑛1 (e𝑎𝑥/𝜈 − e−𝑎/𝜈) , 𝑒𝑛2 (𝑥) = 𝐴𝑛2 (1 − e𝑎 (𝑥−1)/𝜈) if 𝜈 > 0 ,
𝑒𝑛1 ≡ 0 , 𝑒𝑛2 ≡ 0 if 𝜈 = 0 ,

where 𝐴𝑛1 , 𝐴
𝑛
2 ∈ IR satisfy the recurrence relations

𝐴𝑛1 = −𝑎+𝜆(1−e−𝑎/𝜈)
𝑎e−𝑎/𝜈+𝜆(1−e−𝑎/𝜈) 𝐴

𝑛−1
2 , 𝐴𝑛2 = −𝑎e−𝑎/𝜈+𝜆(1−e−𝑎/𝜈)

𝑎+𝜆(1−e−𝑎/𝜈) 𝐴𝑛1 .

This yields the following convergence result.
Theorem 1 (Convergence and AP property of the continuous DDM)

The sequence of continuous DDM-iterates {(𝑢𝑛1 , 𝑢𝑛2 )}𝑛∈IN converges pointwise to
(𝑢 |Ω1 , 𝑢 |Ω2 ). For 𝜈 > 0, the convergence is linear with convergence factor

𝜌 =

���� (𝑎 − 𝜆) + 𝜆e−𝑎/𝜈

(𝑎 + 𝜆) − 𝜆e−𝑎/𝜈

����
����𝜆 − (𝑎 + 𝜆)e−𝑎/𝜈𝜆 + (𝑎 − 𝜆)e−𝑎/𝜈

���� < 1 . (6)

Convergence in one iteration is achieved iff 𝜆 = 𝑎
1−e−𝑎/𝜈 or in the case 𝜈 = 0.

The continuous DDM (3)-(5) is AP if 𝜆 = 𝜆(𝜈) satisfies |𝜆 − 𝑎 | = 𝑜(1) as 𝜈 → 0.
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3 Cell-centered finite volume discretization

We discretize (1) and (3)-(5) by a cell-centered finite volume method. For given
𝐼 ∈ IN, let the step-width be ℎ := 1/𝐼 and the volumes 𝑉𝑖 := [𝑖ℎ, (𝑖 + 1)ℎ] for
−𝐼 ≤ 𝑖 < 𝐼 be given. Furthermore, define 𝑓𝑖 :=

∫
𝑉𝑖
𝑓 (𝑥) 𝑑𝑥. We denote the constant,

cell-centered approximation of 𝑢 in 𝑉𝑖 by 𝑢𝑖 , and encapsulate these for all 𝑉𝑖 in the
vector 𝒖 := (𝑢𝑖)𝐼−1

𝑖=−𝐼 ∈ IR2𝐼 . Using centered differences for the diffusion and upwind
fluxes for the advection, the discrete version of problem (1) reads

𝜈
ℎ (𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1) + 𝑎(𝑢𝑖−1 − 𝑢𝑖) = 𝑓𝑖 for −𝐼 < 𝑖 < 𝐼 − 1, (7)

𝜈
ℎ (−3𝑢−𝐼 + 𝑢−𝐼+1) − 2𝑎𝑢−𝐼 = 𝑓−𝐼 , (8)

𝜈
ℎ (𝑢𝐼−2 − 3𝑢𝐼−1) + 𝑎(𝑢𝐼−2 − 𝑢𝐼−1) = 𝑓𝐼−1 . (9)

Here, we eliminated the ghost values 𝑢−𝐼−1 and 𝑢𝐼 using a linear interpolation of the
boundary conditions. Analogously, one obtains the discrete version of (3) and (4),
while (5) becomes

𝐵1 (𝒖𝑛1 ) = 𝐵1 (𝒖𝑛−1
2 ) , 𝐵2 (𝒖𝑛2 ) = 𝐵2 (𝒖𝑛1 ) . (10)

It remains to discretize the TC (2) to obtain 𝐵1, 𝐵2, and then to eliminate the ghost
values 𝑢1,0 and 𝑢2,−1. For this, we use centered differences for the diffusion and
linear combinations of the values in 𝑉−1 and 𝑉0 for the other terms to obtain

𝐵1 (𝒖) = 𝜈
ℎ (𝑢0 − 𝑢−1) − 𝑎((1 − 𝛼1)𝑢−1 + 𝛼1𝑢0) + 𝜆((1 − 𝛽1)𝑢−1 + 𝛽1𝑢0) , (11)

𝐵2 (𝒖) = − 𝜈ℎ (𝑢0 − 𝑢−1) + 𝑎((1 − 𝛼2)𝑢−1 + 𝛼2𝑢0) + 𝜆((1 − 𝛽2)𝑢−1 + 𝛽2𝑢0) , (12)

for some 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ [0, 1]. Note that 𝛼 𝑗 = 𝛽 𝑗 = 0, 𝑗 = 1, 2, is an upwind
discretization, while the centered choice 𝛼 𝑗 = 𝛽 𝑗 = 1/2, 𝑗 = 1, 2, is typically used
in the diffusion-dominated case 𝜈 ≫ 𝑎 to obtain second-order convergence in ℎ.
To eliminate the ghost values 𝑢1,0 and 𝑢2,−1 in (7), we solve (11) for 𝑢0 and (12)

for 𝑢−1. To eliminate 𝑢2,−1 in (11) and 𝑢1,0 in (12), we solve (7) for 𝑢1,0 and 𝑢2,−1.
Inserting the resulting expressions and using (10), we obtain the following discrete
DDM iteration.

Definition 2 (Discrete DDM)
For given 𝒖0

2 ∈ IR𝐼 , let �̃�1 (𝒖0
2) := 𝜈𝐵1 (𝒖0

2)
𝜈−𝑎ℎ𝛼1+𝜆ℎ𝛽1

. For 𝑛 ∈ IN, the 𝑛-th discrete
DDM-iterate (𝒖𝑛1 , 𝒖𝑛2 ) ∈ (IR𝐼 )

2 satisfies

𝜈
ℎ (𝑢𝑛𝑗,𝑖−1 − 2𝑢𝑛𝑗,𝑖 + 𝑢𝑛𝑗,𝑖+1) + 𝑎(𝑢𝑛𝑗,𝑖−1 − 𝑢𝑛𝑗,𝑖) = 𝑓𝑖 , (13)

for 𝑗 = 1, −𝐼 < 𝑖 < −1 and for 𝑗 = 2, 0 < 𝑖 < 𝐼 − 1,

𝜈
ℎ (−3𝑢𝑛1,−𝐼 + 𝑢𝑛1,−𝐼+1) − 2𝑎𝑢𝑛1,−𝐼 = 𝑓−𝐼 , (14)

𝜈
ℎ (𝑢𝑛2,𝐼−2 − 3𝑢𝑛2,𝐼−1) + 𝑎(𝑢𝑛2,𝐼−2 − 𝑢𝑛2,𝐼−1) = 𝑓𝐼−1 , (15)
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𝜈
ℎ

(
𝑢𝑛1,−2 − 2𝑢𝑛1,−1

) + 𝑎(𝑢𝑛1,−2 − 𝑢𝑛1,−1) + 𝜈ℎ 𝑐1𝑢
𝑛
1,−1 = 𝑓−1 − �̃�1 (𝒖𝑛−1

2 ) , (16)
𝜈
ℎ

( − 2𝑢𝑛2,0 + 𝑢𝑛2,1
) − 𝑎𝑢𝑛2,0 + (

𝜈
ℎ + 𝑎

)
𝑐2𝑢

𝑛
2,0 = 𝑓0 − �̃�2 (𝒖𝑛1 ) , (17)

where

�̃�1 (𝒖𝑛2 ) = 𝜈
ℎ𝑢
𝑛
2,0 − 𝜈

𝜈+𝑎ℎ 𝑐1
(
𝑓0 − 𝜈

ℎ (−2𝑢𝑛2,0 + 𝑢𝑛2,1) + 𝑎𝑢𝑛2,0
)
, (18)

�̃�2 (𝒖𝑛1 ) =
(
𝜈
ℎ +𝑎

)
𝑢𝑛1,−1 − 𝜈+𝑎ℎ

𝜈 𝑐2
(
𝑓−1 − 𝜈

ℎ (𝑢𝑛1,−2−2𝑢𝑛1,−1) − 𝑎(𝑢𝑛1,−2−𝑢𝑛1,−1)
)
, (19)

𝑐1 =
𝜈
ℎ +𝑎 (1−𝛼1)−𝜆(1−𝛽1)

𝜈
ℎ−𝑎𝛼1+𝜆𝛽1

, 𝑐2 =
𝜈
ℎ−𝑎𝛼2−𝜆𝛽2

𝜈
ℎ +𝑎 (1−𝛼2)+𝜆(1−𝛽2)

. (20)

Note that (13)-(19) is uniquely solvable for all 𝜈 ≥ 0 iff 𝑐1 = O(1/𝜈) and 𝑐2 = O(𝜈)
as 𝜈 → 0. The resulting systemmatrix for 𝒖𝑛2 is weakly chained diagonally dominant,
and thus non-singular. The same holds for 𝒖𝑛1 if 𝑐1 ≤ 1. Further note that �̃�1 and �̃�2 in
(16)-(19) are discrete Robin-to-Dirichlet operators, so that 𝑐1 = 𝑐2 = 0 corresponds
to Dirichlet TCs, which do not lead to convergence without overlap.
We next investigate how the coefficients 𝛼 𝑗 , 𝛽 𝑗 , 𝑗 = 1, 2, must be chosen to obtain

a discrete DDM that is consistent with (7)-(9). Since the discretization (13)-(15) is
the same as (7)-(9), consistency follows iff the solution to (16)-(19) in the limit when
𝑛→∞ satisfies (7) and vice versa. The solution 𝒖 of (7)-(9) solves (16)-(19), as can
be directly seen when inserting it into (16)-(19) using (7) for 𝑖 = −1, 0. This only
requires that 𝜈𝑐1 and 𝑐2/𝜈 are well-defined for all 𝜈 ≥ 0 and all 𝜆 > 0. On the other
hand, combining (16) and (18) as well as (17) and (19) yields

𝜈
ℎ (𝑢1,−2 − 2𝑢1,−1 + 𝑢2,0) + 𝑎(𝑢1,−2 − 𝑢1,−1)

= 𝑓−1 + 𝜈
𝜈+𝑎ℎ 𝑐1

(
𝑓0 − 𝜈

ℎ (𝑢1,−1 − 2𝑢2,0 + 𝑢2,1) − 𝑎(𝑢1,−1 − 𝑢2,0)
)
,

𝜈
ℎ (𝑢1,−1 − 2𝑢2,0 + 𝑢2,1) + 𝑎(𝑢1,−1 − 𝑢2,0)

= 𝑓0 + 𝜈+𝑎ℎ𝜈 𝑐2
(
𝑓−1 − 𝜈

ℎ (𝑢1,−2 − 2𝑢1,−1 + 𝑢2,0) − 𝑎(𝑢1,−2 − 𝑢1,−1)
)
.

We obtain equivalence with (7) iff 1 ≠ 𝑐1𝑐2. Hence, we have proved the following
theorem which provides choices for the TC parameters 𝛼1, 𝛼2, 𝛽1, 𝛽2 that ensure
consistency for all 𝜆 > 0 and 𝜈 ≥ 0.

Theorem 2 (Consistency of the discrete DDM)
The limit of the discrete DDM iterates (13)-(19) as 𝑛→∞ is equal to the solution

of (7)-(9) for all 𝜆 > 0 if the following conditions hold:
(A1) 𝛼1 <

𝜈
𝑎ℎ (or equal if 𝛽1 > 0), and

(A2) 𝜈𝑐1 = O(1) as 𝜈 → 0 , i.e. by (A1), 𝜈 = O(𝜈 − 𝑎ℎ𝛼1 + 𝜆ℎ𝛽1) , and
(A3) 𝑐2 = O(𝜈) as 𝜈 → 0 , i.e., 𝛼2 + 𝛽2 = O(𝜈) , and
(A4) 𝑐1𝑐2 ≠ 1, i.e.,

0 ≠ 𝑎2 (𝛼2 − 𝛼1) + 𝜆
( 2𝜈
ℎ + 𝑎(𝛽1 + 𝛽2 − 𝛼1 − 𝛼2)

) + 𝜆2 (𝛽1 − 𝛽2) .

Remark 1 Note that the simplest choice of the coefficients, which satisfies Theorem 2
is 𝛼1 = 𝛼2 = 𝛽2 = 0 and 𝛽1 = 1/2. As shown below, this also yields convergence
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for any positive discrete Peclet number Pe := 𝑎ℎ/𝜈 > 0. Furthermore, this choice
ensures that the discrete DDM is AP as 𝜈 → 0 for any 𝜆 > 0, as we show next.

We split the convergence analysis of the discrete DDM into two regimes due to
the different types of solutions: the elliptic case 𝜈 > 0 and the singular limit 𝜈 = 0.
For this, let 𝒆𝑛 := 𝒖 − (𝒖𝑛1 , 𝒖𝑛2 ) be the error of the discrete DDM at iteration 𝑛. By
linearity, 𝒆𝑛 satisfies the discrete DDM (13)-(19) with 𝒇 = 0.

The elliptic case 𝜈 > 0 : Then, (13)-(15) for 𝒆𝑛 yield the solution

𝒆𝑛 =
(
𝐴𝑛1

(
𝜉 (𝑖+1)ℎ − (

1 + Pe
2
)
𝜉−1)−1

𝑖=−𝐼 , 𝐴
𝑛
2
(
1 + Pe

2 − 𝜉 (𝑖+1)ℎ−1) 𝐼−1
𝑖=0

)
,

where we defined 𝜉 := (1 + Pe)𝐼 . The constants 𝐴𝑛1 , 𝐴𝑛2 ∈ IR are determined by
(16)-(19), which yield the recurrence relations

𝐴𝑛1 = − 𝜆−𝑎+
(
𝑎𝛼1−𝜆(Pe−1+𝛽1)

) 2Pe
2+Pe 𝜉

−1(
𝑎𝛼1−𝜆(Pe−1+𝛽1)

) 2Pe
2+Pe+(𝜆−𝑎) 𝜉−1

𝐴𝑛−1
2 , 𝐴𝑛2 =

𝑎𝛼2+𝜆(Pe−1+𝛽2)−(𝜆+𝑎) 2+Pe
2Pe 𝜉−1

(𝜆+𝑎) 2+Pe
2Pe −

(
𝑎𝛼2+𝜆(Pe−1+𝛽2)

)
𝜉−1

𝐴𝑛1 .

Therefore, the iteration is linearly convergent iff

𝜌 =

�����
𝜆 − 𝑎 + (

𝑎𝛼1 − 𝜆(Pe−1 + 𝛽1)
) 2Pe

2+Pe𝜉
−1

𝜆 + 𝑎 − (
𝑎𝛼2 + 𝜆(Pe−1 + 𝛽2)

) 2Pe
2+Pe𝜉

−1

�����
�����
𝑎𝛼2 + 𝜆(Pe−1 + 𝛽2) − (𝜆 + 𝑎) 2+Pe

2Pe 𝜉
−1

𝑎𝛼1 − 𝜆(Pe−1 + 𝛽1) + (𝜆 − 𝑎) 2+Pe
2Pe 𝜉

−1

����� < 1 . (21)

Note that convergence in one iteration is possible for the choice

𝜆 = 𝜆opt :=
2𝜈 + 𝑎ℎ − 2𝛼1𝑎ℎ𝜉

−1

2𝜈 + 𝑎ℎ − 2 (𝜈 + 𝛽1𝑎ℎ) 𝜉−1 𝑎
ℎ→0−→ 𝑎

1 − 𝑒−𝑎/𝜈 , (22)

which is almost mesh independent when 𝛼1 = 0 and 𝛽1 = 1/2. This is consistent
with the continuous DDM and also yields 𝜆opt → 𝑎 as 𝜈 → 0.
Furthermore, note that (21) for 𝛼1 = 𝛼2 = 0 and 𝛽1 = 𝛽2 = 1/2 is satisfied for

all 𝜆 > 0. But 𝛽2 = 1/2 does not satisfy (A3) of Theorem 2, so that �̃�2 (and thus
𝜌) degenerate when 𝜈 → 0. However, choosing 𝛼1 = 𝛼2 = 𝛽2 = 0 and 𝛽1 = 1/2,
Theorem 2 is satisfied for all 𝜈 > 0, and (21) is satisfied for all 𝜆 > 0 due to Pe > 0.

The singular limit 𝜈 = 0 : Then, (13)-(15) for 𝒆𝑛 yields

𝒆𝑛 =
(
(0)−2

𝑖=−𝐼 , 𝐴
𝑛
1 , (𝐴𝑛2 )𝐼−1

𝑖=0

)
,

with 𝐴𝑛1 , 𝐴
𝑛
2 ∈ IR determined by (16)-(19). To obtain 𝐴1

1 = 0, i.e., the correct solution
in Ω1, this requires by (16)

0 = 𝐴1
1 = −�̃�1 (𝒆0)

𝜈
ℎ 𝑐1−𝑎

, �̃�1 (𝒆0) = 𝜈𝐵1 (𝒆0)
𝜈−𝑎ℎ𝛼1+𝜆ℎ𝛽1

.

Since 𝜈𝑐1 = O(1) as 𝜈 → 0 by (A2), this holds iff lim𝜈→0 𝜈𝑐1 ≠ 𝑎ℎ and
lim𝜈→0 𝜈/(𝜈 − 𝑎ℎ𝛼1 + 𝜆ℎ𝛽1) = 0. Using (A1) of Theorem 2, this simplifies to
𝜈/𝛽1 = 𝑜(1) as 𝜈 → 0 and implies 𝑐1 = 𝑜(1). For 𝐴1

2, we then obtain by (17)-(19)
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and (A3) that 𝐴1
2 = 0, i.e., convergence in one iteration. Then, 𝐴𝑛1 = 𝐴𝑛2 = 0 for all

𝑛 > 2 follows by induction using (16)-(19).
Summarizing the above analysis, we obtain the following result.

Theorem 3 (Convergence and AP property of the discrete DDM)
Let (A1)-(A4) from Theorem 2 be satisfied. The sequence of discrete DDM iterates

{(𝒖𝑛1 , 𝒖𝑛2 )}𝑛∈IN from (13)-(19) converges linearly to the solution of (7)-(9) for 𝜈 > 0
iff (21) is satisfied.
Convergence in one iteration is achieved if 𝜆 satisfies (22) or for 𝜈 = 0 if the limit
discrete DDM for 𝜈/𝛽1 = 𝑜(1) as 𝜈 → 0 is used.
The discrete DDM (13)-(19) is AP if |𝜆 − 𝑎 | = 𝑜(1) or 𝜈/𝛽1 = 𝑜(1) as 𝜈 → 0.

Note that as shown above, the choice 𝛼1 = 𝛼2 = 0 and 𝛽1 = 𝛽2 = 1/2 yields linear
convergence for 𝜈 > 0, but the convergence rate degenerates for 𝜈 → 0. The choice
𝛼1 = 𝛼2 = 𝛽2 = 0 and 𝛽1 = 1/2 leads to linear convergence for 𝜈 > 0 uniformly in 𝜈
with 1-step convergence for 𝜈 = 0, and thus is AP.

Remark 2 (Convergence order and mass conservation)As the iterates of the discrete
DDM converge to the solution of (7)-(9), which is a first-order convergent finite
volume method (uniform in 𝜈 and 𝑎), the same holds for the discrete DDM at con-
vergence (and before as soon as 𝒆𝑛 = O(ℎ)). Furthermore, the finite volume method
is locally mass conservative, such that mass conservation holds in each subdomain
of the discrete DDM. At the interface between the subdomains, mass conservation
is ensured at convergence, since the discrete DDM recovers the (implicit) mono-
domain finite volume formulation. In contrast, methods based on an explicit splitting
at the interface (see e.g. [11, 8]) directly ensure mass conservation, but require the
usual time-step restriction of CFL-type when the diffusion vanishes (𝜈 → 0).

4 Numerical examples

We now study numerically the convergence properties of the discrete DDM as 𝜈 → 0
for various choices of the parameters in the discrete Robin TCs. Since 𝛼 𝑗 = O(𝜈),
𝑗 = 1, 2, is required for convergence, we restrict our study to 𝛼1 = 𝛼2 = 0 and vary
only 𝛽1, 𝛽2 and 𝜆. We consider (1) for 𝑓 (𝑥) = −𝜈(𝑘𝜋)2 sin(𝑘𝜋𝑥) − 𝑎𝑘𝜋 cos(𝑘𝜋𝑥),
which leads to the exact solution 𝑢(𝑥) = sin(𝑘𝜋𝑥). We fix 𝑎 = 1, 𝑘 = 3, 𝐵1 (𝑢0

2) = 1
and 𝐼 = 100, and study the number of iterations required to reach an error of
∥𝒆𝑛∥∞ < 10−12, see Fig. 1, both for experiments in 1D and 2D. As discussed
above, the choice 𝛽1 = 𝛽2 = 1/2 leads to a degeneration as 𝜈 → 0, while the choice
𝛽1 = 𝛽2 = min(1/2, 𝜈/(𝑎ℎ)) yields linear convergence, but is only AP for 𝜆→ 𝑎. As
predicted by Theorem 3, the convergence improves for all choices such that 𝜈/𝛽1 =
𝑜(1) and 𝛽2 = O(𝜈) as 𝜈 → 0. In particular, the number of iterations decreases
faster when 𝛽1 is large, which illustrates well the convergence factor 𝜌 in (21), which
satisfies 𝜌 = |𝜆−𝑎 |

𝜆+𝑎 O
(

𝜈
𝜈+𝛽1

)
+ O (

𝜈𝐼−1) . Note that the finite volume method permits
a straightforward extension of the discrete DDM to higher dimensions. For our 2D
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Fig. 1: Number of iterations for various 𝛽1 and 𝛽2 in 1D (top 6 panels) and 2D (bottom 6 panels).

example with equidistant rectangular mesh, the two-point fluxes across the edges on
the interface between the subdomains can be constructed exactly as in 1D based on
the TCs and ghost values. This leads to the 2D results in Fig. 1 for 𝜈Δ𝑢−∇ · 𝑢 = 𝑓 in
(−1, 1) × (0, 1), 𝑢(−1, 𝑦) = 𝑢(𝑥, 0) = 0, 𝜈𝑢(1, 𝑦) = 𝜈𝑢(𝑥, 1) = 0 for 𝑓 chosen such
that the exact solution is 𝑢(𝑥, 𝑦) = sin(3𝜋𝑥) sin(3𝜋𝑦). The technique developped here
also works for non-linear time dependent advection-diffusion problems on triangular
meshes, see [5].
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5 Conclusion

The continuous non-overlapping DDM with Robin TCs applied to singularly-
perturbed advection-diffusion problems is AP only when the transmission parameter
𝜆 tends to the advection speed as 𝜈 → 0. We showed that a much better result can
be obtained for a discrete DDM based on a cell-centered finite volume method: in
contrast to the continuous algorithm, a proper, but asymmetric choice of the discrete
parameters (𝛼 𝑗 , 𝛽 𝑗 , 𝑗 = 1, 2) in the Robin TCs yields the AP property without any
restriction on the transmission parameter 𝜆. We illustrated the theoretical results by
numerical examples in one and two spatial dimensions, see also the forthcoming
work [5] where we show how the present techniques can be used for robust DDMs
for nonlinear advection-diffusion equations in space-time on triangular meshes.
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Adaptive Schwarz Method for Crouzeix-Raviart
Multiscale Problems in 2D

Leszek Marcinkowski∗1, Talal Rahman2, and Ali Khademi2

1 Introduction

In modeling real physical phenomena, we quite often see a heterogeneity of coef-
ficients, e.g., in some ground flow problems in heterogeneous media. After apply-
ing a discretization method to the differential equations which model our physical
phenomenon, e.g., a finite element method, we obtain a discrete problem which is
usually very hard to solve by the standard preconditioned iterative methods, like, e.g.,
preconditioned CG (PCG) or preconditioned GMRES methods. A popular way of
constructing parallel preconditioners is to use the Domain Decomposition Methods
(DDMs) approach, in particular Schwarz methods, cf. e.g., [14]. In DDMs, it is very
important to construct carefully coarse spaces. The overlapping and non-overlapping
Schwarz methods were proposed over thirty years ago, and are extensively developed
and analyzed, cf. [14] for overviews. The average Schwarz method was proposed in
[2], cf. also [1, 12, 6, 10]. It is a non-overlapping Schwarz method with a very simple
coarse space. This class of DDMs, along with other ’classical’ DDMs constructed
in the 1990s and 2000s, are well suited for the problems with coefficients that are
constant or slightly varying in subdomains. However, when the coefficients may
be highly varying and discontinuous almost everywhere, those ’classical’ methods
are not efficient. That’s why many researchers start to look for new adaptive coarse
spaces which are independent or robust for the jumps of the coefficients, i.e., the
convergence of the constructed DDM is independent of the distribution and the
magnitude of the coefficients of the original problem. We refer to [8], [13] and the
references therein for similar earlier works on domain decomposition methods that
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used adaptivity in the construction of the coarse spaces. In recent years there are
many novel works in this direction cf. e.g., [5, 7, 9, 8, 11, 4] and many others.
In our paper, we consider the nonconforming Crouzeix-Raviart element dis-

cretization, also called the nonconforming 𝑃1 element discretizationand then con-
struct an average Schwarz method with an adaptive coarse space. We extend the
results from [10] when the conforming 𝑃1 element is considered to the case of the
average Schwarz method for CR non-conforming discretization applied to highly
heterogeneous coefficients.

2 Discrete Problem

Let consider the following elliptic second order boundary value problem in 2D: Find
𝑢∗ ∈ 𝐻1

0 (Ω) ∫
Ω
𝛼(𝑥)∇𝑢∗∇𝑣 𝑑𝑥 =

∫
Ω
𝑓 𝑣 𝑑𝑥, ∀𝑣 ∈ 𝐻1

0 (Ω), (1)

whereΩ is a polygonal domain in R2, 𝛼(𝑥) ≥ 𝛼0 > 0 is a coefficient, 𝛼0 is a positive
constant, and 𝑓 ∈ 𝐿2 (Ω).
We introduce Tℎ = {𝐾} as the quasi-uniform triangulation of Ω consisting of

opened triangles such that Ω̄ =
⋃
𝐾 ∈Tℎ 𝐾 . Further, ℎ𝐾 denotes the diameter of 𝐾 ,

and let ℎ = max𝐾 ∈Tℎ ℎ𝐾 be the mesh parameter for the triangulation.
Let consider a coarse non-overlapping partitioning of Ω into the open, connected

Lipschitz polygonal subdomains Ω𝑖 , called substructures or subdomains, such that
Ω =

⋃𝑁
𝑖=1 Ω𝑖 .

We also assume that those substructures are aligned with the fine triangulation,
i.e., any fine triangle 𝐾 of Tℎ is contained in one substructure. Thus each substructure

Ω

Ω

i

j

Γij

Fig. 1: An example of a coarse partition of Ω, where Γ𝑖 𝑗 is an interface.

Ω 𝑗 has its local triangulation 𝑇ℎ (Ω 𝑗 ) of triangles from 𝑇ℎ which are contained in
Ω 𝑗 . For the simplicity of presentation, we further assume that these substructures
form a coarse triangulation of the domain which is shape regular in the sense of [3]
and let 𝐻 = max 𝑗 diam(Ω 𝑗 ) be its coarse parameter.
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We denote Ω𝐶𝑅ℎ , 𝜕Ω
𝐶𝑅
ℎ , Ω

𝐶𝑅
𝑖,ℎ , 𝜕Ω

𝐶𝑅
𝑖,ℎ , and Γ𝐶𝑅𝑖 𝑗,ℎ the sets of midpoints of fine

edges of the elements of Tℎ, contained in Ω, 𝜕Ω, Ω𝑖 , 𝜕Ω𝑖 , and Γ𝑖 𝑗 (the interface
between Ω𝑖 and Ω 𝑗 , see e.g., Figure 1), respectively. We call those sets the CR
(Crouzeix-Raviart) nodal points of the respective sets.
Further, let us define the discrete space 𝑆ℎ = 𝑆ℎ (Ω) as the standard non-

conforming Crouzeix-Raviart linear finite element space defined on the triangulation
Tℎ,

𝑆ℎ (Ω) := {𝑢 ∈ 𝐿2 (Ω) : 𝑢 |𝐾 ∈ 𝑃1, 𝐾 ∈ Tℎ, 𝑢 − continuous
at CR nodal points and 𝑢(𝑥) = 0, 𝑥 ∈ 𝜕Ω𝐶𝑅ℎ }.

The degrees of freedom of a CR function on a fine triangle 𝐾 are the values at the
midpoints of its edges, cf. Figure 2.
Note that a function in 𝑆ℎ is multivalued on boundaries of all fine triangles of Tℎ

except the midpoints of the edges (CR nodal points). Thus 𝑆ℎ ⊄ 𝐻1
0 (Ω) as a space

of discontinuous functions. 𝑆ℎ is only a subspace of 𝐿2 (Ω).

Fig. 2: The CR nodal points, i.e., the degrees of freedom of the Crouzeix-Raviart finite element
space on a fine triangle.

We also introduce the local discrete space 𝑆𝑖 as the subspace of 𝑆ℎ formed by
all functions of 𝑆ℎ which are zeros at all CR nodal points which are NOT in Ω𝐶𝑅𝑖 ,
or equivalently, formed by functions which are restricted to Ω𝑖 , are zero on 𝜕Ω𝐶𝑅𝑖,ℎ ,
and extended by zero elsewhere. Naturally, formally 𝑆𝑖 is a subspace of 𝑆ℎ but in
practice, it is a local space of functions defined by the values at Ω𝐶𝑅𝑖 .
We consider the following Crouzeix-Raviart discrete problems: We want to find

𝑢∗ℎ ∈ 𝑆ℎ:
𝑎ℎ (𝑢∗ℎ .𝑣) = 𝑓 (𝑣) ∀𝑣 ∈ 𝑆ℎ, (2)

where 𝑎ℎ (𝑢, 𝑣) =
∑
𝐾 ∈𝑇ℎ

∫
𝐾
𝛼 |𝐾 (𝑥)∇𝑢∇𝑣 𝑑𝑥 is the so called broken bilinear form.

Note that ∇𝑢ℎ for 𝑢ℎ ∈ 𝑆ℎ is a piecewise constant over the fine triangles of 𝑇ℎ. We
further assume that 𝛼 is piecewise constant function over the elements of Tℎ since∫
𝐾
𝛼∇𝑢∇𝑣 𝑑𝑥 = (∇𝑢) |𝐾 (∇𝑣) |𝐾

∫
𝐾
𝛼(𝑥) 𝑑𝑥. Since the broken form is 𝑆ℎ-elliptic, the

discrete problem has a unique solution.
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3 Additive Schwarz Method

In this section, we present our non-overlapping average Schwarz method for solving
(2). Our method is based on the abstract Additive Schwarz Method framework, cf.
e.g., [14].
Space 𝑆ℎ is decomposed into local sub-spaces and a global average Schwarz

"spectrally enriched" coarse space. For the local spaces, we take {𝑆𝑖}𝑖 . We have that
𝑆ℎ =

∑𝑁
𝑖=1 𝑆𝑖 .

Coarse space

We introduce our spectrally enriched coarse space in this section.
First, we define the classical average Schwarz coarse space, see e.g. [2]. Let

𝐼𝐴𝑆 : 𝑆ℎ → 𝑆ℎ be the linear interpolating operator defined as follows:

𝐼𝐴𝑆𝑢(𝑥) =
{
𝑢(𝑥) 𝑥 ∈ ⋃𝑁

𝑘=1 𝜕Ω
𝐶𝑅
𝑖,ℎ ,

𝑢𝑖 𝑥 ∈ Ω𝐶𝑅𝑖,ℎ 𝑖 = 1, . . . , 𝑁, (3)

where 𝑢𝑖 = 1
𝑀𝑖

∑
𝑥∈𝜕Ω𝐶𝑅

𝑖,ℎ
𝑢(𝑥) with 𝑀𝑖 = #𝜕Ω𝐶𝑅𝑖,ℎ , i.e., 𝑢𝑖 is the CR discrete average

of 𝑢 over 𝜕Ω𝑖 . The standard coarse space of the average Schwarz method is the image
of this interpolating operator:

𝑉𝐴𝑆 = 𝐼𝐴𝑆𝑆ℎ . (4)

We introduce two types of the local generalized eigenvalue problem, which is to
find the eigenvalue and its associated eigenfunction: (𝜆 𝑗𝑖 , 𝜓

𝑗
𝑖 ) ∈ R+ × 𝑆 𝑗 such that

𝑎ℎ (𝜓 𝑗𝑖 , 𝑣) = 𝜆
𝑗
𝑖 𝑏
𝑡 𝑦 𝑝𝑒
𝑗 (𝜓 𝑗𝑖 , 𝑣), ∀𝑣 ∈ 𝑆 𝑗 , 𝑡𝑦𝑝𝑒 ∈ {I, II}, (5)

where

𝑏
𝑡 𝑦 𝑝𝑒
𝑗 (𝑢, 𝑣) =




∑
𝐾 ∈𝑇ℎ (Ω 𝑗 )

∫
𝐾
𝛼 𝑗∇𝑢∇𝑣 𝑑𝑥 𝑡𝑦𝑝𝑒 = I∑

𝐾⊂Ω𝛿𝑗
∫
𝐾
𝛼 𝑗∇𝑢∇𝑣 𝑑𝑥+
+
∑
𝐾⊂Ω 𝑗\Ω𝛿𝑗

∫
𝐾
𝛼 𝑗∇𝑢∇𝑣 𝑑𝑥 𝑡𝑦𝑝𝑒 = II

where 𝛼 𝑗 := inf𝑥∈Ω 𝑗 𝛼(𝑥) and Ω𝛿
𝑗 is the discrete boundary layer in Ω 𝑗 comprising

those fine triangles of the local triangulation of Ω 𝑗 which have a fine edge on 𝜕Ω 𝑗 .
Naturally, 𝜓 𝑗𝑖 should be denoted 𝜓

𝑗 ,𝑡 𝑦 𝑝𝑒
𝑖 as it depends on the type of the RHS

form but we try to have the notation as simple as possible, and we keep in mind this
dependence.
Note that it follows from the definition 𝑎ℎ (𝑢, 𝑢) ≥ 𝑏𝑡 𝑦 𝑝𝑒𝑗 (𝑢, 𝑢) for any 𝑢 ∈ 𝑆 𝑗 ,

thus all eigenvalues 𝜆 𝑗𝑖 ≥ 1 for the both types of the form 𝑏 𝑗 (·, ·).
We order the eigenvalues in the decreasing way as follows
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𝜆
𝑗
1 ≥ 𝜆

𝑗
2 ≥ . . . ≥ 𝜆

𝑗
𝑀 𝑗
≥ 1

for 𝑀 𝑗 = dim(𝑆 𝑗 ). Next we introduce the local spectral component of the coarse
space for all Ω 𝑗 and further the enriched coarse space 𝑉0:

𝑆
𝑒𝑖𝑔
𝑗 = Span(𝜓 𝑗𝑖 )

𝑛 𝑗
𝑖=1, (6)

where 0 ≤ 𝑛 𝑗 ≤ 𝑀 𝑗 is the number of eigenfunctions 𝜓 𝑗𝑖 selected by an user, e.g. in
such a way that the eigenvalue 𝜆 𝑗𝑛 𝑗 ≥ 𝜆, where 𝜆 ≥ 1 is a pre-selected threshold.
Finally, the coarse space 𝑆0 is introduced as:

𝑆0 = 𝑉𝐴𝑆+
𝑁∑︁
𝑗=1
𝑆
𝑒𝑖𝑔
𝑗 . (7)

There are two types of this coarse space but the difference is not significant, and
below 𝑆0 means one of the described coarse spaces.

Average Schwarz operator 𝑻

Next we define the projection operators 𝑇𝑖 : 𝑆ℎ → 𝑆𝑖 as

𝑎ℎ (𝑇𝑖𝑢, 𝑣) = 𝑎ℎ (𝑢, 𝑣), ∀𝑣 ∈ 𝑆𝑖 , 𝑖 = 0, . . . , 𝑁. (8)

Note that to compute 𝑇𝑖𝑢, 𝑖 = 1, . . . , 𝑁 we have to solve 𝑁 independent local
problems.
Let 𝑇 :=

∑𝑁
𝑖=0 𝑇𝑖 , be the average Schwarz operator. We further replace (2) by the

following equivalent problem: Find 𝑢∗ℎ ∈ 𝑆ℎ such that

𝑇𝑢∗ℎ = 𝑔, (9)

where 𝑔 =
∑𝑁
𝑖=0 𝑔𝑖 and 𝑔𝑖 = 𝑇𝑖𝑢

∗
ℎ. The functions 𝑔𝑖 may be computed without

knowing the solution 𝑢∗ℎ of (2), cf. e.g., [14].
The following theoretical estimated of the condition number can be obtained:

Theorem 1 For all 𝑢 ∈ 𝑆ℎ, the following holds,

𝑐

(
1 +max

𝑗
𝜆
𝑗
𝑛 𝑗+1

)−1
ℎ

𝐻
𝑎ℎ (𝑢, 𝑢) ≤ 𝑎ℎ (𝑇𝑢, 𝑢) ≤ 𝐶 𝑎ℎ (𝑢, 𝑢),

where 𝐶 and 𝑐 are positive constants independent of the coefficient 𝛼, the mesh
parameter ℎ and the subdomain size 𝐻, and 𝜆 𝑗𝑛 𝑗+1 is defined in (5) for both types of
the coarse space.

The proof is based on the standard abstract ASM Method framework, cf. e.g. [14].
We have to prove three key assumptions, the most technical is the stable splitting
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ass., namely we can show that for any 𝑢 ∈ 𝑆ℎ there exists: 𝑢 𝑗 ∈ 𝑆 𝑗 𝑗 = 0, . . . , 𝑁 such
that

∑𝑁
𝑗=0 𝑎ℎ (𝑢 𝑗 , 𝑢 𝑗 ) ≤ 𝑐−1

(
1 +max 𝑗 𝜆 𝑗𝑛 𝑗+1

)
𝑎(𝑢, 𝑢). The two others assumptions

are easy to verify. Namely, the stability constant is equal to one since the broken form
is used as local forms. The third ass., the bound of the spectral radius of the matrix of
the constants of the strengthened Cauchy-Schwarz inequalities is also equal to one,
since the local subspaces are 𝑎ℎ orthogonal subspaces to each other.

4 Numerical tests

Fig. 3: The location of all jumps in 𝛼(𝑥) , where Ω = [0, 1] × [0, 1] is partitioned into 5 × 5
subdomains. The values of jumps on the white and green triangles are 1 and 1.0e4, respectively. To
get numerical results, we use these green channels as the periodic patterns for different number of
subdomains.

In this section, we consider the right-hand side function

𝑓 (𝑥, 𝑦) = 2𝜋2 sin(𝜋𝑥) sin(𝜋𝑦),

where (𝑥, 𝑦) ∈ Ω = [0, 1] × [0, 1]. To confirm the validity of the theoretical result
numerically, we also divide all jumps in 𝛼(𝑥) into 𝛼𝑏 = 1 and 𝛼𝑖 = 1.0e4 correspond-
ing to the coefficients defined on the background and green channels, respectively,
cf. Figure 3.

ℎ 𝐻 = 1/3 𝐻 = 1/6 𝐻 = 1/9
1/18 7.2601e6 7.5289e6 1.3895e7
1/36 3.0394e7 2.8114e7 2.8563e7
1/54 7.4566e7 6.2314e7 5.8596e7

Table 1: The condition numbers of the non-preconditioned system for different values of 𝐻 and ℎ.
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ℎ 𝐻 = 1/3 𝐻 = 1/6 𝐻 = 1/9
1/18 57.2051 (47) 33.9312 (42) 20.7272 (38)
1/36 120.7130 (67) 54.8475 (62) 40.6837 (55)
1/54 177.2259 (85) 83.2981 (77) 56.8240 (65)

Table 2: The condition numbers of the additive average Schwarz preconditioner 𝑡 𝑦 𝑝𝑒 = I, and the
number of iterations of preconditioned CG method (in parentheses). Further, the given threshold to
construct the enrichment coarse space is 100.

ℎ 𝐻 = 1/3 𝐻 = 1/6 𝐻 = 1/9
1/18 57.2051 (44) 33.9312 (42) 20.7272 (38)
1/36 120.7130 (70) 54.8474 (60) 40.6747 (52)
1/54 177.2259 (93) 83.2881 (74) 56.8249 (67)

Table 3: The condition numbers of the additive average Schwarz preconditioner 𝑡 𝑦 𝑝𝑒 = II, and the
number of iterations of preconditioned CG method (in parentheses). Further, the given threshold to
construct the enrichment coarse space is 100.

𝑡 𝑦 𝑝𝑒 = I 𝑡 𝑦 𝑝𝑒 = II
ℎ 𝐻 = 1/3 𝐻 = 1/6 𝐻 = 1/9 𝐻 = 1/3 𝐻 = 1/6 𝐻 = 1/9

1/18 53 148 165 11 92 147
1/36 188 442 609 19 93 255
1/54 440 947 1317 26 122 298

Table 4: The number of eigenfunctions associated with the eigenvalues greater than 100 used in the
construction of the enrichment part of the coarse space,where 𝑡 𝑦 𝑝𝑒 ∈ {I, II},𝐻 ∈ {1/3, 1/6, 1/9}
and ℎ ∈ {1/18, 1/36, 1/54}.

Table 1 presents the condition number of the non-preconditioned system. To see
the efficiency of the enriched additive average Schwarz preconditioners for both
types I and II, we refer to Tables 2 and 3. Those tables also present the numbers of
iteration of the preconditioned CG method with the tolerance 1e − 6. For different
values of 𝐻 and ℎ, the first observation is that there is a slight difference between the
two types of enrichment in terms of the condition numbers and iteration numbers.
The second observation is that the ratio of the condition numbers is proportional
to the ratio of 𝐻/ℎ, for instance, the condition numbers represented by purple
color are very close together, where the ratio of 𝐻/ℎ is identical. This means that
the validity of Theorem 1 is confirmed numerically. Finally, Table 4 includes the
number of eigenfunctions used in the construction of the enriched coarse space and
shows that the second type of enrichment has a good performance throughout the
implementation in comparison to the first type.
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An Overlapping Waveform Relaxation
Preconditioner for Economic Optimal Control
Problems With State Constraints

Gabriele Ciaramella and Luca Mechelli

1 Introduction

This work is concerned with the numerical solution of so-called economic op-
timal control problems of the parabolic type. Let Ω = (−1, 1), 𝑇 > 0 and
U := 𝐿2 (0, 𝑇 ; 𝐿2 (Ω)) endowed with its norm ∥ · ∥U . We want to solve

min
U×U

J (𝑢, 𝑤) :=
1
2
∥𝑢∥2U +

1
2
∥𝑤∥2U , (1a)

subject to the PDE-constraint

𝑦𝑡 (𝑡, 𝑥) − Δ𝑦(𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) + 𝑢(𝑡, 𝑥), in (0, 𝑇) ×Ω,
𝑦(𝑡,−1) = 𝑦(𝑡, 1) = 0, in (0, 𝑇),

𝑦(0, 𝑥) = 𝑦◦ (𝑥), in Ω,
(1b)

with 𝑦◦ ∈ 𝐿2 (Ω) and 𝑓 ∈ U, and to mixed control-state constraints

|𝑢(𝑡, 𝑥) | ≤ 𝑐𝑢, |𝑦(𝑡, 𝑥) + 𝜀𝑤(𝑡, 𝑥) | ≤ 𝑐𝑦 (𝑡), in (0, 𝑇) ×Ω, (1c)

where 𝑐𝑢, 𝜀 > 0 and 𝑐𝑦 ∈ 𝐿2 (0, 𝑇) with 𝑐𝑦 (𝑡) > 0 for 𝑡 ∈ (0, 𝑇). Problem (1) is
related to the virtual control approach [6, 8, 9], which is a regularization technique
for pointwise state-constrained problems. Under further assumptions on 𝑤, in fact,
one can show that, as 𝜀 → 0, the solution to (1) converges to the one of the same
optimal control problem with (1c) replaced by |𝑢(𝑡, 𝑥) | ≤ 𝑐𝑢 and |𝑦(𝑡, 𝑥) | ≤ 𝑐𝑦 (𝑡)
in (0, 𝑇) × Ω; see, e.g., [8]. Note that there are no weights in front of the control
norms in (1a). This is because of the regularization parameter 𝜀, which is also used
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to tune the magnitude of the controls 𝑢 and 𝑤. For example, the smaller is 𝜀, the
larger is ∥𝑤∥U . In contrast to classical optimal control problems, where the goal is
to reach a precise target configuration, the focus of (1) is to find minimum-energy
feasible controls such that the state solution to (1b) satisfies the bounds (1c). This
difference is particularly evident in the cost functional J in (1a), where only the
norm squared of the controls are considered, instead of typical tracking-type terms.
For these reasons, problems of the type (1) are called economic optimal control
problems. A typical example is the optimal heating and cooling of residual buildings
[8]. Note that, for any given 𝑢 ∈ U, the state equation (1b) admits a unique (weak)
solution 𝑦 = 𝑦(𝑢) ∈ 𝑊 (0, 𝑇) :=

{
𝜑 ∈ 𝐿2 (0, 𝑇 ;𝐻1 (Ω))

��𝜑𝑡 ∈ 𝐿2 (0, 𝑇 ;𝐻−1 (Ω))};
see, e.g., [10, 9]. We assume that the admissible set U 𝜀

ad has non-empty interior,
where U 𝜀

ad :=
{(𝑢, 𝑤) ∈ U ×U��𝑢 and 𝑦(𝑢) + 𝜀𝑤 satisfies (1c)} ⊂ U × U. This

guarantees that (1) admits a unique solution (�̄�, �̄�) ∈ U 𝜀
ad [10]. The first-order

necessary and sufficient optimality system [9, 10] of problem (1) is

𝑦𝑡 (𝑡, 𝑥) − Δ𝑦(𝑡, 𝑥) = P(𝑞(𝑡, 𝑥)) + 𝑓 (𝑡, 𝑥), in (0, 𝑇) ×Ω,
𝑦(𝑡,−1) = 𝑦(𝑡, 1) = 0, in (0, 𝑇),

𝑦(0, 𝑥) = 𝑦◦ (𝑥), in Ω,
𝑞𝑡 (𝑡, 𝑥) + Δ𝑞(𝑡, 𝑥) = Q 𝜀 (𝑦(𝑡, 𝑥)), in (0, 𝑇) ×Ω,
𝑞(𝑡,−1) = 𝑞(𝑡, 1) = 0, in (0, 𝑇),

𝑞(𝑇, 𝑥) = 0, in Ω,

(2)

where Q 𝜀 (𝑦(𝑡, 𝑥)) := 1
𝜀2 (max{𝑦(𝑡, 𝑥) − 𝑐𝑦 (𝑡), 0} + min{𝑦(𝑡, 𝑥) + 𝑐𝑦 (𝑡), 0}) and

P(𝑞(𝑡, 𝑥)) := max{−𝑐𝑢,min{𝑐𝑢, 𝑞(𝑡, 𝑥)}}, for all (𝑡, 𝑥) ∈ (0, 𝑇) × Ω, with 𝑞 the
so-called adjoint variable. The pair ( �̄�, 𝑞) is the solution to (2) if and only if
(�̄�(𝑡, 𝑥), �̄�(𝑡, 𝑥)) = (P(𝑞(𝑡, 𝑥)),−𝜀Q 𝜀 ( �̄�(𝑡, 𝑥))), for (𝑡, 𝑥) ∈ (0, 𝑇) × Ω, is the opti-
mal solution to (1). System (2) can be rewritten in the form

F (𝑦, 𝑞) = 0 (3)

and thus solved by using a semismooth Newton method; see, e.g., [9, 5].
As shown in [8], the semismooth Newton method lacks of convergence if the

parameter 𝜀 is not sufficiently large. This is, however, in contrast with typical ap-
plications, where a sufficiently small 𝜀 is required [8, 6]. The goal of this paper is
to tackle this problem by using a nonlinear preconditioning technique based on an
overlapping optimized waveform-relaxation method (WRM) characterized by Robin
transmission conditions [2, 3]. To the best of our knowledge, nonlinear precondi-
tioning techniques have never been used for economic control problems. Therefore,
this work aims to provide a first concrete study in order to show the applicability of
WRM-based nonlinear preconditioners for this class of optimization problems. In
particular, our goal is to assess the convergence behavior of the WRM nonlinear pre-
conditioned Newton and its robustness against the regularization parameter 𝜀. Our
studies show that appropriate choices of the overlap 𝐿 and of the Robin parameter
𝑝 lead to a preconditioned Newton method with a robust convergence with respect
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to 𝜀. Let us also mention that for elliptic optimal control problems, it is possible to
consider different transmission conditions; see, e.g., [1, 4].
The paper is organized as follows. In Section 2, we introduce the WRM and

present the algorithm for the proposed preconditioned generalized Newton. In Sec-
tion 3, we report two numerical experiments that show the convergence behavior of
the proposed computational framework in relation of the parameters characterizing
problem (1) and the optimized WRM.

2 The waveform-relation and the preconditioned generalized
Newton methods

Let Ω be decomposed into two overlapping subdomains Ω1 = (−1, 𝐿) and Ω2 =
(−𝐿, 1), where 2𝐿 ∈ (0, 1) is the size of the overlap. Moreover, let 𝑝 > 0 and
consider the operator R 𝑗 defined as R 𝑗 (𝑦) := 𝑦𝑥 + (−1)3− 𝑗 𝑝𝑦 for 𝑗 = 1, 2. The
WRM consists in iteratively solving, for 𝑛 ∈ N, 𝑛 ≥ 1, the system

𝑦
𝑗 ,𝑛
𝑡 (𝑡, 𝑥) − Δ𝑦 𝑗 ,𝑛 (𝑡, 𝑥) = P(𝑞 𝑗 ,𝑛 (𝑡, 𝑥)) + 𝑓 (𝑡, 𝑥), in (0, 𝑇) ×Ω 𝑗 , (4a)

𝑦 𝑗 ,𝑛 (𝑡, (−1) 𝑗 ) = 0, in (0, 𝑇), (4b)
R 𝑗 (𝑦 𝑗 ,𝑛) (𝑡, (−1)3− 𝑗𝐿) = R 𝑗 (𝑦3− 𝑗 ,𝑛−1) (𝑡, (−1)3− 𝑗𝐿), in (0, 𝑇), (4c)

𝑦 𝑗 ,𝑛 (0, 𝑥) = 𝑦◦ (𝑥), in Ω 𝑗 , (4d)

𝑞
𝑗 ,𝑛
𝑡 (𝑡, 𝑥) + Δ𝑞 𝑗 ,𝑛 (𝑡, 𝑥) = Q 𝜀 (𝑦 𝑗 ,𝑛 (𝑡, 𝑥)), in (0, 𝑇) ×Ω 𝑗 , (4e)

𝑞 𝑗 ,𝑛 (𝑡, (−1) 𝑗 ) = 0, in (0, 𝑇), (4f)
R 𝑗 (𝑞 𝑗 ,𝑛) (𝑡, (−1)3− 𝑗𝐿) = R 𝑗 (𝑞3− 𝑗 ,𝑛−1) (𝑡, (−1)3− 𝑗𝐿), in (0, 𝑇), (4g)

𝑞 𝑗 ,𝑛 (𝑇, 𝑥) = 0, in Ω 𝑗 , (4h)

for 𝑗 = 1, 2. We show first the well-posedness of the method.

Theorem 1 Let 𝑔1
𝑦 , 𝑔

2
𝑦 , 𝑔

1
𝑞 , 𝑔

2
𝑞 ∈ 𝐻1/4 (0, 𝑇) be initialization functions for the WRM,

i.e., R 𝑗 (𝑦 𝑗 ,1) (𝑡, (−1)3− 𝑗𝐿) = 𝑔
𝑗
𝑦 (𝑡) and R 𝑗 (𝑞 𝑗 ,1) (𝑡, (−1)3− 𝑗𝐿) = 𝑔

𝑗
𝑞 (𝑡) for 𝑡 ∈

(0, 𝑇), with compatibility conditions 𝑔 𝑗𝑦 (0) = R 𝑗 (𝑦◦) (𝑡, (−1)3− 𝑗𝐿) and 𝑔 𝑗𝑞 (0) = 0
for 𝑗 = 1, 2. Then the WRM (4) is well-posed.

Proof For 𝑗 = 1, 2, we define 𝐻2,1
𝑗 := 𝐿2 (0, 𝑇 ;𝐻2 (Ω 𝑗 )) × 𝐻1 (0, 𝑇 ; 𝐿2 (Ω 𝑗 )) and

U 𝑗 = 𝐿2 (0, 𝑇 ; 𝐿2 (Ω 𝑗 )). For given 𝑔 𝑗𝑦 , 𝑔 𝑗𝑞 ∈ 𝐻1/4 (0, 𝑇), system (4) is the optimality
system of an optimal control problem, which seeks to minimize Jaux (𝑢 𝑗 , 𝑤 𝑗 ) =
1
2 ∥𝑢 𝑗 ∥2U 𝑗 +

1
2 ∥𝑤 𝑗 ∥2U 𝑗 +

∫ 𝑇
0 𝑔

𝑗
𝑞 (𝑡)𝑦 𝑗 (𝑡, (−1)3− 𝑗𝐿)d𝑡, subject to the state equation

(4a)-(4d). These auxiliary optimal control problems admit a unique optimal solution
(�̄� 𝑗 , �̄� 𝑗 ) ∈ U 𝑗 ×U 𝑗 for 𝑗 = 1, 2 and their optimality systems are uniquely solvable
by ( �̄� 𝑗 , 𝑞 𝑗 ) ∈ 𝐻2,1

𝑗 × 𝐻2,1
𝑗 such that
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(�̄� 𝑗 (𝑡, 𝑥), �̄� 𝑗 (𝑡, 𝑥)) = (P(𝑞 𝑗 (𝑡, 𝑥)),−𝜀Q 𝜀 ( �̄� 𝑗 (𝑡, 𝑥))), in (0, 𝑇) ×Ω 𝑗 .

For more details see [10, 7, 3]. This proves well-posedness of theWRM for 𝑛 = 1 and
𝑗 = 1, 2. By iteratively applying the previous arguments is then easy to show that the
WRM is well-posed for 𝑛 > 1, because 𝑦 𝑗 ,1 ((−1) 𝑗𝐿), 𝑦 𝑗 ,1𝑥 ((−1) 𝑗𝐿), 𝑞 𝑗 ,1 ((−1) 𝑗𝐿),
𝑞
𝑗 ,1
𝑥 ((−1) 𝑗𝐿) ∈ 𝐿2 (0, 𝑇). □

Theorem 1 implies that (4) admits a unique solution (𝑦 𝑗 ,𝑛, 𝑝 𝑗 ,𝑛) ∈ 𝐻2,1
𝑗 × 𝐻2,1

𝑗 for
𝑗 = 1, 2 and 𝑛 ≥ 1. Note that, at each iteration of theWRM, the solution at iteration 𝑛
depends on the one at iteration 𝑛−1. Therefore, we can define the solution mappings
S 𝑗 : 𝐻2,1

3− 𝑗 × 𝐻2,1
3− 𝑗 → 𝐻2,1

𝑗 × 𝐻2,1
𝑗 for 𝑗 = 1, 2 as

(𝑦1, 𝑞1) = S1 (𝑦2, 𝑞2) solves (4) for 𝑗 = 1, 𝑦2,𝑛−1 = 𝑦2 and 𝑞2,𝑛−1 = 𝑞2,

(𝑦2, 𝑞2) = S2 (𝑦1, 𝑞1) solves (4) for 𝑗 = 2, 𝑦1,𝑛−1 = 𝑦1 and 𝑞1,𝑛−1 = 𝑞1,
(5)

and the preconditioned form of (3) as

F𝑃 (𝑦1, 𝑞1, 𝑦2, 𝑞2) = (F1 (𝑦1, 𝑞1, 𝑦2, 𝑞2), F2 (𝑦1, 𝑞1, 𝑦2, 𝑞2)) = 0, (6)

where F𝑗 (𝑦1, 𝑞1, 𝑦2, 𝑞2) = (𝑦 𝑗 , 𝑞 𝑗 ) − S 𝑗 (𝑦3− 𝑗 , 𝑞3− 𝑗 ), for 𝑗 = 1, 2. To solve (6), we
apply a generalized Newton method. To do so, we assume that the maps S 𝑗 , 𝑗 = 1, 2,
admit derivative1 𝐷S 𝑗 . This allows us to characterize the derivative 𝐷F𝑃 and its
application to a direction d3− 𝑗 = (𝑑3− 𝑗

𝑦 , 𝑑
3− 𝑗
𝑞 ) ∈ 𝐻2,1

3− 𝑗 × 𝐻2,1
3− 𝑗 , which is needed for

the generalized Newton method. Let 𝑧 𝑗 := (𝑦 𝑗 , 𝑞 𝑗 ) ∈ 𝐻2,1
𝑗 ×𝐻2,1

𝑗 for 𝑗 = 1, 2. Thus,
we have that 𝑧 𝑗 = S 𝑗 (𝑧3− 𝑗 ), according to the definition of the mapping S 𝑗 in (5).
Moreover, we have that F𝑗 (S 𝑗 (𝑧3− 𝑗 ), 𝑧3− 𝑗 ) = 0. From this we formally obtain

𝐷1F𝑗 (S 𝑗 (𝑧3− 𝑗 ), 𝑧3− 𝑗 )𝐷S 𝑗 (𝑧3− 𝑗 ) (d3− 𝑗 ) + 𝐷2F𝑗 (S 𝑗 (𝑧3− 𝑗 ), 𝑧3− 𝑗 ) (d3− 𝑗 ) = 0,

which leads to 𝐷S 𝑗 (𝑦3− 𝑗 , 𝑞3− 𝑗 ) (d3− 𝑗 ) = ( �̃� 𝑗 , 𝑞 𝑗 ) where ( �̃� 𝑗 , 𝑞 𝑗 ) solves

�̃�
𝑗
𝑡 (𝑡, 𝑥) − Δ�̃� 𝑗 (𝑡, 𝑥) = 𝑞 𝑗 (𝑡, 𝑥)𝜒I(𝑞 𝑗 ) (𝑡, 𝑥), in (0, 𝑇) ×Ω 𝑗 ,

�̃� 𝑗 (𝑡, (−1) 𝑗 ) = 0, in (0, 𝑇),
R 𝑗 ( �̃� 𝑗 ) (𝑡, (−1)3− 𝑗𝐿) = R 𝑗 (𝑑3− 𝑗

𝑦 ) (𝑡, (−1)3− 𝑗𝐿), in (0, 𝑇),
�̃� 𝑗 (0, 𝑥) = 0, in Ω 𝑗 ,

(7a)

1 Since the functions S 𝑗 are implicit functions of semismooth functions, one cannot directly invoke
the implicit function theorem to obtain the desired regularity. Hence, investigating the existence
and regularity of 𝐷S 𝑗 requires a detailed theoretical analysis, which is beyond the scope of this
short manuscript.
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𝑞
𝑗
𝑡 (𝑡, 𝑥) + Δ𝑞 𝑗 (𝑡, 𝑥) =

�̃� 𝑗 (𝑡, 𝑥)
𝜀2 𝜒A(𝑦 𝑗 ) (𝑡, 𝑥), in (0, 𝑇) ×Ω 𝑗 ,

𝑞 𝑗 (𝑡, (−1) 𝑗 ) = 0, in (0, 𝑇),
R 𝑗 (𝑞 𝑗 ) (𝑡, (−1)3− 𝑗𝐿) = R 𝑗 (𝑑3− 𝑗

𝑞 ) (𝑡, (−1)3− 𝑗𝐿), in (0, 𝑇),
𝑞 𝑗 ,𝑛 (𝑇, 𝑥) = 0, in Ω 𝑗 ,

(7b)

for 𝑗 = 1, 2, with 𝜒I(𝑞 𝑗 ) and 𝜒A(𝑦 𝑗 ) the characteristic functions of the sets

I(𝑞 𝑗 ) := {(𝑡, 𝑥) ∈ (0, 𝑇) ×Ω 𝑗

�� ��𝑞 𝑗 (𝑡, 𝑥)�� ≤ 𝑐𝑢},
A(𝑦 𝑗 ) := {(𝑡, 𝑥) ∈ (0, 𝑇) ×Ω 𝑗

�� ��𝑦 𝑗 (𝑡, 𝑥)�� > 𝑐𝑦 (𝑡)}.
Note that (7) is a linearization of the WRM subproblems (4). Now, we can resume
our preconditioned generalized Newton method in Algorithm 1.
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Fig. 1: Test1: Optimal state with bound 𝑐𝑦 (left) and control (right) for 𝜀 = 5 × 10−4.

𝑞
𝑗
𝑡 (𝑡, 𝑥) + Δ𝑞 𝑗 (𝑡, 𝑥) =

�̃� 𝑗 (𝑡, 𝑥)
𝜀2 𝜒A(𝑦 𝑗 ) (𝑡, 𝑥), in (0, 𝑇) ×Ω 𝑗 ,

𝑞 𝑗 (𝑡, (−1) 𝑗 ) = 0, in (0, 𝑇),
R 𝑗 (𝑞 𝑗 ) (𝑡, (−1)3− 𝑗𝐿) = R 𝑗 (𝑑3− 𝑗

𝑞 ) (𝑡, (−1)3− 𝑗𝐿), in (0, 𝑇),
𝑞 𝑗 ,𝑛 (𝑇, 𝑥) = 0, in Ω 𝑗 ,

(7b)

for 𝑗 = 1, 2, with 𝜒I(𝑞 𝑗 ) and 𝜒A(𝑦 𝑗 ) the characteristic functions of the sets

I(𝑞 𝑗 ) := {(𝑡, 𝑥) ∈ (0, 𝑇) ×Ω 𝑗

�� ��𝑞 𝑗 (𝑡, 𝑥)�� ≤ 𝑐𝑢},
A(𝑦 𝑗 ) := {(𝑡, 𝑥) ∈ (0, 𝑇) ×Ω 𝑗

�� ��𝑦 𝑗 (𝑡, 𝑥)�� > 𝑐𝑦 (𝑡)}.
Note that (7) is a linearization of the WRM subproblems (4). Now, we can resume
our preconditioned generalized Newton method in Algorithm 1.

Algorithm 1WRM-preconditioned generalized Newton method
1: Data: Initial guess 𝑦 𝑗,0 and 𝑞 𝑗,0 for 𝑗 = 1, 2, tolerance 𝜏.
2: Perform one WRM step to compute S 𝑗 (𝑦3− 𝑗,0, 𝑞3− 𝑗,0);
3: Assemble F𝑃 (𝑦1,0, 𝑞1,0, 𝑦2,0, 𝑞2,0) and set 𝑘 = 0;
4: while ∥F𝑃 (𝑦1,𝑘 , 𝑞1,𝑘 , 𝑦2,𝑘 , 𝑞2,𝑘) ∥ ≥ 𝜏 do
5: Compute d1, d2 solving 𝐷F𝑃 (𝑦1, 𝑞1, 𝑦2, 𝑞2) (d1, d2) = −F𝑃 (𝑦1, 𝑞1, 𝑦2, 𝑞2)

by using a matrix-free Krylov method, e.g., GMRES, and considering that
𝐷F𝑃 (𝑦1, 𝑞1, 𝑦2, 𝑞2) (d1, d2) = (d1 − ( �̃�1, 𝑞1) , d2 − ( �̃�2, 𝑞2)) , with ( �̃� 𝑗 , 𝑞 𝑗 ) solution
to the linearized subproblems (7) for 𝑗 = 1, 2;

6: Update (𝑦 𝑗,𝑘+1, 𝑞 𝑗,𝑘+1) = (𝑦 𝑗,𝑘 , 𝑞 𝑗,𝑘) + d 𝑗 and set 𝑘 = 𝑘 + 1;
7: Perform one WRM step to compute S 𝑗 (𝑦3− 𝑗,𝑘 , 𝑞3− 𝑗,𝑘);
8: Assemble F𝑃 (𝑦1,𝑘 , 𝑞1,𝑘 , 𝑦2,𝑘 , 𝑞2,𝑘);
9: end while

3 Numerical experiments

In this section, we study the behavior of the preconditioned generalized Newton
method (Algorithm 1) and its robustness against the Robin parameter 𝑝, the regular-
ization 𝜀 and the overlap 𝐿. It is well known that the convergence of the semismooth
Newton method applied to (3) deteriorates fast for decreasing values of 𝜀, since the
solution approaches the one of a pure pointwise state-constrained problem, whose
adjoint variable 𝑞 lacks of 𝐿2-regularity; cf. [10, 8]. The focus is on understanding
if the WRM can be a valid (nonlinear) preconditioner and in which cases. We will
perform two numerical experiments. In both tests we discretize the domain Ω with
𝑛𝑥 = 161 points and we apply a centered finite-difference scheme. Furthermore, we
consider 𝑛𝑡 = 21 time discretization points and apply the implicit Euler method.
The initial guesses 𝑦 𝑗 ,0 and 𝑞 𝑗 ,0 are chosen randomly but feasible, i.e. such that(P(𝑞 𝑗 ,0 (𝑡, 𝑥)),−𝜀Q 𝜀 (𝑦 𝑗 ,0 (𝑡, 𝑥))) ∈ U 𝜀

ad, since we noticed that choosing feasible
initial guesses improves the convergence of the method. We set the stopping tol-
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Fig. 1: Test1: Optimal state with bound 𝑐𝑦 (left) and control (right) for 𝜀 = 5 × 10−4.

𝐿
𝑝
𝜀 10−1 5 × 10−2 10−2 5 × 10−3 10−3 5 × 10−4

Δ𝑥 10−6 4(5–2) 4(6–2) 5(12–2) 6(13–2) 7(35–2) 8(45–2)
Δ𝑥 10−4 4(5–2) 4(6–2) 5(13–2) 6(13–2) 7(34–2) 8(45–2)
Δ𝑥 10−2 4(6–2) 4(6–2) 5(11–2) 6(13–2) 7(30–2) 8(43–2)
Δ𝑥 100 5(4–2) 5(5–2) 5(9–2) 6(12–2) max(112–2) max(123–3)
Δ𝑥 102 6(4–2) 6(5–2) 8(8–2) 9(9–2) 6(22–2) 9(37–2)
Δ𝑥 104 6(5–2) 6(5–2) 9(7–2) 9(10–2) 8(23–2) max(65–4)
Δ𝑥 106 6(5–2) 6(5–2) 9(7–2) 9(10–2) max(33–2) max(92–3)
2Δ𝑥 10−6 4(5–2) 4(7–2) 5(11–2) 6(13–2) 7(39–2) 6(51–2)
2Δ𝑥 10−4 4(5–2) 4(7–2) 5(11–2) 6(13–2) 7(41–2) 6(48–2)
2Δ𝑥 10−2 4(6–2) 4(7–2) 5(12–2) 5(13–2) 7(23–2) 6(54–2)
2Δ𝑥 100 5(4–2) 5(6–2) 5(9–2) 6(11–2) 7(27–2) max(107–3)
2Δ𝑥 102 6(4–2) 6(5–2) 8(8–2) 8(10–2) 8(26–2) 9(37–2)
2Δ𝑥 104 6(5–2) 6(5–2) 8(8–2) 9(10–2) 8(19–2) 9(41–2)
2Δ𝑥 106 6(5–2) 6(5–2) 8(8–2) 9(9–2) 8(19–2) 9(41–2)
4Δ𝑥 10−6 4(5–2) 4(7–2) 5(11–2) 6(13–2) 6(30–2) max(126–6)
4Δ𝑥 10−4 4(5–2) 4(7–2) 5(11–2) 6(13–2) 6(30–2) max(98–4)
4Δ𝑥 10−2 4(5–2) 4(7–2) 5(12–2) 6(13–2) 6(30–2) 11(124–2)
4Δ𝑥 100 4(5–2) 4(6–2) 5(9–2) 6(11–2) 6(27–2) max(152 − 5)
4Δ𝑥 102 6(4–2) 6(5–2) 8(8–2) 8(10–2) 10(23–2) 15(40 − 2)
4Δ𝑥 104 6(4–2) 6(5–2) 8(8–2) 8(10–2) 9(26–2) max(183–3)
4Δ𝑥 106 6(4–2) 6(5–2) 8(8–2) 8(10–2) 9(26–2) max(45–2)
Sem. New. 4 5 10 13 30 44

Table 1: Test1: Number of outer iterations (maximum number - minimum number of inner itera-
tions) for preconditioned generalized Newton varying 𝐿, 𝑝 and 𝜀 and number of iterations for the
semismooth Newton applied to (3) (last row).

erance 𝜏 = 10−10 for the norm of the Newton residual (see Algorithm 1) and the
maximum number of outer (inner) iterations to 200 (500). For the first test we choose
𝑇 = 1, 𝑦◦ (𝑥) = 5 sin(𝜋𝑥), 𝑓 (𝑡, 𝑥) = 20, 𝑐𝑢 = 30 and 𝑐𝑦 (𝑡) = 10(1 − 𝑡) + 3 for all
(𝑡, 𝑥) ∈ (0, 1) × Ω. As one can see from Table 1, for a decreasing 𝜀 the number of
iterations of the semismooth Newton method applied to (3) increases and its conver-
gence deteriorates fast. On the contrary, the number of iterations of Algorithm 1is
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Fig. 2: Test2: Optimal state with bound 𝑐𝑦 (left) and control (right) for 𝜀 = 5 × 10−4.

𝐿
𝑝
𝜀 10−1 5 × 10−2 10−2 5 × 10−3 10−3 5 × 10−4

Δ𝑥 10−6 5(5–2) 6(7–2) 10(10–2) max(61–2) max(102–2) max(297–4)
Δ𝑥 10−4 5(5–2) 6(7–2) 10(10–2) max(32–2) max(246–2) max(145–2)
Δ𝑥 10−2 5(5–2) 6(7–2) 8(10–2) max(25–2) max(max–2) max(max–4)
Δ𝑥 100 5(5–2) 6(6–2) 6(10–2) 9(11–2) max(122–4) max(193–2)
Δ𝑥 102 6(4–2) 7(5–2) 9(8–2) 9(10–2) 9(20–2) 10(25–2)
Δ𝑥 104 6(4–2) 7(5–2) 9(8–2) 9(11–2) 11(20–2) max(32–2)
Δ𝑥 106 6(4–2) 7(5–2) 9(8–2) 9(11–2) 11(20–2) max(67–4)
2Δ𝑥 10−6 5(6–2) 6(7–2) 12(11–2) max(29–2) max(123–2) max(206–3)
2Δ𝑥 10−4 5(6–2) 6(7–2) 12(11–2) max(28–2) max(91–2) max(196–3)
2Δ𝑥 10−2 5(6–2) 6(7–2) 11(11–2) max(25–2) max(max–4) max(max–4)
2Δ𝑥 100 5(5–2) 6(6–2) 6(9–2) 7(10–2) max(166–5) max(183–2)
2Δ𝑥 102 6(4–2) 7(5–2) 8(8–2) 9(11–2) 9(20–2) 10(29–2)
2Δ𝑥 104 6(4–2) 7(5–2) 9(7–2) 9(11–2) 10(20–2) 9(26–2)
2Δ𝑥 106 6(4–2) 7(5–2) 9(7–2) 9(11–2) 10(19–2) 10(26–2)
4Δ𝑥 10−6 5(5–2) 6(7–2) 10(11–2) max(32–2) max(313–4) max(187–4)
4Δ𝑥 10−4 5(5–2) 6(7–2) 10(11–2) max(27–2) max(145–4) max(148–4)
4Δ𝑥 10−2 6(5–2) 6(7–2) 9(11–2) max(35–3) max(296 − 4) max(max − 4)
4Δ𝑥 100 5(5–2) 5(6–2) 6(8–2) 8(11–2) max(136 − 3) max(max − 3)
4Δ𝑥 102 6(4–2) 7(5–2) 6(8–2) 8(11–2) 11(20–2) 14(44–2)
4Δ𝑥 104 6(4–2) 7(5–2) 8(8–2) 8(11–2) 10(20–2) 12(26–2)
4Δ𝑥 106 6(4–2) 7(5–2) 8(8–2) 8(11–2) 10(20–2) 13(25–2)
Sem. New. 4 6 10 12 23 30

Table 2: Test2: Number of outer iterations (maximum number - minimum number of inner itera-
tions) for preconditioned generalized Newton varying 𝐿, 𝑝 and 𝜀 and number of iterations for the
semismooth Newton applied to (3) (last row).

almost constant as 𝜀 varies (when it converges). Choosing 𝑝 = 102 guarantees that
the method is convergent for any choice of 𝜀 and 𝐿. In particular, for small 𝜀, such as
10−3 and 5 × 10−4, the speed-up in terms of number of iterations is also significant.
According to Table 1, there are some combinations for which Algorithm 1reaches a
maximum number of iterations (indicated in the tables with max). This issue can be
related to the fact that 𝑦 𝑗 ,𝑘 and 𝑞 𝑗 ,𝑘 might become unfeasible during Algorithm 1and
when traced to the interface of the other subdomain might cause oscillations. For
the second test we choose 𝑇 = 1, 𝑦◦ (𝑥) = 5 sin(𝜋𝑥), 𝑓 (𝑡, 𝑥) = 18, 𝑐𝑢 = 15 and
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𝑐𝑦 (𝑡) = 2(1 − 𝑡) + 3 for (𝑡, 𝑥) ∈ (0, 1) × Ω. In this case, there are more points in
the space-time domain for which both bounds become active (cf. Figures 1-2). This
makes the problem even more difficult to be solved by the WRM, since its nonlinear-
ities are more strongly activated. In Table 2, in fact, the number of cases for which
Algorithm 1does not converge increases with respect to the first numerical experi-
ment, particularly for 𝜀 small. We observe that transmission conditions of Dirichlet
type and large-enough overlap 𝐿 guarantee that the number of unfeasible points at the
interface is significantly reduced, so that Algorithm 1converges. This confirms the
previous remark on the importance of having feasible iterations. As a rule of thumb,
if the regularization 𝜀 is small, we suggest to choose a sufficienly large parameter 𝑝
(e.g., 𝑝 ≥ 102) so that the Dirichlet part of the transmission conditions of the WRM
dominates the Neumann part. Note that, also in the second test, there always exists a
combination of 𝑝 and 𝐿 for which Algorithm 1is faster than the semismooth Newton
method, in particular for a small 𝜀.
In conclusion, the WRM is a valid preconditioner for solving (3), although there

are combinations of 𝑝 and 𝐿 for which the method may not converge. As observed,
a crucial point for the convergence is to keep the iteration feasible. Preserving
such a feasibility, together with other important aspects (e.g., multiple subdomains
decomposition and the study of an optimal parameter 𝑝) will be the focus of a future
work.

References

1. J.-D. Benamou. A domain decomposition method with coupled transmission conditions for the
optimal control of systems governed by elliptic partial differential equations. SIAM J. Numer.
Anal., 33(6):2401–2416, 1996.

2. V. Dolean, M. J. Gander, W. Kheriji, F. Kwok, and R. Masson. Nonlinear preconditioning:
How to use a nonlinear Schwarz method to precondition Newton’s method. SIAM J. Sci.
Comput., 38(6):A3357–A3380, 2016.

3. M. J. Gander and L. Halpern. Optimized Schwarz waveform relaxation methods for advection
reaction diffusion problems. SIAM J. Numer. Anal., 45(2):666–697, 2007.

4. M. Heinkenschloss and H. Nguyen. Neumann–Neumann domain decomposition precondition-
ers for linear-quadratic elliptic optimal control problems. SIAM J. Sci. Comput., 28(3):1001–
1028, 2006.

5. M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semismooth
Newton method. SIAM J. Optim., 13(3):865–888, 2002.

6. K. Krumbiegel and A. Rösch. A virtual control concept for state constrained optimal control
problems. Comput. Optim. Appl., 43:213–233, 2009.

7. J. L. Lions and E.Magenes. Non-homogeneous boundary value problems and applications (Vol
II). Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg,
1972.

8. L. Mechelli. POD-based state-constrained economic Model Predictive Control of convection-
diffusion phenomena. PhD thesis, University of Konstanz, 2019.

9. L. Mechelli and S. Volkwein. POD-based economic optimal control of heat-convection phe-
nomena. In M. Falcone, R. Ferretti, L. Grüne, and W. M. McEneaney, editors, Numerical
Methods for Optimal Control Problems, pages 63–87, Cham, 2018. Springer International
Publishing.

10. F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Appli-
cations. American Mathematical Society, 2010.



Optimized Schwarz Methods With Data-Sparse
Transmission Conditions

Martin J. Gander and Michal Outrata

1 Introduction and Model Problem

Optimized Schwarz methods (OSMs) use optimized transmission operators between
subdomains adapted to the equation to be solved to maximize the convergence rate.
OSMs have been studied in detail for localized transmission operators, see [6] and
references therein, which after discretization become structurally sparse, banded
matrices. We consider here non-localized transmission operators that become after
discretization data-sparse matrices – a complementary approach to structural spar-
sity. Our main focus is on how to optimize OSMs within the classes of data-sparse
approximations of the Schur complement.
Asmodel problemwe consider the Poisson equation onΩ = (−𝑎, 𝑎)×(0, 1) ⊂ R2,

−Δ𝑢 = 𝑓 in Ω, and 𝑢 = 𝑔 on 𝜕Ω, 𝑓 and 𝑔 given. (1)

We decompose Ω into two overlapping subdomains Ω1 = (−𝑎, 𝐿) × (0, 1) and
Ω2 = (−𝐿, 𝑎) × (0, 1) with interfaces Γ1 and Γ2, overlap 𝑂 and complements
Θ2 := Ω𝐶1 and Θ1 := Ω𝐶2 , see Figure 1. Creating an equidistant mesh on Ω with
mesh-size ℎ, we denote by 𝑁𝑟 the number of grid rows and 𝑁𝑐 the number of grid
columns, and we discretize (1) with a finite difference scheme, obtaining the block
tridiagonal system matrix

𝐴 =



𝐴Θ1 𝐴Θ1 ,Γ2

𝐴Γ2 ,Θ1 𝐴Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴Γ1 𝐴Γ1 ,Θ2

𝐴Θ2 ,Γ1 𝐴Θ2


. (2)
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Fig. 1: The physical domain on the left and its subdomains on the right.

2 Parallel Optimized Schwarz Method

To solve the discretized problem with the parallel optimized Schwarz method
(POSM), see [6, Section 6.1], and also the equivalent optimized Restricted Additive
Schwarz formulations in [5, 10], we form the augmented system matrix (see [10,
Section 3.4])

𝐴aug :=
[
𝐴Ω1 𝐴Ω1 ,Ω2

𝐴Ω2 ,Ω1 𝐴Ω2

]
:=



𝐴Θ1 𝐴Θ1 ,Γ2

𝐴Γ2 ,Θ1 𝐴Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 �̃�Γ1 �̃�Γ1 ,Γ1 𝐴Γ1 ,Θ2

𝐴Γ2 ,Θ1 �̃�Γ2 ,Γ2 �̃�Γ2 𝐴Γ2 ,𝑂

𝐴𝑂,Γ2 𝐴𝑂 𝐴𝑂,Γ1

𝐴Γ1 ,𝑂 𝐴Γ1 𝐴Γ1 ,Θ2

𝐴Θ2 ,Γ1 𝐴Θ2



,

where the transmission conditions are in the last block row of [𝐴Ω1 𝐴Ω1 ,Ω2 ] and first
block row of [𝐴Ω2 ,Ω1 𝐴Ω2 ], which contain

�̃�Γ1 := 𝐴Γ1 + 𝑆1, �̃�Γ1 ,Γ1 := −𝑆1 and �̃�Γ2 := 𝐴Γ2 + 𝑆2, �̃�Γ2 ,Γ2 := −𝑆2.

Here 𝑆1 and 𝑆2 are transmission matrices that can be chosen to get fast convergence
(classical parallel Schwarz would use 𝑆1 = 𝑆2 = 0). POSM for the augmented system
has as iteration matrix 𝑇 the non-overlapping block Jacobi iteration matrix for 𝐴aug,

𝑇 = 𝐼 −
2∑︁
𝑖=1

𝑅𝑇Ω𝑖 𝐴
−1
Ω𝑖
𝑅Ω𝑖 𝐴aug with 𝑅Ω1 = [𝐼 0], 𝑅Ω2 = [0 𝐼], (3)

where 𝑅Ω𝑖 is the discrete restriction operator to the subdomain Ω𝑖 . Setting

𝐸Ω1
Γ2

:=
[
0Θ1 𝐼Γ2 0𝑂0Γ1

]𝑇
, 𝐸Ω1

Γ1
:=

[
0Θ1 0Γ2 0𝑂 𝐼Γ1

]𝑇
, 𝐸Ω1

Θ1
:=

[
𝐴Γ2 ,Θ1 0Γ2 0𝑂0Γ1

]𝑇
,

𝐸Ω2
Γ2

:=
[
𝐼Γ2 0𝑂0Γ1 0Θ2

]𝑇
, 𝐸Ω2

Γ1
:=

[
0Γ2 0𝑂 𝐼Γ1 0Θ2

]𝑇
, 𝐸Ω2

Θ2
:=

[
0Γ2 0𝑂0Γ1𝐴Γ1 ,Θ2

]𝑇
,

we formulate a convergence result for POSM, analogue to [5, Theorem 3.2].

Theorem 1 ([5, Section 3, Lemma 3.1, Theorem 3.2])
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The POSM iteration matrix 𝑇 in (3) has the structure1

𝑇 =

[
0 𝐾
𝐿 0

]
,
𝐾 := 𝐴−1

Ω1
𝐸Ω1
Γ1

[
𝐼 + 𝑆1 (𝐴−1

Ω1
)Γ1 ,Γ1

]−1 (
𝑆1 (𝐸Ω2

Γ1
)𝑇 − (𝐸Ω2

Θ2
)𝑇

)
,

𝐿 := 𝐴−1
Ω2
𝐸Ω2
Γ2

[
𝐼 + 𝑆2 (𝐴−1

Ω2
)Γ2 ,Γ2

]−1 (
𝑆2 (𝐸Ω1

Γ2
)𝑇 − (𝐸Ω1

Θ1
)𝑇

)
.
(4)

Moreover, the asymptotic convergence factor 𝜌 (𝑇) of POSM satisfies the bound

𝜌 (𝑇) ≤
√︁
∥𝑀1𝐵1∥2 · ∥𝑀2𝐵2∥2,

𝑀1 :=
[
𝐼 + 𝑆1 (𝐴−1

Ω1
)Γ1 ,Γ1

]−1 (
𝑆1 + 𝐴Γ1 ,Θ2𝐴

−1
Θ2
𝐴Θ2 ,Γ1

)
, 𝐵1 := (𝐴−1

Ω2
)Γ1 ,Γ2 ,

𝑀2 :=
[
𝐼 + 𝑆2 (𝐴−1

Ω2
)Γ2 ,Γ2

]−1 (
𝑆2 + 𝐴Γ2 ,Θ1𝐴

−1
Θ1
𝐴Θ1 ,Γ2

)
, 𝐵2 := (𝐴−1

Ω1
)Γ2 ,Γ1 .

(5)

Remark 1 Because of the symmetry of the subdomains and the problemwe have 𝑆1 =
𝑆2 =: 𝑆, implying2 𝑀1 = 𝑀2 =: 𝑀 and 𝐵1 = 𝐵2 =: 𝐵. Notice that both the spectral
radius and the norm of 𝑇 are minimized becoming identically zero by taking for 𝑆
the exact Schur complement transmission matrix, i.e., 𝑆 = 𝑆★ := −𝐴Γ1 ,Θ2𝐴

−1
Θ2
𝐴Θ2 ,Γ1 .

3 Data-sparse transmission conditions

The term data-sparse matrix refers to a low-rank matrix or a matrix with a low-rank
structure in some of its blocks. Taking D as the set of data-sparse matrices of a
particular type, e.g., low-rank, we focus on the minimization problem

min
𝑆∈D
∥𝑀𝐵∥2 = min

𝑆∈D


[
𝐼 + 𝑆(𝐴−1

Ω1
)Γ1 ,Γ1

]−1 (
𝑆 + 𝐴Γ1 ,Θ2𝐴

−1
Θ2
𝐴Θ2 ,Γ1

)
𝐵


2

(6)

≤ min
𝑆∈D


[
𝐼 + 𝑆(𝐴−1

Ω1
)Γ1 ,Γ1

]−1 (
𝑆 + 𝐴Γ1 ,Θ2𝐴

−1
Θ2
𝐴Θ2 ,Γ1

)
𝐵


𝐹

. (7)

The Schur complement 𝑆★ makes the second term in the norms, the numerator part
of 𝑀 , zero but lies in general not inD. Minimizing only this term overD might not
suffice, since the denominator part of 𝑀 can also play an important role, as shown
for structurally sparse transmission conditions in [5, Lemma 5.1, 5.3], [11, Section
2.5, pp. 80]. We call NumOpt minimizing the numerator part of 𝑀𝐵 in norm, and
FracOpt minimizing the entire expression. The NumOpt solution is in general given
by the truncated SVD of 𝑆★ or its blocks. For (7) this solution is unique (as the
singular values of 𝑆★ are distinct), while for (6) we in general don’t have uniqueness.

1 The notation (𝐴−1
Ω1
)Γ1 ,Γ1 is an abbreviation for (𝐸Ω1

Γ1
)𝑇𝐴−1

Ω1
𝐸Ω1
Γ1
. By analogy we also define

(𝐴−1
Ω1
)Γ1 ,Γ2 and the counterparts for 𝐴−1

Ω2
.

2 We also use that both 𝐴Ω1 and 𝐴Ω2 are symmetric Toeplitz matrices and thus their inverses are
symmetric and also persymmetric, see [7, Section 4.7].
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On the other hand, (6) is a sharper bound on the convergence factor. We choose to
work with (7) and comment on the differences where appropriate.
A direct computation shows that all the matrices defining 𝑀 and 𝐵 in (5), except

possibly 𝑆1 and 𝑆2, can be diagonalized with the 1D discrete Fourier sine basis

𝑊 =
[
w1, . . . ,w𝑁𝑟−2

]
with w𝑘 =

[
sin

(
𝑘 𝜋
𝑁𝑟−1 𝑗

)]𝑁𝑟−2

𝑗=1
∈ R𝑁𝑟−2. (8)

We first take 𝑆 to be a symmetric, rank 𝑟 matrix of the form

𝑆 =
𝑟∑︁
𝑘=1

𝛾𝑘v𝑘v𝑇𝑘 , (9)

where 𝛾 ∈ R\{0} and v𝑘 ∈ R𝑁𝑟−2, linearly independent with ∥v𝑘 ∥ = 1. Note that (9)
cannot capture the diagonal singularity of 𝑆★ well with 𝑟 small3. Taking

v𝑘 = w𝑘 for 𝑘 = 1, . . . , 𝑟, (10)

the matrices 𝑀, 𝐵 can be diagonalized by𝑊 , and denoting the spectra by

{𝛼𝑘}𝑁𝑟−2
1 := sp

(
(𝐴−1

Ω1
)Γ1 ,Γ1

)
, {𝜇𝑘}𝑁𝑟−2

1 := sp
(
𝑆★

)
and {𝛽𝑘}𝑁𝑟−2

1 := sp (𝐵) ,

we obtain for the eigenvalues4 𝜆𝑘 of 𝑀𝐵 the formula

𝜆𝑘 =
𝛾𝑘 + 𝜇𝑘

1 + 𝛾𝑘𝛼𝑘 𝛽𝑘 . (11)

Hence, in this special case, both NumOpt and FracOpt give identical result, namely
𝛾𝑘 = −𝜇𝑘! This is atypical for OSMs, see [5, 11], but is due to the fact that there
is no interaction between the choices of 𝛾𝑘 for different 𝑘 due to orthogonality. We
show this in Figure 2.
We note that in this case (7) is overestimating but its minimizer solves (6) as well,

i.e., the method itself is optimized, just the bound is not sharp.
For arbitrary vectors v1, . . . , v𝑟 ∈ R𝑁𝑟−2 in (9), even a rank one approximation

now can interact with all of the eigenmodes, and ∥𝑀𝐵∥ cannot be easily evaluated:
we obtain the formula

𝑊𝑇𝑀𝐵𝑊 =


𝛼1

. . .

𝛼𝑁𝑟−2



−1 

𝛼1

. . .

𝛼𝑁𝑟−2


+ 𝑆



−1 ©«
𝑆 +


𝜇1

. . .

𝜇𝑁𝑟−2


ª®®¬

𝛽1
. . .

𝛽𝑁𝑟−2



3 The Schur complement converges to a Green’s function when the mesh is refined, and the Green’s
function for Laplace’s equation has a diagonal singularity, see [6, Section 5.3, Remark 16 and
below].
4 Since 𝑀𝐵 is diagonalized by 𝑊 , it is symmetric and thus the eigenvalues correspond to the
singular values up to a sign.
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Fig. 2: ∥𝑀𝐵 ∥𝐹 for the parameters 𝛾𝑖 close to the eigenvalues of 𝑆★ for 𝑟 = 1 (left) and for 𝑟 = 2
(right), with NumOpt 𝛾𝑖 = −𝜇𝑖 highlighted by★.
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Fig. 3: NumOpt and FracOpt for 𝑁𝑟 = 26, 𝐿 = ℎ and 𝑟 = 1. Top: coordinates of the resulting
normalized vector v in the basis𝑊 . Bottom: corresponding transmissionmatrices 𝑆NumOpt, 𝑆FracOpt.

with 𝑆 = 𝑊𝑇𝑆𝑊 , and the denominator and numerator are given as two different
diagonal matrices with the same rank-𝑟 modification. Recalling [7, Theorem 8.5.3]
for 𝑟 = 1, a lengthy but direct calculation gives that the matrices can be diagonalized
with the same transformation if and only if (10) holds. Using therefore numerical
optimization5, extensive experiments showed that NumOpt and FracOpt lead to the
same optimal value numerically, for an example, see Figure 3. Again for (6) the
minimizer is not unique but offers a sharper estimate on the convergence factor,
and, in spite of having a worse bound in (7), the actual minimizer also solves the
2-norm problem in (6) and thus only the bound is affected, not the method. These
observations remained consistent changing any meaningful parameters of both the
problem and the various optimization routines.
We next investigate hierarchical matrices which are well suited to approximate

the singularity appearing on the diagonal of the Schur complement for elliptic
problems [1], and which were proposed for transmission for Helmholtz problems
in [3]. Hierarchical matrices were developed to approximate directly in norm, corre-

5 We used the routine scipy.optimize() with the option shgo (see [2]) for global optimization
and options Nelder-Mead and BFGS for local optimization.
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sponding to NumOpt, and in practice this might be sufficient due to the astounding
accuracy and efficiency of the hierarchical formats, see our example at the end. We
study whether NumOpt and FracOpt are equivalent also for hierarchical matrices.
The eigenvalue theory for hierarchical matrices focuses on localization of eigenval-
ues through iterative processes, see ,e.g., [9] and references therein. The explicit
computation of ∥𝑀𝐵∥ is hence out of reach, and we focus on numerical exploration.
We consider the simplest setting – a one-level hierarchy with the HODLR format6

and we assume 𝑁𝑟 = 2𝑛 for some 𝑛 ∈ N. Taking a 2-by-2 blocking of 𝑆,

𝑆 =

[
𝑆1 𝑆off−diag

𝑆𝑇off−diag 𝑆2

]
, with 𝑆1, 𝑆2, 𝑆off−diag ∈ R𝑛×𝑛,

the minimization problem (7) is posed over 𝑆 with 𝑆1 and 𝑆2 equal to their counter-
parts in 𝑆★ and with 𝑆off−diag of rank 𝑟 . As 𝑆★ is persymmetric, so are its off-diagonal
blocks, and taking 𝐽 as the exchange matrix7, we observe that 𝑆★off−diag𝐽 is symmet-
ric and thus permits a symmetric low-rank approximation of the form (9)8. Letting
q1, . . . , q𝑛 be the eigenvectors of 𝑆★, we first consider

𝑆off−diag𝐽 =
𝑟∑︁
𝑖=1

𝛾𝑖q𝑖q𝑇𝑖 , (12)

where 𝛾𝑖 ∈ R\{0}. In our numerical experiments now FracOpt outperformed Nu-
mOpt slightly. For 𝑁𝑟 = 26, 𝐿 = ℎ and 𝑟 = 1 FracOpt converges 6% faster than
NumOpt9. This drops even lower for 𝑟 > 1 (as the off-diagonal blocks are low-rank,
e.g., 𝑟 = 2 gives 2%) and seems to be quite stable under mesh refinement (𝑁𝑟 = 52
gives 10%, 𝑁𝑟 = 258 gives 13%). For (6) instead of (7), we observe better bounds but
with the same tendencies when changing 𝑟 or 𝑁𝑟 . We show the results for 𝑟 = 1, 2 in
Figure 4. Comparing to the global low-rank case, the situation qualitatively changed,
as there is an improvement going from NumOpt to FracOpt.
For a more general set of vectors,

𝑆off−diag𝐽 =
𝑟∑︁
𝑖=1

𝛾𝑖v𝑖v𝑇𝑖 , (13)

with v1, . . . , v𝑟 ∈ R𝑛 normalized and linearly independent, the FracOpt approach
gives again a minimizer 𝑆FracOpt

off−diag that is suboptimal in terms of approximating
𝑆★off−diag, but minimizes ∥𝑀𝐵∥𝐹 better than 𝑆

NumOpt
off−diag. For 𝑟 = 1 we show a rep-

6 Standing for hierarchichal off-diagonal low-rank.
7 The matrix with ones on the anti-diagonal and zeros elsewhere.
8 The low-rank approximation of 𝑆off−diag can then be directly reconstructed from the one of
𝑆off−diag𝐽 by observing that 𝐽 = 𝐽−1.
9 This refers to the improvement of the bound (5), e.g., FracOpt converging 6% faster than NumOpt
means

( ∥𝑀NumOpt𝐵 ∥𝐹
)1.06

= ∥𝑀FracOpt𝐵 ∥𝐹 .
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Fig. 4: ∥𝑀𝐵 ∥ for the parameters 𝛾𝑖 of the off-diagonal block 𝑆off−diag𝐽 close to the eigenvalues
of that block for 𝑟 = 1 (left) and for 𝑟 = 2 (right), with the NumOpt result for 𝛾𝑖 highlighted by★.

Nu
m
Op

t

Soffdiag S MB

Fr
ac
Op

t

10

20

30

40

50

60

70

80

50

100

150

200

−0.0020

−0.0015

−0.0010

−0.0005

0.0000

10

20

30

40

50

60

70

50

100

150

200

−0.0010

−0.0005

0.0000

0.0005

0.0010

0.0015

Fig. 5: Comparison of NumOpt (top) and FracOpt (bottom) for 𝑁𝑟 = 26, 𝐿 = ℎ and 𝑟 = 1. We
show 𝑆offdiag (left), then 𝑆 (middle) and then 𝑀𝐵 (right). Although the difference in the second
column seems to be almost negligible, its effect on 𝑀𝐵 is clearly visible.

resentative example10 in Figure 5. For 𝑁𝑟 = 26, 𝐿 = ℎ and 𝑟 = 1, FracOpt converges
approximately 25% faster than NumOpt – in terms of the bound. This observation
is in alignment with the performance, see Figure 6 later on. Taking 𝑟 > 1 again
diminishes this improvement (with 𝑟 = 2 we get 13%) but refining ℎ increases the
improvement (with 𝑁𝑟 = 52 we get 43%) – in contrast to the previous setting. We
also observed that (6) and (7) now give different minimizers, which are comparable
in both the bound and the method performance ((7) is slightly worse). In the context
of OSMs, the optimization gains are quite small, see, e.g., [4, Section 3,4]. Thus, we
observe that FracOpt and NumOpt are no longer equivalent for hierarchical formats
but they seem to perform comparably for our model problem.
Finally, we show a numerical comparison of the iterative solver performance,

including a full hierarchical approximation of 𝑆★ in the formats HODLR and H2
in Figure 6 (the full formats correspond to NumOpt; for more details see [8, Figure
2.1 and 2.3] and references therein). We see that simple low rank approximations of

10 In the sense that mesh refinement only refines these results but does not change their “shape”.
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the entire Schur complement can not perform very well as they miss the diagonal
singularity. Hierarchical formats perform well, and follow our theoretical results.
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Space-Time Finite Element Tearing and
Interconnecting Domain Decomposition
Methods

Douglas R. Q. Pacheco and Olaf Steinbach

1 Introduction

Finite element tearing and interconnecting (FETI) domain decomposition methods
[4] are well-established techniques for the parallel solution of elliptic problems. This
is mainly due to their simple implementation and the availability of efficient and
robust preconditioning strategies. Among other variants to deal with floating sub-
domains, total FETI [2] or all-floating FETI [8] methods handle all subdomains as
floating, incorporating also Dirichlet boundary conditions via Lagrange multipliers.
This can simplify the implementation, in particular when considering systems of
partial differential equations. While the original derivation of the FETI method was
based on a constrained minimization problem, related methods can be formulated
for the Helmholtz [12] and Maxwell [13] equations as well, using tearing and inter-
connecting on the discrete level only. Nonetheless, domain decomposition and FETI
methods have been so far mainly restricted to elliptic problems, or to time-dependent
problems which are discretized through tensor-product ansatz spaces. Parallelization
in time is in most cases based on the parareal algorithm [7] combing coarse and fine
temporal grids.
In recent years, space-time discretization methods have become very popular,

see, e.g., the review article [14] and the references given therein. These methods
consider time as just another spatial coordinate, using a finite element discretization
in the whole space-time domain [10]. As this allows an adaptive resolution in space
and time simultaneously, solving the resulting algebraic system requires efficient
solution strategies in parallel. Domain decompositionmethods are a natural choice to
provide efficient, robust preconditioning and allow parallelization when considering
one subdomain per processor.

Douglas R. Q. Pacheco and Olaf Steinbach
Institut für Angewandte Mathematik, TU Graz, Steyrergasse 30, 8010 Graz, Austria
e-mail: pacheco@math.tugraz.at,o.steinbach@tugraz.at
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While the work presented in Ref. [11] considers standard domain decomposition
methods [1, 5] for the heat equation, the focus of the present contribution is on FETI
methods applied to the Stokes system and the heat equation. In Section 2 we describe
the space-time finite element discretization of the related model problems. For the
solution of the resulting linear systems we present in Section 3 a FETI method,
including a discussion on floating subdomains. When considering all subdomains
as floating, we end up with an all-floating FETI method. First numerical results in
Section 4 indicate the great potential of space-time FETI domain decomposition
methods, including parallel-in-time algorithms.

2 Space-time finite element methods

We start with the homogeneous Dirichlet problem for the transient heat equation:

𝜕𝑡𝑢 − Δ𝑥𝑢 = 𝑓 in 𝑄,
𝑢 = 0 on Σ ∪ Σ0,

(1)

where for a bounded domain Ω ⊂ R𝑑 , 𝑑 = 1, 2 or 3, and a finite time horizon 𝑇
we have the space-time domain 𝑄 := Ω × (0, 𝑇) ⊂ R𝑑+1 with lateral and bottom
boundaries Σ := 𝜕Ω× (0, 𝑇) and Σ0 := Ω×{0}, respectively. For simplicity, we only
consider homogeneous boundary and initial conditions, but inhomogeneous data and
other types of boundary conditions can be handled aswell. The space-time variational
formulation of (1) reads to find 𝑢 ∈ 𝑋 := 𝐿2 (0, 𝑇 ;𝐻1

0 (Ω)) ∩𝐻1
0, (0, 𝑇 ;𝐻−1 (Ω)) such

that ∫ 𝑇

0

∫
Ω

[
𝑣𝜕𝑡𝑢 + ∇𝑥𝑢 · ∇𝑥𝑣

]
𝑑𝑥 𝑑𝑡 =

∫ 𝑇

0

∫
Ω
𝑓 𝑣 𝑑𝑥 𝑑𝑡 (2)

is satisfied for all 𝑣 ∈ 𝑌 := 𝐿2 (0, 𝑇 ;𝐻1
0 (Ω)). Note that the ansatz space 𝑋 covers zero

boundary and initial conditions. For a space-time finite element discretization of (2),
we introduce conforming finite element spaces 𝑋ℎ ⊂ 𝑋 and 𝑌ℎ ⊂ 𝑌 , assuming 𝑋ℎ ⊂
𝑌ℎ. In particular, we use the finite element spaces 𝑋ℎ = 𝑌ℎ of continuous, piecewise
linear basis functions, defined with respect to some admissible decomposition of
the space-time domain 𝑄 into shape-regular simplicial finite elements. Detailed
stability and error analysis of this space-time finite element method can be found
in Refs. [10, 11]. The space-time finite element discretization of (2) results in a
large linear system of algebraic equations which we shall solve using an appropriate
tearing and interconnecting domain decomposition method.
As a second model problem, we consider the time-dependent Stokes system

𝜕𝑡𝑢 − 𝜇Δ𝑥𝑢 + ∇𝑥 𝑝 = 𝑓 in 𝑄,
∇𝑥 · 𝑢 = 0 in 𝑄,

𝑢 = 0 on Σ ∪ Σ0,

(3)
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once again assuming homogeneous boundary and initial conditions, for simplicity.
The variational formulation of (3) seeks 𝑢 ∈ 𝑋𝑑 and 𝑝 ∈ 𝐿2 (𝑄) such that

∫ 𝑇

0

∫
Ω

[
𝜕𝑡𝑢 · 𝑣 + 𝜇 ∇𝑥𝑢 : ∇𝑥𝑣 − 𝑝 ∇𝑥 · 𝑣

]
𝑑𝑥 𝑑𝑡 =

∫ 𝑇

0

∫
Ω
𝑓 · 𝑣 𝑑𝑥 𝑑𝑡, (4)

∫ 𝑇

0

∫
Ω
𝑞 ∇𝑥 · 𝑢 𝑑𝑥 𝑑𝑡 +

∫ 𝑇

0

(∫
Ω
𝑝 𝑑𝑥

∫
Ω
𝑞 𝑑𝑥

)
𝑑𝑡 = 0 (5)

is satisfied for all 𝑣 ∈ 𝑌 𝑑 and 𝑞 ∈ 𝐿2 (𝑄). Note that the additional term in (5) ensures
the scaling condition 𝑝 ∈ 𝐿2

0 (Ω) for all 𝑡 ∈ (0, 𝑇). The space-time variational
formulation (4)–(5) can be analyzed similarly to what was done in Ref. [10] in the
case of the heat equation, extending to the space-time setting the spatial inf-sup
stability condition for the divergence. Note that inhomogeneous essential boundary
and initial conditions 𝑔 and 𝑢0 can be handled through homogenization by using
suitable extensions of such data into the space-time domain. For the space-time
finite element discretization of (4) and (5) we use inf-sup stable pairs to approximate
𝑢ℎ and 𝑝ℎ. In particular, we extend the well established Taylor–Hood elements to
the space-time setting using simplicial finite elements. As an alternative we may
also use prismatic space-time Taylor–Hood elements, see Ref. [9] for first numerical
results. A more detailed stability and error analysis will be published elsewhere.

3 Tearing and interconnecting domain decomposition methods

The space-time finite element discretization of the heat equation (1) and of the
Stokes system (3) results in very large systems of algebraic equations which must be
solved in parallel and, if possible, simultaneously in space and time. One possible
approach is to use space-time finite element tearing and interconnecting methods,
which are well established for elliptic problems. Here we generalize this approach
to parabolic time-dependent problems. The space-time domain 𝑄 = Ω × (0, 𝑇) is
decomposed into 𝑠 non-overlapping space-time subdomains 𝑄𝑖 which can be rather
general, see Fig. 1 for a selection of possible simple decompositions. With respect
to this space-time domain decomposition we consider the localized problems, where
the continuity of the primal unknowns along the interface is enforced via discrete
Lagrange multipliers. This results in the global linear system

©«

𝐾1 𝐵⊤1
. . .

...
𝐾𝑠 𝐵

⊤
𝑠

𝐵1 · · · 𝐵𝑠

ª®®®®¬

©«

𝑢1
...
𝑢𝑠
𝜆

ª®®®®¬
=

©«

𝑓
1
...
𝑓
𝑠

0

ª®®®®®¬
, (6)

where the 𝐾𝑖 are the local space-time finite element stiffness matrices and the 𝐵𝑖 are
Boolean matrices. While (6) corresponds directly to the heat equation (1), it formally
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also includes the Stokes problem (3)with all quantities defined accordingly.Although
we have chosen to enforce the interface continuity of the pressure field, this is in
principle not necessary since the variational problem allows 𝑝 ∈ 𝐿2 (𝑄).
At this time, we assume that all local matrices 𝐾𝑖 are invertible, so that when

using direct solvers locally we end up with the Schur complement system

𝑠∑︁
𝑖=1

𝐵𝑖𝐾
−1
𝑖 𝐵⊤𝑖 𝜆 =

𝑠∑︁
𝑖=1

𝐵𝑖𝐾
−1
𝑖 𝑓

𝑖
. (7)

The heat equation can be seen as a diffusion equation with convection in the temporal
direction. Since there is no difference between the spatial and temporal mesh size
ℎ, we conclude a spectral condition number of O(ℎ−2) for (6), and of O(ℎ−1) for
the Schur complement system (7). The global linear system (7) is solved here by a
GMRES method, either without preconditioning or with a simple diagonal precon-
ditioner. More advanced preconditioning strategies also including some coarse grid
contributions seem to be mandatory for more complex problems, being a topic of
further research.

Fig. 1: Different decompositions for the space-time domain 𝑄 = Ω × (0, 𝑇) ⊂ R3.

In what follows, we discuss the more general situation in which a local matrix 𝐾𝑖
is not invertible, i.e., when the subdomain 𝑄𝑖 is floating. Using a pseudo-inverse 𝐾+𝑖
of 𝐾𝑖 , we can describe the solutions of the local subproblems as

𝑢𝑖 = 𝐾
+
𝑖 ( 𝑓 𝑖 − 𝐵

⊤
𝑖 𝜆) + 𝑅𝑖𝛼𝑖 , (8)

where the local matrices 𝑅𝑖 describe the kernels N(𝐾𝑖) of 𝐾𝑖 , and 𝛼𝑖 are coeffi-
cients to be determined. The application of the pseudo-inverse 𝐾+𝑖 also requires the
solvability condition 𝑓

𝑖
− 𝐵⊤𝑖 𝜆 ∈ R(𝐾𝑖), which is equivalent to

𝑅⊤𝑖 ( 𝑓 𝑖 − 𝐵
⊤
𝑖 𝜆) = 0 ,
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where the local matrices 𝑅𝑖 describe the kernels N(𝐾⊤𝑖 ). In the case of floating
subdomains we therefore end up with the Schur complement system(

𝑆 −𝐺
𝐺⊤ 0

) (
𝜆
𝛼

)
=

(
𝑑
𝑒

)
, (9)

where

𝑆 =
𝑠∑︁
𝑖=1

𝐵𝑖𝐾
+
𝑖 𝐵
⊤
𝑖 , 𝐺 =

(
𝐵1𝑅1, · · · , 𝐵𝑠𝑅𝑠

)
, 𝐺 =

(
𝐵1𝑅1, · · · , 𝐵𝑠𝑅𝑠

)
,

𝑑 =
𝑠∑︁
𝑖=1

𝐵𝑖𝐾
+
𝑖 𝑓 𝑖

, 𝑒 =
©«

𝑅⊤1 𝑓 1
...

𝑅⊤𝑠 𝑓 𝑠

ª®®®¬
.

Similarly as in FETI methods for elliptic problems, we introduce a projection

𝑃 := 𝐼 − 𝐺 (𝐺⊤𝐺)−1𝐺⊤,

and it remains to solve the constrained linear system

𝑃𝑆𝜆 = 𝑃𝑑, 𝐺⊤𝜆 = 𝑒 , (10)

which can be done via a GMRES method [6]. Afterwards we can compute

𝛼 = (𝐺⊤𝐺)−1𝐺⊤ (𝑆𝜆 − 𝑑) .

Notice that the square matrix 𝐺⊤𝐺 is small, since it does not depend on the finite
element mesh but only on the number 𝑠 of subdomains. In fact, its dimension is
simply 𝑠 for the heat equation, or 𝑠𝑑 for the Stokes problem. Therefore, the inverse
(𝐺⊤𝐺)−1 can be computed directly and works as a coarse-grid solver.
It remains to characterize the kernels N(𝐾𝑖) and N(𝐾⊤𝑖 ) of the local stiffness

matrices 𝐾𝑖 and their transposed matrices, respectively. For this we consider the heat
equation in𝑄𝑖 = Ω𝑖×(𝑡𝑖−1, 𝑡𝑖), where𝐾𝑖 corresponds to the space-time discretization
with zero Neumann boundary conditions and without initial or terminal conditions
at 𝑡𝑖−1 or 𝑡𝑖 , respectively. In the continuous case, the solution in 𝑄𝑖 is given by

𝑢𝑖 (𝑥, 𝑡) =
∞∑︁
𝑘=0

𝑢𝑖,𝑘𝑒
−𝜆𝑖,𝑘 𝑡𝑣𝑖,𝑘 (𝑥) for (𝑥, 𝑡) ∈ 𝑄𝑖 , (11)

where 𝑣𝑖,𝑘 are the eigenfunctions of the Neumann eigenvalue problem for the spatial
Laplacian in Ω𝑖 , with eigenvalues 𝜆𝑖,𝑘 ≥ 0. For the space-time finite element dis-
cretization we use continuous, piecewise linear basis functions as partition of unity
in 𝑄𝑖 , i.e., 𝑣𝑖,0 ∈ 𝑋ℎ |𝑄𝑖 for 𝜆𝑖,0 = 0. Due to the exponential decay in the solution
(11) for 𝑘 ≥ 1, no more eigenfunctions are represented in the local finite element
space 𝑋ℎ |𝑄𝑖 , and hence we conclude N(𝐾𝑖) =

{
1
}
in the case of the heat equation
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(1). Similarly, for the Stokes problem (3) we have 𝑑 constant eigenfunctions for the
velocity, and additionally null pressure [15]. In both cases, the constant eigenfunc-
tions remain true for general space-time subdomains 𝑄𝑖 . While the kernelN(𝐾𝑖) is
trivially constructed, the basis forN(𝐾⊤𝑖 ) is in general mesh-dependent. Such bases
are however easily obtained as subproducts of numerical techniques for computing
pseudo-inverses 𝐾+𝑖 , see Ref. [3].
To simplify the implementation and to include all subdomains in the coarse-grid

matrix 𝐺⊤𝐺, we may consider all subdomains as floating, incorporating Dirichlet
boundary conditions via Lagrange multipliers as well. This results in the all-floating
[8] or total [2] FETI approach.

4 Numerical results

As a first numerical example we consider the Stokes system (3) in the spatial domain
Ω = (0, 1)2 for 𝑇 = 1, i.e., 𝑄 = (0, 1)3. To check the expected order of convergence
we consider for 𝜇 = 1 the manufactured solution

𝑢1 (𝑥, 𝑡) = 2(1 − 𝑒−𝑡 ) (𝑥2 − 3𝑥2
2 + 2𝑥3

2) [𝑥1 (1 − 𝑥1)]2,
𝑢2 (𝑥, 𝑡) = 2(1 − 𝑒−𝑡 ) (3𝑥2

1 − 𝑥1 − 2𝑥3
1) [𝑥2 (1 − 𝑥2)]2,

𝑝(𝑥, 𝑡) = (1 + 𝑥1 − 𝑒−𝑥1𝑥2𝑡 )𝑡2,

with the right-hand side 𝑓 computed accordingly. In this first example we consider
decompositions of the space-time domain 𝑄 into only a few subdomains, see Fig. 1.
Our particular interest is in the effect of the interface orientation on the number of
required GMRES iterations to reach a given relative accuracy of 𝜀 = 10−6, see also
the discussion in Ref. [11] in the case of a standard domain decomposition approach
for the heat equation. We solve the global Schur complement system without any
preconditioning (I), or with a simple diagonal preconditioner (D). In all cases we
observe a significant reduction in the number of iterations, with the best results
appearing when considering a decomposition in time (a) or space (b) only, and for
the diagonal decomposition (c). The results are not as good when considering the
decomposition (d) and the inclusion (e). In general, some coarse-grid preconditioner
should be used to further reduce the number of iterations.
In the second example we have the heat equation (1) in the spatially one-

dimensional domain Ω = (0, 1) and with the final time 𝑇 = 1, i.e., 𝑄 = (0, 1)2.
As solution we have chosen 𝑢(𝑥, 𝑡) = sin 1

2𝜋𝑡 sin 𝜋𝑥. Here we consider a decom-
position of the space-time domain 𝑄 into up to 64 time slabs, applying both the
space-time FETI approach and the all-floating (AF) formulation. The results are
given in Table 2, where we observe a reasonable number of iterations in all cases.
Note that the number of degrees of freedom is significantly larger when using the
all-floating approach instead of the standard FETI method. Although the latter re-
quires fewer iterations in most examples, this is not always the case (cf. Table 2).
Based on previous experiences [2, 8], we expect that this behaviour can be further
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Table 1: Space-time FETI domain decomposition method for the time-dependent Stokes system in
𝑄 = (0, 1)3. Number of GMRES iterations for the Schur complement system without (I) and with
diagonal (D) preconditioning, for different numbers 𝑁𝑒 of elements.

Domain decomposition
a) b) c) d) e)

𝑁𝑒 ∥∇𝑥 (𝑢 − 𝑢ℎ) ∥𝐿2 (𝑄) ∥𝑝 − 𝑝ℎ ∥𝐿2 (𝑄) I D I D I D I D I D
192 6.86e-3 2.63e-2 15 11 26 13 31 15 36 19
1536 2.19e-3 1.64 6.53e-3 2.01 25 13 54 17 57 20 79 29 72 28
12288 5.82e-4 1.92 1.57e-3 2.05 36 17 94 22 105 27 165 44 181 50
98304 1.47e-4 1.98 3.81e-4 2.04 55 22 180 34 206 39 374 66 325 83

improved by using appropriate preconditioners for the all-floating scheme. Also note
that this approach is strongly related to the parareal algorithm [7] where the coarse
grid corresponds to the time slabs of the domain decomposition, see also the results
in Ref. [11].

Table 2: Classical and all-floating (AF) space-time FETI methods for the heat equation. Number
of GMRES iterations for a sequence of time slabs and meshes.

𝑠 = 2 𝑠 = 4 𝑠 = 8 𝑠 = 16 𝑠 = 32 𝑠 = 64
𝑁𝑒 FETI AF FETI AF FETI AF FETI AF FETI AF FETI AF
128 5 12 7 12 9 12
512 7 12 8 14 12 18 17 17
2048 8 13 10 15 14 21 23 29 34 27
8192 9 15 11 18 16 24 26 36 40 53 69 49
32768 9 18 12 23 17 29 28 44 47 68 79 104

5 Conclusions

In this contribution, we have presented and described first results for space-time finite
element tearing and interconnecting domain decomposition methods, including also
the all-floating approach. Model problems include the heat equation and the Stokes
system, but more complex partial differential equations can be considered as well.
The space-time finite element discretization and the tearing and interconnecting ap-
proach follow the lines of the FETI method for elliptic problems, considering time
as just an additional spatial coordinate. The main distinction here stems from the
asymmetry of the space-time stiffness matrix, which requires a modified projection
operator and also a numerical procedure to construct local kernels. First numerical
results show the potential of the proposed method, in particular when using state-of-
the-art parallel computing facilities for time-dependent problems. It is clear that a
more detailed numerical analysis, in particular with respect to suitable precondition-
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ing strategies for general space-time domain decompositions, is required. Related
results will be investigated and published elsewhere.
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Localized Reduced Basis Additive Schwarz
Methods

Martin J. Gander and Stephan Rave

1 Introduction

Reduced basis (RB) methods [9, 6] are a family of model order reduction schemes
for parameterized PDEs, which can speed up the repeated solution of such equations
by orders of magnitude. In the so-called offline phase, RB methods construct a
problem-adapted low-dimensional approximation space by computing solutions of
the PDE for selected snapshot parameters using a given high-fidelity discretization
of the PDE. In the following online phase, the PDE is solved for arbitrary new
parameters by computing the (Petrov-)Galerkin projection of its solution onto the
precomputed reduced approximation space. While RB methods have been proven
successful in various applications, for very large problems the computation of the
solution snapshots in the offline phase may still be prohibitively expensive. To
mitigate this issue, localized RBmethods [7, 4] have been developed which construct
the global approximation space from spatially localized less expensive problems.
These local problems largely fall into two classes:

Training procedures construct local approximation spaces without knowledge of
the global problem by, e.g., solving the equation on an enlarged subdomain with
arbitrary boundary values and then restricting the solution to the domain of interest,
or by solving related eigenvalue problems. As such, these training approaches have
a strong connecting with numerical multiscale methods and the construction of
spectral coarse spaces in domain decomposition methods.
In this contribution, however, we will focus on the construction of local RB spaces

via online enrichment, where these spaces are iteratively built by solving localized
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corrector problems for the residual of the current reduced solution. In particular we
mention the use of online enrichment in context of the LRBMS [8], GMsFEM [5]
and ArbiLoMod [3] methods. These enrichment schemes share strong similarities
with Schwarz methods, and it is the main goal of this contribution to shed some
light on the connections between these methods. We will do so by introducing a
simple localized RB additive Schwarz (LRBAS) method which is phrased in the
language of the abstract Schwarz framework but incorporates the central ingredients
of online adaptive localized RB methods. In particular, we hope that LRBAS will
help the analysis of localized RBmethods from the perspective of Schwarz methods.
Following [3], we will consider arbitrary but localized changes of the problem
instead of parametric variations. In Section 2.1 we will see that LRBAS can indeed
be interpreted as a locally adaptive version of a multi-preconditioned CG method.
Compared to Schwarz methods, a distinctive feature of LRBAS is that updates

are only computed in high-residual regions, which can lead to a significant reduction
of the number of local updates and a concentration of the updates to a few regions
affected by the localized changes (cf. Section 3). This property might be exploited
for the reduction of the overall power consumption and to balance the computational
load among a smaller amount of compute nodes, in particular in cloud environments,
where additional computational resources can be easily allocated and deallocated
again.

2 A Localized Reduced Basis Additive Schwarz Method

Our goal is to efficiently solve a sequence, indexed by 𝑘 , of linear systems

𝐴(𝑘)𝑥 (𝑘) = 𝑓 (1)

with 𝐴(𝑘) ∈ R𝑛×𝑛 symmetric, positive definite and 𝑥 (𝑘) , 𝑓 ∈ R𝑛, up to some fixed
error tolerance 𝜀. To this end, let 𝑛×𝑛𝑖 matrices 𝑅𝑇𝑖 of rank 𝑛𝑖 be given for 1 ≤ 𝑖 ≤ 𝐼
and 𝑛×𝑛(𝑘)0 matrices 𝑅 (𝑘)𝑇0 of rank 𝑛(𝑘)0 . Typically, 𝑅1, . . . , 𝑅𝐼 will be the restriction
matrices corresponding to a finite element basis associated with an overlapping
domain decomposition Ω𝑖 of the computational domain Ω, and the columns of
𝑅 (𝑘)𝑇0 contain a basis of a suitable coarse space for 𝐴(𝑘) . In particular we assume
that each 𝑅𝑖 is non-orthogonal to only a few neighboring spaces, i.e., there are a
small constant 𝐶 and index sets O𝑖 ⊂ {1, . . . , 𝐼} with #O𝑖 ≤ 𝐶 · 𝐼 such that

𝑅 𝑗 · 𝑅𝑇𝑖 = 0𝑛 𝑗×𝑛𝑖 whenever 𝑗 ∉ O𝑖 . (2)

As usual, we define the local matrices

𝐴(𝑘)0 := 𝑅 (𝑘)0 𝐴(𝑘)𝑅 (𝑘)𝑇0 and 𝐴(𝑘)𝑖 := 𝑅𝑖𝐴(𝑘)𝑅𝑇𝑖 .

We are interested in the case where 𝐴(𝑘+1) is obtained from 𝐴(𝑘) by an arbitrary but
local modification in the sense that
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𝐴(𝑘+1)𝑖 = 𝐴(𝑘)𝑖 for 𝑖 ∉ C (𝑘+1) , (3)

where the sets C (𝑘) contain the indices of the spaces affected by the change, generally
assuming that #C (𝑘) ≪ 𝐼.
Over the course of the computation of the solutions 𝑥 (𝑘) we will build local low-

dimensional reduced bases �̃� (𝑘,𝑙)𝑇𝑖 ∈ R𝑛𝑖×𝑁 (𝑘,𝑙)𝑖 for 𝑖 ≥ 1 such that there are local
coefficients 𝑥 (𝑘,𝑙)𝑖 ∈ R𝑁 (𝑘,𝑙)𝑖 and 𝑥 (𝑘,𝑙)0 ∈ R𝑛(𝑘)0 such that

𝑥 (𝑘,𝑙) := 𝑅 (𝑘)𝑇0 𝑥 (𝑘,𝑙)0 +
𝐼∑︁
𝑖=1

𝑅𝑇𝑖 �̃�
(𝑘,𝑙)𝑇
𝑖 𝑥 (𝑘,𝑙)𝑖 (4)

is a good approximation of 𝑥𝑘 for sufficiently large 𝑙.Weobtain such an approximation
via Galerkin projection onto the global reduced basis space spanned by the images
of 𝑅 (𝑘)𝑇0 and all 𝑅𝑇𝑖 �̃�

(𝑘,𝑙)𝑇
𝑖 , i.e., 𝑥 (𝑘,𝑙) is determined by the (𝑛(𝑘)0 + ∑𝐼

𝑖=1 𝑁
(𝑘,𝑙)
𝑖 )-

dimensional linear system

𝑅 (𝑘)0 𝐴(𝑘)𝑥 (𝑘,𝑙) = 𝑅 (𝑘)0 𝑓 ,

�̃� (𝑘,𝑙)𝑖 𝑅𝑖𝐴
(𝑘)𝑥 (𝑘,𝑙) = �̃� (𝑘,𝑙)𝑖 𝑅𝑖 𝑓 , 1 ≤ 𝑖 ≤ 𝐼 .

(5)

Thanks to the locality (2) of the space decomposition, the matrix of the system (5)
has a block structure allowing us to efficiently assemble and solve it.
To build the local reduced bases �̃� (𝑘,𝑙)𝑇𝑖 we use an iterative enrichment procedure

where the basis is extended with local Schwarz corrections 𝑦 (𝑘,𝑙)𝑖 ∈ R𝑛𝑖 for the
current residual,

𝐴(𝑘)𝑖 𝑦 (𝑘,𝑙)𝑖 = 𝑟 (𝑘,𝑙)𝑖 := 𝑅𝑖 ( 𝑓 − 𝐴(𝑘)𝑥 (𝑘) ). (6)

In view of (3), the corrections are only computed in subdomains 𝑖 with large residual
norm ∥𝑟 (𝑘,𝑙)𝑖 ∥. In particular, for finite-element discretizations of elliptic PDEswithout
high-conductivity channels, we expect that with increasing 𝑘 the number of enriched
bases will be of the same order as the cardinality of C𝑘+1. The exact definition of
the enrichment scheme is given in Algorithm 1. There are various possibilities to
choose the criterion for the localized enrichment in line 9 of Algorithm 1. In this
work we simply select those reduced spaces for enrichment for which the quotient
between the norm of the local residual and the norm of the global residual is larger
than a fixed constant that scales with the number of the subdomains.
Note that an important property of localized enrichment is that after an enrichment

step only those blocks (𝑖, 𝑗) of the matrix corresponding to (5) have to be updated for
which either �̃� (𝑘,𝑙)𝑖 or �̃� (𝑘,𝑙)𝑗 have been enriched. Using reduced basis techniques [2]
it is further possible to evaluate the residual norms ∥𝑅𝑖𝑟 (𝑘,𝑙) ∥ and ∥𝑟 (𝑘,𝑙) ∥ using
only reduced quantities, which again only have to be updated for local bases �̃� (𝑘,𝑙)𝑇𝑖
affected by the enrichment. Thus, in a distributed computing environment only the
main compute node solving (5) and those nodes associated with the enriched bases
have to perform any operations, while the other compute node lay at rest.
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Algorithm 1 Localized Reduced Basis Additive Schwarz method (LRBAS)
1: procedure LRBAS(A(k), f , RT

0 , RT
i , ε, εloc)

2: R̃
(1,1)T
i ← 0ni×0, 1 ≤ i ≤ I ⊲ initialize local bases

3: for k ← 1, . . . ,∞ do
4: x̃(k ,1), x̃(k ,1)i ← solutions of (4), (5) ⊲ initial solution
5: r (k ,1) ← f − A(k) x̃(k ,1) ⊲ initial residual
6: l ← 1
7: while ‖r (k ,l) ‖ / ‖ f ‖ > ε do ⊲ loop until converged
8: for i ← 1, . . . I do ⊲ enrichment procedure
9: if ‖Rir

(k ,l) ‖2 > εloc · I−1 · ‖r (k ,l) ‖2 then
10: y

(k ,l)
i ← solution of (6)

11: R̃
(k ,l+1)T
i ← [

R̃
(k ,l)T
i y

(k ,l)
i

]
12: else
13: R̃

(k ,l+1)
i ← R̃

(k ,l)
i

14: end if
15: end for
16: x̃(k ,l+1), x̃(k ,l+1)

i ← solutions of (4), (5) ⊲ update solution
17: r (k ,l+1) ← f − A(k) x̃(k ,l+1) ⊲ update residual
18: l ← l + 1
19: end while
20: for i ← 1, . . . I do ⊲ update bases for next problem
21: if R̃(k ,l)Ti , R̃

(k ,1)T
i then ⊲ basis enriched at least once?

22: R̃
(k+1,1)T
i ← [

R̃
(k ,1)T
i R̃

(k ,l)T
i x̃

(k ,l)
i

]
⊲ only keep local solution in basis

23: else
24: R̃

(k+1,1)T
i ← R̃

(k ,1)T
i

25: end if
26: end for
27: end for
28: end procedure

main compute node solving (5) and those nodes associated with the enriched bases
have to perform any operations, while the other compute node lay at rest.

We remark that several extensions to the LRBAS method are possible. In par-
ticular, we assumed for simplicity that all matrices A(k) are of the same dimension.
This, for instance, is the case when coefficient functions of the PDE underlying (1)
are modified, but the computational mesh remains unchanged. However, also local
geometry changes that lead to remeshing can be handled by resetting all local bases
that are supported on the changed geometry. In this context we note that, as another
simplification, in the definition of LRBAS we have chosen to keep all basis vectors
when transitioning from A(k) to A(k+1), including bases R̃(k ,l)Ti affected by the change,
even though these retained bases will generally not contribute to the convergence of
the scheme. Finally, in many applications, a local or global parametric variation of
A(k), e.g. the change of some material parameters, in addition to the considered non-
parametric modifications may be of interest. In such cases, parametric model order
reduction techniques such as greedy basis generation algorithms or offline/online
decomposition of the reduced order system (5) can be incorporated into the scheme.
In particular we refer to [7] where both additional parameterization of A(k) as well

We remark that several extensions to the LRBAS method are possible. In partic-
ular, we assumed for simplicity that all matrices 𝐴(𝑘) are of the same dimension.
This, for instance, is the case when coefficient functions of the PDE underlying (1)
are modified, but the computational mesh remains unchanged. However, also local
geometry changes that lead to remeshing can be handled by resetting all local bases
that are supported on the changed geometry. In this context we note that, as another
simplification, in the definition of LRBAS we have chosen to keep all basis vec-
tors when transitioning from 𝐴(𝑘) to 𝐴(𝑘+1) , including bases �̃� (𝑘,𝑙)𝑇𝑖 affected by the
change, even though these retained bases will generally not contribute to the con-
vergence of the scheme. Finally, in many applications, a local or global parametric
variation of 𝐴(𝑘) , e.g. the change of some material parameters, in addition to the
considered non-parametric modifications may be of interest. In such cases, paramet-
ric model order reduction techniques such as greedy basis generation algorithms or
offline/online decomposition of the reduced order system (5) can be incorporated
into the scheme. In particular we refer to [3] where both additional parameterization
of 𝐴(𝑘) as well as the reinitialization of the local bases after non-parametric changes
from 𝐴(𝑘) to 𝐴(𝑘+1) are discussed.
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2.1 LRBAS as an additive-Schwarz multi-preconditioned CG method

Consider the solution of the systems (1) with the preconditioned conjugate gradient
(PCG) algorithm, where we choose as preconditioner the additive Schwarz operator(
𝑀 (𝑘)

)−1 := 𝑅 (𝑘)𝑇0
(
𝐴(𝑘)0

)−1
𝑅 (𝑘)0 + ∑𝐼

𝑖=1 𝑅
𝑇
𝑖

(
𝐴(𝑘)𝑖

)−1
𝑅𝑖 . Let 𝑥 (𝑘,𝑙)pcg denote the 𝑙-th

iterate of the PCG algorithm, starting with 𝑥 (𝑘,0) = 0 as the initial guess. Then it
is well known that 𝑥 (𝑘,𝑙)pcg lies in the search space S (𝑘,𝑙)pcg given by the Krylov space
K 𝑙

( (
𝑀 (𝑘)

)−1
𝐴(𝑘) ,

(
𝑀 (𝑘)

)−1
𝑓
)
and that the error 𝑥 (𝑘) − 𝑥 (𝑘,𝑙)pcg is 𝐴(𝑘) -orthogonal to

this space. Denoting by 𝑟 (𝑘,𝑙)pcg := 𝑓 − 𝐴(𝑘)𝑥 (𝑘,𝑙)pcg the 𝑙-th residual, one readily checks
that S (𝑘,𝑙)pcg is equivalently given by

S (𝑘,𝑙)pcg := span
{(
𝑀 (𝑘)

)−1
𝑟 (𝑘,0)pcg , . . . ,

(
𝑀 (𝑘)

)−1
𝑟 (𝑘,𝑙−1)
pcg

}
,

i.e., in each iteration the search space is extended by the vector obtained from
the application of the preconditioner to the current residual. The idea of multi-
preconditioning [1] is to enlarge this search space by including each local precondi-
tioner

(
𝐴(𝑘)𝑖

)−1 application into the search space individually, leading to

S (𝑘,𝑙)mpcg := span
( {
𝑅 (𝑘)𝑇0

(
𝐴(𝑘)0

)−1
𝑅 (𝑘)0 𝑟 (𝑘,𝑡)mpcg

��� 0 ≤ 𝑡 ≤ 𝑙 − 1
}

∪
{
𝑅𝑇𝑖

(
𝐴(𝑘)𝑖

)−1
𝑅𝑖𝑟
(𝑘,𝑡)
mpcg

��� 1 ≤ 𝑖 ≤ 𝐼, 0 ≤ 𝑡 ≤ 𝑙 − 1
} )
,

with 𝑟 (𝑘,𝑙)mpcg denoting the multi-preconditioned CG residuals. Conversely, we easily
see from (5) and (6) that for 𝜀loc = 0 the LRBAS iterates 𝑥 (𝑘,𝑙) lie within the search
space

S (𝑘,𝑙)lrbas,0 := Im
( [
𝑅 (𝑘)𝑇0 𝑅𝑇1 �̃�

(𝑘,1)
1 . . . 𝑅𝑇𝐼 �̃�

(𝑘,1)
𝐼

] )
+ span

{
𝑅𝑇𝑖

(
𝐴(𝑘)𝑖

)−1
𝑅𝑖𝑟
(𝑘,𝑡)

��� 1 ≤ 𝑖 ≤ 𝐼, 1 ≤ 𝑡 ≤ 𝑙 − 1
}
,

and that the error 𝑥 (𝑘) − 𝑥 (𝑘,𝑙) is 𝐴(𝑘) -orthogonal to this space. Hence, LRBAS with
𝜀loc = 0 can be seen as a projected multi-preconditioned CG method for solving (5),
where the projection space is given by the span of the coarse space and the initial
local reduced bases and where the new solution iterate 𝑥 (𝑘,𝑙) is obtained by direct
solution of the reduced system (5) instead of an incremental update in order to
preserve the locality of the reduced bases.
For 𝜀loc > 0 we arrive at an adaptive version of multi-preconditioning similar

to [10]. However, in contrast to [10] where either all local search directions or their
global sum are added to the search space, LRBAS is locally adaptive in the sense
that only those local search directions are computed and included where a large local
residual has to be corrected.
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3 Numerical Experiment

We consider the test case from [3] and solve a sequence of five elliptic problems

∇ · ( − 𝜎 (𝑘) (𝑥, 𝑦)∇𝑢 (𝑘) (𝑥, 𝑦)) = 0, 𝑥, 𝑦 ∈ (0, 1),
𝑢 (𝑘) (0, 𝑦) = 1, 𝑦 ∈ (0, 1),
𝑢 (𝑘) (1, 𝑦) = −1, 𝑦 ∈ (0, 1),

−𝜎 (𝑘) (𝑥, 𝑦)∇𝑢 (𝑘) (𝑥, 𝑦) · n(𝑥, 𝑦) = 0, 𝑥 ∈ (0, 1), 𝑦 ∈ {0, 1},

(7)

where the coefficient 𝜎 (𝑘) (𝑥) is given as in Fig. 1. The problem is discretized using
bilinear finite elements over a uniform 200 × 200 mesh. The resulting solutions are
visualized in Fig. 2.We decompose the computational domain uniformly into 10×10
subdomains with an overlap of 4 mesh elements. For 𝑅 (𝑘)0 we choose GenEO [11]
basis functions with eigenvalues below 0.5, yielding between two and five functions
per subdomain. When connecting or disconnecting the high-conductivity channels,
we expect enrichment to be required along the subdomains adjacent to the channels,
whereas the other subdomains should be largely unaffected by the local change.
In Table 1 we compare the total number of iterations for all five problems and the

total number of Schwarz corrections (6) required to reach a relative error tolerance of
𝜀 = 10−6 for the following solution strategies: 1. the additive Schwarz preconditioned
CG method with zero initial guess or with a localized RB solution as initial guess,
where the localized basis is obtained from the linear span of previous solutions 𝑥 (𝑘)
decomposed using the GenEO partition of unity; 2. LRBAS with and without local
adaptivity (𝜀loc = 0.25 or 0); 3. a version of LRBASwhere the entire bases �̃� (𝑘,𝑙)𝑇𝑖 are
preserved when transitioning to 𝑘 + 1 instead of only the final solution �̃� (𝑘,𝑙)𝑇𝑖 𝑥 (𝑘,𝑙)𝑖 .
As we see, LRBAS with locally adaptive enrichment significantly outperforms the
PCG method with or without initial guess, both regarding the number of required
iterations as well as the number of Schwarz corrections. Compared to non-adaptive
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Fig. 1: Definition of the coefficient functions 𝜎 (𝑘) for the numerical test case (7); left: function
𝜎 (0) , taking the values 105 + 1 inside the high-conductivity regions and 1 elsewhere; right: 𝜎 (𝑘)
is obtained from 𝜎 (0) by connecting the three channels to the boundary regions at the marked
locations.
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Fig. 2: Solutions of the test problem (7) for 𝑘 = 1, 2, 3 (top row) and 𝑘 = 4, 5 (bottom row).

iterations local enrichments (6)

PCG 107 10700
PCG + LRB solution as initial value 63 6300
LRBAS (𝜀loc = 0) 33 3300
LRBAS (𝜀loc = 0.25) 39 1386
LRBAS (𝜀loc = 0, �̃� (𝑘+1,1)𝑖 := �̃� (𝑘,𝑙)𝑖 ) 28 2800
LRBAS (𝜀loc = 0.25, �̃� (𝑘+1,1)𝑖 := �̃� (𝑘,𝑙)𝑖 ) 34 1335

Table 1: Total number of iterations and local Schwarz corrections (6) required to reach a relative
error tolerance 𝜀 = 10−6 for the test problem (7).

multi-preconditioning, i.e. LRBAS with 𝜀loc = 0, the number of local corrections is
more than halved at the expense of a slightly increased number of iterations. Keeping
all of �̃� (𝑘,𝑙)𝑖 improves the convergence of the method only slightly. Finally, in Fig. 3
we depict the number of required Schwarz corrections per subdomain for each 𝑘 .
We observe a good localization of the computational work among the subdomains
most affected by the local changes.

Acknowledgements Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy EXC 2044 –390685587, Mathematics Münster:
Dynamics–Geometry–Structure.
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Fig. 3: Number of local Schwarz corrections (6) required by the LRBAS method with 𝜀loc = 0.25
to solve the five test problems (7) up to a relative error tolerance of 𝜀 = 10−6.
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Micromechanics Simulations Coupling the
deal.II Software Library With a Parallel
FETI-DP Solver

S. Köhler, O. Rheinbach, and S. Sandfeld

1 Introduction

We consider adaptive finite elements, using the open source finite element library
deal.II [1], and an implementation [11] of the FETI-DP (Finite Element Tearing
and Interconnecting Dual–Primal) method based on PETSc, for the solution of
problems from dislocation micromechanics. The library deal.II is well known for
its adaptive finite element approach based on hanging node constraints. The parallel
data structures in deal.II are meant to be used with global parallel matrices, which
are assembled across the interface. However, in FETI-DP [6] or BDDC [4] methods,
access to the Neumann matrices for each subdomain is needed. Here, we show
that the deal.II infrastructure can still be used to efficiently construct the FETI-DP
preconditioner. We have reported on first computational results of our approach
in [9]; different improvements, including the construction of the coarse space, have
been made since. A related implementation of a BDDCmethod, using adaptive mesh
refinement not based on deal.II, has obtained good scalability to up to 2048 cores
in [10].
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2 Micromechanical Model Problem

To compute the stresses associated with dislocations within a specimen for the
characterization of the microstructure [12, 13], we start by considering a linear
elastic model described by

div𝜎 = 0, 𝜎 = 𝜎𝑇 , 𝜎 = 𝐶 : 𝜀el, and 𝜀el =
1
2
(∇𝑢 + (∇𝑢)𝑇 )

to be solved for the displacements 𝑢. Here, 𝜎 is the stress tensor, 𝜀el the elastic
strain tensor, and 𝐶 the stiffness tensor. Dislocations are one-dimensional defects
present in crystalline materials. They are the boundary of a planar area over which
two subdomains of a crystal have been displaced relative to each other with the
directions given by the Burgers vector 𝒃.
In the linear elastic context, dislocations may be modeled using an eigenstrain

approach [5] by expressing the total strain by 𝜀tot = 𝜀el + 𝜀eig, where 𝜀eig is the
eigenstrain contribution caused by the dislocation microstructure. The area enclosed
by a dislocation is described by an orthogonal vector 𝑨. The eigenstrain contributions
d𝜀eig = 1

2 (𝒃 ⊗ d𝑨 + d𝑨 ⊗ 𝒃), where ⊗ denotes the outer product, are regularized
using the non-singular formulation proposed in [3], similarly to [7]. The eigenstrain
of a dislocation is a contribution to the body force term occurring in the elasticity
problem.
As a benchmark problem, we chose an artificial dislocation structure which,

however, reflects already many details of realistic microstructures that can be found
in dislocation simulations. First of all, the considered sample is a cubic box with edge
lengths of 1 µm; see also section 5. Single crystalline copper was used as a material,
which has the anisotropic elastic constants 𝐶11 = 168.4GPa, 𝐶12 = 121.4GPa, and
𝐶44 = 75.4GPa.Copper is amaterial that has a “face centered cubic” crystallographic
structure with 12 possible slip systems on which dislocations can nucleate and move.
In this artificial dislocation microstructure, all 28 dislocations are considered to be
closed, circular loops; their center points and radii have been chosen randomly.

3 Parallel mesh handling in deal.II

For simplicity, let us first consider a domain Ω ⊂ R2 decomposed into two subdo-
mainsΩ1 ⊂ Ω andΩ2 ⊂ Ω; see Figure 1. In deal.II, each cell is owned by exactly one
MPI rank, the locally owned cells. Each MPI rank has information about its locally
owned cells and one additional layer of ghost cells of the neighboring subdomains;
see Figure 2.
The degrees of freedom (dofs) have a global numbering. Each dof belongs to

exactly one MPI rank; all dofs belonging to an MPI rank form the locally owned dofs
of this rank. Each locally owned dof belongs to a locally owned cell, but some dofs
of a locally owned cell may belong to the locally owned dofs of a different rank; see
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Figure 3. The union of all dofs of all locally owned cells is called locally active dofs.
The union of the locally active dofs and the degrees of freedom of the cells of the
ghost layer is called locally relevant dofs; for details, see, e.g., [2] and Figure 3.

4 Subdomain Neumann matrices in deal.II

In deal.II, the global stiffness matrix 𝐾 can be assembled by an instance of the
class AffineConstraints, which also handles the hanging node constraints and
the Dirichlet boundary values.
For nonoverlapping domain decompositionmethods, such as FETI-DP andBDDC

methods, we have to assemble the local subdomain stiffness matrices 𝐾 (𝑖) for each
subdomain Ω𝑖 , 𝑖 = 1, . . . , 𝑁 . These local subdomain matrices are not assembled
across the interface. There is currently no built-in support in the deal.II library for
this operation. We have therefore added a layer on top of deal.II to implement the
necessary functionality.

Computing the local subdomain Neumann matrices
To assemble a local stiffness matrix, 𝐾 (𝑖) , we need a local sparsity pattern, the

local constraints and a local numbering 1, . . . , 𝑛𝑖 of all locally relevant dofs of this
subdomain. We construct a local sparsity pattern and the local constraints from the
global ones by copying the entries and the values with respect to the local numbering.
The Dirichlet boundary needs some special care; see section 4.

Computing the interface, and faces, edges, and vertices
In FETI-DP and related methods, the interface and its decomposition into faces,

edges, and vertices are needed. The dofs of the interface can be computed as the
intersection of the locally active dofs and the locally relevant dofs. But, due to the
hanging node constraints, such an index set is not always appropriate for FETI-DP
methods, where we need to introduce Lagrange multipliers on the interface. For
hanging nodes, we therefore replace the hanging node dofs by those non-hanging
node dofs which constrain them; see, e.g., Figure 4.
We denote the interface dofs, as outlined above, of Ω𝑖 by Γ𝑖 and name them as

locally active interface dofs. Let us remark that not all dofs on the geometric interface
belong to Γ𝑖 and, vice versa, see, e.g., Figure 5.

Ω Ω1 Ω2

Fig. 1: Left: Domain Ω. Right: Decomposition into Ω1 and Ω2; | Interface.
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Ω1 Ω2 Ω1 Ω2

Fig. 2: Left: Locally owned cells of Ω1, Ω2. Right: Locally owned cells; - - ghost cells.

Ω1 Ω2 Ω1 Ω2

Fig. 3: An example of the classification of the degrees of freedom with 𝑄1 elements. Left:
SubdomainΩ1: • locally owned dofs; ◦ locally active dofs. SubdomainΩ2: • locally owned dofs; ◦
locally active dofs.Right: SubdomainΩ1: • locally relevant dofs; SubdomainΩ2: ◦ locally relevant
dofs.

Ω1 Ω2 Ω1 Ω2

Fig. 4: Partition into locally inner and locally active interface dofs. Left: Subdomain Ω1: • locally
inner dofs. Subdomain Ω2: • locally inner dofs. Right: Subdomain Ω1: • locally active interface
dofs. Subdomain Ω2: • locally active interface dofs.

ForΩ ⊂ R3, we compute vertices, edges, and faces as follows: The basic idea is to
compute the faces of all subdomains, after that, we build edges as intersection of faces
and vertices as intersection of edges. Let us remark that, although the computation
of faces is completely local to all MPI ranks, and, therefore, also the computation
of edges and vertices, we need to communicate all computed edges and vertices to
the neighboring subdomains, see, Figure 5; here, “neighboring” means subdomains
which have a non-empty intersection of the locally relevant dofs; due to hanging
node constraints, the result can be counterintuitive; see Figure 5 for the case of two
dimensions.
The use of p4est (based on space filling curves), which is standard in deal.II’s

parallel distributed mesh class, does not guarantee that a subdomain is connected,
and it may only be connected through vertices or edges of cells. This can be dealt
with but it will typically increase the coarse problem size.
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Ω Ω1 Ω2 Ω3

Fig. 5: Domain Ω partitioned into Ω1, Ω2 and Ω3 with edge dofs between the subdomains. Only
subdomainΩ2 computes the vertices as intersection of the edges. These vertices are not seen byΩ1
and Ω3. Left: Domain Ω | interface. Right: • edge dofs between Ω1 and Ω2. ♦ edge dofs between
Ω2 and Ω3.

Denote the locally active interface of Ω𝑖 by Γ𝑖 and the locally owned dofs by 𝐼𝑜𝑖 .
1. Decompose Γ𝑖 into Γ𝑜𝑖 = Γ𝑖 ∩ 𝐼𝑜𝑖 and Γ𝑜,𝐶𝑖
2. Determine the number of rows 𝑚 of 𝐵𝑖 :

(a) Compute the number 𝑠 (𝑖)𝜆 of all multipliers related to Γ𝑜𝑖 .
(b) Compute 𝑚 =

∑𝑁
𝑖 𝑠

(𝑖)
𝜆 .

3. Send the index set Γ𝑜,𝐶𝑖 to all neighboring subdomains.

4. For each received set Γ𝑜,𝐶𝑗 from a neighboring subdomain Ω 𝑗 compute Γ𝑜𝑖, 𝑗 = Γ𝑜𝑖 ∩ Γ𝑜,𝐶𝑗 . Send to
subdomain Ω 𝑗 the information for which multipliers, associated with the dofs in Γ𝑜𝑖, 𝑗 , a +1 or −1 has to be
inserted into 𝐵 𝑗 .

Fig. 6: Construction of the local jump operators 𝐵𝑖 .

Furthermore, a subdomain may not have enough vertices or edges to ensure the
invertibility of certain subdomain matrices in FETI-DP methods. Here, we some-
times need to introduce additional primal constraints by subdivision of faces or edges
to constrain the low energy modes of all components of a subdomain. Let us remark
that our method can still lead to faces or edges that are not connected.
As mentioned in section 4, we have to take care of the Dirichlet boundary con-

dition. These are also handled by the AffineConstraints class, as the hanging
node constraints. Therefore, for the computation of the interface, we need to extract
the information about the hanging nodes dofs from an instance where the Dirichlet
boundary condition have not been set.

Construction of the FETI-DP jump operator
A crucial element of FETI-DP methods is the jump operator 𝐵 which imposes

the continuity of the solution. This operator has a row for each Lagrange multiplier
and each row consists of exact two entries, a +1 and a −1.
The Lagrange multipliers are related to the locally active interface dofs. Hence,

we partition them, and manage the computation of the local parts of 𝐵, by the locally
owned part of the interface, see, Figure 6.
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5 Numerical Results

We use Q1 finite elements. The deal.II library uses the p4est library to compute the
domain decomposition, as in [10]. Our FETI-DP implementation is based on [11, 8].
Our coarse space uses vertices, edges, and, certain additional point constraints on
faces. We perform 5 mesh refinement steps, using the Kelly error estimator. We use
GMRES.
In Figure 7 (left) we show the eigenstrain distributions that are non-zero inside the

loops and zero outside. This quick transition of the eigenstrain value is responsible for
very high (for non-regularized problems: diverging) stresses that require a sufficiently
fine mesh for obtaining an accurate solution.
In Tables 1 and 2, we report on the global problem size (“Global”) the size of the

coarse problem (“Coarse”), the number of Krylov iterations (“it.”), the solver and
assembly time (“solve” and “ass.”). We also report timings to build the interface Γ,
to build faces, edges, and vertices (denoted “f/e/v”), and to build the FETI-DP jump
operator 𝐵.
First, we observe that the deal.II infrastructure can provide, within a fraction of

a second (for the smaller problems) to a few seconds (for the larger problems), the
necessary connectivity information to construct the FETI-DP preconditioner, i.e.,
the interface, the face, edges, and vertices, and the information to build the 𝐵-matrix.
We also observe that the number of iterations increases slightly when refining the

mesh. Note that the problem is anisotropic (see section 2) which results in higher
iteration counts compared to standard benchmark problems.
For the same refinement cycle, the problem sizes for 512 cores are larger by

a factor between 7 and 8 compared with 64 cores. Since the number of cores is
larger by a factor of 8, we can roughly compare the timings for 512 cores and 64
cores in the sense of weak scaling. In this sense, when comparing refinement step
5, we observe acceptable parallel scalability for the solver time (29.8s vs. 18.8s)
and the total time (203s vs. 174s). This is also the case when summing the total
time over all refinement steps, i.e., we have 305s (512 cores) and 237s (64 cores).
Since this is not weak scalability in the strict sense, we refrain from providing
parallel efficiency numbers. Note that the assembly does not scale perfectly since a
certain load imbalance is introduced by the additional computations involved with
the dislocations.
Performing the same computations using a larger number of cores, i.e., 216 and

1728 cores, we see that the solver time starts to be dominated by the coarse solver,
since the coarse problem is quite large, i.e., > 70 000 dof for the last two refinement
cycles. This is also a result of our attempts to create a robust coarse space. As a
result of the deteriorating solver scalability, the total time to solution, summed over
all refinement steps, is 510s (1728 cores) to be compared with 277s (216 cores). This
indicates that we need to reduce the coarse problem size by modifying our coarse
space. Alternatively, we can move to a three- or multi-level method as in [10].
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Fig. 7: Left: eigenstrain resulting from 28 dislocation loops (red color denotes a non-zero eigen-
strain).Middle: Solution.Right: Solution and adaptivemesh for the fifth refinement cycle; problem
size: 10.4 million dofs using 512MPI ranks.

Table 1: Results for 5 refinement cycles on 64 cores and 512 cores.

d.o.f. Time in 𝑠
#Cores Refinem. Global Coarse it. solve ass. build Γ f/e/v build 𝐵 total time

64 1 14 739 405 23 0.16 9.41 < 0.01 0.01 < 0.01 10.0
2 49 173 1 569 39 0.54 12.6 0.06 0.03 0.02 13.3
3 153 420 1 680 46 1.23 20.3 0.24 0.03 0.01 22.1
4 476 502 1 785 58 4.19 47.6 1.06 0.06 0.03 53.6
5 1 475 034 1 896 55 18.8 150 3.80 0.19 0.06 174

sum 24.9 240 5.17 0.32 0.13 273
512 1 107 811 4 557 22 1.39 5.07 0.02 0.01 0.02 6.94

2 349 404 16 842 49 4.84 9.25 0.10 0.04 0.03 14.6
3 1 087 689 19 275 51 6.57 15.3 0.23 0.05 0.06 22.8
4 3 353 052 20 604 56 10.6 45.2 0.94 0.11 0.12 58.0
5 10 358 751 22 254 53 29.8 165 4.59 0.22 0.23 203

sum 53.2 240 5.88 0.86 0.46 305

Table 2: Results for 5 refinement cycles on 216 cores and 1728 cores.

d.o.f. Time in 𝑠
#Cores Refinem. Global Coarse it. solve ass. build Γ f/e/v build 𝐵 total time

216 1 46 875 1 725 23 0.38 7.53 0.01 0.01 0.01 8.12
2 153 801 6 492 43 3.07 10.1 0.07 0.03 0.02 13.5
3 479 475 7 701 44 3.63 16.9 0.27 0.05 0.03 21.3
4 1 477 617 7 839 52 7.29 41.6 0.91 0.08 0.06 50.7
5 4 570 413 8 139 54 23.9 152 4.90 0.17 0.11 183

sum 46 223 6.16 0.33 0.22 277
1728 1 352 947 17 061 22 6.56 4.39 0.02 0.02 0.07 11.8

2 1 133 949 61 266 50 32.1 8.05 0.10 0.05 0.11 41.6
3 3 509 349 67 716 49 35.9 14.1 0.25 0.07 0.18 52.0
4 10 820 382 71 811 63 47.1 61.4 0.79 0.11 0.34 112
5 33 427 005 76 125 60 76.9 207 3.78 0.22 0.68 292

sum 199 295 4.94 0.47 1.34 510
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A Three-Level Extension for Fast and Robust
Overlapping Schwarz (FROSch) Preconditioners
with Reduced Dimensional Coarse Space

Alexander Heinlein1, Axel Klawonn2,3, Oliver Rheinbach4, and Friederike Röver4

1 Fast and Robust Overlapping Schwarz Preconditioners

The Fast and Robust Overlapping Schwarz framework [9, 8], which is part of the
Trilinos Software library [1], contains a parallel implementation of the generalized
Dryja-Smith-Widlund (GDSW) preconditioner. The GDSW preconditioner is a two-
level overlapping Schwarz domain decomposition preconditioner [18]with an energy
minimizing coarse space [5, 4]. It is constructed based on a domain decomposition of
the computational domainΩ into 𝑁 nonoverlapping subdomains {Ω𝑖}𝑖=1,...,𝑁 . These
are then extended by 𝑘 layers of elements, resulting in a corresponding overlapping
domain decomposition

{
Ω′𝑖

}
𝑖=1,...,𝑁 . The two-level GDSW preconditioner can then

be written as
𝑀−1

GDSW = Φ𝐾−1
0 Φ𝑇︸     ︷︷     ︸

coarse level

+
∑︁𝑁

𝑖=1
𝑅𝑇𝑖 𝐾

−1
𝑖 𝑅𝑖︸              ︷︷              ︸

first level

, (1)

where Φ contains the coarse basis functions. Contrary to the classical approach,
where the coarse basis functions are chosen as nodal finite element functions on
a coarse triangulation, for the GDSW preconditioner, these are chosen as discrete
harmonic extensions of certain interface functions ΦΓ to the interior of each subdo-
main. In particular, the functions ΦΓ are restrictions of the null space of the global
Neumann matrix to the vertices, edges, and faces, which form a nonoverlapping de-
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composition of the domain decomposition interface. The matrix 𝐾0 = Φ𝑇𝐾Φ is the
coarse matrix and the matrices 𝐾𝑖 = 𝑅𝑖𝐾𝑅𝑇𝑖 , 𝑖 = 1, . . . , 𝑁 , correspond to the over-
lapping subdomain problems on the first level. The local subspaces corresponding to
the overlapping subdomains are denoted as𝑉1, . . . , 𝑉𝑁 , and the GDSW coarse space
is denoted by 𝑉0. For scalar elliptic problems, the condition number is bounded by

𝜅(𝑀−1
GDSW𝐾) ≤ 𝐶

(
1 + 𝐻

𝛿

) (
1 + log

(
𝐻

ℎ

))2
, (2)

where 𝐶 is a constant independent of the finite element size ℎ, the size 𝐻 of the non-
overlapping subdomains, and the width of the overlap 𝛿 = 𝑘ℎ; see [4]. The GDSW
coarse space can be constructed in an algebraic fashion, i.e., without geometric
information. For a further reduction of the coarse space, the FROSch framework
provides an implementation of a reduced dimensional coarse space (RGDSW) [12].
For the reduced dimensional GDSWcoarse space, the basis functions are constructed
fromnodal interface functions. Twooptions are currently available in FROSch: a fully
algebraic version (Option 1) [6, 12], where the interface values are defined through
the number of adjacent vertices, or the less algebraic version (Option 2.2) [6, 12],
where the interface values are defined through the distance to the adjacent vertices;
cf. [6, 12]. In general, the two options result in different partitions of unity. The
interior values of each subdomain are determined as in the classical GDSWapproach.

2 Three-Level Extension

For a large number of subdomains, the coarse problem of the two-level (R)GDSW
preconditioners may become too large to be solved by a sparse direct solver. As in
the three-level BDDC methods [19], we can resolve this by applying the GDSW
preconditioner recursively to the coarse problem [10, 11]. This technique can be ex-
tended to a multi-level version, as in multi-level BDDC [2, 17] (which compete with
inexact FETI-DP methods [14]), multilevel Schwarz methods [15, 16], or multigrid
methods. We only discuss the three-level extension in this paper.
To apply the (R)GDSW preconditioner to the coarse problem, we need to define

an additional layer of decomposition. We therefore decompose the domain into
non-overlapping subregions Ω𝑖0 of diameter 𝐻𝑐, whereas each subregion is a union
of subdomains. To obtain overlapping subregions Ω′𝑖0, we extend each subregion
by recursively adding layers of subdomains, as we do with finite elements on the
subdomain level; see Figure 1. We denote the subregion overlap by Δ. The notation
on the subdomain level is kept consistent with the two-level method.
We define the three-level GDSW preconditioner [10, 11] by

𝑀−1
GDSW−3L = Φ

( third level︷      ︸︸      ︷
Φ0𝐾

−1
00 Φ

𝑇
0 +

second level︷                ︸︸                ︷∑︁𝑁0

𝑖=1
𝑅𝑇𝑖0𝐾

−1
𝑖0 𝑅𝑖0

)
Φ𝑇 +

first level︷               ︸︸               ︷∑︁𝑁

𝑗=1
𝑅𝑇𝑗 𝐾

−1
𝑗 𝑅 𝑗 , (3)
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Fig. 1: Structured decomposition of an exemplary two-dimensional computational domain Ω into
nonoverlapping subregions Ω𝑖0(left), a zoom into one overlapping subregion Ω′𝑖0 consisting of
subdomains Ω𝑖 (middle), and a zoom into one overlapping subdomain Ω′𝑖 (right). Each level of
zoom corresponds to one level of the preconditioner; image from [10].

where the first level and the matrices Φ are defined as in the two-level method and
where 𝐾00 = Φ𝑇0 𝐾0Φ0 and 𝐾𝑖0 = 𝑅𝑖0𝐾0𝑅

𝑇
𝑖0. The restriction operators, restricting

to the overlapping subregions Ω′𝑖0, are defined as 𝑅𝑖0 : 𝑉0 → 𝑉0
𝑖 := 𝑉0 (Ω′𝑖0) for

𝑖 = 1, ..., 𝑁0. The respective coarse space is denoted as𝑉00 and spanned by the coarse
basis functions Φ0.

3 Implementation

The Fast and Robust Overlapping Schwarz (FROSch) framework [9, 8] is part of
the package ShyLU from the Trilinos software library [1]. It contains parallel im-
plementations of the GDSW and RGDSW preconditioners based on the Trilinos
linear algebra interface Xpetra; it enables the use of both Trilinos linear packages
Epetra and Tpetra. To test the three-level extension to the FROSch implementation,
we considered a linear elasticity model problem on the unit cube [0, 1]3 with ho-
mogenous Dirichlet boundary condition on 𝜕Ω. We use piecewise trilinear finite
elements and a structured decomposition of the computational domain. To assemble
the stiffness matrix we apply the Trilinos package Galeri. Here, each process owns
the same number of rows of stiffness matrix resulting in different subdomain sizes.
We use a generic right-hand side vector in which each entry is set to one. If the
coarse space is constructed as described in Section 1, the columns of the matrix Φ
will be a generating set of the coarse space. However, for our model problem, the
columns will not be linear independent and, hence, not form a basis of the coarse
space. This is because the restriction of the six-dimensional null space, consisting
of translations and linearized rotations, to an interface component may yield linear
dependent vectors. For instance, the restriction of the null space to a single vertex
yields only a three dimensional space. In order to make sure that the coarse matrix
𝐾0 is invertible, we have to deal with this in our implementation. In particular, before
building 𝐾0, we replace linear dependent coarse functions by null vectors until all
other basis functions are linear independent; in order to identify linear dependencies,
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we perform local orthonomalization using LAPACK’s SGEQRF routine for com-
puting a QR factorization using Householder transformations. This procedure yields
zero rows and columns in 𝐾0. Therefore, in order to make 𝐾0 invertible, we finally
replace those rows and columns by the corresponding unit vectors, leaving a one on
the diagonal and zeros otherwise. This also has the nice side effect that the size of
the coarse matrix is always the number of interface components times the dimension
of the null space. The coarse level is decomposed into subregions in an unstructured
way using the Parallel Hypergraph and Graph Partitioning (PGH) from the Trilinos
package Zoltan2 [20]; see also [13]. As a Krylov iteration method, we apply the
preconditioned conjugate gradient method (PCG) provided by the Trilinos package
Belos (BelosPseudoBlockCG). The implementation offers a condition number esti-
mate using the tridiagonal matrix constructed in the Lanczos process. We use the
relative stopping criterion ∥𝑟𝑘 ∥2/∥𝑟0∥2 ≤ 10−6, where 𝑟𝑘 is the residual in the 𝑘-th
iteration step and 𝑟0 is the initial residual. For all tests, we chose 203 ∗ 3 rows of the
stiffness matrix for each process and approximately 83 subdomains per nonoverlap-
ping subregion. The overlap is obtained by extending each subdomain by one layer
of elements and by extending each subregion by one layer of subdomains. We per-
formed all numerical tests on the GCS supercomputer SuperMUC-NG. The INTEL
19.0 compiler is used. The sparse linear subproblems arising in the preconditioner
are solved using the sparse direct linear solver PardisoMKL [3].

4 Weak Parallel Scalability Results for the Three-Level Extension

In this section, we focus on weak parallel scalability results for the three-level GDSW
preconditioner with a reduced dimensional coarse space. We always use Option 1
to construct the coarse basis functions. In Trilinos the data is distributed among the
processes via the map object. We use a repeatedly decomposed map to determine
the interface Γ. This map can be passed as an input to the FROSch framework.
For our weak parallel scalability tests, we consider three different setups to de-

termine the interface Γ, which result in different sizes and sparsity patterns for the
coarse problem; see Figure 2.We either use theGeometric Map, which is constructed
from the structured non-overlapping domain decomposition on the first level, or the
Algebraic Map [7], which is built algebraically from the uniquely decomposed row
map of the input matrix. In particular, the interfaces and hence the vertices, edges,
and faces may differ slightly for the two different maps; this effect may be more
pronounced for unstructured domain decompositions. When using the Algebraic
Map, we also consider the case where the rotations are neglected (Algebr. w/o Ro-
tat.). In Figure 2, we only see minor differences in the sparsity pattern of 𝐾0 using
the Geometric and the Algebraic Map. For a higher numbers of subdomains, the
differences between these two approaches will be more visible: for our largest test
case with 85 184 subdomains, we have 539 460 as a maximum nonzero entries per
core in 𝐾0 for the Geometric Map; this compares to 578 340maximum nonzeros per
core for the Algebraic Map. For all input maps, the two- and the three-level method
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Fig. 2: Sparsity of the coarse matrix 𝐾0 for our linear elasticity model problem in three dimensions
with 216 subdomains; using the Geometric Map (left) and the Algebraic Map, with rotations
(middle) and without linearized rotations (right). The subdomain size is chosen such that each
process of the uniquely decomposed map owns 303 nodes.

Fig. 3:Weak numerical scalability for the three- and two-level method with a reduced dimensional
coarse space; see Table 1 for the data; using the Geometric Map and the Algebraic Map with and
without rotations.

Fig. 4: Weak parallel scalability for the three- and two-level method with a reduced dimensional
coarse space; see Table 1 for the data.

are numerically scalable, whereas the Algebraic Map without Rotations yields the
highest iteration counts and condition number estimates; cf. Figure 3 and Table 1.
Replacing the direct solver for the coarse problem (used in the two-level method) by
the application of the RGDSW preconditioner for the three-level method generally
results in higher condition number estimates and iteration counts.
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Two-level Three-level
# Subd. # Subr. #Dofs Map 𝜅 (𝑀−1𝐾) Iter Solver Time 𝜅 (𝑀−1𝐾) iter Solver Time

1 000 4 2.4 · 107
Geom. 51.45 57 15.11s 90.46 72 16.99s
Algebr. 50.73 49 14.54s 103.02 60 16.12s

Algebr. w/o Rotat. 166.68 70 15.48s 429.05 93 17.91s

13 824 27 3.3 · 108
Geom. 53.61 61 38.40s 116.19 90 24.89s
Algebr. 51.08 49 36.39s 127.91 72 23.38s

Algebr. w/o Rotat. 182.46 73 22.75s 594.97 101 21.58s

27 000 64 6.5 · 108
Geom. 53.77 62 87.28s 122.18 95 30.87s
Algebr. 51.12 50 82.01s 137.42 75 28.46s

Algebr. w/o Rotat. 191.12 73 33.17s 663.44 112 26.02s

39 304 125 9.4 · 108
Geom. 53.82 62 153.88s 128.39 98 35.12s
Algebr. 51.12 50 144.01s 137.96 74 30.63s

Algebr. w/o Rotat. 198.05 74 47.48s 745.26 114 31.40s

64 000 216 1.5 · 109
Geom. - - - 135.58 98 37.29s
Algebr. - - - 143.87 76 32.81s

Algebr. w/o Rotat. - - - 717.06 110 38.24s

85 184 275 2.0 · 109
Geom. - - - 108.49 99 40.80s
Algebr. - - - 150.37 77 39.87s

Algebr. w/o Rotat. - - - 729.14 115 46.45s

Table 1: Data corresponding to Figure 3 and 4. By Iter, we denote number of PCG iterations,
and 𝜅 is the condition number of the preconditioned operator. Solver Time is the time to build
the preconditioner and to perform the Krylov iterations; see also Figure 3 and 4.The subdomain
size is chosen such that each process of the uniquely decomposed map owns 203 nodes. We have
𝐻𝑐/𝐻 ≈ 8. One layer of finite elements respectively one layer of subdomains is chosen as the
overlap for each level.

However, the three-level extension of the FROSch framework shows a better
parallel weak scalability than the two-level method; cf Figure 4 and Table 1. The
Solver Time is the time to build the preconditioner and to perform the Krylov
iterations. The time includes the factorization and forward backward substitution for
the sparse direct solvers. For the three-level method the time for the unstructured
decomposition, of the coarse problem is also included. For all test settings, the
three-level method is faster for 13 824 and more cores. Moreover, at 39 304 cores
the three-level method is faster by more than a factor of four: Using the three-level
method, we obtain a Solver Time of 35.12 𝑠 using the Geometric Map and 30.63 𝑠
using Algebraic Map. This compares to a Solver Time of 153.88 𝑠 for the Geometric
Map and 144.01 𝑠 for the Algebraic Map in the two-level method. Using Algebraic
Map without Rotation results in a smaller coarse problem, making the two-level
methods more competitive. Here, the three-level method (Solver Time 31.40 𝑠) is
still faster by a factor of 1.5 than the two-level method (Solver Time 47.48 𝑠). As the
results are clear, we did not perform tests beyond the 39 304 cores for the two-level
method. To illustrate the strong influence of the size of the coarse problem on the
preconditioner time, we consider the test case of 39 304 cores in Table 2. For this
test case, the solution of coarse problem 𝐾0 in Geometric Map setup takes 78%
(120.19 𝑠) of the total Solver Time (153.88 𝑠).
For this test case, the solution of coarse problem 𝐾0 inGeometric Map setup takes

78% (120.19 𝑠) of the total Solver Time (153.88 𝑠). This time compares to less than
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Two-level method Three-level method
# Subd. # Subr. #Dofs Map Size 𝐾0 𝐾0 Solve Time Size 𝐾00 𝐾00 Solve Time

1 000 4 2.4 · 107
Geom. 4 374 0.24s 6 <1e-5s
Algebr. 4 374 0.22s 6 <1e-5s

Algebr. w/o Rotat. 2 184 0.08s 3 <1e-5s

13 824 27 3.3 · 108
Geom. 73 002 12.03s 366 0.01s
Algebr. 73 002 12.04s 366 0.01s

Algebr. w/o Rotat. 36 501 2.02s 174 0.003s

27 000 64 6.5 · 108
Geom. 146 334 59.38s 1 056 0.08s
Algebr. 146 334 45.75s 1 116 0.08s

Algebr. w/o Rotat. 73 167 11.69s 546 0.04s

39 304 125 9.4 · 108
Geom. 215 622 120.19s 2 508 0.29s
Algebr. 215 622 114.06s 2 556 0.25s

Algebr. w/o Rotat. 107 811 22.14s 1 290 0.11s

64 000 216 1.5 · 109
Geom. 355 914 - 4 980 0.81s
Algebr. 355 914 - 4 938 0.63s

Algebr. w/o Rotat. 177 957 - 2 319 0.21s

85 184 275 2.0 · 109
Geom. 477 042 - 6 432 0.63s
Algebr. 477 042 - 6 660 0.72s

Algebr. w/o Rotat. 238 521 - 3 222 0.16s

Table 2: Cost for solving the problem on the coarsest level. Solve Coarse Problem Time include
the time of the factorization of the problem as well as the forward and backward substitution in the
Krylov iterations.

a second (0.29 𝑠) to solve the coarse problem corresponding to 𝐾00 in the three-level
method. Similar results are obtained for the Algebraic Map where 114.06 𝑠 for the
two-level method compare with 0.25 𝑠 for the three-level method. For the Algebraic
Map without Rotations the size of the coarse problem is reduced by a factor of two;
cf. Table 2. Therefore, the cost of the coarse problem reduces to 22.14 𝑠 for the two-
level method, which compares to 0.11 𝑠 for the three-level method. Although the
Algebraic Map has the largest coarse problem size (see Table 2) this is consistently
the fastest setup of the three-level method. The stronger connectivity given by this
coarse problem improves the iteration count and therefore decreases the Solver Time.
Resulting in the higher number of iterations (cf. Table 1) the Algebraic Map without
rotations is the slowest test case.
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Space-Time Hexahedral Finite Element Methods
for Parabolic Evolution Problems

Ulrich Langer and Andreas Schafelner

1 Introduction

We consider the parabolic initial-boundary value problem (IBVP), find 𝑢 such that

𝜕𝑡𝑢 − div𝑥 (𝛼 ∇𝑥𝑢) = 𝑓 in 𝑄, 𝑢 = 𝑢𝐷 := 0 on Σ, 𝑢 = 𝑢0 := 0 on Σ0, (1)

as a model problem typically arising in heat conduction and diffusion, where 𝑄 =
Ω×(0, 𝑇),Σ = 𝜕Ω×(0, 𝑇), andΣ0 = Ω×{0}. The spatial domainΩ ⊂ R𝑑 , 𝑑 = 1, 2, is
assumed to be bounded and Lipschitz,𝑇 > 0 is the terminal time, 𝑓 ∈ 𝐿2 (𝑄) denotes
a given source, and 𝛼 ∈ 𝐿∞ (𝑄) is a given uniformly positive (almost everywhere)
coefficient that may discontinuously depend on the spatial variable 𝑥 = (𝑥1, . . . , 𝑥𝑑)
and the time variable 𝑡, but 𝛼(𝑥, 𝑡) should be of bounded variation in 𝑡 for almost
all 𝑥 ∈ Ω. Then there is a unique weak solution 𝑢 ∈ 𝑉0 := {𝑣 ∈ 𝐿2 (0, 𝑇 ;𝐻1

0 (Ω)) :
𝜕𝑡𝑢 ∈ 𝐿2 (0, 𝑇 ;𝐻−1 (Ω)), 𝑣 = 0 on Σ0} of the IBVP (1); see, e.g., [4, 14]. Moreover,
𝜕𝑡𝑢 and 𝐿𝑢 := −div𝑥 (𝛼 ∇𝑥𝑢) belong to 𝐿2 (𝑄); see [3]. The latter property is called
maximal parabolic regularity. In this case, the parabolic partial differential equation
𝜕𝑡𝑢 − div𝑥 (𝛼 ∇𝑥𝑢) = 𝑓 holds in 𝐿2 (𝑄). This remains even valid for inhomogeneous
initial conditions 𝑢0 ∈ 𝐻1

0 (Ω).
Time-stepping methods in combination with some spatial discretization method

like the finite element method (FEM) are still the standard approach to the numerical
solution of IBVPs like (1); see, e.g., [16]. This time-stepping approach as well as
the more recent discontinuous Galerkin, or discontinuous Petrov-Galerkin methods
based on time slices or slabs are in principle sequential. The sequential nature
of these methods hampers the full space-time adaptivity and parallelization; but
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see the overview paper [5] for parallel-in-time methods. Space-time finite element
methods on fully unstructured decomposition of the space-time cylinder 𝑄 avoid
these bottlenecks; see [15] for an overview of such kind of space-time methods.
In this paper, we follow our preceding papers [9, 11, 10], and construct locally sta-

bilized, conforming space-time finite element schemes for solving the IBVP (1), but
on hexahedral meshes that are more suited for anisotropic refinement than simplicial
meshes used in [9, 11, 10]. We mention that SUPG/SD and Galerkin/least-squares
stabilizations of time-slice finite element schemes for solving transient problemswere
already used in early papers; see, e.g., [8] and [6]. Section 2 recalls the construction
of locally stabilized space-time finite element schemes, the properties of the corre-
sponding discrete bilinear form, and the a priori discretization error estimates from
[9, 11, 10]. In Section 3, we derive new anisotropic a priori discretization estimates
for hexahedral tensor-product meshes, and we provide anisotropic adaptive mesh
refinement strategies that are based on a posteriori error estimates, anisotropy indi-
cators, and anisotropic adaptive mesh refinement using hanging nodes. In Section 4,
we present and discuss numerical results for an example where a singularity occurs
in the spatial gradient of the solution. The large-scale system of space-time finite
element equations is always solved by means of the Flexible Generalized Minimal
Residual (FGMRES) method preconditioned by space-time algebraic multigrid.

2 Space-time finite element methods

In this section, we will briefly describe the space-time finite element method based
on localized time-upwind stabilizations; for details of the construction and analysis,
we refer to our previous work [9, 11, 10]. Let Tℎ be a shape regular decomposition
of the space-time cylinder 𝑄, i.e., 𝑄 =

⋃
𝐾 ∈Tℎ 𝐾 , and 𝐾 ∩ 𝐾 ′ = ∅ for all 𝐾 and 𝐾 ′

from Tℎ with 𝐾 ≠ 𝐾 ′; see, e.g., [2] for more details. Furthermore, we assume that 𝛼
is piecewise smooth, and possible discontinuities are aligned with the triangulation
as usual. On the basis of the triangulation Tℎ, we define the space-time finite element
space

𝑉0ℎ = {𝑣 ∈ 𝐶 (𝑄) : 𝑣(𝑥𝐾 (·)) ∈ P𝑝 (�̂�), ∀𝐾 ∈ Tℎ, 𝑣 = 0 on Σ∪Σ0},

where 𝑥𝐾 (·) denotes the map from the reference element �̂� to the finite element
𝐾 ∈ Tℎ, and P𝑝 (�̂�) is either the space of polynomials of at most degree 𝑝 on the ref-
erence element �̂� , or the space of polynomials of degree 𝑝 in each variable on �̂� , for
simplicial or tensor-product decompositions, respectively. Since we are in the max-
imal parabolic regularity setting, the parabolic Partial Differential Equation (PDE)
is valid in 𝐿2 (𝑄). Multiplying the PDE (1), restricted to 𝐾 ∈ Tℎ, by a locally scaled
upwind test function 𝑣ℎ,𝐾 (𝑥, 𝑡) := 𝑣ℎ (𝑥, 𝑡) + 𝜃𝐾 ℎ𝐾𝜕𝑡𝑣ℎ (𝑥, 𝑡), 𝑣ℎ ∈ 𝑉0ℎ, integrating
over 𝐾 , summing over all elements, applying integration by parts, and incorporating
the Dirichlet boundary conditions, we obtain the variational consistency identity
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𝑎ℎ (𝑢, 𝑣ℎ) = ℓℎ (𝑣ℎ), ∀𝑣ℎ ∈ 𝑉0ℎ, (2)

with the mesh-dependent bilinear form

𝑎ℎ (𝑢, 𝑣ℎ) =
∑︁
𝐾 ∈Tℎ

∫
𝐾

[
𝜕𝑡𝑢𝑣ℎ + 𝜃𝐾 ℎ𝐾𝜕𝑡𝑢𝜕𝑡𝑣ℎ (3)

+ 𝛼∇𝑥𝑢 · ∇𝑥𝑣ℎ − 𝜃𝐾 ℎ𝐾div𝑥 (𝛼∇𝑥𝑢)𝜕𝑡𝑣ℎ
]
d𝐾,

and the mesh-dependent linear form

ℓℎ (𝑣ℎ) =
∑︁
𝐾 ∈Tℎ

∫
𝐾

[
𝑓 𝑣ℎ + 𝜃𝐾 ℎ𝐾 𝑓 𝜕𝑡𝑣ℎ

]
d𝐾.

Nowwe apply the Galerkin principle, i.e., we look for a finite element approximation
𝑢ℎ ∈ 𝑉0ℎ to 𝑢 such that

𝑎ℎ (𝑢ℎ, 𝑣ℎ) = ℓℎ (𝑣ℎ), ∀𝑣ℎ ∈ 𝑉0ℎ . (4)

Using Galerkin orthogonality (subtracting (4) from (2)), and coercivity and ex-
tended boundedness of the bilinear form (3), we can show the following Céa-like
best approximation estimate; see [9, 11, 10] for the proofs.

Theorem 1 Let 𝑢 ∈ 𝐻𝐿,10 (𝑄) := {𝑣 ∈ 𝑉0 ∩ 𝐻1 (𝑄) : 𝐿𝑣 := −div𝑥 (𝛼∇𝑥𝑣) ∈ 𝐿2 (𝑄)}
and 𝑢ℎ ∈ 𝑉0ℎ be the solutions of the parabolic IBVP (1) and the space-time finite
element scheme (4), respectively. Then the discretization error estimate

∥𝑢 − 𝑢ℎ∥ℎ ≤ inf
𝑣ℎ ∈𝑉0ℎ

(
∥𝑢 − 𝑣ℎ∥ℎ + 𝜇𝑏

𝜇𝑐
∥𝑢 − 𝑣ℎ∥ℎ,∗

)
(5)

is valid provided that 𝜃𝐾 = 𝑂 (ℎ𝐾 ) is sufficiently small, where

∥𝑣∥2ℎ =
1
2
∥𝑣(·, 𝑇)∥2𝐿2 (Ω) +

∑︁
𝐾 ∈Tℎ

[
𝜃𝐾 ℎ𝐾 ∥𝜕𝑡𝑣∥2𝐿2 (𝐾) + ∥𝛼

1/2∇𝑥𝑣∥2𝐿2 (𝐾)
]
,

∥𝑣∥2ℎ,∗ = ∥𝑣∥2ℎ +
∑︁
𝐾 ∈Tℎ

[
(𝜃𝐾 ℎ𝐾 )−1∥𝑣∥2𝐿2 (𝐾) + 𝜃𝐾 ℎ𝐾 ∥div𝑥 (𝛼∇𝑥𝑣)∥2𝐿2 (𝐾)

]
,

and 𝜇𝑐 and 𝜇𝑏 are the coercivity and extended boundedness constants of the bilinear
form (3), respectively.

The best-approximation error estimate (5) now leads to convergence rate estimates
under additional regularity assumptions. If the solution 𝑢 of (1) belongs to𝐻𝐿,10 (𝑄)∩
𝐻𝑙 (𝑄), 𝑙 > 1, then ∥𝑢−𝑢ℎ∥ℎ ≤ 𝑐(𝑢)ℎ𝑠−1, where 𝑠 = min{𝑙, 𝑝+1}, ℎ = min𝐾 ∈Tℎ ℎ𝐾 ,
𝑐(𝑢) depends on the regularity of 𝑢. We refer the reader to [9, Theorem 13.3] and [11,
Theorem 3] for the proof of more detailed estimates in terms of the local mesh-sizes
ℎ𝐾 and the local regularity of the solution 𝑢.
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3 Anisotropic a priori and a posteriori error estimates

The convergence rate estimates presented at the end of the previous section consider
only isotropic finite elements, but in many applications the solution 𝑢 evolves dif-
ferently with respect to time and space directions. So, we should permit anisotropic
finite elements with different mesh sizes in different directions. This raises the ques-
tion whether we can obtain (localized) a priori estimates that are explicit in spatial
and temporal mesh sizes as well as in spatial and temporal regularity assumptions im-
posed on the solution 𝑢. We refer to [1] for a comprehensive summary of anisotropic
finite elements. For the remainder of this section, we will now assume that 𝐾 is a
brick element (hexahedral element for the case 𝑑 = 2), i.e., the edges of 𝐾 are parallel
to the coordinate axes. Moreover, we assume that 𝑢 ∈ 𝐻𝐿,10 (𝑄) ∩ 𝐻𝑚 (𝑄)∩𝐻𝑙 (Tℎ),
𝑚, 𝑙 ∈ N with 𝑚 > (𝑑 + 1)/2 and 𝑙 > 𝑑/2 + 2. Let ℎ𝐾,𝑖 = max{|𝑥𝑖 − 𝑥 ′𝑖 | : 𝑥, 𝑥 ′ ∈ 𝐾},
and let ℎ𝐾,𝑥 = max𝑖=1,...,𝑑 ℎ𝐾,𝑖 ≥ ℎ𝐾,𝑖 ≥ 𝑐ℎ𝐾,𝑥 , and ℎ𝐾,𝑡 = ℎ𝐾,𝑑+1. Now we
replace ℎ𝐾 by ℎ𝐾,𝑥 at all places in Sect. 2. Furthermore, let 𝑒ℎ = 𝑢 − 𝐼ℎ𝑢 and
𝑠 = min{𝑙, 𝑝 +1}, where 𝐼ℎ is the Lagrange interpolation operator, and 𝑝 is the poly-
nomial degree of the finite element shape functions in every coordinate direction.
Using the anisotropic interpolation error estimates from [1], we get

∥𝑒ℎ∥2𝐿2 (𝐾) ≤ 𝑐
©«
𝑑∑︁
𝑗=1

ℎ2𝑠
𝐾, 𝑗 ∥𝜕𝑠𝑥 𝑗𝑢∥2𝐿2 (𝐾) + ℎ

2𝑠
𝐾,𝑡 ∥𝜕𝑠𝑡 𝑢∥2𝐿2 (𝐾)

ª®¬
,

∥𝜕𝑥𝑖 (𝑒ℎ)∥2𝐿2 (𝐾) ≤ 𝑐
©«
𝑑∑︁
𝑗=1

ℎ2(𝑠−1)
𝐾, 𝑗 ∥𝜕𝑥𝑖𝜕

(𝑠−1)
𝑥 𝑗 𝑢∥2𝐿2 (𝐾) + ℎ

2(𝑠−1)
𝐾,𝑡 ∥𝜕𝑥𝑖𝜕

(𝑠−1)
𝑡 𝑢∥2𝐿2 (𝐾)

ª®¬
,

∥𝜕2
𝑥𝑖 (𝑒ℎ)∥2𝐿2 (𝐾) ≤ 𝑐

©
«
𝑑∑︁
𝑗=1

ℎ2(𝑠−2)
𝐾, 𝑗 ∥𝜕2

𝑥𝑖𝜕
(𝑠−2)
𝑥 𝑗 𝑢∥2𝐿2 (𝐾) + ℎ

2(𝑠−2)
𝐾,𝑡 ∥𝜕2

𝑥𝑖𝜕
(𝑠−2)
𝑡 𝑢∥2𝐿2 (𝐾)

ª®¬
,

for 𝑖 = 1, . . . , 𝑑 + 1, where 𝑐 denotes generic positive constants. In particular, we
use [1, Thm. 2.7] for 𝑑 = 1 , and [1, Thm. 2.10] for 𝑑 = 2. These estimates of
the interpolation error and its derivatives immediately lead to the corresponding
interpolation error estimates with respect to the norms ∥ · ∥ℎ and ∥ · ∥ℎ,∗. Now let
Tℎ be a decomposition of 𝑄 into brick elements. Then we can derive the anisotropic
interpolation error estimates

∥𝑢 − 𝐼ℎ𝑢∥ℎ ≤
( ∑︁
𝐾 ∈Tℎ

ℎ2(𝑠−1)
𝐾,𝑥 𝔠1 (𝑢, 𝐾) + ℎ2(𝑠−1)

𝐾,𝑡 𝔠2 (𝑢, 𝐾)
)1/2

, (6)

∥𝑢 − 𝐼ℎ𝑢∥ℎ,∗ ≤
( ∑︁
𝐾 ∈Tℎ

ℎ2(𝑠−1)
𝐾,𝑥 𝔠1,∗ (𝑢, 𝐾) + ℎ2(𝑠−1)

𝐾,𝑡 𝔠2,∗ (𝑢, 𝐾)
)1/2

, (7)

where 𝑠 = min{𝑙, 𝑝 + 1}, and 𝔠1 (𝑢, 𝐾), 𝔠2 (𝑢, 𝐾), 𝔠1,∗ (𝑢, 𝐾) and 𝔠2,∗ (𝑢, 𝐾) can easily
be computed from the interpolation error estimates given above. Here, 𝔠1 (𝑢, 𝐾),
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𝔠2 (𝑢, 𝐾), and 𝔠1,∗ (𝑢, 𝐾) do not depend on the aspect ratio of the spatial and temporal
mesh-sizes, whereas 𝔠2,∗ (𝑢, 𝐾) depends on ℎ𝐾,𝑥/ℎ𝐾,𝑡 and ℎ𝐾,𝑡/ℎ𝐾,𝑥 quadratically.
Combining the interpolation error estimates (6) and (7) with the best approximation
estimate (5), where ℎ𝐾 must be replaced by ℎ𝐾,𝑥 in the definition of the norms, we
can immediately derive an a priori discretization error estimate.

Theorem 2 Let the best approximation estimate (5) hold, and let the anisotropic
interpolation error estimates (6) and (7) be fulfilled. Then the anisotropic a priori
discretization error estimate

∥𝑢 − 𝑢ℎ∥ℎ ≤
( ∑︁
𝐾 ∈Tℎ

ℎ2(𝑠−1)
𝐾,𝑥 ℭ1 (𝑢, 𝐾) + ℎ2(𝑠−1)

𝐾,𝑡 ℭ2 (𝑢, 𝐾)
)1/2

,

is valid, where 𝑠 = min{𝑙, 𝑝 + 1}, and ℭ1 (𝑢, 𝐾) and ℭ2 (𝑢, 𝐾) can be computed from
(6) and (7).

In the computational practice, we would like to replace the uniform mesh refine-
ment by adaptive space-time mesh refinement that takes care of possible anisotropic
features of the solution in space and time. Here brick finite elements with hang-
ing nodes, as implemented in MFEM (see next section), are especially suited. To
drive anisotropic adaptive mesh refinement, we need a localizable a posteriori error
estimator providing local error indicators, and an anisotropy indicator defining the
refinement directions in each brick element 𝐾 ∈ Tℎ.
We use the functional a posteriori error estimators introduced by Repin; see his

monograph [13, Sect. 9.3]. Repin proposed two error majorants 𝔐1 and 𝔐2 from
which the local error indicators

𝜂2
1,𝐾 (𝑢ℎ) =

1
𝛿

∫
𝐾
(1 + 𝛽) [|y − 𝛼∇𝑥𝑢ℎ |2 + 1

𝛽
𝑐2
𝐹Ω | 𝑓 − 𝜕𝑡𝑢ℎ + div𝑥y|2]d𝐾 and

𝜂2
2,𝐾 (𝑢ℎ) =

1
𝛿

∫
𝐾
(1 + 𝛽) [|y − 𝛼∇𝑥𝑢ℎ + ∇𝑥𝜗 |2 + 𝑐2

𝐹Ω

𝛽
| 𝑓 − 𝜕𝑡𝑢ℎ − 𝜕𝑡𝜗 + div𝑥y|2]d𝐾

+ 𝛾∥𝜗(·, 𝑇)∥2Ω + 2
∫
𝐾

[∇𝑥𝑢ℎ · ∇𝑥𝜗 + (𝜕𝑡𝑢ℎ − 𝑓 )𝜗]d𝐾

can be derived for each element 𝐾 ∈ Tℎ, where y ∈ 𝐻 (div𝑥 , 𝑄) is an arbitrary
approximation to the flux, 𝜗 ∈ 𝐻1 (𝑄) is also an arbitrary function, 𝛿 ∈ (0, 2],
𝛽 > 𝜇, 𝜇 ∈ (0, 1), and 𝛾 > 1. The positive constant 𝑐𝐹Ω denotes the constant in
the inequality ∥𝑣∥𝐿2 (𝑄) ≤ 𝑐𝐹Ω∥

√
𝛼∇𝑥𝑣∥𝐿2 (𝑄) for all 𝑣 ∈ 𝐿2 (0, 𝑇 ;𝐻1

0 (Ω)), which is
nothing but the Friedrichs constant for the spatial domain Ω in the case 𝛼 = 1. Both
majorants provide a guaranteed upper bound for the errors

|||𝑢 − 𝑢ℎ |||2(1,2−𝛿) ≤
∑︁
𝐾 ∈Tℎ

𝜂2
1,𝐾 (𝑢ℎ) and |||𝑢 − 𝑢ℎ |||2(1− 1

𝛾 ,2−𝛿)
≤

∑︁
𝐾 ∈Tℎ

𝜂2
2,𝐾 (𝑢ℎ),

where |||𝑣 |||2(𝜖 ,𝜅) ≔ 𝜅∥√𝛼∇𝑥𝑣∥2𝐿2 (𝑄) + 𝜖 ∥𝑣(·, 𝑇)∥
2
𝐿2 (Ω) . Once we have computed the

local error indicators 𝜂𝐾 (𝑢ℎ) for all elements 𝐾 ∈ Tℎ, we use Dörfler marking to
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determine a setM ⊆ Tℎ of elements that will be marked for refinement. The setM
is of (almost) minimal cardinality such that

𝜎
∑︁
𝐾 ∈Tℎ

𝜂𝐾 (𝑢ℎ)2 ≤
∑︁
𝐾 ∈M

𝜂𝐾 (𝑢ℎ)2,

where 𝜎 ∈ (0, 1) is a bulk parameter. Let E𝐾 ∈ R𝑑+1 with entries 𝐸 (𝐾)𝑖 , 𝑖 =
1, . . . , 𝑑 + 1, and 𝜒 ∈ (0, 1). In order to determine how to subdivide a marked
element, we use the following heuristic: for each 𝐾 ∈ M, subdivide 𝐾 in direction
𝑥𝑖 iff 𝐸 (𝐾)𝑖 > 𝜒 |E𝐾 |. In particular, we choose

(
𝐸 (𝐾)𝑖

)2
:=

{∫
𝐾
(𝑦𝑖 − 𝛼 𝜕𝑥𝑖𝑢ℎ)2 d𝐾, 𝑖 ≤ 𝑑,∫

𝐾
(dtℎ − 𝜕𝑡𝑢ℎ)2 d𝐾, 𝑖 = 𝑑 + 1,

as our local anisotropy vector E𝐾 , where yℎ = (𝑦𝑖)𝑑𝑖=1, dtℎ = 𝑅ℎ (𝜕𝑡𝑢ℎ), and 𝑅ℎ is
some nodal averaging operator like in a Zienkiewicz-Zhu approach.

4 Numerical Results

Now let {𝑝 ( 𝑗) : 𝑗 = 1, . . . , 𝑁ℎ} be the finite element nodal basis of 𝑉0ℎ, i.e.,
𝑉0ℎ = span{𝑝 (1) , . . . , 𝑝 (𝑁ℎ) }, where 𝑁ℎ is the number of all space-time unknowns
(dofs). Then we can express the approximate solution 𝑢ℎ in terms of this basis, i.e.,
𝑢ℎ (𝑥, 𝑡) =

∑𝑁ℎ
𝑗=1 𝑢 𝑗 𝑝

( 𝑗) (𝑥, 𝑡). Inserting this representation into (4), and testing with
𝑝 (𝑖) , we get the linear system 𝐾ℎ𝑢ℎ = 𝑓

ℎ
for determining the unknown coefficient

vector 𝑢ℎ = (𝑢 𝑗 ) 𝑗=1,...,𝑁ℎ ∈ R𝑁ℎ , where 𝐾ℎ = (𝑎ℎ (𝑝 ( 𝑗) , 𝑝 (𝑖) ))𝑖, 𝑗=1,...,𝑁ℎ and 𝑓 ℎ =

(ℓℎ (𝑝 (𝑖) ))𝑖=1,...,𝑁ℎ . The systemmatrix𝐾ℎ is non-symmetric, but positive definite due
to the coercivity of the bilinear form 𝑎ℎ (·, ·). Thus, in order to obtain a numerical
solution to the IBVP (1), we just need to solve one linear system of algebraic
equations. This is always solved by means of the FGMRES method preconditioned
by space-time algebraic multigrid (AMG). We use the finite element library MFEM
[12] to implement our space-time finite element solver. The AMG preconditioner
is realized via BoomerAMG, provided by the linear solver library hypre [7]. We
start the linear solver with initial guess 0, and stop once the initial residual has
been reduced by a factor of 10−8. In order to accelerate the solver in case of adaptive
refinements, we also employNested Iterations. Here, we interpolate the finite element
approximation from the previous mesh to the current mesh, and use that as an initial
guess for FGMRES.Moreover, we stop the linear solver earlier, e.g. once the residual
is reduced by a factor of 10−2. Furthermore, we will use the notation ℎ = 𝑁−1/(𝑑+1)

ℎ
to indicate the corresponding convergence rates.
Let 𝑄 = Ω × (0, 1), where Ω = (0, 1)2 \ {(𝑥1, 0) ∈ R2 : 0 ≤ 𝑥1 < 1} is a “slit

domain” that is not Lipschitz. Moreover, we choose the constant diffusion coefficient
𝛼 ≡ 1, and the manufactured solution 𝑢(𝑟, 𝜑, 𝑡) = 𝑡 𝑟𝜆 sin(𝜆𝜑), where (𝑟, 𝜑) are
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polar coordinates with respect to (𝑥1, 𝑥2), and 𝜆 = 0.51. The singularity leads to a
reduced convergence rate O(ℎ0.5) for the polynomial degrees 𝑝 = 1, 2; see the upper
plots of Fig. 1.
In order to properly realize the adaptive refinement strategies, we need to choose

appropriate y and 𝜗. For the first majorant, we reconstruct an improved flux y(0)ℎ =
𝑅ℎ (∇𝑥𝑢ℎ), where 𝑅ℎ is a nodal averaging operator. We then improve this flux by
applying a few CG steps to the minimization problem miny 𝔐1, obtaining the final
flux y(1)ℎ that is then used in the estimator. For the second majorant, we follow the
same procedure, but right before postprocssing the flux, we first apply some CG
iteration to another minimization problem min𝜗𝔐2.
For linear finite elements, we observe at least optimal convergence rates for both

error estimators. Anisotropic refinements, with the anisotropy parameter 𝜒 = 0.1,
manage to obtain a better constant than isotropic refinements; see Fig. 1 (upper
left). For quadratic finite elements, anisotropic adaptive refinements, with 𝜒 = 0.15,
manage to recover the optimal rate of O(ℎ2), while isotropic adaptive refinements
result in a reduced rate of O(ℎ1.25); see Fig. 1 (upper right). The efficiency indices
are rather stable for isotropic refinements, while some oscillations can be observed
for anisotropic refinements; see Fig. 1 (lower right).
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Towards a IETI-DP Solver on Non-Matching
Multi-Patch Domains

Rainer Schneckenleitner∗ and Stefan Takacs

1 Introduction

Isogeometric Analysis (IgA), see [7], is a method for discretizing partial differential
equations (PDEs). The goal of its development has been to enhance the interface be-
tween computer-aided design (CAD) and simulation. Current state-of-the-art CAD
tools use B-splines and NURBS for the representation of the computational domain.
In IgA, the same kind of bases is also utilized to discretize the PDEs. Complex do-
mains for real-world applications are usually the union ofmany patches, parametrized
with individual geometry functions (multi-patch IgA). We focus on non-overlapping
patches.
If the grids are not conforming and/or the interfaces between the patches do not

consist of whole edges then discontinuous Galerkin (dG) methods are the discretiza-
tion techniques of choice. A well studied representative is the symmetric interior
discontinuous Galerkin (SIPG) method, cf. [1]. It has already been adapted and
analyzed in IgA, cf. [9, 10, 15] and others. An obvious choice to solve discretized
PDEs on domains with many non-overlapping patches are tearing and interconnect-
ing methods. The variant we are interested in is the dual-primal approach, see [4]
for FETI-DP and [8, 5, 6] for its extension to IgA, which is called accordingly dual-
primal isogeometric tearing and interconnecting method (IETI-DP). This method
is similar to Balancing Domain Decomposition with Constraints (BDDC) methods,
that have also been adapted to IgA, see [2, 17] and references therein. In [14, 15],
the authors have presented a 𝑝- and ℎ-robust convergence analysis for IETI-DP. The
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authors have assumed that the interfaces consist of whole edges. If the vertices are
chosen as primal degrees of freedom, it was shown that the condition number of the
preconditioned Schur complement system is, under proper assumptions, bounded by

𝐶 𝑝

(
1 + log 𝑝 + max

𝑘=1,...,𝐾
log

𝐻𝑘
ℎ𝑘

)2
, (1)

where 𝑝 is the spline degree, ℎ𝑘 is the grid size on patchΩ(𝑘) and 𝐻𝑘 is the diameter
of Ω(𝑘) and 𝐶 > 0 is a constant independent of these quantities. In this paper, we
construct a new IETI-DP method that can deal with interfaces that do not consist of
whole edges. This means that the patches can meet in T-junctions, which increases
the flexibility of the geometric model significantly. In this IETI-DP variant, the
construction of the coarse space is based on the idea of “fat vertices”: We consider
every basis function that is supported on a vertex or T-junction as primal degree of
freedom. The numerical experiments indicate that a similar condition number bound
to (1) might hold.
The remainder of this paper is organized as follows. In Section 2 we describe the

model problem. In Section 3 we introduce the IETI-DP solver and we end this paper
with numerical experiments in Section 4.

2 The problem setting

Let Ω ⊂ R2 be open, simply connected and bounded with Lipschitz boundary
𝜕Ω. 𝐿2 (Ω) and 𝐻1 (Ω) are the common Lebesgue and Sobolev spaces. As usual,
𝐻1

0 (Ω) ⊂ 𝐻1 (Ω) denotes the subspace of functions that vanish on 𝜕Ω.
We consider the following model problem: Find 𝑢 ∈ 𝐻1

0 (Ω) such that∫
Ω
∇𝑢 · ∇𝑣 d𝑥 =

∫
Ω
𝑓 𝑣 d𝑥 for all 𝑣 ∈ 𝐻1

0 (Ω) (2)

with a given source function 𝑓 ∈ 𝐿2 (Ω). We assume that Ω is a composition of 𝐾
non-overlapping patchesΩ(𝑘) , where every patchΩ(𝑘) is parametrized by a geometry
function

𝐺𝑘 : Ω̂ := (0, 1)2 → Ω(𝑘) := 𝐺𝑘 (Ω̂) ⊂ R2,

that has a continuous extension to the closure of Ω̂ and such that ∇𝐺𝑘 ∈ 𝐿∞ (Ω̂) and
(∇𝐺𝑘)−1 ∈ 𝐿∞ (Ω̂).
We consider the case where the pre-images of the (Dirichlet) boundary consist of

whole edges. The indices of neighboring patches Ω(ℓ) of Ω(𝑘) , that share at least a
part of their boundaries, is collected in the set

NΓ (𝑘) := {ℓ ≠ 𝑘 : meas (𝜕Ω(𝑘) ∩ 𝜕Ω(ℓ) ) > 0},
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where meas 𝑇 is the measure of 𝑇 . For any ℓ ∈ NΓ (𝑘), we write Γ (𝑘,ℓ) = 𝜕Ω(𝑘) ∩
𝜕Ω(ℓ) . The endpoints of 𝜕Ω(𝑘) ∩ 𝜕Ω(ℓ) that are not located on the (Dirichlet)
boundary of Ω are referred to as junctions. A junction could be a common vertex or
a T-junction.
For the IgA discretization spaces, we first construct a B-spline space 𝑉 (𝑘) on

the parameter domain Ω̂ by tensorization of two univariate B-spline spaces. The
function spaces on the physical domain are then defined by the pull-back principle:
𝑉 (𝑘) := 𝑉 (𝑘) ◦ 𝐺−1

𝑘 .
The product of the local spaces gives the global approximation space𝑉 := 𝑉 (1) ×

· · · × 𝑉 (𝐾) . On this discretization space, we introduce the SIPG formulation, cf. [1,
15]. Since we are interested in a domain decomposition approach, we need patch-
local formulations of SIPG.

3 The dG IETI-DP solver

For our patch-local formulations, we adapt the ideas of [3, 6, 5] and others.We choose
local function spaces 𝑉 (𝑘)𝑒 to be the product space of 𝑉 (𝑘) and the neighboring trace
spaces 𝑉 (𝑘,ℓ) , which are the restrictions of 𝑉 (ℓ) to Γ (𝑘,ℓ) . A function 𝑣 (𝑘)𝑒 ∈ 𝑉 (𝑘)𝑒

is represented as a tuple 𝑣 (𝑘)𝑒 =
(
𝑣 (𝑘) , (𝑣 (𝑘,ℓ) )ℓ∈NΓ (𝑘)

)
, where 𝑣 (𝑘) ∈ 𝑉 (𝑘) and

𝑣 (𝑘,ℓ) ∈ 𝑉 (𝑘,ℓ) . Note that the traces of the basis functions for𝑉 (ℓ) restricted to Γ (𝑘,ℓ)
form a basis of 𝑉 (𝑘,ℓ) . The basis for 𝑉 (𝑘)𝑒 consists of the basis functions of 𝑉 (𝑘) and
the basis functions for𝑉 (𝑘,ℓ) . The basis functions on𝑉 (𝑘,ℓ) are usually visualized as
living on artificial interfaces.
On each patch, we consider the local problem: Find 𝑢 (𝑘)𝑒 ∈ 𝑉 (𝑘)𝑒 such that

𝑎 (𝑘)𝑒 (𝑢 (𝑘)𝑒 , 𝑣 (𝑘)𝑒 ) = ⟨ 𝑓 (𝑘)𝑒 , 𝑣 (𝑘)𝑒 ⟩ for all 𝑣 (𝑘)𝑒 ∈ 𝑉 (𝑘)𝑒 ,where

𝑎 (𝑘)𝑒 (𝑢 (𝑘)𝑒 , 𝑣 (𝑘)𝑒 ) := 𝑎 (𝑘) (𝑢 (𝑘)𝑒 , 𝑣 (𝑘)𝑒 ) + 𝑚 (𝑘) (𝑢 (𝑘)𝑒 , 𝑣 (𝑘)𝑒 ) + 𝑟 (𝑘) (𝑢 (𝑘)𝑒 , 𝑣 (𝑘)𝑒 ),

⟨ 𝑓 (𝑘)𝑒 , 𝑣 (𝑘)𝑒 ⟩ :=
∫
Ω(𝑘)

𝑓 𝑣 (𝑘)d𝑥,

𝑎 (𝑘) (𝑢 (𝑘)𝑒 , 𝑣 (𝑘)𝑒 ) :=
∫
Ω(𝑘)
∇𝑢 (𝑘) · ∇𝑣 (𝑘) d𝑥,

𝑚 (𝑘) (𝑢 (𝑘)𝑒 , 𝑣 (𝑘)𝑒 ) :=
∑︁

ℓ∈NΓ (𝑘)

∫
Γ (𝑘,ℓ)

𝜕𝑢 (𝑘)

𝜕𝑛𝑘
(𝑣 (𝑘,ℓ) − 𝑣 (𝑘) ) d𝑠,

+
∑︁

ℓ∈NΓ (𝑘)

∫
Γ (𝑘,ℓ)

𝜕𝑣 (𝑘)

𝜕𝑛𝑘
(𝑢 (𝑘,ℓ) − 𝑢 (𝑘) ) d𝑠,

𝑟 (𝑘) (𝑢 (𝑘)𝑒 , 𝑣 (𝑘)𝑒 ) :=
∑︁

ℓ∈NΓ (𝑘)

∫
Γ (𝑘,ℓ)

𝛿𝑝2

ℎ𝑘ℓ
(𝑢 (𝑘,ℓ) − 𝑢 (𝑘) ) (𝑣 (𝑘,ℓ) − 𝑣 (𝑘) ) d𝑠
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and 𝑛𝑘 denotes the outward unit normal vector and 𝛿 is the dG penalty parameter,
which has to be chosen large enough in order to guarantee that the bilinear form
𝑎 (𝑘)𝑒 (·, ·) is coercive. In [16], it was shown that 𝛿 can be chosen independently of 𝑝.
The discretization of 𝑎 (𝑘)𝑒 (·, ·) and ⟨ 𝑓 (𝑘)𝑒 , ·⟩ gives a local system, which we write

as (
𝐴(𝑘)II 𝐴(𝑘)IΓ
𝐴(𝑘)ΓI 𝐴(𝑘)ΓΓ

) (
𝑢 (𝑘)I
𝑢 (𝑘)Γ

)
=

(
𝑓 (𝑘)

I
𝑓 (𝑘)
Γ

)
, (3)

where the index I refers to the basis functions that are only supported in the interior
of Ω(𝑘) and the index Γ refers to the remaining basis functions, i.e., those living on
the patch boundary and on the artificial interfaces. We eliminate the interior degrees
of freedom in (3) for every 𝑘 = 1, . . . , 𝐾 to get the block diagonal Schur complement
system

𝑆𝑤 = 𝑔,

where the individual blocks of 𝑆 are given by 𝑆 (𝑘) = 𝐴(𝑘)ΓΓ − 𝐴
(𝑘)
ΓI

(
𝐴(𝑘)II

)−1
𝐴(𝑘)IΓ .

The IETI-DP method requires carefully selected primal degrees of freedom to be
solvable. We choose the degrees of freedom associated to the basis functions which
are non-zero on a junction to be primal. For every standard corner, we only have one
primal degree of freedom per patch, as in [15]. On a T-junction however, the number
of non-zero basis functions grows linearly with 𝑝. Since we take all of them, we refer
to “fat vertices” in this context.
𝐶 = diag (𝐶 (1) , . . . , 𝐶 (𝐾) ) is the constraint matrix, i.e., it is defined such that

𝐶𝑤 = 0 if and only if the associated function 𝑤 vanishes at the primal degrees of
freedom. The matrix Ψ represents the energy minimizing basis functions for the
space of primal degrees of freedom.
Furthermore, we introduce the jump matrix 𝐵, which models the jumps of the

functions between the patch boundaries and the associated artificial interfaces. Each
row corresponds to one degree of freedom (coefficient for a basis function) on the
the patch boundary and one artificial interface; as usual, each row has only two
non-zero coefficients that are −1 and 1. Primal degrees of freedom are excluded. For
a visualization, see Fig. 1, where the primal degrees of freedom are marked with
solid lines and the dotted arrows show the action of the jump matrix 𝐵. The basis
functions on the artificial interfaces are labeled with the same symbols from the
original spaces.

Fig. 1: Action of matrix 𝐵 (dot-
ted lines)
and primal degrees of freedom
(solid lines)

Ω(1)

Ω(2) Ω(3)
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The following problem is equivalent to the SIPG discretization of (2), cf. [11]:
Find (𝑤Δ, 𝜇, 𝑤Π , 𝜆) such that

©«

𝑆 𝐶⊤ 𝐵⊤

𝐶
Ψ⊤𝑆Ψ (𝐵Ψ)⊤

𝐵 𝐵Ψ

ª®®®¬
©«

𝑤Δ
𝜇

𝑤Π
𝜆

ª®®®¬
=

©«

𝑔

0
Ψ⊤𝑔

0

ª®®®¬
.

We obtain the solution of the original problem by 𝑤 = 𝑤Δ +Ψ𝑤Π . We build a Schur
complement of this system to get the linear problem

𝐹 𝜆 = 𝑑. (4)

We solve (4) with a preconditioned conjugate gradient (PCG) solver with the scaled
Dirichlet preconditioner𝑀sD := 𝐵𝐷−1𝑆𝐷−1𝐵⊤,where𝐷 is a diagonalmatrix defined
based on the principle of multiplicity scaling, cf. [14, 13].

4 Numerical results

We consider the model problem

−Δ𝑢(𝑥, 𝑦) = 2𝜋2 sin(𝜋𝑥) sin(𝜋𝑦) for (𝑥, 𝑦) ∈ Ω
𝑢 = 0 on 𝜕Ω,

on the geometries depicted in Fig. 2. Both represent the same computational domain
with an inner radius of 1 and an outer radius of 2. The ring in Fig. 2a consists of 20
patches each of which has a width of 0.2. For the ring in Fig. 2b, we consider again
4 patches per layer, where the thin layer has a width of 0.02 and the other layers
have a correspondingly larger width. We use NURBS of degree 2 to parametrize all
patches. In the coarsest setting, i.e., 𝑟 = 0, the discretization spaces on all patches
consist of global polynomials only. The discretization spaces for 𝑟 = 1, 2, 3, . . . are
obtained by uniform refinement steps. We use a PCG solver to solve system (4) with
the preconditioner 𝑀sD and to estimate the condition number 𝜅(𝑀sD𝐹), where we
use the zero vector as initial guess. All experiments are carried out in the C++ library
G+Smo, cf. [12] and are executed on the Radon11 cluster in Linz.
In the Table 1, we report on the iteration counts (it) and the condition numbers

(𝜅) for various refinement levels 𝑟 and various spline degrees 𝑝, where we chose
𝐶𝑠-smoothness with 𝑠 = 𝑝 − 1 within the patches. The tables show the expected
behavior with respect to ℎ. The condition number decreases when we increase the
spline degree 𝑝, which is better than one would expect from the theory in [15].
Although the width of the thin patches in Fig. 2b is one tenth of the width of the

1 https://www.ricam.oeaw.ac.at/hpc/
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(a) Ring (b) Ring with thin gap

Fig. 2: Computational domains and the decomposition into patches

patches in Fig. 2a, the condition number grows only by a factor between 5 and 6.
Also the iteration counts grow only mildly.

Fig. 2a Fig. 2b
𝑝 = 2 𝑝 = 3 𝑝 = 6 𝑝 = 7 𝑝 = 2 𝑝 = 3 𝑝 = 6 𝑝 = 7

𝑟 it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅

4 9 3.7 9 3.5 8 2.4 8 2.1 12 18.0 13 18.0 13 12.9 11 11.6
5 10 4.6 10 4.5 9 3.8 9 3.5 20 24.1 19 23.4 19 19.3 18 18.0
6 10 5.8 10 5.5 10 4.9 10 4.8 22 31.7 22 29.9 21 25.9 20 24.8
7 11 6.3 11 6.2 10 5.6 10 5.5 24 37.2 24 36.3 22 31.3 22 30.1
8 11 6.7 11 6.7 11 6.3 10 5.6 24 43.2 24 42.3 24 36.5 24 31.6

Table 1: Iterations it and condition numbers 𝜅; degree 𝑝; refinement level 𝑟

The Table 2 presents the parallel solving times for 𝑛 processors. We only consider
the domain in Fig. 2a again with 𝑠 = 𝑝− 1. We see that the speedup rate with respect
to 𝑛 is a bit smaller than the expected rate of 2. This is probably caused by the rather
small number of patches in the computational domain. In Table 3 we report on the
iteration counts and the condition numbers for the decomposition in Fig. 2a when
we change the smoothness 𝑠 of the B-splines within the patches. The numbers in the
table show the behavior for 𝑟 = 5. We see that for a fixed smoothness 𝑠 the condition
number grows slightly with respect to the spline degree 𝑝. For a fixed degree 𝑝, we
observe a decline in the condition number when we increase the smoothness 𝑠.

Acknowledgements The first author was supported by the Austrian Science Fund (FWF): S117
and W1214-04. The second author has also received support from the Austrian Science Fund
(FWF): P31048.
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𝑝 = 3 𝑝 = 7
𝑟 𝑛 = 1 𝑛 = 2 𝑛 = 4 𝑛 = 8 𝑛 = 16 𝑛 = 1 𝑛 = 2 𝑛 = 4 𝑛 = 8 𝑛 = 16

6 3.8 2.8 2.4 1.2 0.8 10.0 6.5 5.0 2.5 1.75
7 24.0 16.1 13.6 6.4 4.1 47.0 31.7 26.1 12.2 9.3
8 107.0 81.4 66.8 29.5 19.5 220.0 158.7 129.4 56.7 45.4

Table 2: Solving times (sec.); degree 𝑝; refinement level 𝑟 ; 𝑛 processors; Fig. 2a

𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5 𝑝 = 6 𝑝 = 7
𝑠 it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅

0 10 5.0 10 5.3 10 5.4 10 5.5 10 5.6 10 5.6
1 10 4.6 10 5.2 10 5.3 10 5.4 10 5.5 10 5.5
2 10 4.5 10 5.0 10 5.3 10 5.4 10 5.5
3 9 4.2 10 4.9 10 5.1 10 5.3
4 9 4.0 10 4.7 10 5.0
5 9 3.8 9 4.5
6 9 3.5

Table 3: Iterations it and condition number 𝜅; refinement level 𝑟 = 5; degree 𝑝; smoothness 𝑠;
Fig. 2a
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The Parallel Full Approximation Scheme in
Space and Time for a Parabolic Finite Element
Problem

Oliver Sander, Ruth Schöbel, and Robert Speck

1 Introduction

The parallel full approximation scheme in space and time (PFASST, [4]) can integrate
multiple time-steps simultaneously by using inner iterations of spectral deferred cor-
rections (SDC, [3]) on a space-time hierarchy. It mimics a full approximation scheme
(FAS, [12]) for a sequence of coupled collocation problems. For the simulation of
space–time dependent problems, PFASST has been used in combination with finite
differences, e.g., in [8, 10], but also in connection with particle simulations [11]
and spectral methods [5]. In this work we combine PFASST with a finite element
discretization in space. Using a simple, nonlinear reaction–diffusion equation, we
will derive the discretized, “composite collocation problem” PFASST aims to solve
in parallel and show the correct handling of the mass matrix. There exist two differ-
ent ways to write down the composite collocation problem with a non-trivial mass
matrix and we will demonstrate that we can avoid inversion of the mass matrix with
the added benefit of a better order of accuracy in time per PFASST iteration. The
choice of restriction and prolongation in space plays a major role and we will show
the correct formulation and placement of those. Both mass matrix handling and
choice of transfer operators mark key differences to using standard finite differences
in space, both in terms of theoretical formulation and simulation results. Using a
concrete example, we numerically test the order of accuracy per iteration of PFASST
and compare it with SDC.
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2 PFASST and finite elements in space

We consider the reaction–diffusion equation

𝑣𝑡 (𝑥, 𝑡) = Δ𝑣(𝑥, 𝑡) + g(𝑣(𝑥, 𝑡)), 𝑥 ∈ Ω, 𝑡 ∈ [𝑡0, 𝑇], (1)
𝑣(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω,

with suitable initial conditions for 𝑡 = 𝑡0 and 𝑔 : R→ R continuously differentiable.
Here Ω ⊂ R is a polyhedral domain with boundary 𝜕Ω, and Δ denotes the Laplace
operator.

2.1 Finite element discretization in space

We define test functions 𝜑ℎ in a finite-dimensional space Vℎ ⊂ H1
0 (Ω), multiply (1)

by these test functions, and integrate by parts. Thus, 𝑣ℎ (·, 𝑡) ∈ Vℎ is given by∫
Ω
𝜑ℎ𝑣ℎ𝑡 𝑑𝑥 = −

∫
Ω
∇𝜑ℎ∇𝑣ℎ 𝑑𝑥 +

∫
Ω
𝜑ℎg(𝑣ℎ) 𝑑𝑥 ∀𝜑ℎ ∈ Vℎ . (2)

We choose a basis 𝜑1, . . . , 𝜑𝑁 of Vℎ and approximate g(𝑣ℎ) by an element of Vℎ
and express 𝑣ℎ and g(𝑣ℎ) as

𝑣ℎ (𝑥, 𝑡) =
𝑁∑︁
𝑖=1

𝑣𝑖 (𝑡)𝜑𝑖 (𝑥), g(𝑣ℎ) (𝑥, 𝑡) ≈
𝑁∑︁
𝑖=1
g(𝑣𝑖 (𝑡))𝜑𝑖 (𝑥), (3)

where the coefficients 𝑣𝑖 (𝑡), 𝑖 = 1, . . . , 𝑁 , are time-dependent functions. Inserting (3)
into equation (2) yields

M𝑢𝑡 = −A𝑢 +M𝑔(𝑢) C 𝑓 (𝑢). (4)

Here, 𝑢 B (𝑣1, . . . , 𝑣𝑁 ) is a vector holding the coefficients 𝑣𝑖 , and 𝑔 : R𝑁 → R𝑁 ,
𝑔 B (g(𝑣1), . . . , g(𝑣𝑁 ))𝑇 . ThematrixM ∈ R𝑁×𝑁 is themassmatrix andA ∈ R𝑁×𝑁
the stiffness matrix

M𝑖 𝑗 B
∫
Ω𝑖
𝜑𝑖𝜑 𝑗 𝑑𝑥, A𝑖 𝑗 B

∫
Ω𝑖
∇𝜑𝑖∇𝜑 𝑗 𝑑𝑥.

2.2 The collocation problem and SDC

For the temporal discretization, we decompose the interval [𝑡0, 𝑇] into time-steps
𝑡0 < 𝑡1 < · · · < 𝑡𝐿 = 𝑇 , 𝐿 ∈ N. For one time-step [𝑡𝑙 , 𝑡𝑙+1], the Picard formulation
of (4) is
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M𝑢(𝑡) = M𝑢𝑙,0 +
∫ 𝑡

𝑡𝑙

𝑓 (𝑢(𝑠)) 𝑑𝑠, 𝑡 ∈ [𝑡𝑙 , 𝑡𝑙+1], (5)

where 𝑢𝑙,0 B 𝑢(𝑡𝑙). To approximate the integral we use a spectral quadrature rule on
[𝑡𝑙 , 𝑡𝑙+1] with𝑀 quadrature nodes 𝜏𝑙,1, ..., 𝜏𝑙,𝑀 such that 𝑡𝑙 < 𝜏𝑙,1 < ... < 𝜏𝑙,𝑀 = 𝑡𝑙+1.
For each of the 𝑀 nodes we introduce a set of 𝑀 quadrature weights 𝑞𝑚, 𝑗 B∫ 𝜏𝑙,𝑚

𝑡𝑙
𝐿 𝑗 (𝑠) 𝑑𝑠, 𝑚, 𝑗 = 1, . . . , 𝑀 , where 𝐿1, . . . , 𝐿𝑀 are the Lagrange polynomials

for the nodes 𝜏𝑙,1, ..., 𝜏𝑙,𝑀 . We can then approximate the integral in (5) from 𝑡𝑙 to
𝜏𝑙,𝑚 by

Δ𝑡
𝑀∑︁
𝑗=1
𝑞𝑚, 𝑗 𝑓 (𝑢𝑙, 𝑗 ) ≈

∫ 𝜏𝑙,𝑚

𝑡𝑙

𝑓 (𝑢(𝑠)) 𝑑𝑠, 𝑚 = 1, . . . , 𝑀,

where Δ𝑡 B 𝑡𝑙+1 − 𝑡𝑙 denotes the time-step size. Using this in Equation (5) the un-
knownvalues𝑢(𝜏𝑙,1), . . . , 𝑢(𝜏𝑙,𝑀 ) can be approximated by a solution𝑢𝑙,1, . . . , 𝑢𝑙,𝑀 ∈
R𝑁 of the nonlinear system of equations

M𝑢𝑙,𝑚 = M𝑢𝑙,0 + Δ𝑡
𝑀∑︁
𝑗=1
𝑞𝑚, 𝑗 𝑓 (𝑢𝑙, 𝑗 ) for 𝑚 = 1, . . . , 𝑀.

This is the so called “collocation problem”, which we can rewrite as

Ccoll
𝒇 (𝒖𝑙) B (I𝑀 ⊗M − Δ𝑡 (Q ⊗ I𝑁 ) 𝒇 ) (𝒖𝑙) = (I𝑀 ⊗M)𝒖𝑙,0, (6)

where I𝑋 ∈ R𝑋×𝑋, 𝑋 ∈ N is the identity matrix, ⊗ denotes the Kronecker
product, 𝒖𝑙 B (𝑢𝑙,1, ..., 𝑢𝑙,𝑀 )𝑇 ∈ R𝑀𝑁 , 𝒖𝑙,0 B (𝑢𝑙,0, ..., 𝑢𝑙,0)𝑇 ∈ R𝑀𝑁 , Q B
(𝑞𝑖 𝑗 ) ∈ R𝑀×𝑀 , and the vector function 𝒇 : R𝑀𝑁 → R𝑀𝑁 is given by
𝒇 (𝒖𝑙) B ( 𝑓 (𝑢𝑙,1), ..., 𝑓 (𝑢𝑙,𝑀 ))𝑇 .
With this matrix notation, spectral deferred corrections can simply be seen as a

preconditioned Picard iteration [6, 9]. More precisely, for a lower triangular matrix
QΔ ∈ R𝑀×𝑀 we define the preconditioner

Psdc
𝒇 (𝒖𝑙) B (I𝑀 ⊗M − Δ𝑡 (QΔ ⊗ I𝑁 ) 𝒇 ) (𝒖𝑙).

Then the preconditioned iteration reads

Psdc
𝒇 (𝒖𝑘+1𝑙 ) = (Psdc

𝒇 − Ccoll
𝒇 ) (𝒖𝑘𝑙 ) + (I𝑀 ⊗M)𝒖𝑙,0, 𝑘 = 1, ..., 𝐾. (7)

The properties of Psdc
𝒇
depend first and foremost on the choice of the matrix QΔ.

For this work, we use the backward Euler approach. We refer to [6, 13, 9] for more
details on the notation and its relationship to the original description of SDC as
in [3]. The key difference is the appearance of the mass matrix M, which for finite
differences is just the identity matrix.
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2.3 The composite collocation problem and PFASST

For 𝐿 time-steps, the composite collocation problem is

©«

Ccoll
𝒇

−H Ccoll
𝒇

. . .
. . .

−H Ccoll
𝒇

ª®®®®®¬

©«

𝒖1
𝒖2
...
𝒖𝐿

ª®®®®¬
=

©«

(I𝑀 ⊗M)𝒖0,0
0
...
0

ª®®®®¬
, (8)

where in the simplest case N ∈ R𝑀×𝑀 just holds ones in the last column and zeros
elsewhere. Then, H B N ⊗M provides the value at the last quadrature node 𝜏𝑙,𝑀 of
a time-step [𝑡𝑙 , 𝑡𝑙+1] as initial value for the following time-step. Defining the global
state vector 𝒖 B (𝒖1, ..., 𝒖𝐿)𝑇 ∈ R𝐿𝑀𝑁 , the vector 𝒃 B ((I𝑀 ⊗M)𝒖0,0, 0, ..., 0)𝑇 ∈
R𝐿𝑀𝑁 , and 𝑭 : R𝐿𝑀𝑁 → R𝐿𝑀𝑁 with 𝑭(𝒖) B ( 𝒇 (𝒖1), . . . , 𝒇 (𝒖𝐿))𝑇 , we can write
this in themore compact form asC𝑭 (𝒖) = 𝒃, whereC𝑭 is the lower block-bidiagonal,
nonlinear operator on the left of (8). Using the definition (6) of Ccoll

𝒇
we write (8) as

(I𝐿𝑀 ⊗M − Δ𝑡 (I𝐿 ⊗ Q ⊗ I𝑁 )𝑭 − E ⊗ H) (𝒖) = 𝒃 (9)

where the matrix E ∈ R𝐿×𝐿 has ones on the lower off-diagonal and zeros elsewhere,
accounting for the transfer of the solution from one step to the next.
There are two fundamentally different ways to solve this system iteratively with

SDC. We can choose either (note the QΔ instead of the Q)

Ppar
𝑭 (𝒖) B (I𝐿𝑀 ⊗M − Δ𝑡 (I𝐿 ⊗ QΔ ⊗ I𝑁 )𝑭) (𝒖)

or

Pseq
𝑭 (𝒖) B (I𝐿𝑀 ⊗M − Δ𝑡 (I𝐿 ⊗ QΔ ⊗ I𝑁 )𝑭 − E ⊗ H) (𝒖),

where the latter still has the H matrices in the lower off-diagonal. Ppar
𝑭 is a parallel

preconditioner, which performs SDC iterations on each step simultaneously, while
Pseq
𝑭 propagates a single SDC iteration sequentially forward in time.
The idea of PFASST now is to couple both preconditioners in a two-level space-

time full approximations scheme: the parallel Ppar
𝑭 is used on the original problem in

space and time (the “fine” level), while the sequential Pseq
𝑭 with better convergence

properties is used on a coarser, cheaper level with reduced accuracy in space and/or
time to reduce the impact of its sequential nature. To create the coarse level, we
reduce the number of degrees of freedom in space and choose a finite element
subspace Ṽℎ ⊂ Vℎ. Three different transfer operations are then needed for PFASST:
1. Restriction of a coefficient vector 𝒖𝑙,𝑚, representing an object in Vℎ, to the
representation of an object in Ṽℎ,

2. Restriction of the residual C𝑭 (𝒖) − 𝒃,
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3. Prolongation of a coefficient vector �̃�𝑙,𝑚, representing an object in Ṽℎ, to the
representation of an object in Vℎ.

Using Lagrange polynomials, operations 2 and 3 can be done using the canonical
injection T𝑁 ∈ R𝑁×�̃� for prolongation of the coefficient vector and its transpose
(T𝑁 )𝑇 ∈ R�̃�×𝑁 for restriction of the residual. For Operation 1, we use the matrix
R𝑁 ∈ R�̃�×𝑁 that represents the Lagrange interpolation of functions from Vℎ in Ṽℎ.
By T := I𝐿𝑀 ⊗ T𝑁 and R := I𝐿𝑀 ⊗ R𝑁 we define global transfer operators. Using
the tilde symbols to indicate entities on the coarse level, one iteration of PFASST
reads:

1. Restrict current iterate to the coarse level: �̃�𝑘 = R𝒖𝑘 .
2. Compute FAS correction: 𝝉 = C̃𝑭 (�̃�𝑘) − T𝑇C𝑭 (𝒖𝑘)
3. Compute �̃�𝑘+1 by solving: P̃seq𝑭 (�̃�𝑘+1) = (P̃

seq
𝑭 − C̃𝑭 ) (�̃�𝑘) + �̃� + 𝝉.

4. Apply coarse grid correction: 𝒖𝑘+ 1
2 = 𝒖𝑘 + T(�̃�𝑘+1 − R𝒖𝑘).

5. Compute 𝒖𝑘+1 by solving: Ppar𝑭 (𝒖𝑘+1) = (P
par
𝑭 − C𝑭 ) (𝒖𝑘+ 1

2 ) + 𝒃.
In contrast to the description in [1, 2], the mass matrices are now included in

Ppar𝑭 (𝒖), P̃seq𝑭 (�̃�) as well as in C𝑭 and C̃𝑭 . This approach is preferable to others,
including the naive one where the collocation problem (6) is multiplied byM−1 from
the left. The collocation problem (6) then reads

C̄coll
𝒇
(𝒖𝑙) B (I𝑀 ⊗ I𝑁 − Δ𝑡 (Q ⊗ I𝑁 ) 𝒇 ) (𝒖𝑙) = 𝒖𝑙,0, (11)

for 𝒇 (𝒖𝑙) B ( 𝑓 (𝑢𝑙,1), ..., 𝑓 (𝑢𝑙,𝑀 ))𝑇 and 𝑓 (𝑢𝑙,𝑚) = M−1 𝑓 (𝑢𝑙,𝑚). Similarly, the
composite collocation problem then is

C̄�̄� (𝒖) B (I𝐿𝑀𝑁 − Δ𝑡 (I𝐿 ⊗ Q ⊗ I𝑁 )�̄� − E ⊗ N ⊗ I𝑁 ) (𝒖) = �̄�, (12)

where �̄� B (𝒖0,0, 0, ..., 0)𝑇 and �̄� B
(
𝒇 (𝒖1), . . . , 𝒇 (𝒖𝐿)

)𝑇
. SDC and PFASST can

then be derived precisely as in the literature, using the modified right-hand side 𝑓 .
Note that the inversion of the mass matrix is only necessary, if the actual residual of
(11) or (12) needs to be computed, which, e.g., is necessary for the FAS correction.
There, �̄� has to be evaluated on the fine and the coarse level, both containing the
inverse of the respective mass matrix. While seemingly attractive in terms of writing
a generic code, inversion of the mass matrix can be costly and, as we will see later,
convergence of PFASST is way worse in this case. Note that the components of the
residual of (11) and (12) in contrast to (6) and (9) are not elements of the dual space
of Vℎ and therefore cannot be restricted exactly. In this case, the obvious choice is
to use R𝑁 to transfer both residual and coefficient vectors to the coarse level.
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3 Numerical results

We now investigate numerically the convergence behavior of PFASST with finite
elements in space. In [7] it was shown that for a discretization with finite differences,
the single-step version of PFASST (i.e. multilevel SDC) can gain two orders of
accuracy per iteration, provided very high-order transfer operators in space are
used [1, 7]. We will now show numerically that with finite elements in space, this is
no longer necessary.
We use the following nonlinear differential equation

𝑢𝑡 = Δ𝑢 + 𝑢2 (1 − 𝑢) on [0, 2] × [−20, 20] . (13)

In all simulations, we use 4 Gauss–Raudau nodes to discretize a single time-step. In
the following we use SDC for serial time-step calculations and PFASST to calcu-
late 4 time-steps simultaneously. The spatial domain [−20, 20] is discretized using
Lagrange finite elements of either order 1 or order 3. We use the initial value
𝑢(𝑥, 0) = (1 + (

√
2 − 1)𝑒−

√
6/6𝑥)−2 as the initial guess for the iteration.

For the first test case we use a third-order Lagrange basis to approximate the
solution. We coarsen the problem in space by restricting to a second-order Lagrange
basis. Figure 1 shows the results for SDC and PFASST. They show the absolute
error of the method in the infinity norm for different time-step sizes, in relation
to a reference solution calculated with a much smaller Δ𝑡 and SDC. While SDC
gains one order per iteration as expected, PFASST can gain up to two orders per
iteration, at least after some initial iterations have been performed. This “burn-in”
phase causes a loss of parallel efficiency when actual speedup is measured. After
this phase, however, PFASST shows ideal convergence behavior gaining two orders
of accuracy per iteration. There is not yet a theoretical explanation for neither the
“burn-in” nor the “ideal” phase.
For a second test case we use a first-order Lagrange basis and coarsen the problem

in space by doubling the element size. Figure 2 shows the results for SDC and
PFASST. In the same way as in the high-order example before, SDC gains one order
or accuracy per iteration, while PFASST can gain up to two orders after a few initial
iterations. Note that in the case of a finite difference discretization, the order of the
interpolation is crucial to obtain two orders per iteration [1, 7]. The usage of T𝑁 as
exact interpolation for nested finite element spaces removes this, so far, persistent
and irritating limitation.
Finally, Figure 3 shows SDC and PFASST applied to the (composite) collocation

problem (12) with inverted mass matrix and a first-order Lagrange basis. SDC
behaves exactly as before, while PFASST fails to show any reasonable convergence.
In particular, increasing the number of iterations does not increase the order of
accuracy beyond 1.
The advantage of using finite elements together with PFASST in the way we

demonstrated here is not yet analyzed analytically. We intend to address this in a
follow-up work. Also, the important fact that two orders of accuracy per iteration
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Fig. 1: SDC (left) and PFASST (right) errors for different Δ𝑡 and number of iterations 𝑘, 128 spatial
elements, order 3. The dashed lines indicate the expected order of accuracy in time.
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Fig. 2: SDC (left) and PFASST (right) errors for different Δ𝑡 and number of iterations 𝑘, 512 spatial
elements, order 1. The dashed lines indicate the expected order of accuracy in time.
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Fig. 3:Naive approachwith invertedmassmatrix: SDC (left) and PFASST (right) errors for different
Δ𝑡 and number of iterations 𝑘, 512 spatial elements, order 1

is possible even with a low-order spatial interpolation does not have a theoretical
explanation. A corresponding analysis is work in progress.
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A New Coarse Space for a Space-Time Schwarz
Waveform Relaxation Method

Martin J. Gander, Yao-Lin Jiang and Bo Song

1 Introduction and Model Problem

Coarse spaces are in general needed to achieve scalability in domain decomposition
methods, see [16] and references therein. There are however exceptions, where one
level domain decomposition methods are scalable, which can be due to geometry
and/or the operator, see [2] and references therein. In particular for space-time
problems this can happen when solving parabolic problems on short time intervals,
see [11] for a continuous analysis, [1] for Additive Schwarz applied to each time
step, and [4] for hyperbolic problems.
We are interested here in space-time parallel solvers for parabolic problems over

longer time intervals, where a coarse correction is needed for scalability. While
for elliptic problems there are new coarse spaces constructed by improving directly
general condition number estimates, like GenEO [15] and GDSW [12], there are so
far no such estimates for evolution problems. We thus base our new coarse space
construction for space-time problems on approximating an optimal coarse space,
optimal in the sense that the resulting method converges after one coarse correction,
see [8, 9] and references therein for elliptic problems.
With the invention of the parareal algorithm [13], research activity increased

again tremendously to develop space-time parallel solvers, see the review [3] and
references therein. While the parareal algorithm can be combined with Schwarz
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waveform relaxation [10] to obtain a general space-time parallel solver [14, 5],
whose convergence was analyzed in [6], we design here a new space-time two level
Schwarz waveform relaxation method for evolution problems. For simplicity, we
consider the one dimensional heat equation

L𝑢 := 𝜕𝑡𝑢 − 𝜕𝑥𝑥𝑢 = 𝑓 , in Ω × (0, 𝑇), (1)

whereΩ = (𝑎, 𝑏), 𝑎 < 𝑏, with initial condition 𝑢(𝑥, 0) = 𝑢0 (𝑥), 𝑥 ∈ Ω, and boundary
conditions 𝑢(𝑎, 𝑡) = 𝑔1 (𝑡) and 𝑢(𝑏, 𝑡) = 𝑔2 (𝑡), 𝑡 ∈ [0, 𝑇].

2 New Two Level Schwarz Waveform Relaxation

We divide the spatial domain (𝑎, 𝑏) into 𝐼 overlapping subdomains Ω𝑖 := (𝑎𝑖 , 𝑏𝑖),
𝑖 = 1, 2, . . . , 𝐼, with 𝑎1 := 𝑎, 𝑏𝐼 := 𝑏, and decompose the time interval (0, 𝑇) into
𝑁 time subintervals, 0 =: 𝑇0 ≤ · · · ≤ 𝑇𝑛 := 𝑛Δ𝑇 ≤ · · · ≤ 𝑇𝑁 := 𝑇 , Δ𝑇 := 𝑇/𝑁 .
This defines the space-time subdomains Ω𝑖,𝑛 := Ω𝑖 × (𝑇𝑛, 𝑇𝑛+1), 𝑖 = 1, 2, . . . , 𝐼,
𝑛 = 0, . . . , 𝑁 − 1. In [5, 6], the initial conditions in the space-time subdomains were
updated using a parareal mechanism, while the boundary conditions were updated
using Schwarz waveform relaxation techniques. In contrast, our new two level space-
time Schwarz waveform relaxation algorithm consists of iterating two steps: a solve
on each space-time subdomain, and a new coarse grid correction. The solver on each
space-time subdomain Ω𝑖,𝑛 solves for given initial value 𝑢𝑖,𝑛,0 and boundary value
B𝑖,𝑛�̄�

L𝑢𝑖,𝑛 = 𝑓 , in Ω𝑖,𝑛,
𝑢𝑖,𝑛 (𝑥, 𝑇𝑛) = 𝑢𝑖,𝑛,0, 𝑥 ∈ Ω𝑖 ,
B𝑖,𝑛𝑢𝑖,𝑛 = B𝑖,𝑛�̄�, on 𝜕Ω𝑖 × (𝑇𝑛, 𝑇𝑛+1).

(2)

Here the operators B𝑖,𝑛 are transmission operators, which can be of Dirichlet, Robin
or higher order type.We discretize (1) by a centered finite difference scheme in space
and backward Euler in time, to get the linear space-time system 𝐿ℎ𝒖 = 𝒇 . We denote
by Ωℎ, Ωℎ𝑖,𝑛 the discretized spaces corresponding to Ω and Ω𝑖,𝑛, 𝑖 = 1, 2, . . . , 𝐼, 𝑛 =
0, 1, . . . , 𝑁 − 1. Also denoting by Γ𝑖 𝑗 ,𝑛 := 𝜕Ω𝑖,𝑛 ∩ Ω 𝑗 ,𝑛 the interfaces, and Γ𝑖,𝑛 the
initial line for the space-time subdomain Ω𝑖,𝑛, Γℎ𝑖 𝑗,𝑛 and Γ

ℎ
𝑖,𝑛 are the corresponding

discretized spaces. Furthermore, we let 𝑁Γℎ𝑖 𝑗,𝑛
and 𝑁Γℎ𝑖,𝑛

be the number of degrees
of freedom (DOFs) on the interface Γℎ𝑖 𝑗,𝑛 and the initial line Γ

ℎ
𝑖,𝑛 for the space-time

subdomain Ωℎ𝑖,𝑛.
Then for any initial guess of the initial values 𝒖0

𝑖,𝑛,0 on the initial line Γ
ℎ
𝑖,𝑛 and

the interface values Bℎ𝑖,𝑛𝒖0 for the space-time subdomain Ωℎ𝑖,𝑛, our new two level
Schwarz waveform relaxation method computes iteratively for 𝑘 = 0, 1, . . ., and for
all subdomain indices 𝑖 = 1, 2, . . . , 𝐼, 𝑛 = 0, 1, . . . , 𝑁 − 1:
Step I. Solve the subdomain problems on each space-time subdomain Ωℎ𝑖,𝑛,
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𝐿ℎ𝒖𝑘+1/2𝑖,𝑛 = 𝒇 , in Ωℎ𝑖,𝑛,

𝒖𝑘+1/2𝑖,𝑛 (𝑥, 𝑇𝑛) = 𝒖0
𝑖,𝑛,0, 𝑥 ∈ Γℎ𝑖,𝑛,

B𝑖,𝑛𝒖𝑘+1/2𝑖,𝑛 = B𝑖,𝑛𝒖𝑘 , on Γℎ𝑖 𝑗,𝑛.
(3)

Step II. Denoting by �̄�𝑘+1/2 a composed approximate solution from the subdomain
solutions 𝒖𝑘+1/2𝑖,𝑛 using a partition of unity, the coarse correction step reads

𝒖𝑘+1 = �̄�𝑘+1/2 + 𝑅𝑇𝑐 𝐿−1
𝑐 𝑅𝑐 ( 𝒇 − 𝐿ℎ�̄�𝑘+1/2), (4)

where 𝑅𝑐 is a restriction matrix to a coarse space, and 𝐿𝑐 := 𝑅𝑐𝐿
ℎ𝑅𝑇𝑐 . Finally we

set 𝒖𝑘+1𝑖,𝑛,0 = 𝒖𝑘+1 on the initial lines Γℎ𝑖,𝑛.

Definition 1 (Complete coarse space) A complete coarse space for the two level
space-time Schwarz waveform relaxation method (3)-(4) for the model problem (1)
is given by 𝑅𝑐 such that (3)-(4) converges after one iteration for an arbitrary initial
guess 𝒖0

𝑖,𝑛,0 and B𝑖,𝑛𝒖0, i.e. the method becomes a direct solver.

To give an example of such a complete coarse space for the two level space-time
Schwarz waveform relaxation method (3)-(4) for the model problem (1), we define
𝝋𝑙𝑖 𝑗 ,𝑛,cs for each DOF 𝑙 = 1, . . . , 𝑁Γℎ𝑖,𝑛

on the interface Γℎ𝑖 𝑗,𝑛 to be the extension

𝐿ℎ𝝋𝑙𝑖 𝑗 ,𝑛,cs = 0 in Ωℎ𝑖,𝑛,

𝝋𝑙𝑖 𝑗 ,𝑛,cs = 1 at DOF 𝑙 of Γℎ𝑖 𝑗,𝑛,

𝝋𝑙𝑖 𝑗 ,𝑛,cs = 0 on Γℎ𝑖,𝑛 and the rest of Γ
ℎ
𝑖 𝑗,𝑛 and Ω

ℎ .

(5)

Similarly, we define 𝝋𝑙𝑖,𝑛,cs for each DOF 𝑙 = 1, . . . , 𝑁Γℎ𝑖,𝑛
on Γℎ𝑖,𝑛 to be the extension

𝐿ℎ𝝋𝑙𝑖,𝑛,cs = 0 in Ωℎ𝑖,𝑛,

𝝋𝑙𝑖,𝑛,cs = 1 at DOF 𝑙 of Γℎ𝑖,𝑛,

𝝋𝑙𝑖,𝑛,cs = 0 on Γℎ𝑖 𝑗,𝑛 and the rest of Γ
ℎ
𝑖,𝑛 and Ω

ℎ .

(6)

We then define our complete coarse space by

𝑉0,cs := span{{𝝋𝑙𝑖 𝑗 ,𝑛,cs}
𝑁

Γℎ
𝑖 𝑗,𝑛

𝑙=1 }𝑖=𝐼,𝑛=𝑁−1
𝑖=1,𝑛=1 ∪ {{𝝋𝑙𝑖,𝑛,cs}

𝑁
Γℎ
𝑖,𝑛

𝑙=1 }𝑖=𝐼,𝑛=𝑁−1
𝑖=1,𝑛=1 . (7)

Theorem 1 A complete coarse space for the two level space-time Schwarz waveform
relaxation method (3)-(4) for the model problem (1) is given by 𝑅𝑐 containing in its
columns the vectors of 𝑉0,cs from (7).

Proof The proof is technical [7], for an illustration see Section 3. □

The dimension of the complete coarse space (7) corresponds only to the size of the
interfaces and initial lines, but can still become prohibitively large, when the size
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of the problem increases, and we need to consider approximations of (7), which we
call optimized coarse spaces, formed by extensions of linear and spectral functions
along the interfaces Γℎ𝑖 𝑗,𝑛 and initial lines Γ

ℎ
𝑖,𝑛. The linear functions on the interfaces

are 𝝍−1
𝑖 𝑗 with 𝝍

−1
𝑖 𝑗 (𝑇𝑛) = 0, 𝝍−1

𝑖 𝑗 (𝑇𝑛+1) = 1, and 𝝍0
𝑖 𝑗 with 𝝍

0
𝑖 𝑗 (𝑇𝑛) = 1, 𝝍0

𝑖 𝑗 (𝑇𝑛+1) = 0,
and the spectral functions are 𝝍𝑙𝑖 𝑗 = sin( 𝑙 𝜋 (𝑡−𝑇𝑛)𝑇𝑛+1−𝑇𝑛 ), 𝑡 ∈ [𝑇𝑛, 𝑇𝑛+1]. Let 𝝋𝑙𝑖 𝑗 ,𝑛,app be
defined by the extension

𝐿ℎ𝝋𝑙𝑖 𝑗 ,𝑛,app = 0 in Ωℎ𝑖,𝑛,

𝝋𝑙𝑖 𝑗 ,𝑛,app = 𝝍𝑙𝑖 𝑗 on Γℎ𝑖 𝑗,𝑛, 𝑙 = −1, 0, 1, . . . , ℓ𝑡 ,

𝝋𝑙𝑖 𝑗 ,𝑛,app = 0 on Γℎ𝑖,𝑛 and the rest of Γ
ℎ
𝑖 𝑗,𝑛 and Ω

ℎ .

(8)

Similarly the linear functions along the initial lines Γℎ𝑖,𝑛 are 𝝍
−1
𝑖 with 𝝍

−1
𝑖 (𝑎𝑖) = 0,

𝝍−1
𝑖 (𝑏𝑖) = 1, and 𝝍0

𝑖 with 𝝍
0
𝑖 (𝑎𝑖) = 1, 𝝍0

𝑖 (𝑏𝑖) = 0, and the spectral functions are
𝝍𝑙𝑖 = sin( 𝑙 𝜋 (𝑥−𝑎𝑖)𝑏𝑖−𝑎𝑖 ), 𝑥 ∈ [𝑎𝑖 , 𝑏𝑖]. Let 𝝋𝑙𝑖,𝑛,app be defined by the extension

𝐿ℎ𝝋𝑙𝑖,𝑛,app = 0 in Ωℎ𝑖,𝑛,

𝝋𝑙𝑖,𝑛,app = 𝝍𝑙𝑖 on Γℎ𝑖,𝑛, 𝑙 = −1, 0, 1, . . . , ℓ𝑥 ,

𝝋𝑙𝑖,𝑛,app = 0 on Γℎ𝑖 𝑗,𝑛 and the rest of Ω
ℎ .

(9)

Our optimized coarse space is then given by

𝑉0,cs-l := span{{𝝋𝑙𝑖 𝑗 ,𝑛,app}ℓ𝑡𝑙=−1}𝑖=𝐼,𝑛=𝑁−1
𝑖=1,𝑛=1 ∪ {{𝝋𝑙𝑖,𝑛,app}ℓ𝑥𝑙=−1}𝑖=𝐼,𝑛=𝑁−1

𝑖=1,𝑛=1 . (10)

3 Numerical Experiments

We solve the model problem on Ω × (0, 𝑇) := (0, 1) × (0, 1) with the source term
𝑓 ≡ 0, zero boundary conditions, and the initial value 𝑢0 = exp(−3(0.5 − 𝑥)2),
discretized by centered finite differences in space using an overlap 4ℎ with ℎ = 1/40
being the mesh parameter and backward Euler in time with time step Δ𝑡 = 1/40. The
initial guesses along the interfaces and the initial lines of the space-time subdomains
are all random. We first decompose the domain Ω into two overlapping subdomains
and the time interval (0, 𝑇) also into two time subintervals. Figure 1 shows two
examples of basis functions from the complete coarse space: one coming from the
interface (left) and one from the initial line (right). In Figure 2 we show on the left
the residual after the first Step I of the new space-time Schwarz waveform relaxation
algorithm, which shows that the residual is only non-zero along the interfaces and
the initial line of the space-time subdomains. On the right we show the effect of the
following coarse correction Step II using the complete coarse space, which reduces
the residual to machine precision: the method becomes a direct solver.
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Fig. 1: First basis function of the complete coarse space from the interface Γℎ12,1 of Ω
ℎ
1,1 (left) and

from the initial line of Ωℎ1,2 (right).
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Fig. 2: Residual after the first execution of Step I of our new space-time Schwarz waveform
relaxation algorithm (left) and after the following coarse correction Step II with the complete
coarse space (right, note the different scale!).

We next show basis functions of our optimized coarse space: in Figure 3 basis
functions from the interface of the space-time subdomains, and in Figure 4 basis
functions from the initial line of the space-time subdomain. We show in Figure 5
the influence on the convergence of the optimized coarse space for both 2 spatial
subdomains with 2 time subintervals (left) and 4 spatial subdomains with 4 time
subintervals (right). The size of the coarse problem is 12, 18, 24, 30 corresponding
to ℓ = 0, 1, 2, 3 for the first case, and 72, 108, 144, 180 for the second case. Here
the size of the fine problem is 1560 for the all-at-once discretization. We see that
the coarse space indeed makes the new two level space-time Schwarz waveform
relaxation method scalable, and increasing the number of spectral functions ℓ in the
enrichment improves convergence.
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Fig. 3: First two linear basis functions extended to Ωℎ1,1 from the interface (top), and first two
spectral basis functions for the same subdomain (bottom).

4 Conclusions

We presented a new two level parallel space-time Schwarz waveform relaxation
method. The method alternates between solving subproblems in space-time subdo-
mains in parallel, and a new coarse correction which is a spectral approximation of
a complete coarse space in space-time. We tested both the complete coarse space
and its spectral approximation for a heat equation model problem, but the algorithm
definition is valid for much more general equations and also higher dimensions.
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On Space-Time Finite Element Domain
Decomposition Methods for the Heat Equation

Olaf Steinbach and Philipp Gaulhofer

1 Introduction

Space-time discretisation methods became very popular in recent years, see, for ex-
ample, the review article [12], and the references given therein. Applications in mind
involve not only the direct simulation of time-dependent partial differential equations
in fixed or moving domains, but also problems from optimisation, optimal control,
and inverse problems. The solution of the latter applications can be characterised by
a coupled problem of a primal forward problem, and an adjoint backward problem,
which motivates the use of space-timemethods for the solution of the global problem
in the space-time domain. As an example, we mention a distributed control problem
for the heat equation as considered in [6]. Space-time discretisation methods also
allow the use of general and unstructured finite elements, and therefore an adaptive
resolution in space and time simultaneously. But the solution of the overall global
system in space and time requires the use of appropriate iterative solution strategies
in parallel. Besides a pure parallelisation strategy using distributed memory and
matrix vector products in parallel, domain decomposition methods can be used for
both the parallelisation and the construction of suitable preconditioners. When doing
a domain decomposition in space only, we may use the possibility to parallelise in
time, where the latter can be done by using the parareal algorithm [8].
Following the well established approaches for domain decomposition methods

for elliptic problems, e.g., [1, 5], we first consider the global space-time finite ele-
ment discretisation of the heat equation, using, e.g., lowest order piecewise linear
continuous basis functions. Using a non-overlapping domain decomposition of the
space-time domain, and reordering the global stiffness matrix accordingly, we end up
with a block system of linear equations, where we can eliminate all local degrees of
freedom, e.g., using direct solutionmethods locally. The resulting Schur complement

Olaf Steinbach and Philipp Gaulhofer
Institut für Angewandte Mathematik, TU Graz, Steyrergasse 30, 8010 Graz, Austria
e-mail: o.steinbach@tugraz.at,philipp.gaulhofer@student.tugraz.at
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system is then solved by a global GMRES iteration. In the case of a one-dimensional
spatial domain, we will consider different space-time domain decomposition meth-
ods, e.g., domain decompositions in space, in time, in space and time, and interfaces
which are oblique in space and time. Although we will not consider precondition-
ing strategies in detail at this time, we will discuss possible preconditioners for the
situations mentioned above. In the particular case of a domain decomposition into
time slabs, our approach is strongly related to the parareal algorithm. In any case,
the numerical results as presented in this contribution indicate the great potential of
space-time domain decomposition methods.

2 Space-time finite element methods

As a model problem, we consider the Dirichlet boundary value problem for the heat
equation,

𝜕𝑡𝑢(𝑥, 𝑡) − Δ𝑥𝑢(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) for (𝑥, 𝑡) ∈ 𝑄 := Ω × (0, 𝑇),
𝑢(𝑥, 𝑡) = 0 for (𝑥, 𝑡) ∈ Σ := 𝜕Ω × (0, 𝑇),
𝑢(𝑥, 0) = 0 for 𝑥 ∈ Ω,

(1)

where Ω ⊂ R𝑛, 𝑛 = 1, 2, 3, is some bounded Lipschitz domain, 𝑇 > 0 is a finite time
horizon, and 𝑓 is some given source. For simplicity, we only consider homogeneous
boundary and initial conditions, but inhomogeneous data as well as other types of
boundary conditions can be handled as well.
The variational formulation of (1) is to find 𝑢 ∈ 𝑋 such that

𝑎(𝑢, 𝑣) :=
∫ 𝑇

0

∫
Ω

[
𝜕𝑡𝑢 𝑣 + ∇𝑥𝑢 · ∇𝑥𝑣

]
𝑑𝑥 𝑑𝑡 =

∫ 𝑇

0

∫
Ω
𝑓 𝑣 𝑑𝑥 𝑑𝑡 = ⟨ 𝑓 , 𝑣⟩𝑄 (2)

is satisfied for all 𝑣 ∈ 𝑌 . Here we use the standard Bochner spaces

𝑋 :=
{
𝑢 ∈ 𝑌 : 𝜕𝑡𝑢 ∈ 𝑌 ∗, 𝑢(𝑥, 0) = 0, 𝑥 ∈ Ω

}
, 𝑌 := 𝐿2 (0, 𝑇 ;𝐻1

0 (Ω)),

including zero boundary and initial conditions, with the norms

∥𝑣∥𝑌 := ∥∇𝑥𝑣∥𝐿2 (𝑄) , ∥𝑢∥𝑋 :=
√︃
∥𝜕𝑡𝑢∥2𝑌 ∗ + ∥𝑢∥2𝑌 =

√︃
∥𝑤∥2𝑌 + ∥𝑢∥2𝑌 ,

where 𝑤 ∈ 𝑌 is the unique solution of the variational problem
∫ 𝑇

0

∫
Ω
∇𝑥𝑤 · ∇𝑥𝑣 𝑑𝑥 𝑑𝑡 =

∫ 𝑇

0

∫
Ω
𝜕𝑡𝑢 𝑣 𝑑𝑥 𝑑𝑡 for all 𝑣 ∈ 𝑌 . (3)

Unique solvability of the variational problem (2) is based on the inf-sup stability
condition [10, 11]
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1√
2
∥𝑢∥𝑋 ≤ sup

0≠𝑣∈𝑌

𝑎(𝑢, 𝑣)
∥𝑣∥𝑌 for all 𝑢 ∈ 𝑋. (4)

For the discretisation of the variational formulation (2), we introduce conforming
space-time finite element spaces 𝑋ℎ and 𝑌ℎ, where we assume 𝑋ℎ ⊂ 𝑌ℎ, i.e., we use
the finite element spaces 𝑋ℎ = 𝑌ℎ of piecewise linear and continuous basis functions,
defined with respect to some admissible decomposition of the space-time domain 𝑄
into shape regular simplicial finite elements. Then, the Galerkin formulation of (2)
is to find 𝑢ℎ ∈ 𝑋ℎ such that

𝑎(𝑢ℎ, 𝑣ℎ) = ⟨ 𝑓 , 𝑣ℎ⟩𝑄 for all 𝑣ℎ ∈ 𝑌ℎ, (5)

and unique solvability of (5) follows from the discrete inf-sup stability condition

1√
2
∥𝑢ℎ∥𝑋ℎ ≤ sup

0≠𝑣ℎ ∈𝑌ℎ

𝑎(𝑢ℎ, 𝑣ℎ)
∥𝑣ℎ∥𝑌 for all 𝑢ℎ ∈ 𝑋ℎ . (6)

Note that in (6), we use the discrete norm

∥𝑢∥𝑋ℎ :=
√︃
∥𝑤ℎ∥2𝑌 + ∥𝑢∥2𝑌 for 𝑢 ∈ 𝑋,

where 𝑤ℎ ∈ 𝑌ℎ is the unique solution of the Galerkin variational formulation∫ 𝑇

0

∫
Ω
∇𝑥𝑤ℎ · ∇𝑥𝑣ℎ 𝑑𝑥 𝑑𝑡 =

∫ 𝑇

0

∫
Ω
𝜕𝑡𝑢 𝑣ℎ 𝑑𝑥 𝑑𝑡 for all 𝑣ℎ ∈ 𝑌ℎ (7)

of (3). From (6), we then conclude the quasi-optimal a priori error estimate

∥𝑢 − 𝑢ℎ∥𝑋ℎ ≤ 3 inf
𝑣ℎ ∈𝑋ℎ

∥𝑢 − 𝑣ℎ∥𝑋 .

Assuming 𝑢 ∈ 𝐻2 (𝑄), we finally obtain, when using piecewise linear continuous
basis functions,

∥∇𝑥 (𝑢 − 𝑢ℎ)∥𝐿2 (𝑄) ≤ 𝑐 ℎ |𝑢 |𝐻2 (𝑄) . (8)

Once the finite element basis is chosen, i.e., 𝑋ℎ = span{𝜑𝑘}𝑀𝑘=1, the Galerkin vari-
ational formulation (5) can be rewritten as a linear system of algebraic equations,
𝐾ℎ𝑢 = 𝑓 , where the stiffness matrix 𝐾ℎ and the load vector 𝑓 are given as, for
𝑘, ℓ = 1, . . . , 𝑀 ,

𝐾ℎ [ℓ, 𝑘] =
∫
𝑄

[
𝜕𝑡𝜑𝑘 (𝑥, 𝑡) 𝜑ℓ (𝑥, 𝑡) + ∇𝑥𝜑𝑘 (𝑥, 𝑡) · ∇𝑥𝜑ℓ (𝑥, 𝑡)

]
𝑑𝑥 𝑑𝑡, (9)

𝑓ℓ =
∫
𝑄
𝑓 (𝑥, 𝑡) 𝜑ℓ (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 .

For a more detailed numerical analysis of this space-time finite element method, we
refer to [11], and the review article [12].
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3 A space-time domain decomposition method

The finite element stiffness matrix 𝐾ℎ as defined in (9) is invertible. It is non-
symmetric, but positive definite. Hence, we will use the GMRES method as iterative
solver. Since we are discretising the problem in the whole space-time domain 𝑄,
preconditioning and parallelisation both in space and time are mandatory.
One possible approach is to use a non-overlapping domain decomposition method

as originally designed for elliptic problems, see, e.g., [1, 5]. For the space-time
domain 𝑄 := Ω × (0, 𝑇) ⊂ R𝑛+1 we consider a domain decomposition into 𝑝 non-
overlapping subdomains,

𝑄 =
𝑝⋃
𝑖=1
𝑄𝑖 , 𝑄𝑖 ∩𝑄 𝑗 = ∅ for 𝑖 ≠ 𝑗 .

We do not necessarily assume any tensor-product structure of the subdomains 𝑄𝑖 as
shown in Fig. 1 a), b), d), f), we may also consider subdomains arbitrary in space and
time, see, e.g., Fig. 1 c), e). We assume that the underlying space-time finite element
mesh is resolved by the domain decomposition. In this case, we can rearrange all
global degrees of freedom 𝑢 into local interior ones per subdomain, i.e.,

𝑢𝐼 =
(
𝑢⊤𝐼,1, . . . , 𝑢

⊤
𝐼, 𝑝

)⊤
,

and the remaining global degrees of freedom 𝑢𝐶 on the coupling boundaries. Hence,
we can rewrite the linear system 𝐾ℎ𝑢 = 𝑓 as

(
𝐾𝐼 𝐼 𝐾𝐶𝐼
𝐾𝐼𝐶 𝐾𝐶𝐶

) (
𝑢𝐼
𝑢𝐶

)
=

(
𝑓
𝐼
𝑓
𝐶

)
, (10)

with the block-diagonal matrix

𝐾𝐼 𝐼 = diag
(
𝐾11, . . . , 𝐾𝑝𝑝

)
,

where the block matrices 𝐾𝑖𝑖 correspond to the interior degrees of freedom in the
subdomain 𝑄𝑖 . Instead of (10), we now consider the Schur complement system

𝑆𝐶𝑢𝐶 := (𝐾𝐶𝐶 − 𝐾𝐼𝐶𝐾−1
𝐼 𝐼 𝐾𝐶𝐼 )𝑢𝐶 = 𝑓

𝐶
− 𝐾𝐼𝐶𝐾−1

𝐼 𝐼 𝑓 𝐼
=: 𝑓 , (11)

which will be solved by using some global iterative solver such as GMRES. At this
time we will not focus on preconditioning the Schur complement system (11), but
we will consider different cases of possible space-time domain decompositions as
given in Fig. 1 and the influence of the resulting interface in the space-time domain.
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Fig. 1: Domain decomposition of the space-time domain 𝑄 = Ω × (0, 𝑇) ⊂ R2.
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4 Numerical results

In this section, we present first numerical results for the space-time finite element
domain decomposition method in the case of a one-dimensional spatial domain
Ω = (0, 1) and the time horizon 𝑇 = 1, i.e.,𝑄 = (0, 1)2. In all examples, we consider
the smooth function 𝑢(𝑥, 𝑡) = cos 𝜋𝑡 sin 𝜋𝑥 to ensure optimal linear convergence in
𝐿2 (0, 𝑇 ;𝐻1

0 (Ω)) as expected from the a priori error estimate (8). In Table 1, we also
present the error in 𝐿2 (𝑄) where we observe second order convergence in ℎ. Note
that DoF denotes the global number of degrees of freedom, Iter is the number of
GMRES iterations without preconditioning to reach a relative accuracy of 𝜀 = 10−7.
In Table 1, we first present the results for the case without domain decomposition

(no), and for the domain decompositions a)-d) as depicted in Fig. 1. We observe
that the spatial domain decomposition a) and the diagonal decomposition c) give
rather good and comparable results, while the results for the other two cases show
a more significant dependence on the mesh size ℎ. When considering the Schur
complement system (11) in the case of the spatial decomposition a), we note that the
Schur complement matrix 𝑆𝐶 is the finite element approximation of a continuous
operator 𝑆 : 𝐻1/4 (Γ𝐶 ) → 𝐻−1/4 (Γ𝐶 ), representing the interface conditions along
the coupling boundary Γ𝐶 in time only. Since 𝑆 behaves like the heat potential
hypersingular boundary integral operator, e.g., [3], in particular it is an operator of
order 1

2 , the spectral condition number of 𝑆𝐶 behaves like ℎ
−1/2, and hence, the

number of iterations to reach a given accuracy grows as ℎ−1/4, which corresponds to
a factor of 1.19 in the case of a uniform mesh refinement. This behaviour is clearly
seen in the last three refinement steps. To bound the number of required iterations
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independent of the mesh level, we can use a suitable preconditioning strategy. One
possible option is the use of operator preconditioning, i.e., the Galerkin discretisation
of the single layer heat potential as described in [4]. The situation is similar in the
case c) of a diagonal domain decomposition. Here, the interface Γ𝐶 is the diagonal
𝑡 = 𝑥, and so the Schur complement matrix 𝑆𝐶 is the finite element approximation
of a continuous operator 𝑆 : 𝐻1/2,1/4 (Γ𝐶 ) → 𝐻−1/2,−1/4 (Γ), using boundary trace
spaces of anisotropic Sobolev spaces in the domain. Note that themapping properties
of related boundary integral operators remain true, and so operator preconditioning
can be used also in this case, as well as in the higher dimensional case Ω ⊂ R𝑛,
𝑛 = 2, 3.

Table 1: Numerical results for different space-time domain decompositions.

GMRES iterations
DoF ∥𝑢 − 𝑢ℎ ∥𝐿2 (𝑄) ∥∇𝑥 (𝑢 − 𝑢ℎ) ∥𝐿2 (𝑄) no a) spatial b) temporal c) diagonal d) cross
12 7.072 –2 5.969 –1 12 4 3 3 6
56 1.912 –2 1.89 3.057 –1 0.97 44 8 7 7 14
240 4.863 –3 1.98 1.538 –1 0.99 135 16 15 15 30
992 1.219 –3 2.00 7.705 –2 1.00 363 26 31 23 56
4.032 3.048 –4 2.00 3.855 –2 1.00 928 33 63 29 95
16.256 7.618 –5 2.00 1.928 –2 1.00 2414 39 127 38 161
65.280 1.907 –5 2.00 9.638 –3 1.00 6536 46 201 48 285

As the uniform finite element meshes used for the domain decompositions a)-d)
can be described within time-slabs, the proposed space-time domain decomposition
method can be applied also in the case of general space-time finite element meshes.
In the case e) of a diagonal cross domain decomposition we apply a recursive
red refinement within the subdomains, as depicted in Table 2. We observe similar
results as in the case d) of a cross decomposition. Again, we may use a suitable
preconditioning strategy which has to take care of the coarse grid involved. A
possible approach is the combination of opposite operator preconditioning locally,
with global preconditioning using BDDC [7].
The last example covers case f) of a domain decomposition into time slabs,

where we consider up to 𝑝 = 16 temporal subdomains, see Table 3. Even without
preconditioning of the global Schur complement system (11), we observe a rather
good behaviour in the number of required iterations. It is obvious that this approach
is strongly related to the parareal algorithm [8] where the coarse grid corresponds to
the time slabs of the domain decomposition.

5 Conclusions

In this note we have presented first numerical results for the numerical solution of
the heat equation by using standard domain decomposition methods. This approach
is based on a space-time finite element discretisation, where the resulting global
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Table 2: Space-time finite element mesh and numerical results for case e) of a diagonal cross
domain decomposition with 4 subdomains.

DoF ∥𝑢 − 𝑢ℎ ∥𝐿2 (𝑄) ∥∇𝑥 (𝑢 − 𝑢ℎ) ∥𝐿2 (𝑄) Iter
27 2.57 –2 3.52 –1 6
119 6.93 –3 1.89 1.77 –1 0.99 14
495 1.82 –3 1.93 8.89 –2 1.00 28
2.015 4.64 –4 1.97 4.45 –2 1.00 51
8.127 1.17 –4 1.99 2.23 –2 1.00 85
32.639 2.92 –5 2.00 1.11 –2 0.99 138

Table 3: Numerical results for a domain decomposition into time slabs.

DoF 𝑝 = 2 𝑝 = 4 𝑝 = 8 𝑝 = 16
12 3
56 7 17
240 15 29 49
992 31 36 65 101
4.032 63 65 91 132
16.256 127 128 133 198
65.280 201 226 255 280
261.632 281 311 383 497

stiffness matrix is, as in standard domain decomposition methods for elliptic prob-
lems, reordered with respect to some non-overlapping domain decomposition of the
space-time domain. Eliminating the local degrees of freedom, we finally solve the
resulting Schur complement system by a GMRES method without preconditioning.
In the case of rather simple domain decompositions of the space-time domain for a
one-dimensional spatial domain, we discuss the influence of the choice of the inter-
face in the space-time setting. Since the single layer heat potential boundary integral
operator can be defined for any manifold in the space-time domain, it can be used
for operator preconditioning of the global Schur complement system, in combina-
tion with some coarse grid preconditioning as in BDDC [7], or in space-time FETI
methods [9]. On the other hand, the global Schur complement matrix is spectrally
equivalent to the global Galerkin matrix of the hypersingular heat potential boundary
integral operator, which then allows the use of multigrid methods for an iterative
solution, see [2] for a related discussion in the case of boundary element domain
decomposition methods for elliptic problems. In the case of a space-time domain
decomposition into time slabs, the proposed approach is obviously related to the
parareal algorithm [8].
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This contribution only gives first numerical results for space-time finite element
domain decomposition methods for parabolic problems, and there are many open
problems to be resolved in future work. In addition to different preconditioning
strategies as already discussed, this covers the parallel implementation in the case
of two- or three-dimensional spatial domains, and the application to more complex
parabolic equations including problems from fluid mechanics. Some of these topics
are already ongoing work, and related results will be published elsewhere.
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IETI-DP for Conforming Multi-Patch
Isogeometric Analysis in Three Dimensions

Rainer Schneckenleitner and Stefan Takacs∗

1 Introduction

We are interested in fast domain decomposition solvers for multi-patch Isogeomet-
ric Analysis (IgA; [4]). We focus on variants of FETI-DP solvers, see [2, 10] and
references therein. Such methods have been adapted to IgA in [5], where the individ-
ual patches of the multi-patch discretization are used as subdomains for the solver.
This method is sometimes referred to as the dual-primal isogeometric tearing and
interconnecting (IETI-DP) method. These methods are similar to Balancing Domain
Decomposition by Constraints (BDDC) methods, which have also been adapted for
IgA, see [1, 11] and references therein. That the spectra of FETI-DP and BDDC are
almost identical is established in [6].
Much progress for the IETI-DP methods has been made in the PhD-thesis by

C. Hofer, including the extension to various discontinuous Galerkin formulations,
see [3]. Recently, the authors of this paper have extended the condition number
bounds for the preconditioned Schur complement system to be explicit not only in
the grid size but also in the spline degree, see [8] for the conforming case and [9] for
an extension to the discontinuous Galerkin case. The analysis follows the framework
from [6]. One key ingredient for the analysis in [8] has been the construction of a
bounded harmonic extension operator for splines, which follows the ideas of [7]. The
analysis in [8] treats the two-dimensional case. As usual for FETI-like methods, the
extension of the analysis to three dimensions is not effortless. The goal of this paper
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is to demonstrate that the proposed method also performs well for higher spline
degrees in three dimensions.
The remainder of this paper is organized as follows. In Section 2, we introduce

the model problem, discuss its discretization and the proposed IETI-DP algorithm.
In Section 3, numerical experiments for a three-dimensional example are presented.

2 Model problem and its solution

We consider a standard Poisson model problem. LetΩ ⊂ R𝑑 be a bounded Lipschitz
domain. For given 𝑓 ∈ 𝐿2 (Ω), we are interested in solving for 𝑢 ∈ 𝐻1 (Ω) such that

−Δ𝑢 = 𝑓 in Ω and 𝑢 = 0 on 𝜕Ω

holds in a weak sense. We assume that the closure of the computational domain Ω
is the union of the closure of 𝐾 non-overlapping patches Ω(𝑘) that are parametrized
with geometry functions

𝐺𝑘 : Ω̂ := (0, 1)𝑑 → Ω(𝑘) := 𝐺𝑘 (Ω̂)

such that for any 𝑘 ≠ ℓ, the intersection Ω(𝑘) ∩ Ω(ℓ) is empty, a common vertex, a
common edge, or (in three dimensions) a common face (cf. [8, Ass. 2]). We assume
that both, ∇𝐺𝑘 and (∇𝐺𝑘)−1, are in 𝐿∞ (Ω̂) for all patches. For the analysis, we need
a uniform bound on the 𝐿∞-norm and a uniform bound on the number of neighbors
of each patch, cf. [8, Ass. 1 and 3].
For each of the patches, we introduce a tensor B-spline discretization on the

parameter domain Ω̂. The discretization is then mapped to the physical patch Ω(𝑘)
using the pull-back principle. We use a standard basis as obtained by the Cox-de
Boor formula. We need a fully matching discretization, which means that for each
basis function that has a non-vanishing trace on one of the interfaces, there is exactly
one basis function on each of the patches sharing this interface with the traces of
the basis functions agreeing (cf. [8, Ass. 5]). This is a standard assumption for any
multi-patch setting that is not treated using discontinuous Galerkin methods. For the
analysis, we assume quasi-uniformity of grids within each patch, cf. [8, Ass. 4].
In the following, we explain how the IETI-DP solver is set up. Here, we loosely fol-

low the notation used in the IETI-DP solution framework that was recently included
in the public part of the G+Smo library. We choose the patches as IETI subdo-
mains. We obtain patch-local stiffness matrices 𝐴(𝑘) by evaluating the bilinear forms
𝑎 (𝑘) (𝑢, 𝑣) =

∫
Ω(𝑘) ∇⊤𝑢(𝑥)∇𝑣(𝑥)d𝑥 using the basis functions of the corresponding

patch. We set up matrices 𝐶 (𝑘) such that their null spaces are the coefficient vectors
of the patch-local functions that vanish at the primal degrees of freedom. In [8], we
have considered corner values, edge averages, and the combination of both. In the
three dimensional case, we can choose corner values, edge averages, face averages,
and any combination thereof. We set up fully redundant jump matrices 𝐵 (𝑘) . We
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omit the corner values if and only if the corners are chosen as primal degrees of free-
dom. We setup the primal problem in the usual way, i.e., we first, for 𝑘 = 1, . . . , 𝐾 ,
compute a basis by

Ψ (𝑘) :=
(
𝐼 0

) (𝐴(𝑘) )−1
(

0
𝑅 (𝑘)𝑐

)
, where 𝐴(𝑘) :=

(
𝐴(𝑘) (𝐶 (𝑘) )⊤
𝐶 (𝑘)

)

and 𝑅 (𝑘)𝑐 is a binary matrix that relates the primal constraints (with their patch-local
indices) to the degrees of freedom of the primal problem (with their global indices)
and set then

𝐴(𝐾+1) :=
𝐾∑︁
𝑘=1
(Ψ (𝑘) )⊤𝐴(𝑘)Ψ (𝑘) , and 𝐵 (𝐾+1) :=

𝐾∑︁
𝑘=1

𝐵 (𝑘)Ψ (𝑘) .

We consider the Schur complement problem 𝐹𝜆 = 𝑔, where

𝐹 :=
𝐾+1∑︁
𝑘=1

𝐵 (𝑘) (𝐴(𝑘) )−1 (𝐵 (𝑘) )⊤ and 𝐵 (𝑘) :=
(
𝐵 (𝑘) 0

)
for 𝑘 = 1, . . . , 𝐾.

The derivation of 𝑔 is a patch-local preprocessing step. We solve the Schur com-
plement problem using a preconditioned conjugate gradient (PCG) solver with the
scaled Dirichlet preconditioner

𝑀sD :=
𝐾∑︁
𝑘=1

𝐵Γ𝐷
−1
𝑘

(
𝐴(𝑘)ΓΓ − 𝐴

(𝑘)
Γ𝐼 (𝐴

(𝑘)
𝐼 𝐼 )−1𝐴(𝑘)𝐼Γ

)
𝐷−1
𝑘 (𝐵Γ)⊤,

where the index Γ refers to the rows/columns of 𝐴(𝑘) and the columns of 𝐵 (𝑘) that
refer to basis functions with non-vanishing trace, the index 𝐼 refers to the remaining
rows/columns, and the matrix 𝐷𝑘 is a diagonal matrix defined based on the principle
of multiplicity scaling. For the analysis, it is important that its coefficients are
constant within each interface. The solution 𝑢 itself is obtained from 𝜆 using the
usual patch-local steps, cf. [8].
Under the presented assumptions, the condition number of the preconditioned

Schur complement system is in the two-dimensional case bounded by

𝐶 𝑝

(
1 + log 𝑝 + max

𝑘=1,...,𝐾
log

𝐻𝑘
ℎ𝑘

)2
, (1)

where 𝑝 is the spline degree, 𝐻𝑘 is the patch size, and ℎ𝑘 the grid size, see [8].
The constant 𝐶 is independent of these quantities, the number of patches, and the
smoothness of the splines within the patches. The authors conjecture that such a
condition number estimate also holds for the three-dimensional case, except when
only the vertex values are chosen as primal degrees of freedom.
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3 Numerical results

In the following, we present numerical results for a three-dimensional domain and
refer to the original paper [8] for the two-dimensional case. The computational
domain Ω is a twisted version of a Fichera corner, see Fig. 1. The original geometry
consists of 7 patches. We subdivide each patch uniformly into 4 × 4 × 4 patches to
obtain a decomposition into 448 patches.

Fig. 1: Computational domain

We solve the model problem −Δ𝑢(𝑥, 𝑦, 𝑧) = 3𝜋2 sin(𝜋𝑥) sin(𝜋𝑦) sin(𝜋𝑧) for
(𝑥, 𝑦, 𝑧) ∈ Ω with homogeneous Dirichlet boundary conditions on 𝜕Ω by means
of the IETI-DP solver outlined in the previous sections. Within the patches, we con-
sider tensor-product B-spline discretizations of degree 𝑝 and maximum smoothness
𝐶 𝑝−1. We consider several grid sizes, the refinement level 𝑟 = 0 corresponds to a dis-
cretization of each patch with polynomials. The next refinement levels 𝑟 = 1, 2, . . .
are obtained by uniform refinement. All experiments have been carried out in the
C++ library G+Smo1 and have been executed on the Radon1 cluster2 in Linz. All
computations have been performed with a single core.
Concerning the choice of the primal degrees of freedom, we consider all possibil-

ities. For the two-dimensional case, the common choices are the corner values, the
edge averages, and a combination of both. We have seen in [8] that all approaches
work, typically the corner values are better than when using the edge averages. As
expected, the combination of both yields the best results. For the three dimensional
case, we have more possibilities. We report on these approaches in the Tables 1 (ver-
tex values = V), 2 (edge averages = E) and 3 (face averages = F). The combinations
V+E, V+F, E+F and V+E+F are only included in the diagrams. In any case, we report
on the number of iterations (it) required by the PCG solver to reduce the residual
with a random starting vector by a factor of 10−6 compared to the right-hand side.
Moreover, we report on the condition numbers (𝜅) of the preconditioned system as
estimated by the PCG solver.

1 https://github.com/gismo/gismo, example file examples/ieti_example.cpp.
2 https://www.ricam.oeaw.ac.at/hpc/
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Fig. 2: Condition numbers and solving times for 𝑝 = 3
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Fig. 3: Condition numbers and solving times for 𝑟 = 2

𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5 𝑝 = 6 𝑝 = 7
𝑟 it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅

1 33 14 51 32 64 45 89 84 108 109 136 178
2 57 42 79 80 98 122 124 193 148 227 176 326
3 94 116 123 208 149 315 175 439 199 566 OoM
4 146 275 176 509 OoM OoM OoM OoM

Table 1: Iterations (it) and condition number (𝜅); Vertex (V)

In Figure 2, the dependence on the refinement level is depicted. Here, we have
chosen the spline degree 𝑝 = 3 and have considered all of the possibilities for primal
degrees of freedom. Here, we have 44 965 (𝑟 = 1), 133 629 (𝑟 = 2), 549 037 (𝑟 = 3),
and 2 934 285 (𝑟 = 4) degrees of freedom (dofs). We observe that choosing only
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𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5 𝑝 = 6 𝑝 = 7
𝑟 it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅

1 14 2.5 17 3.1 20 3.8 23 4.4 27 5.1 29 5.5
2 18 3.9 21 4.6 23 5.3 26 6.0 29 6.7 32 7.3
3 23 5.6 25 6.4 28 7.3 30 8.0 33 8.8 OoM
4 27 7.5 30 8.6 OoM OoM OoM OoM

Table 2: Iterations (it) and condition number (𝜅); Edges (E)

𝑝 = 2 𝑝 = 3 𝑝 = 4 𝑝 = 5 𝑝 = 6 𝑝 = 7
𝑟 it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅 it 𝜅

1 22 6.1 26 7.4 29 8.3 33 9.5 37 10.4 41 11.5
2 29 9.5 31 10.7 34 11.8 37 12.9 42 14.2 46 15.5
3 35 13.1 38 14.4 41 15.9 43 17.0 47 18.3 OoM
4 41 17.1 44 18.4 OoM OoM OoM OoM

Table 3: Iterations (it) and condition number (𝜅); Faces (F)
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Fig. 4: Condition numbers for 𝑝 = 3 (left) and 𝑝 = 6 (right)

vertex values as primal degrees of freedom leads to the largest condition numbers.
We observe that in this case the condition number grows like 𝑟2 (the dashed red line
indicates the slope of such a growth). This corresponds to a growth like (1+log𝐻/ℎ)2,
as predicted by the theory for the two-dimensional case. All other options yield
significantly better results, particularly those that include edge averages. In these
cases, the growth seems to be less than linear in 𝑟 ≈ log𝐻/ℎ (the dashed black like
shows such a slope). In the right diagram, we can see that choosing a strategy with
smaller condition numbers also yields a faster method. Since the dimensions and
the bandwidths of the local stiffness matrices grow like (𝐻𝑘/ℎ𝑘)3 and (𝐻𝑘/ℎ𝑘)2,
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respectively, the complexity of the LU decompositions grows like
∑𝐾
𝑘=1 (𝐻𝑘/ℎ𝑘)7.

The complexity analysis indicates that they are the dominant factor. The dashed
black line indicates such a growth.
In Figure 3, the dependence on the spline degree is presented, where we have

chosen 𝑟 = 2. Here, the number of dofs ranges from 66 989 (𝑝 = 2) to 549 037
(𝑝 = 7). Also in this picture, we see that the vertex values perform worst and the
edge averages best. Again, we obtain a different asymptotic behavior for the corner
values. For those primal degrees of freedom, the condition number grows like 𝑝2

(the dashed red line indicates the corresponding slope). All the other primal degrees
of freedom seem to lead to a growth that is smaller than linear in 𝑝 (the dashed
black line indicates the slope of a linear growth). Note that for the two-dimensional
case, the theory predicts a growth like 𝑝(1 + log 𝑝)2. In the right diagram, we can
see that the solving times grow like 𝑝4 (the dashed line shows the corresponding
slope). This seems to be realistic since the number of non-zero entries of the stiffness
matrix grows like 𝑁𝑝𝑑 , where 𝑁 is the number of unknowns. For 𝑑 = 3, this yields
in combination with the condition number bound the observed rates.
In Figure 4, we present results for the case that the number of patches is increased.

We split each of the 7 patches, depicted in Fig. 1, uniformly into 8𝑠 sub-patches.
Within each patch, we consider a grid obtained by 𝑟 = 4 − 𝑠 uniform refinement
steps. The condition numbers grow slightly in 𝑠, where the curve seems to flatten
for large values of 𝑠. If only the vertex values are primal degrees of freedom, the
condition numbers seem to decline for 𝑠 > 1.
Concluding, in this paper we have seen that the IETI method as described in [8]

can indeed be extended to the three-dimensional case. If not only the vertex values
are chosen as primal degrees of freedom, the condition number of the preconditioned
system seems to obey the bound (1).
The extension of the proposed solver tomore general elliptic differential equations,

like problems with heterogeneous diffusion coefficients, is possible. Robustness in
such coefficients, is a possible future research direction.
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Coupling of Navier-Stokes Equations and Their
Hydrostatic Versions and Simulation of
Riverbend Flow

Wenbin Dong, Hansong Tang, and Yingjie Liu

1 Introduction

It has become necessary to develop modeling capabilities to simulate multiscale,
multiphysics ocean flows directly. An example of such flows is the 2010 Gulf of
Mexico oil spill, in which the spill started as a high-speed plume at the seabed and
then it evolved into drifting oil patches on the ocean surface [1]. Since the plume
and the patches are phenomena distinct in physics at temporal and spatial scales and
better described by different sets of partial differential equations (PDEs), they are
referred to as multiscale and multiphysics flows [2, 3].
Coupling the Navier-Stokes (NS) equations, which describe complex small-scale

local flows, and hydrostatic versions of the Navier-Stokes (HNS) equations, which
depict the large-scale background ocean flows, is a natural approach to realize sim-
ulations of multiscale and multiphysics ocean flows. Example topics of efforts on
such coupling include optimized interface conditions for convergence speedup of
Schwarz iteration between the NS and HNS equations [4], appropriate interface
conditions [5], simulation of multiscale, multiphysics ocean flows [6, 7, 2, 8, 9], etc.
Due to the complexity of the coupling, these earlier efforts are mostly simple and
crude in methods (e.g., one-way coupling), and they are sporadic in both theoretical
analysis and desired computation implementation (particularly two-way coupling).
Actually, problems such as non-physical solutions have been reported in simulations
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based on such coupling [10]. A more detailed review can be found in [8, 9]. It is fair
to say that we are still at an exploration stage of such coupling.
This work presents a discussion on the coupling of the NS and HNS equations to

capture physical phenomena correctly. A numerical example is provided to illustrate
the necessity for coupling the NS and HNS equations and the influence of different
transmission conditions.

2 Governing Equations

A flow domain, Ω0, is divided into a near field assigned with the NS equations,
Ω𝑁𝑆 , and a far field applied with the NHS equations, Ω𝐻𝑁𝑆 , see Fig. 1. The near
field wraps a small-scale, complex, local flow, and the far field covers its large-scale
background flow. For a near field, the governing equations consist of the continuity
equation and the NS equations [8, 11]:

Fig. 1: Division of flow domain, Ω0 (= Ω𝑁𝑆 ∪ Ω𝐻𝑁𝑆) . 𝜕Ω0 is its boundary, and 𝜕Ω𝑁𝑆 and
𝜕Ω𝐻𝑁𝑆 are the interfaces for the NS and HNS equations, respectively.

▽ · u = 0
u𝑡 + ▽ · uu = ▽ · ((𝜈 + 𝜈𝑡 ) ▽ u) − ▽𝑝𝑑/𝜌 − 𝑔 ▽𝐻 𝜂 (1)

Here, u = (𝑢, 𝑣, 𝑤), the velocity vector, with 𝑢 and 𝑣 as its components in 𝑥 and 𝑦
direction, respectively, on the horizontal plane, and𝑤 as its component in 𝑧 direction,
or, the vertical direction. 𝜂 is the water surface elevaiton, and 𝑝𝑑 = 𝑝 − 𝜌𝑔(𝜂 − 𝑧),
with 𝑝 being pressure. 𝜈 is the viscosity, 𝜈𝑡 the turbulence viscosity, 𝜌 the density,
and 𝑔 the gravity. ▽𝐻 is the gradient in the horizontal plane. When 𝜌 = 𝑐𝑜𝑛𝑠𝑡, 𝑝𝑑
becomes the dynamic pressure, and it is introduced to facilitate the coupling of the
NS to the HNS equations [8].
In a far field, the governing equations are the continuity equation and the HNS

equations (the latter is simplified from the NS equations according to the hydrostatic
assumption, i.e., 𝑝 = 𝜌𝑔(𝜂 − 𝑧)), and they read as

▽ · u = 0
v𝑡 + ▽ · uv = ▽ · ((𝜈 + 𝜈𝑡 ) ▽ v) − 𝑔 ▽𝐻 𝜂 (2)



Navier-Stokes and Hydrostatic Coupling in Riverbend Flow 533

where v = (𝑢, 𝑣), the velocity vector in the horizontal plane.
As a practical approach, the following interface conditions are adopted in com-

putation:

u|𝑁𝑆 = u|𝐻𝑁𝑆 , 𝜕𝑝𝑑/𝜕𝑛 = 0, on 𝜕Ω𝑁𝑆
u|𝐻𝑁𝑆 = u|𝑁𝑆 , on 𝜕Ω𝐻𝑁𝑆

(3)

which requires the continuity of u across an interface. Another approach is(
u𝑛v + 𝑝𝑑𝑛/𝜌 − (𝜈 + 𝜈𝑡 )𝜕v/𝜕𝑛) |𝑁𝑆

= (u𝑛v − (𝜈 + 𝜈𝑡 )𝜕v/𝜕𝑛) |𝐻𝑁𝑆 , on 𝜕Ω𝑁𝑆
u𝜏 |𝑁𝑆 = u𝜏 |𝐻𝑁𝑆 , 𝜕𝑝𝑑/𝜕𝑛 = 0, on 𝜕Ω𝑁𝑆
u|𝐻𝑁𝑆 = u|𝑁𝑆 , on 𝜕Ω𝐻𝑁𝑆

(4)

here subscript 𝜏 indicates the tangential direction. (4) is same to (3) except that, on an
interface of the NS equations and in its normal direction, the continuity of velocity
is replaced by continuity of momentum flux. Condition (4) is adopted/modified from
previous investigations [4, 11].

3 Computational Methods

The NS equations (1) are computed using the Solver of Incompressible Flow on
Overset Meshes (SIFOM) developed by us (e.g., [13, 12]). The solver discretizes
the equations in curvilinear coordinates using a second-order accurate backward
difference in time and central difference on non-staggered, composite structured
grids [13]. The HNS equations are solved by utilizing the Finite Volume Method
Coastal OceanModel (FVCOM), which is an operational model in the ocean science
community [14]. In this model, the HNS equations (2) are transformed and solved
in the following form:

𝜂𝑡 + ▽𝐻 · (v𝐷) + 𝜔𝜎 = 0,
(v𝐷)𝑡 + ▽𝐻 · (vv𝐷) + (v𝜔)𝜎 = −𝑔𝐷 ▽𝐻 𝜂 + ▽𝐻 · (𝜅e)

+(𝜆v𝜎)𝜎/𝐷 + I,
(5)

in which 𝜎 is a vertical coordinate, 𝜔 the vertical velocity in this coordinate, e the
strain rate, subscript 𝜎 the derivative over 𝜎, and I the other terms. 𝜅 and 𝜆 are
coefficients. Actually, in FVCOM, equations (5) are solved together with another set
of equations, which essentially result from integrating theNS equations in the vertical
direction [14]. The model adopts the second-order accuarte Runge-Kutta method in
time and a second-order accurate finite volume method on a triangular grid in the
horizontal plane and a 𝜎-grid in the vertical direction. The grids of SIFOM and
FVCOM overlap arbitrarily with each other (i.e., Chimera grids), and their solutions
are exchanged at interfaces between the two grids via interpolation [8].
Let the discretized NS and HNS equations be respectively expressed as
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F(f) = 0, H(h) = 0 (6)

in which f = (u, 𝑝𝑑), and h = (v, 𝜔, 𝜂), being the solution for the NS and HNS equa-
tions, respectively. Then, the computation of their coupling when marching from
time level 𝑛 to 𝑛 + 1 is formulated as

f0
= f𝑛, h0

= h𝑛
𝐷𝑜 1 𝑚 = 1, 𝑀{

F(f𝑚) = 0, x ∈ Ω𝑁𝑆
f𝑚 = p(h𝑚−1), x ∈ 𝜕Ω𝑁𝑆

{
H(h𝑚) = 0, x ∈ Ω𝐻𝑁𝑆
h𝑚 = q(f𝑚−1), x ∈ 𝜕Ω𝐻𝑁𝑆

(7)

1 𝐸𝑛𝑑 𝐷𝑜
f𝑛+1 = f𝑀 , h𝑛+1 = h𝑀

in which 𝑚 is the Schwarz iteration index, and 𝑀 is a prescribed integer. p and q are
operators for solution exchange between the NS and HNS equations.

4 Numerical Simulation

Numerical experiments are made on a transient water flow in a riverbend, see Fig.
2. The water body is stationary initially, and it flows as velocity is imposed at its
entrance, with the following initial and boundary conditions:

u = 0, 𝑝 = 𝛾(𝜂 − 𝑧), 𝑡 = 0
𝑢 = 0.25(1 − 𝑒−0.01𝑡 ), at entrance; 𝜂 = 15, at exit (8)

Here, length is in m, and time is in s, and velocity is in m/s.
The mesh for the HNS equations covers the whole channel, with 10,000 triangular

cells in the horizontal plane and 20 layers in the vertical direction, and the grid for the
NS equations occupies the bend section, with a grid of 111×13×13 in the streamwise,
lateral, and vertical direction, respectively. The time step is set as Δ𝑡 = 0.01, and
𝑀 = 1 is used in (7).
The simulated instantaneous water surface elevation by the HNS equations and

those by the coupled HNS and NS equations are depicted in Fig. 3. At 𝑡 = 60, in the
transient stage, the simulated elevations by both approaches are essentially identical.
When 𝑡 = 1200, at which the flow is about steady, the elevation obtained with the
HNS/NS equations differs from thatwith theHNSequations in patterns.Additionally,
the elevations computed by the coupled equations with interface conditions (3) and
(4) are similar in main patterns, but they do have a little difference in magnitude.
Fig. 4 illustrates the velocity field at cross-section a-a in the curved section of

the channel (Fig. 2). The figure shows that the HNS simulation presents a vortex
covering the whole cross-section. Whereas the HNS/NS simulations lead to two
counter-rotation vortices in the middle of the cross-section, plus one at the left
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Fig. 2: Riverbend configuration and subdomains.

lower corner, one at the right lower corner, and one at the upper right corner. Such
multiple vorticies have been reported in previous investigations based on the NS
equations [15], and the difference indicates the necessity of the NS/HNS coupling.
Additionally, it is seen that, with the coupled equations, although both interface
conditions (3) and (4) lead to three vorticities on the cross-section, their positions
have changed in some degree (Fig. 4). This indicates that interface conditions (3)
and (4) could produce difference in solutions.
To further examine the difference, the vertically averaged velocities are plotted

in Fig. 5. It is seen that the coupled HNS/NS equations provide solutions for both
streamwise and lateral velocity that are distinct from those obtained with the HNS
equations. Note the streamwise velocity is y-velocity and x-velocity at cross-section
a-a and b-b, respectively. Moreover, the two interface conditions lead to similar
streamwise velocities but distinct lateral velocities. To illustrate this with more de-
tails, we present a quantification of the difference in the solutions obtained with the
two interface conditions in Table 1. The numbers in the table show that the differ-
ence in the lateral velocities is more pronounced, indicating that the two interface
conditions lead to a big difference in the secondary flows in the bend’s cross-section.

Table 1: Difference of the HNS/NS solutions obtained with different interface conditions. �̄� and
�̄� are vertically integrated x- and y-velocity, respectively, and subscripts 3 and 4 depict interface
condition (3) and (4), respectively.

cross section | |�̄�4 − �̄�3 | |2/ |�̄�3 |𝑚𝑎𝑥 | |�̄�4 − �̄�3 | |2/ |�̄�3 |𝑚𝑎𝑥
a-a 1.809 0.385
b-b 0.268 2.196
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Fig. 3: Simulated instantaneous water surface elevation by the HNS equations and coupled NHS/NS
equations with interface condition (3) and (4).

5 Concluding Remarks

Wepresent a discussion on the coupling of theNHS andNS equations. The numerical
experiment on a riverbend flow shows that the coupling can capture complex flow
phenomena that the HNS equations cannot resolve. It also indicates that different
interface conditionsmay lead to different solutions, especially those for the secondary
flows in cross-sections of the bend.
Further investigation is necessary for the two transmission conditions in this

paper. Particularly, examining their performance against benchmarks plus theoretical
analysis is expected to be the next step, followed by domain decomposition techniques
to achieve desired computational efficiency.
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Fig. 4: Simulated cross-section flow field, at cross section a-a in Fig. 2, 𝑡 = 1200.

Fig. 5: Vertically averaged velocity at cross sections a-a and b-b in Fig. 2, 𝑡 = 1200.
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On the Links Between Observed and Theoretical
Convergence Rates for Schwarz Waveform
Relaxation Algorithm for the Time-Dependent
Problems

Sophie Thery

1 Context

We study the application of Schwarz waveform relaxation algorithm for the time-
dependent problem to a linearmultiphysics problem on two non-overlapping physical
domains Ω1 and Ω2:



𝜕𝑡𝑢 𝑗 (𝑥, 𝑡) − A 𝑗𝑢 𝑗 (𝑥, 𝑡) = 𝐹𝑗 (𝑥, 𝑡) on Ω 𝑗×]0, 𝑇 [

B 𝑗𝑢 𝑗 (𝑥, 𝑡) = 𝐺 𝑗 (𝑥, 𝑡) on 𝜕Ωext
𝑗 ×]0, 𝑇 [

𝑢 𝑗 (𝑥, 0) = 𝑢 𝑗 ,0 (𝑥) in Ω 𝑗

(1a)

{ C1,1𝑢1 |Γ (𝑡) = C1,2𝑢2 |Γ (𝑡) on [0, 𝑇 [
C2,2𝑢2 |Γ (𝑡) = C2,1𝑢1 |Γ (𝑡) on [0, 𝑇 [ (1b)

where 𝑇 can be a finite or infinite time. The Schwarz waveform relaxation algorithm
is applied on problem (1a)with interface conditions (1b). For given first guess 𝑢0

𝑗 |Γ (𝑡)
on the interface Γ, the state of the algorithm is given at each iteration 𝑛 ∈ N by (2).
We suppose here the well-posedness of the initial problem (1) and of the algorithm
(2). This means there exist a unique solution to (1) in L2 (0, 𝑇 ;L(Ω 𝑗 )) noted �̃� and
there exist a unique 𝑢𝑛𝑗 ∈ L2 (0, 𝑇 ;L2 (Ω 𝑗 )) for all iterations 𝑛 1 . Some results on
the well-posedness of such kind of problems can be found in [1, 2] (for problems on
finite time window) and in a more general framework in [3] (for problems on finite
or infinite time window).

S. Thery
Univ. Grenoble-Alpes, Inria, CNRS, Grenoble INP, LJK, Grenoble, France
Tel.: +33 4 76 63 12 63
Fax: +33 4 76 61 52 52
e-mail: sophie.thery@univ-grenoble-alpes.fr

1 For example, for parabolic problems we need to have 𝐹 ∈ L2 (0, 𝑇; L2 (Ω 𝑗 )) and 𝑢 𝑗,0 ∈ L2 (Ω 𝑗 )
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𝜕𝑡𝑢
𝑛
1 (𝑧, 𝑡) − A1𝑢

𝑛
1 (𝑥, 𝑡) = 𝐹1 (𝑥, 𝑡) on Ω1 × [0, 𝑇 [

B1𝑢
𝑛
1 (𝑥, 𝑡) = 𝐺1 (𝑥, 𝑡) on 𝜕Ωext

1 × [0, 𝑇 [
𝑢𝑛1 (𝑥, 0) = 𝑢1,0 (𝑥) in Ω1

C1,1𝑢
𝑛
1 (𝑥, 𝑡) = C1,2𝑢

𝑛−1
2 (𝑥, 𝑡) on Γ × [0, 𝑇 [

(2a)




𝜕𝑡𝑢
𝑛
2 (𝑥, 𝑡) − A2𝑢

𝑛
2 (𝑥, 𝑡) = 𝐹2 (𝑥, 𝑡) on Ω2 × [0, 𝑇 [

B2𝑢
𝑛
2 (𝑥, 𝑡) = 𝐺2 (𝑥, 𝑡) on 𝜕Ωext

2 × [0, 𝑇 [
𝑢𝑛2 (𝑥, 0) = 𝑢2,0 (𝑥) in Ω2

C2,2𝑢
𝑛
2 (𝑥, 𝑡) = C2,1𝑢

𝑛
1 (𝑥, 𝑡) on Γ × [0, 𝑇 [

(2b)

From now on we also suppose 𝑢𝑛𝑗 (𝑥) ∈ L2 (]0, 𝑇 [) for all 𝑥 ∈ Ω 𝑗 2. To quantify
and possibly optimize the convergence of algorithm (2), it is relevant to calculate a
convergence rate as 𝜌obs

A{1,2} ,B{1,2} ,C{{1,2},{1,2}} , 𝑗 ,𝑛 =
𝑒𝑛𝑗

 /𝑒𝑛−1
𝑗

, where 𝑒𝑛𝑗 = 𝑢𝑛𝑗 − �̃� |Ω 𝑗
is the error at each iteration 𝑛. In the rest of the paper, indicies A,B,C are neglected
to simplify the notation.

Remark 1 We consider from now on thatΩ 𝑗 are one-dimensional domains. Since all
convergence factors are calculated in Fourier space, all results explained here can be
extended to higher space dimensions parallel to the interface3. Also, we consider here
Schwarz algorithms applied to multiphysics problems (for nonoverlapping domains)
but the following results are also valid in the presence of an overlap.

2 Convergence for problems on an infinite time window

We first consider that the simulation is made on an infinite time window, i.e.𝑇 = +∞.

Convergence factor in Fourier space: For time-dependent problems, the ob-
served convergence factor cannot be calculated analytically. Thus a usual approach
consists in applying a time Fourier transform to the error system. In the case where
𝑇 = +∞ and considering that the error is equal to zero for negative times, the
convergence is determined in the Fourier space by solving the following system:



𝑖𝜔 �̂�𝑛1 (𝑥, 𝜔) − A1�̂�

𝑛
1 (𝑧, 𝜔) = 0 on Ω1 × R

B1�̂�
𝑛
1 (𝑥, 𝜔) = 0 on 𝜕Ω𝑒𝑥𝑡1 × R

C1,1�̂�
𝑛
1 (𝑥, 𝜔) = C1,2�̂�

𝑛−1
2 (𝑥, 𝜔) on Γ × R

(3a)



𝑖𝜔�̂�𝑛2 (𝑥, 𝜔) − A2�̂�

𝑛
2 (𝑥, 𝜔) = 0 on Ω2 × R

B2�̂�
𝑛
2 (𝑥, 𝜔) = 0 on 𝜕Ω𝑒𝑥𝑡2 × R

C2,2�̂�
𝑛
2 (𝑥, 𝜔) = C2,1�̂�

𝑛
1 (𝑥, 𝜔) on Γ × R

(3b)

2 For example, for parabolic problems we need to have 𝑢𝑛𝑗 ∈ L2 (0, 𝑇;H1 (Ω 𝑗 )) , that it satisfied if
𝐺 𝑗 and first guess are regular enouth (see [4])
3 This involves applying Fourier transforms in all directions parallel to the interface. Fourier
transforms on spatial dimensions do not give rise to the problem that we expose here which is
specific to the temporal dimension
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Suppose that (3) can be solved for any 𝜔 ∈ R, then the convergence factor 𝜚 and
convergence rate 𝜌 in the Fourier space can be calculated as:

𝜚(𝜔) :=
�̂�𝑛𝑗 |Γ (𝜔)
�̂�𝑛−1
𝑗 |Γ (𝜔)

𝜌(𝜔) := |𝜚(𝜔) | (4)

It can be shown that 𝜌 is independent of the space variable 𝑥 and of the domain 𝑗 .
Without lack of generality, from now on suppose 𝜌 is calculate from the errors at the
interface Γ. General methods to study the convergence of Schwarz algorithms can
be found in [5, 6, 7].

Observed convergence factor: From the well-posedness properties of the algo-
rithm, we assume that 𝑒𝑛𝑗 (𝑥, ·) ∈ L2 (R) for all 𝑥 ∈ Ω 𝑗 . Then �̂�𝑛𝑗 (𝑥, ·) ∈ L2 (R) and
the following inequality is obviously satisfied:

inf
𝜔∈R

𝜌 (𝜔)
�̂�𝑛−1
𝑗 (𝑥, ·)


2
≤

�̂�𝑛𝑗 (𝑥, ·)2
≤ sup
𝜔∈R

𝜌 (𝜔)
�̂�𝑛−1
𝑗 (𝑥, ·)


2

(5)

Thanks to Parseval’s theorem, we can thus provide the following bounds to the
observed convergence factor:

inf
𝜔∈R

𝜌 (𝜔) ≤

𝑒𝑛𝑗 (𝑥, ·)


2𝑒𝑛−1
𝑗 (𝑥, ·)


2

=: 𝜌obs
𝑗 ,𝑛 (𝑥) ≤ sup

𝜔∈R
𝜌 (𝜔) . (6)

Thus, if sup
𝜔∈R

𝜌 (𝜔) < 1 then algorithm (2) converges in L2 (]0, +∞[) norm :
∥𝑒𝑛𝑗 (𝑥, ·)∥2 −→𝑛→∞ 0. Moreover, because 𝜌 given by (4) is the same for all 𝑥 ∈ Ω 𝑗 ,
previous bounds (5) and (6) are also valid for

𝜌obs
𝑗 ,𝑛 :=

𝑒𝑛𝑗 L2 ( ]0,∞[,L2 (Ω))

/ 𝑒𝑛−1
𝑗


L2 ( ]0,∞[,L2 (Ω))

Finally the theoretical convergence rate 𝜌 provides bounds for the observed conver-
gence in the L2 (]0,∞[,L2 (Ω 𝑗 )) norms.

Discrete in time problems : Let first assume that we simulate the semi-discrete
problem over an infinite time windowwith a similar time step 𝛿𝑡 in both subdomains.
The observed numerical error is denoted 𝐸𝑛,𝑚𝑗 (𝑥) with 𝑚 ∈ N, and can be seen as
the result of a Dirac comb on the continuous error 𝑒𝑛𝑗 (𝑥, ·):

𝐸𝑛,𝑚𝑗 (𝑥) = 𝑈𝑛,𝑚𝑗 (𝑥) − 𝑢(𝑥, 𝑡𝑚) and 𝐸𝑛, ·𝑗 (𝑥) = Δ𝛿𝑡𝑒
𝑛
𝑗 (𝑥, ·)
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with 𝑈 the solution of the discrete problem, Δ𝛿𝑡 the Dirac comb of period 𝛿𝑡 and
𝑒𝑛𝑗 (𝑥, 𝑡) the error on the continuous problem.4 Frequencies higher than 𝜋/𝛿𝑡 are
not generated by the temporal grid [8]. Applying Shannon theorem leads to restrict
the study of the errors in Fourier space 𝐸𝑛, ·𝑗 on an interval 𝐼𝜔 :=

[
− 𝜋
𝛿𝑡

;
𝜋

𝛿𝑡

]
and

𝐸𝑛, ·𝑗 (𝑥, 𝜔) = 𝑒𝑛𝑗 (𝑥, 𝜔) for all 𝜔 ∈ 𝐼𝜔 . Details of the process can be found in [9].
ThusL2 norm of 𝐸𝑛, ·𝑗 can be calculate using result of the continuous case. Parseval’s
theorem can be used to obtain bounds on observed convergence rate in L2 norm:

min
|𝜔 | ≤𝜋/𝛿𝑡

𝜌(𝜔) ≤ 𝜌obs
𝑗 ,𝑛 (𝑥) :=

𝐸𝑛, ·𝑗 (𝑥)


2𝐸𝑛−1, ·
𝑗 (𝑥)


2

≤ max
|𝜔 | ≤𝜋/𝛿𝑡

𝜌(𝜔) (7)

Consequently, the samebounds apply on convergence rate 𝜌obs
𝑗 ,𝑛 inL2 (]0,∞[,L2 (Ω 𝑗 ))

norm.

3 Convergence for problems on a finite time window

Bold notation is used to describe the solution u𝑛𝑗 and the error e𝑛𝑗 over a finite win-
dow of time [0, 𝑇] with 0 < 𝑇 < +∞. We will consider 𝜔 ∈ 𝐼𝜔 with 𝐼𝜔 = R if
we consider a continuous simulation, and 𝐼𝜔 defined in section 2 if we consider a
discrete problem.

Difficulties expressing error over a finite time window: Applying the Fourier
transform to the windowed signal would lead to search for the solution of an equation
of the type:

𝑖𝜔ê𝑛𝑗 (𝑥, 𝜔) + A(̂e𝑛𝑗 (𝑥, 𝜔)) = −e𝑛𝑗 (𝑥, 𝑇) exp(−𝑖𝜔𝑇) (8)

Without more knowledge about the error at time 𝑇 , one cannot solve the differ-
ential equation (8), therefore cannot express the error ê𝑛𝑗 (𝑧, 𝜔) according only
to the parameters of the equation. Nevertheless, the error can be expressed by
ê = �̂� ∗ 𝑃 [0,𝑇 ] (𝜔) where 𝑃 is the rectangular function on [0, 𝑇] and 𝑃 [0,𝑇 ] =
𝑇 exp(−𝑖𝜔𝑇/2) sinc(𝜔𝑇/2) The convergence rate for the error e for a given fre-
quency 𝜔 thus reads:

𝝆(𝜔) =
����� �̂�
𝑛+1 |Γ ∗�𝑃 [0,𝑇 ] (𝜔)
�̂�𝑛 |Γ ∗�𝑃 [0,𝑇 ] (𝜔)

����� =
�����
∫
𝜚(𝜃) �̂�𝑛 |Γ (𝜃)�𝑃 [0,𝑇 ] (𝜔 − 𝜃) 𝑑𝜃∫
�̂�𝑛 |Γ (𝜃)�𝑃 [0,𝑇 ] (𝜔 − 𝜃) 𝑑𝜃

����� (9)

4 Here the discrete solution𝑈 (resp. the discrete error 𝐸) is obtained by discretizing the continuous
solution 𝑢 (resp. the continous error 𝑒). The discrete signal optained with a numerical simulation
is an approximation of𝑈 depending on the numerical scheme.



Convergence Rates for SWR Algorithm on Time-Dependent Problems 543

which clearly shows that 𝜌 and 𝝆 are different functions, except in the exceptional
case where 𝜚(𝜔) is a constant. Also, definition (9) supports that function 𝜌 cannot
be seen as the convergence factor at a given frequency: 𝜌(𝜔) ≠ |ê𝑛𝑗 (𝜔) |/|ê𝑛−1

𝑗 (𝜔) |.

Bound on observed convergence : The bound on the convergence factor given
by (9) is complicated to determined. However it is possible to directly bound the
error :

Theorem 1 (Bound on the L2 norm)

e𝑛𝑗 (𝑥, ·)


2
≤

(
sup
𝜔∈𝐼𝜔

𝜌(𝜔)
)𝑛 e0

𝑗 (𝑥, ·)


2
(10)

wich implies a bound for the 𝑛-product on the observed convergence rate:

𝑛
Π
𝑘=1

𝝆𝑜𝑏𝑠𝑗,𝑘 (𝑥) ≤
(

sup
𝜔∈𝐼𝜔

𝜌(𝜔)
)𝑛

∀𝑥 ∈ Ω 𝑗 (11)

This ensures the convergence of the error for the windowed algorithm as long as
sup
𝜔∈𝐼𝜔

𝜌(𝜔) < 1. This bounds also works for
e𝑛𝑗


𝐿 ( ]0,𝑇 [,L2 (Ω 𝑗 ))

.

Proof It is possible to link the convergence of the windowed problem to a cor-
responding infinite-in-time problem. We can bound the L2 norm of error on
the windowed problem by the corresponding error of a inifite in time problem :e𝑛𝑗 (𝑥, ·)


2
≤

𝑒𝑛𝑗 (𝑥, ·)


2
≤

(
sup
𝜔∈𝐼𝜔

𝜌(𝜔)
)𝑛 𝑒0

𝑗 (𝑥, ·)


2
where 𝑒0

𝑗 is any first guess ex-

tended to infinite time. Using the particular extension 𝑒0
𝑗 | [0,𝑇 ] = e0

𝑗 and 𝑒
0
𝑗 | ]𝑇,∞[ = 0

leads to (10). Then combining ∥e𝑛𝑗 (𝑥, ·)∥2/∥e0
𝑗 (𝑥, ·)∥2 =

𝑛
Π
𝑘=1

𝝆𝑜𝑏𝑠𝑗,𝑘 (𝑥) and (10) leads
to (11). □

Remark 2 A bound on the convergence factor given by (9) was already calculated in
[10]. This bound is complicated to calculate and then hardly usable. In this paper,
a global remark on the possible influencing of the time windowing is done. It is
explained why the method used in [1, 11] needs special conditions and cannot be
applied in a general context 5.

Range of influencing frequencies: For a given problem discretized in time 𝛿𝑡
over a time window [0.𝑇], we estimate that in the general framework:

min
𝜋/𝑇≤ |𝜔 | ≤𝜋/𝛿𝑡

𝜌(𝜔) ≤ 𝝆obs
𝑗 ,𝑛 (𝑥) ≤ max

𝜋/𝑇≤ |𝜔 | ≤𝜋/𝛿𝑡
𝜌(𝜔) (12)

and the interval |𝜔 | ∈
[ 𝜋
𝑇
,
𝜋

𝛿𝑡

]
is called influencing frequencies. This interval of

frequencies is usually considered for optimizing the convergence rate. As discussed in

5 it requires the determination of the inverse Fourier transform
F−1𝜌


1 which may not exist or can

be hard to calculate
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section 2, it is justified to consider that 𝜋/𝛿𝑡 is the maximum frequency. However the
choice of the minimum frequency is justified only for time-independent problems but
is an empirical estimate for time-dependent problems. We can still find justifications
for this choice by considering the definition (9). First, it shows that convergence is
influenced by

∫
𝜌(𝜃)𝑑𝜃 more than by its value at a given frequency 𝜔. Moreover,

thanks to the property of 𝑃(𝜔−𝜃), frequencies such that |𝜔 | ≪ 𝜋/𝑇 have a low impact
on the convergence6. That said, relevance of the minimum influncing frequency 𝜋/𝑇
is to be proved.

Remark 3 (minimal frequency for time-independent problem) The frequency 𝜔min
is justified in some cases of time-independent problem. If the conditions on border
of the dimension parallel to the interface (the one where the Fourier transform is
made) are determined, then the corresponding error system is periodic and a Discrete
Fourier Transform (DFT) can be applied (for example see [12]). In our case, we can
apply a Fourier transform on our discretised signal but, for the reasons evoked section
3, we cannot guarantee that |𝐷𝐹𝑇 (e𝑛+1𝑗 ) (𝜔𝑖) |/|𝐷𝐹𝑇 (e𝑛𝑗 ) (𝜔𝑖) | is equal to 𝜌(𝜔𝑖).
Remark 4 (optimization) Usually the optimisation of the convergence speed is made
by choosing interface conditions C{{1,2}, {1,2}} under such conditions 𝐶, such that

inf
C{{1,2},{1,2}} ∈𝐶

max
𝜋/𝑇≤ |𝜔 | ≤𝜋/𝛿𝑡

𝜌C{{1,2},{1,2}} (𝜔). From (12) this guarantee an minimal up-
per bound to the observed convergence rate and consequently a fast convergence of𝑒𝑛𝑗


L2 (0,𝑇,L2 (Ω))

to zero.

4 Numerical illustration

We propose to illustrate the previous properties on the coupling of two diffusion
equations, with Dirichlet-Neumann interface conditions with a non-overlapping in-
terface in 𝑥 = 0.



𝜕𝑡𝑢 𝑗 (𝑥, 𝑡) − 𝜈 𝑗𝜕2

𝑥𝑢 𝑗 (𝑥, 𝑡) = 0 on Ω 𝑗×]0, 𝑇 [
𝑢 𝑗 (𝑥, 𝑡) = 0 on 𝜕Ωext

𝑗 ×]0, 𝑇 [
𝑢 𝑗 (𝑥, 𝑡 = 0) = 0 on Ω 𝑗

(13a)

{
𝑢1 (0, 𝑡) = 𝑢2 (0, 𝑡) on [0, 𝑇 [

𝜈2𝜕𝑥𝑢2 (0, 𝑡) = 𝜈1𝜕𝑥𝑢1 (0, 𝑡) on [0, 𝑇 [ (13b)

with Ω1 = [ℎ1, 0] and Ω2 = [0, ℎ2]. We simulate the problem via an implicit
finite difference scheme. Schwarz’s algorithm on this problem is performed on 20
iterations, with a time step 𝛿𝑡 = 1000s and parameters ℎ1 = −50m, ℎ2 = 300m,
𝜈1 = 0.12m2s−1 and 𝜈2 = 0.6m2s−1. In figures 1 and 2 we compare the theoretical
convergence rate given in the Fourier domain 𝜌(𝜔) with the observed convergence
rate 𝝆𝑜𝑏𝑠𝑛, 𝑗 and the convergence rate measured on the DFT of the error at the interface

6 for a given 𝜔, frequencies such that |𝜔 − 𝜃 | ≪ 𝜋/𝑇 are drown in the integration in (9)
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|𝐷𝐹𝑇 (e𝑛+1𝑗 ) (0, 𝜔𝑖) |/|𝐷𝐹𝑇 (e𝑛𝑗 ) (0, 𝜔𝑖) | which can be seen as an approximation of
𝝆(𝜔𝑖). Fisrt guesses are initialised by a random signal which generates a large
frequency spectrum. In these two figures, we find that bounds of the observed
convergence verify the estimate (12) thus also verify theorem 1. The evolution of
the L2 norm of the error is not explicitly given here but it can be deduce from 𝝆𝑜𝑏𝑠𝑗,𝑛
(middle panel in 1 and 2).As expected the convergence observed on a given frequency
𝜔𝑖 does not correspond to the theoretical convergence 𝜌(𝜔𝑖) and conversely we tend
towards equality for a window of assumed size infinite. Other examples on such
problems were made in [13] and corroborate the estimate.

Fig. 1: For a finite time windowwith𝑇 = 200𝛿𝑡 . Left panel: theoretical convergence rate 𝜌(𝜔) , in-
fluencing frequencies are given by vertical lines and grey zones give the reached values of 𝝆obs

𝑗,𝑛. The
observed convergence factor 𝝆obs

𝑗,𝑛 is given in the middle panel as a function of the iteration number
𝑛 for the two domains. Right panel: the observed rate |𝐷𝐹𝑇 (e𝑛1 ) (0, 𝜔𝑖) |/ |𝐷𝐹𝑇 (e𝑛−1

1 ) (0, 𝜔𝑖) |
is compared to the theoretical convergence rate 𝜌 for the first four iterations.

Fig. 2: Same as Figure 1 with 𝑇 = 105. It is considered to be close to an infinite time window.
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5 Conclusion

In the context of a time dependent problem, the convergence rate 𝜌 calculated in
the Fourier space can only be taken as such on problem considering an infinite time
window. Thanks to Parceval theorem, informations on the algorithm in the physical
space can be obtain on the L2 norm of the error. It is therefore possible to bound
the observed convergence rate 𝜌obs with the bounds of the theoretical convergence
𝜌. For a finite time window, we can no longer consider 𝜌 as a convergence rate for a
given frequency. Yet, bounds on the observed convergence rate are still relevant and
we can precise these bounds by estimating an interval of influencing frequencies.
In a futur work, it may be relevant to determine how to choose optimized interface
conditions using the results on the observed convergence rate.
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Construction of Grid Operators for Multilevel
Solvers: a Neural Network Approach

Claudio Tomasi and Rolf Krause

1 Introduction

Multigrid (MG) methods are among the most successful strategies for solving linear
systems arising from discretized elliptic equations. The main idea is to combine
different levels of approximation in a multilevel hierarchy to compute the solution:
it is possible to show that this algorithm is effective on the entire spectrum, thus
leading to an optimal convergence property [2, 3]. Common to all these strategies
is the need for the transfer of data or information between the different grids, or
meshes. Therefore, a crucial point for reaching fast convergence is the definition of
transfer operators, but they are generally problem-dependent. Except for the case of
nested meshes, the computation of these operators is very expensive, and domain
knowledge is always required.
The ever-increasing application ofMachineLearning (ML) as support formethods

in scientific computing makes it a natural solution to be employed in the definition
of transfer operators, reducing the costs of their construction. In [9], the learning
of a mapping between PDEs and operators has been proposed. Another approach is
presented in [10], where restriction and prolongation matrices are optimized while
minimizing the spectral radius of the iteration matrix. As an alternative, the method
proposed in [13] uses Graph Neural Networks, for learning AMG prolongation
operators, having classes of sparse matrices as input.
In this paper, we propose a methodology based on Deep Neural Networks to

define transfer operators based on the concept of 𝐿2-projection. We take information
from the domain to create several examples and to make our model learn from
experience. Therefore, our focus is the construction of a suitable training set and
a correct loss function definition to create a model that can be employed in MG
solvers. The actual state of the method presents some limitations related to the mesh

Claudio Tomasi and Rolf Krause
Università della Svizzera Italiana,Via Buffi 13, CH-6904 Lugano, e-mail: claudio.tomasi@usi.
ch,rolf.krause@usi.ch
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structure. An extension to a wider range of scenarios should be considered in future
works.

2 Problem Definition

Let Ω ⊂ R𝑛 be a domain with Lipschitz boundary and let 𝐻1
0 (Ω) be the Sobolev

space of one-time weakly differentiable functions on Ω, with weak derivatives in
𝐿2 (Ω). We consider a multigrid method for the solution of the following problem:

find 𝑢 ∈ 𝑉 : 𝑎(𝑢, 𝑣) = 𝑓 (𝑣) ∀𝑣 ∈ 𝑉, (1)

where 𝑉 ⊂ 𝐻1
0 (Ω), 𝑎 : 𝑉 × 𝑉 → R is a continuous symmetric elliptic bilinear form

and 𝑓 : 𝑉 → R is a continuous linear functional. Let 𝑉ℎ ⊂ 𝑉 be the associated finite
elements space, where dim(𝑉ℎ) = 𝑛ℎ and ℎ > 0, and consider a conforming shape-
regular triangulation Tℎ. For a more rigorous explanation see e.g. [14]. Furthermore,
let 𝐼ℎ𝐻 : R𝑛𝐻 → R𝑛ℎ be a transfer operator which transfers information between Tℎ
and a coarser grid T𝐻 , with 𝐻 > ℎ and 𝑛𝐻 < 𝑛ℎ. We denote with 𝐴ℎ𝑢ℎ = 𝑏ℎ the
linear system arising from the finite element discretization of (1).
Let us consider a 2-grid correction scheme for solving the linear system. The

extension to a general multigrid scenario is straightforward. To restrict or prolong
information between coarse and fine grids, we apply 𝐼ℎ𝐻 . Moreover, we define the
coarse problem using the expression 𝐴𝐻 = (𝐼ℎ𝐻 )𝑇 𝐴ℎ 𝐼ℎ𝐻 . Hence, the definition of the
transfer operator plays a central role in obtaining a fast convergence of the method.
In [11], a general definition of transfer operators between meshes is discussed. Here,
we focus on the 𝐿2-projection as transfer operator. Let us call it 𝑄:

𝑄 = 𝑀−1
ℎ 𝐵ℎ,

where 𝑀ℎ is the mass matrix related to the fine level (grid), and 𝐵ℎ is a rectangular
coupling operator matrix. The latter relates the two meshes, and it is computed
through their intersection. Since the inverse of𝑀ℎ is a dense matrix, the computation
of𝑄might become expensive. Therefore, we use the pseudo-𝐿2-projection, wherewe
invert the lumped mass matrix instead of 𝑀ℎ. For further reading refer to [4, 5, 6, 7].

2.1 Neural Networks

ML algorithms are able to learn from data [8]; we refer to a single data object calling
it example. An example is a collection of features together with a corresponding
target. A feature is a property that has been measured from some object or event.
The target is the correct response to the features, that the system should be able to
reproduce.We represent an example as a couple (x, y), where x ∈ R𝑛 is the feature set
and y ∈ R𝑚 is the target. ML can solve different tasks, as classification, transcription,



Construction of Grid Operators for Multilevel Solvers: a Neural Network Approach 549

and so on. Our focus is regression: we ask the model to predict numerical values
given some inputs. In order to solve this task, the model is asked to output a function
𝑓 : R𝑛 → R𝑚. To evaluate the ML algorithm abilities, we define a measure of its
performance, called loss function: for regression, we select the Mean Squared Error
(MSE) indicator.
Neural Networks (NNs) belong to the class of supervised ML algorithms. They

consist of layers of neurons, connected by weighted synapses. A NN defines a
mapping y = 𝑓 (x; 𝜽) and learns the values of the parameters 𝜽 , providing the best
function approximation. More details can be found in [1, 12].

2.2 Training Trasfer Operators

We aim to define a NN model to learn and then predict the transfer operator 𝑄.
Specifically, we do not learn directly𝑄, but the coupling operator 𝐵ℎ. Once themodel
is optimized, we employ it as a black box for solving linear systems of equations in an
MG fashion. We proceed by coarsening: we take 𝑀ℎ on the fine level, and we extract
the features in input to the NN. More details on the data extraction from 𝑀ℎ are
given in Section 3.1. The model produces parts of 𝐵ℎ that combined give rise to the
full operator. We then retrieve the transfer operator 𝑄, and we employ it in the MG
algorithm. Furthermore, we use the predicted transfer operators to define the coarser
mass matrix 𝑀𝐻 using the so-called Galerkin operator, i.e., 𝑀𝐻 = 𝑄⊤𝑀ℎ𝑄.
We recursively apply this procedure to define coarser problems, giving rise to a
multilevel hierarchy.

3 Training Set

In order to allow theNN to learn, we provide a large number of examples (or records).
We need several distinct examples to be sure of avoiding overfitting, occurring when
the model predictions correspond too closely or exactly to a particular set of data.
Thus, we define classes of examples, and we choose a fixed amount of records for
each class. This allows us to create an unbiased training set without preferring some
classes over others. The definition of class is related to the mesh from which we
extrapolate the records. We set a number of elements 𝑁: all the records coming from
meshes with 𝑁 elements belong to class 𝐶𝑁 .

3.1 Records

Given a subset of pre-identified coarse nodes, we extract a record for each of them.
Let 𝑗 be a coarse node. An example contains information related to patch( 𝑗); here,
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patch( 𝑗) is the set consisting of node 𝑗 together with its neighbors. For each node
𝑘 ∈ patch( 𝑗), we define features and target as the non-zero entries of the 𝑘th rows of
𝑀ℎ and 𝐵ℎ, respectively.
We consider different examples of 2-grid scenarios, where we associate to each

fine mesh one coarse mesh, in order to approximate an actual function. Since we
consider several examples for the same class 𝐶𝑁 , we need a strategy to avoid
duplication inside the dataset. For this purpose, in each example, we consider the
fine mesh and we move the nodes along the edges by a random quantity, proportional
to the step size ℎ. Therefore, we create different elements and consequently different
records. We generate the examples in 𝐶𝑁 , and we proceed to the next class by
increasing 𝑁 . Since NN models allow only fixed input and output dimensions, we
define distinct models for 1D and 2D scenarios.

3.2 One-Dimensional Model

The records related to one-dimensionalmeshes are extracted from scenarios obtained
by coarsening: starting from a randomly generated fine mesh, we decide which nodes
to keep for defining the coarse grid. Here, patch( 𝑗) consists only of 𝑗 itself, together
with its left and right neighbors. For each coarse node, we take the information on
patch( 𝑗) from 𝑀ℎ and 𝐵ℎ following the strategy explained in Section 3.1, to define
each example.

3.3 Two-Dimensional Model

Let us call patch-size the number of nodes in a specific patch: given a node 𝑗 , its
patch-size is the cardinality of the set patch( 𝑗). In 2D, even in the same mesh, we
can have nodes with different patch-sizes. Hence, we start considering only a fixed
triangulation, such that the nodes would have the same neighborhood pattern. We
will focus on dealing with different patch-sizes later in the paper, referring to their
treatment in the context of NNs.
A crucial point is to find a correct distribution of data in the training set, in

terms of magnitude of the values. Since the NN should not prefer some examples -
thus, some classes - over others, we need to define a correct and even filling of the
training set. As a first approach, we relate the concept of class to the procedure of
refinement. Mesh refinement is a strategy to increase the accuracy of the solution of a
discretized problem. It works as an iterative procedure applied to the single elements
of a mesh. Here we consider two different strategies: bisection, which halves each
element, and mid-point refinement, which takes the mid-points of each edge and
joins them to create new elements. When we refine, we deal with a new class of
examples. Applying a training algorithm on these data results in a poor ability of
approximation and a large prediction error, making a NN model unfit to work in
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a MG setting. The refinement procedure makes the number of elements scale by a
factor of 2 (bisection) or 4 (mid-point). In terms of domain of training examples, this
means that the initial classes of records, i.e.,𝐶𝑁 with 𝑁 small, are close to each other,
while their distance grows when 𝑁 increases. This turns out to produce an uneven
training set, without a good balance in terms of data distribution. For this reason,
we need a linear increase in the number of elements. If the classes of examples are
evenly spaced in terms of domain, the network does not prefer some classes over
others. Therefore, a second approach changes the definition of class, independent of
the concept of refinement: we start from a number 𝑁 , and we create a mesh having
exactly 𝑁 elements. Once we extract enough records, we proceed to the next class,
increasing 𝑁 by a constant 𝐾 , and create a new mesh with 𝑁 +𝐾 elements. For each
class, we extract the same number of examples. Following this simple procedure,
the resulting training set is effectively unbiased and with a good distribution of the
examples. A learning algorithm applied to these data produces the expected good
approximation. Therefore, a model trained on this dataset can be applied inside an
MG scenario.

4 Model Training

A NN optimizes its parameters in order to reduce the prediction error. Employing
MSE as loss function results in good predictions, but the model does not gain a good
generalization property, i.e., the ability to perform well on previously unobserved
inputs.
Regularization helps us overcome this issue: it reduces the hypothesis space, al-

lowing the NN to have a higher probability of choosing the most correct function.We
introduce in the loss function some penalty terms related to the domain knowledge.
These terms force constraints during the training phase in order to respect properties
that the transfer operator must satisfy.

4.1 Regularization

During the construction of the training set, for each coarse node 𝑗 , we extract patches
of 𝑀ℎ and parts of 𝐵ℎ. We use this information to ask the model to force some rules
on the rows of the predicted coupling operator.
We define the 𝑗 th predicted and actual rows of the operator 𝑄 as

𝑄
pred
𝑗 =

1∑
𝑀 𝑗

𝐵
pred
𝑗 , 𝑄true𝑗 =

1∑
𝑀 𝑗

𝐵true𝑗 , (2)

where Φ 𝑗 denotes the 𝑗 th row of the operator Φ = {𝑀ℎ, 𝐵ℎ}.
We know that the predicted transfer operator should preserve constants (more

details can be found in [4, Section 3.2]). Hence, we consider the following penalty
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terms to specialize our loss function:

∥𝑄pred𝑗 · 1𝐻 − 1ℎ∥2 , ∥𝑄pred𝑗 −𝑄true𝑗 ∥2 , (3)

where ∥·∥2 denotes theEuclidean norm,1𝐻 and1ℎ the all-ones vectors of dimensions
𝑛𝐻 and 𝑛ℎ, respectively. We then define, for all the nodes 𝑘 ∈ patch( 𝑗)

𝑝𝑘 =
1
𝛼
∥𝑄pred𝑘 · 1𝐻 − 1ℎ∥2 +

1
𝛽
∥𝑄pred𝑘 −𝑄true𝑘 ∥2 , (4)

where 0 < 𝛼, 𝛽 < 1.
Therefore, we define the loss function as

ℒ(𝑦true, 𝑦pred) = 𝑀𝑆𝐸 (𝑦true, 𝑦pred) +
∑︁
𝑘

𝑝𝑘 . (5)

Adopting the latter during the training phase, in addition to minimize the simple
distance between target and prediction, we aim to respect the above properties related
to the transfer operator.

4.2 Model Details

We use a classic splitting for our dataset: 20% for test and 80% for training, where
the latter is divided again in 20% for the validation set and the remaining for
the training phase. For a preliminary examination of the method, we used around
500.000 examples. For both one- and two-dimensional models, we adopt Adam as
optimizer. Regarding the architecture, we report here only the structure for the 2D
scenario used as initial test: we need at least 20 hidden layers, where for each of
them we use 800 neurons, for a total of 12 million parameters. Through further
investigations and several tests, the NN complexity can be improved, giving rise to
less expensive computations. We initialize our weights using a normal distribution,
using the methods provided by Tensorflow. In the context of the NN definition, more
extensive works should be devoted to study the sensitivity of the predictions while
changing the NN parameters.

5 Numerical Results

We test our NNs for both prediction accuracy and their application in an MG setting.
We compare our method with the Semi-Geometric multigrid (SGMG) method (see
[4, Chapter 3]), which adopts the 𝐿2-projection computed through intersections
between meshes. In addition to the convergence, we consider the difference in the
time spent to assemble the transfer operator. For our method, we take into account
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Fig. 1: Convergence of 2D Neural MG against SGMG on an example of 100.000 dofs (left).
Comparison of CPU time between the two methods, increasing the dofs (right).

patches extraction, predictions, assembly of 𝐵 and the computation of the operator.
Regarding the computation of the actual 𝐿2-projection we consider the time spent
for intersecting fine and coarse mesh, triangulation for each intersecting polygon and
numerical integration. We test the method on one-dimensional examples, and the
results are good as expected, considering two or more levels. Our method converges
with the same number of iterations as the SGMG method. Comparing the CPU time
spent in creating the transfer operators, we see that the predicted one is assembled
faster than the other since it depends only on the problem dimensions.
During the test on two-dimensional settings we need to deal with different patch-

sizes, as described in Section 3.3. Even if we consider a simple regular mesh,
the nodes near the boundaries have fewer neighbors than the internal nodes. A
preliminary solution requires the mesh to be extended, to make all the nodes have
the same patch-size. Virtually, we add neighbors to those nodes having a smaller
patch in the given mesh. Using this expedient, the method works, and we can test
the convergence against the SGMG method. Extending the mesh shows to be useful
for an initial application of MG, but it is very expensive in terms of computations.
Increasing the degrees of freedom (dofs), we would have more and more virtual
nodes to add and heavier computations to carry out. Therefore, we consider different
NNs, each of them defined and optimized for a specific patch-size.
Fig. 1 shows the performance of the method on a two-dimensional scenario: in

the left picture, we compare the convergence of our method against the convergence
of Semi-Geometric MG; in the right picture we compare the CPU time spent in both
methods.
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6 Conclusion

This work presented the study and definition of a methodology to construct NNs
to predict transfer operators for MG solvers. Starting from a one-dimensional case,
we built an unbiased training set allowing the optimization of a model, which
brought very good results in an MG context. Reproducing the same methodology,
we approached the two-dimensional setting, which gave us the chance to better define
a training set for this kind of methods. Furthermore, we could test our method using
different input-sized neural networks, resulting in fast convergence and bringing a
great speedup in the computation of the transfer operator. The same procedure can
be employed for constructing models to deal with a general 𝑁-dimensional scenario.
Given the limitations of this method at its current state, further investigations should
be devoted to overcome the necessity of having multiple NNs modeled on different
patch-sizes, in order to define a general strategy for solving arbitrary problems.
Future works should extend the method to deal with a wider class of triangulation,
and for applications in other Multilevel scenarios.
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Coarse Corrections for Schwarz methods for
Symmetric and Non-symmetric Problems

Martin J. Gander and Serge Van Criekingen

1 Introduction

As is well known, domain decomposition methods applied to elliptic problems re-
quire in most cases a coarse correction to be scalable (for exceptions, see [5, 6]), the
choice of the coarse space being critical to achieve good performance. We present
here four new coarse spaces for the Restricted Additive Schwarz (RAS) method
of Cai and Sarkis [4], both for symmetric and non-symmetric problems, and im-
plement them in the PETSc library [1, 2, 3]. We compare them to a coarse space
named Q1 here from [10], originating from [7] and [9], and more classical coarse
spaces. In particular, we introduce the new adapted coarse spaces Q1_adapt and
Q1_inner_adapt using basis functions that locally solve the problem considered
also with advection and turn out to be more robust for strong advection. We also in-
troduce the Half_Q1 coarse space that halves the coarse space dimension compared
to Q1 by using a selected combination of its basis functions and turns out to be the
fastest, and the new enriched coarse space Enriched_Q1 which leads to the lowest
iteration counts. We further present results of the optimized method ORAS obtained
by introducing optimized transmission conditions at subdomain interfaces [8, 16, 7].
Throughout the paper, our model problem for the symmetric case is the Laplace

problem, while for the non-symmetric case we consider

−Δ𝑢 + a · ∇𝑢 = 0 (1)

with an upwind scheme on the unit interval (in 1-D) or unit square (in 2-D) using
the 5-point finite difference discretization and homogeneous boundary conditions.
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Serge Van Criekingen
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Fig. 1: Coarse grid point choice in 1-D and 2-D for the Q1 (squares), Q1_fair (diamonds) and
Middle (circles) options.

2 Two-level RAS with classical and new coarse spaces

We consider the solution of 𝐴x = b on a domainΩ decomposed into a set of possibly
overlapping subdomains Ω 𝑗 and introduce a restriction operator 𝑅 𝑗 onto each Ω 𝑗 .
We also introduce a partition of Ω into non-overlapping subdomains Ω̃ 𝑗 as well as
the corresponding restriction operators �̃� 𝑗 for RAS. Obtaining a two-level method
through coarse correction requires a restriction operator 𝑅𝑐 to a coarse space, such
that the resulting coarse system matrix reads 𝐴𝑐 = 𝑅𝑐 𝐴 𝑅

𝑇
𝑐 . The two-level coarse

corrected RASmethod with multiplicative coarse correction (denoted RAS2 in what
follows) can then be written as

x𝑛+1/2 = x𝑛 +
𝐽∑︁
𝑗=1

�̃�𝑇𝑗 𝐴
−1
𝑗 𝑅 𝑗 (b − 𝐴x𝑛), (2)

x𝑛+1 = x𝑛+1/2 + 𝑅𝑇𝑐 𝐴−1
𝑐 𝑅𝑐 (b − 𝐴x𝑛+1/2), (3)

where the first half iteration is the RAS method as defined by Cai and Sarkis [4].
The definition of the coarse space is critical to obtain an efficient two-levelmethod.

We consider here the following classical and new coarse spaces:

“MidBasic”: The classical MidBasic coarse space, also called Nicolaides coarse
space, defined by using a constant coarse basis function in each subdomain.

“Middle”: The classical Middle coarse space taking the fine mesh points in the
middle of each subdomain as coarse grid points, along with linear (bilinear in 2-D)
basis functions centered on these points. This is illustrated in Fig. 1 in 1- and 2-D.

“Q1”: The Q1 coarse space [9, 7] based on linear basis functions with coarse grid
points chosen as illustrated in Fig. 1, namely placed on each side of the subdomain
interfaces (in 1-D) or around each cross point (in 2-D) of the non-overlapping
decomposition. It was shown in [9] that, for the Laplace equation, the Q1 coarse
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correction yields convergence in two iterations in 1-D (or at iteration 1 in PETSc,
where iteration count starts at 0).

“Q1_fair”: This coarse space uses linear basis functions and the same number
of coarse mesh points as Q1, but equally distributed as illustrated in Fig. 1. It is
introduced for a fair comparison with Q1 in terms of coarse space dimensions.

“Q1_adapt”: The new Q1_adapt coarse space using the same coarse points as
Q1, but computed (“adapted”) basis functions that solve the homogeneous equation
considered in each subdomain. In the Laplace case, the Q1_adapt basis functions
are thus the same as the Q1 (i.e., linear) functions, while with advection, the basis
functions are different. In 1-D, Q1_adapt gives convergence of the two-level method
at iteration 1 in PETSc, even in the non-symmetric case when advection is present,
like Q1 for the Laplace problem in [9].
In 2-D, the Q1_adapt basis functions are computed in two steps, first on the

edges with a 1-D stencil obtained by lumping (i.e., summing up) the system matrix
coefficients in the perpendicular direction, then inside each subdomain using the
computed edge functions as boundary conditions, a bit like in MsFEM.

“Q1_inner_adapt”: Defined in 2-D only, this new coarse space differs from
Q1_adapt in that the coarse basis functions are “adapted” only inside each subdo-
main: the first of the two steps in Q1_adapt is skipped, and linear edge functions are
used as boundary conditions to compute the basis functions within each subdomain.

“Half_Q1”: The new Half_Q1 coarse space is motivated by the eigenmodes of the
RAS iteration matrix corresponding to its eigenvalues closest to 1 in modulus. In
Fig. 2a, we computed them with SLEPc [13] (https://slepc.upv.es), for the
Laplace test case and a 2 × 2 subdomain decomposition using minimal overlap (no
algebraic overlap, i.e., block Jacobi). If 𝑞1, 𝑞2, 𝑞3, 𝑞4 are the Q1 basis functions at a
cross point, it can be observed that these modes appear to be 𝑞1 + 𝑞2 + 𝑞3 + 𝑞4 and
𝑞1 − 𝑞2 + 𝑞3 − 𝑞4, respectively. The Half_Q1 coarse space is therefore obtained by
taking these 2 combinations as basis functions, thus with 2 basis functions per cross
point instead of 4 in the Q1 case. (To add to Fig. 2a which gives only the first two
eigenvalues, note that the next eigenvalues are .975571 (double), −.975571 (double),
−.969651 and .969651).
With minimal overlap, we observed that the property of having the two largest

eigenmodes in modulus corresponding to one continuous and one discontinuous
mode remains verifiedwhen increasing the number of subdomains.We also observed
this property when introducing various types of advection. This is illustrated in Fig.
2b for the case with 25 subdomains on our model problem (1) with rotating fluid
advection 𝑎𝑥 = −10𝑦 and 𝑎𝑦 = 10𝑥 (- for this case, the next eigenvalues are complex:
−0.989110 ± 0.001513𝑖, 0.989110 ± 0.001513𝑖 and 0.983268 ± 0.002304𝑖).
With more than minimal overlap (i.e., non-zero algebraic overlap), even if we

observed exceptions (typically when using more than 4 subdomains and a relatively
low fine mesh resolution), the largest two modes tend to remain one continuous
and one discontinuous one, but the corresponding eigenvalues are then different in
modulus, with a difference that increases when increasing the overlap. We illustrate
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(a) 2 × 2 subdomains, no advection, minimal overlap.

(b) 5 × 5 subdomains, advection 𝑎𝑥 = −10𝑦 and 𝑎𝑦 = 10𝑥, minimal overlap.

(c) 2 × 2 subdomains, no advection: evolution of
the two largest eigenvalues in modulus with the
overlap.

Fig. 2: In (a) and (b), eigenmodes of the RAS iteration operator corresponding to the two largest
eigenvalues in modulus using a 256 × 256 fine mesh resolution; continuous modes on the left and
discontinuous modes on the right. In (c), evolution of the two largest eigenvalues in modulus.

this for the 2× 2 subdomain decomposition by displaying in Fig. 2c the evolution of
the two largest eigenvalues in modulus when increasing the overlap.

“Enriched_Q1”: This new coarse space is obtained by adding extra linear basis
functions to the Q1 coarse space, namely (in 2-D) with one extra coarse point placed
in the middle of each edge and corresponding extra linear basis function. The goal
is to come a step closer to the 2D grid representing a complete coarse space, leading



Coarse Corrections for Schwarz methods for Symmetric and Non-symmetric Problems 559

(a) RAS2 (b) ORAS2

Fig. 3: Results with advection 𝑎𝑥 = −10𝑦 and 𝑎𝑦 = 10𝑥.

to convergence in two iterations [9, Fig. 8]. This coarse space is thus twice as big as
as Q1.

3 Numerical Results

Fig. 3 shows the iteration count for a weak scalability analysis on our non-symmetric
model problem (1) with rotating fluid advection 𝑎𝑥 = −10𝑦 and 𝑎𝑦 = 10𝑥. This
analysis consists in increasing the size of the problem while maintaining constant
the workload per subdomain. The subdomain decomposition ranges from 2 × 2 to
32 × 32, each subdomain having a 256 × 256 fine mesh and being handled by one
CPU core. The number of cores 𝐽 ranges thus from 4 to 1024 here, and the coarse
space dimension is 𝐽 for MidBasic and Middle, 4𝐽 for Q1, Q1_fair, Q1_adapt and
Q1_inner_adapt, 2𝐽 for Half_Q1 and 8𝐽 for Enriched_Q1 . An algebraic overlap
of 2 is considered, which means one extra mesh layer for both subdomains at an
interface and corresponds to an overlap of 1 in the PETSc sense. The corresponding
Laplace results are very similar, we thus only show them in Table 1 for comparison.
While Fig. 3a displays the result for the RAS2 method, Fig. 3b displays the results

for the optimized ORAS2method obtained by modifying the local 𝐴 𝑗 matrices in the
RAS2 iterations (2)-(3) to express Robin interface conditions [16], with a first-order
accurate discretization of the normal derivative and two-level optimized coefficients
(determined for the symmetric case) as defined in [7].
We observe that, except for the larger Enriched_Q1 coarse space, the Q1 coarse

space gives the lowest iteration count when used with (non-optimized) RAS. Using
adapted basis functions (i.e., Q1_adapt or Q1_inner_adapt) does not reduce the
iteration count in the present case. However, these adapted coarse spaces appear
more robust than Q1 when increasing the advection strength, as can be seen in Table
1 with a five times larger advection: some of the stationary iterations appear to



560 Martin J. Gander and Serge Van Criekingen

(a)Without GMRES acceleration (b)With GMRES acceleration

Fig. 4: Computation times (s.) for the weak scaling experiment for the non-symmetric model
problem with 𝑎𝑥 = −10𝑦 and 𝑎𝑦 = 10𝑥.

diverge using the Q1 and/or Half_Q1 coarse spaces with a rotating fluid advection
of magnitude 50, while this is not the case with magnitude 10 (Fig. 3).
We also observe from Fig. 3 that Q1_fair and Half_Q1 take more advantage of

the application of the optimized ORAS method than Q1, since their iteration counts
then become all quasi-identical.
Timing results are presented in Fig. 4 for our weak scalability analysis, this time

using up to 128×128 = 16, 384CPU cores (one per subdomain) of the CPU partition
of the Jean Zay supercomputer at the Institute for Development and Resources in
Intensive Scientific Computing (CNRS/IDRIS). A relative tolerance of 1.e-8 is used
as convergence criteria. Note that PETSc’s native direct solver is used for the local
serial subdomain solves, while the coarse solve is performed in parallel with the
MUMPS direct solver, after agglomeration of the coarse unknowns on a subset of
the processors (here maximum 64) using PETSc’s “Telescope” tool [14]. Beside
the results obtained with the various coarse corrections introduced above, timings
obtained with two algebraic multigrid options available through PETSc are also
presented, namely HYPRE/BoomerAMG [12] (with tuning form [17]) and PETSc’s
native algebraic multigrid preconditioner GAMG (with smoothed aggregation and CG
eigenvalue estimator [2]).

J 4 16 64 256 1024 4 16 64 256 1024
RAS2 ORAS2

Q1_fair 179(420) 357(424) 481(479) 506(509) 521(522) 80(34) 39(35) 37(36) 37(37) 37(37)
Q1 Div(255) Div(295) 259(303) 281(298) 288(291) 68(35) 45(35) 35(35) 35(36) 36(36)

Half_Q1 Div(257) Div(348) Div(380) 494(385) 409(391) Div(32) Div(34) 172(35) 41(36) 37(37)
Q1_adapt 145 237 291 310 313 66 35 37 37 36

Q1_inner_ad. 145 213 261 282 289 70 36 35 35 36

Table 1:Number of RAS2 and ORAS2 stationary iterations with advection 𝑎𝑥 = −50𝑦, 𝑎𝑦 = 50𝑥,
where “Div” means that the iterations are diverging. Laplace results are in parentheses, with
“adapted” results then the same as Q1.
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As already observed in [10] for the symmetric case, we see here that re-
sults with the ORAS2 method can be competitive with the multigrid options
also in the non-symmetric case when using one of the Q1, Q1_fair, Half_Q1 or
Enriched_Q1 coarse spaces (or even Middle with GMRES acceleration). Among
the various coarse spaces considered, Half_Q1 exhibits the fastest computational
times, most presumably thanks to its lower dimensionality that does not significantly
impacts the iteration count (as observed in Fig. 3 up to 1024 cores and as can be
verified up to 16,384 cores). This remains true when plotting not only the solving
times as in Fig. 4, but the total timings including the setup/assembly phase.

4 Conclusions

We considered several coarse space options for the two-level RAS method applica-
ble to non-symmetric problems and implemented them in the PETSc library. The
Q1 option, that enables a solution in two iterations on a 1-D Laplace test case, shows
good performance on our 2-D non-symmetric model problem as well (using coarse
points placed around the cross points), in that it has a better iteration count than
the Q1_fair option (which uses as many but equally distributed coarse points). The
new Q1_adapt and Q1_inner_adapt coarse spaces enable a solution in two itera-
tions for a non-symmetric 1-D advection-diffusion test case, as in the Laplace case
in [10]. Despite this promising feature, iteration counts on our 2-D model problem
did not show improvements compared to the Q1 option for moderate advection, but
increased robustness was observed for strong advection. The Enriched_Q1 coarse
space, with its higher dimensionality, yields lower iteration counts but appears not
to improve the overall computation time. Finally, the new Half_Q1 coarse space
shows promising performance in that the increase in iteration count due to its lower
dimensionality appears very moderate and virtually disappears if optimized trans-
mission conditions are introduced (ORAS method). In turn, this option provided the
best computational time results in our weak scaling analysis, of the same order of
magnitude as multigrid options. Other harmonic coarse spaces like GenEO [15] and
GDSW/RGDSW [11] that target improving condition number estimates of Additive
Schwarz, in contrast to accelerating low frequency continuous and discontinuous
modes of RAS like our new coarse spaces, are also intrinsically based on MsFEM
techniques. A more extensive comparison of all these coarse spaces will appear
elsewhere.

Acknowledgements This work was performed using HPC resources from GENCI-IDRIS.



562 Martin J. Gander and Serge Van Criekingen

References

1. S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener,
V. Eijkhout, W.D. Gropp, , D. Karpeyev, D. Kaushik, M.G. Knepley, D.A. May, L.Curfman
McInnes, R. Tran Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang, and
H. Zhang. PETSc Web page. http://www.mcs.anl.gov/petsc, 2019.

2. S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener,
V. Eijkhout, W.D. Gropp, , D. Karpeyev, D. Kaushik, M.G. Knepley, D.A. May, L.Curfman
McInnes, R. Tran Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. Zampini, H. Zhang,
and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.14, Argonne
National Laboratory, 2020.

3. S. Balay, W.D. Gropp, L. Curfman McInnes, and B.F. Smith. Efficient management of par-
allelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and
H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163–202.
Birkhäuser Press, 1997.

4. X.-C. Cai andM. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM J. Sci. Comp., 21(2):239–247, 1999.

5. G. Ciaramella and M.J. Gander. Analysis of the parallel Schwarz method for growing chains
of fixed-sized subdomains: Part I. SIAM Journal on Numerical Analysis, 55(3):1330–1356,
2017.

6. G. Ciaramella and M.J. Gander. Analysis of the parallel Schwarz method for growing chains
of fixed-sized subdomains: Part II. SIAM Journal on Numerical Analysis, 56(3):1498–1524,
2018.

7. O. Dubois, M.J. Gander, S. Loisel, A. St-Cyr, and D.B. Szyld. The optimized Schwarz methods
with a coarse grid correction. SIAM J. Sci. Comp., 34(1):A421–A458, 2012.

8. M.J. Gander. Optimized Schwarz methods. SIAM J. Numer. Anal., 44(2):669–731, 2006.
9. M.J. Gander, L. Halpern, and K. Santugini. A new coarse grid correction for RAS/AS. In

Domain Decomposition Methods in Science and Engineering XXI, Lecture Notes in Compu-
tational Science and Engineering, pages 275–284. Springer-Verlag, 2014.

10. M.J. Gander and S. Van Criekingen. New coarse corrections for restricted additive Schwarz
using PETSc. In Domain Decomposition Methods in Science and Engineering XXV, Lecture
Notes in Computational Science and Engineering, pages 483–490. Springer-Verlag, 2019.

11. A. Heinlein, C. Hochmuth, and A. Klawonn. Reduced dimension GDSW coarse spaces for
monolithic Schwarz domain decomposition methods for incompressible fluid flow problems.
International Journal for Numerical Methods in Engineering, 121(6):1101–1119, 2020.

12. V.E. Henson and U.M. Yang. Boomeramg: a parallel algebraic multigrid solver and precondi-
tioner. Applied Numerical Mathematics, 41:155–177, 2002.

13. V. Hernandez, J.E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the solution
of eigenvalue problems. ACM Trans. Math. Software, 31(3):351–362, 2005.

14. A. May, P. Sanan, K. Rupp, M.G. Knepley, , and B.F. Smith. Extreme-scale multigrid com-
ponents within petsc. In Proceedings of the Platform for Advanced Scientific Computing
Conference, 2016.

15. N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl. Abstract robust
coarse spaces for systems of pdes via generalized eigenproblems in the overlaps. Numer. Math.,
126(4):741–770, 2014.

16. A. St-Cyr, M.J. Gander, and S.J. Thomas. Optimized multiplicative, additive, and restricted
additive Schwarz preconditioning. SIAM J. Sci. Comp., 29(6):2402–2425, 2007.

17. P. S. Vassilevski and U. M. Yang. Reducing communication in algebraic multigrid using
additive variants. Numer. Linear Algebra Appl., 21 (2):275–296, 2014.



A Numerical Algorithm Based on Probing to
Find Optimized Transmission Conditions

Martin J. Gander, Roland Masson, and Tommaso Vanzan

1 Motivation

Optimized Schwarz Methods (OSMs) are very versatile: they can be used with or
without overlap, converge faster compared to other domain decomposition methods
[5], are among the fastest solvers for wave problems [10], and can be robust for
heterogeneous problems [7]. This is due to their general transmission conditions,
optimized for the problem at hand. Over the last two decades such conditions have
been derived for many Partial Differential Equations (PDEs), see [7] for a review.
Optimized transmission conditions can be obtained by diagonalizing the OSM

iteration using a Fourier transform for two subdomains with a straight interface. This
works surprisingly well, but there are important cases where the Fourier approach
fails: geometries with curved interfaces (there are studies for specific geometries,
e.g. [11, 9, 8]), and heterogeneous couplings when the two coupled problems are
quite different in terms of eigenvectors of the local Steklov-Poincaré operators [6].
There is therefore a great need for numerical routines which allow one to get cheaply
optimized transmission conditions, which furthermore could then lead to OSM
black-box solvers. Our goal is to present one such procedure.
Let us consider the simple case of a two nonoverlapping subdomain decomposi-

tion, that is Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, Γ := Ω1 ∩ Ω2, and a generic second order
linear PDE

L(𝑢) = 𝑓 , in Ω, 𝑢 = 0 on 𝜕Ω. (1)
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The operator L could represent a homogeneous problem, i.e. the same PDE over the
whole domain, or it could have discontinuous coefficients along Γ, or even represent
a heterogeneous coupling. Starting from two initial guesses 𝑢0

1, 𝑢
0
2, the OSM with

double sided zeroth-order transmission conditions computes at iteration 𝑛

L(𝑢𝑛1 ) = 0 on Ω1, (𝜕𝑛1 + 𝑠1)𝑢𝑛1 = (𝜕𝑛1 + 𝑠1)𝑢𝑛−1
2 on Γ,

L(𝑢𝑛2 ) = 0 on Ω2, (𝜕𝑛2 + 𝑠2)𝑢𝑛2 = (𝜕𝑛2 + 𝑠2)𝑢𝑛−1
1 on Γ,

(2)

where 𝑠1, 𝑠2 ∈ R are the parameters to optimize.
At the discrete level, the original PDE (1) is equivalent to the linear system

©«
𝐴1
𝐼 𝐼 0 𝐴1

𝐼Γ
0 𝐴2

𝐼 𝐼 𝐴
2
𝐼Γ

𝐴1
Γ𝐼 𝐴

2
Γ𝐼 𝐴ΓΓ

ª®¬
©«
u1
u2
uΓ

ª®¬
=

©«
f1
f2
fΓ

ª®¬
,

where the unknowns are split into those interior to domainΩ𝑖 , that is u𝑖 , 𝑖 = 1, 2, and
those lying on the interface Γ, i.e. uΓ. It is well known that the Dirichlet-Neumann
and Neumann-Neumann methods can be seen as Richardson type methods to solve
the discrete Steklov-Poincaré equation

ΣuΓ = 𝜇,

where Σ := Σ1 + Σ2, Σ𝑖 := 𝐴𝑖ΓΓ − 𝐴𝑖Γ𝐼 (𝐴𝑖𝐼 𝐼 )−1𝐴𝑖𝐼Γ, 𝜇 := 𝜇1 + 𝜇2, 𝜇𝑖 := f𝑖Γ −
𝐴𝑖Γ𝐼 (𝐴𝑖𝐼 𝐼 )−1f𝑖 , 𝑖 = 1, 2. It is probably less known that the OSM (2) can be interpreted
as an Alternating Direction Implicit scheme (ADI, see e.g. [2]), for the solution of
the continuous Steklov-Poincaré equation. This interesting point of view has been
discussed in [1, 3]. At the discrete level, it results in the equivalence between a
discretization of (2) and the ADI scheme

(𝑠1𝐸 + Σ1)𝜆𝑛+
1
2 = (𝑠1𝐸 − Σ2)𝜆𝑛 + 𝜇, (𝑠2𝐸 + Σ2)𝜆𝑛+1 = (𝑠2𝐸 − Σ1)𝜆𝑛+

1
2 + 𝜇,

where 𝐸 is either the mass matrix on Γ using a Finite Element discretization, or
simply an identity matrix using a Finite Difference stencil. From now on, we will
replace 𝐸 with the identity 𝐼 without loss of generality.Working on the error equation,
the iteration operator of the ADI scheme is

𝑇 (𝑠1, 𝑠2) := (𝑠2𝐼 + Σ2)−1 (𝑠2𝐼 − Σ1) (𝑠1𝐼 + Σ1)−1 (𝑠1𝐼 − Σ2), (3)

and one would like to minimize the spectral radius, min𝑠1 ,𝑠2 𝜌(𝑇 (𝑠1, 𝑠2)). It would
be natural to use the wide literature available on ADI methods to find the optimized
parameters 𝑠1, 𝑠2 for OSMs. Unfortunately, the ADI literature contains useful results
only in the case where Σ1 and Σ2 commute, which is quite a strong assumption.
In our context, the commutativity holds for instance if Ω1 = Ω2 and L represents
a homogeneous PDE. Under these hypotheses, Fourier analysis already provides
good estimates of the optimized parameters. Indeed it can be shown quite generally
that the Fourier analysis and ADI theory lead to the same estimates. Without the
commutativity assumption, the ADI theory relies on rough upper bounds which do
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not lead to precise estimates of the optimized parameters. For more details on the
links between ADI methods and OSMs we refer to [13, Section 2.5].
Let us observe that if one used more general transmission conditions represented

by matrices Σ̃1 and Σ̃2, (3) becomes

𝑇 (Σ̃1, Σ̃2) = (Σ̃2 + Σ2)−1 (Σ̃2 − Σ1) (Σ̃1 + Σ1)−1 (Σ̃1 − Σ2).

Choosing either Σ̃1 = Σ2 or Σ̃2 = Σ1 leads to 𝑇 = 0, and thus one obtains that the
local Steklov-Poincaré operators are optimal transmission operators [12].

2 An algorithm based on probing

Our algorithm to find numerically optimized transmission conditions has deep roots
in the ADI interpretation of the OSMs and it is based on the probing technique.
By probing, we mean the numerical procedure through which we estimate a generic
matrix 𝐺 by testing it over a set of vectors. In mathematical terms, given a set of
vectors x𝑘 and y𝑘 := 𝐺x𝑘 , 𝑘 ∈ K, we consider the problem

Find 𝐺 such that 𝐺x𝑖 = y𝑖 ,∀𝑖 ∈ I. (4)

As we look for matrices with some nice properties ( diagonal, tridiagonal, sparse...),
problem (4) does not always have a solution. Calling𝐷 the set of admissiblematrices,
we prefer to consider the problem

min
𝐺∈𝐷

max
𝑘∈K
∥y𝑘 − 𝐺x𝑘 ∥. (5)

Having remarked that the local Steklov-Poincaré operators represent optimal
transmission conditions, it would be natural to approximate them using probing.
Unfortunately, this idea turns out to be very inefficient. To see this, let us carry out
a continuous analysis on an infinite strip, Ω1 = (−∞, 0) × (0, 1) and Ω2 = (0,∞) ×
(0, 1). We consider the Laplace equation and, denoting with S𝑖 the continuous
Steklov-Poincaré operators, due to symmetry we have S1 = S2 =: S𝑒. In this simple
geometry, the eigenvectors of S𝑒 are 𝑣𝑘 = sin(𝑘𝜋𝑦), 𝑘 ∈ N+ with eigenvalues
𝜇𝑘 = 𝑘𝜋 so that S𝑒𝑣𝑘 = 𝜇𝑘𝑣𝑘 =: 𝑦𝑘 , see [5]. We look for an operator 𝑆 = 𝑠𝐼, 𝑠 ∈ R+,
which corresponds to a Robin transmission condition with parameter 𝑠. As probing
functions, we choose the normalized functions 𝑣𝑘 , 𝑘 = 1, ..., 𝑁ℎ, where 𝑁ℎ is the
number of degrees of freedom on the interface. Then (5) becomes

min
𝑆=𝑠𝐼, 𝑠∈R+

max
𝑘∈[1,𝑁ℎ ]

∥𝑦𝑘 − 𝑆𝑣𝑘 ∥ = min
𝑠∈R+

max
𝑘∈[1,𝑁ℎ ]

∥𝜇𝑘𝑣𝑘 − 𝑠𝑣𝑘 ∥ = min
𝑠∈R+

max
𝑘∈[1,𝑁ℎ ]

|𝑘𝜋 − 𝑠 |.
(6)

The solution of (6) is 𝑠∗ = 𝑁ℎ 𝜋
2 while, according to a Fourier analysis and numerical

evidence [5], the optimal parameter is 𝑠opt =
√
𝑁ℎ𝜋. This discrepancy is due to the
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fact that problem (6) aims to make the parenthesis (𝑠𝑖 𝐼 − Σ3−𝑖), 𝑖 = 1, 2 as small as
possible, but it completely neglects the other terms (𝑠𝑖 𝐼 + Σ𝑖).
This observation suggests to consider the minimization problem

min
Σ̃1 ,Σ̃2∈𝐷

max
𝑘∈K

∥Σ2x𝑘−Σ̃1x𝑘 ∥
∥Σ1x𝑘+Σ̃1x𝑘 ∥

∥Σ1x𝑘−Σ̃2x𝑘 ∥
∥Σ2x𝑘+Σ̃2x𝑘 ∥

. (7)

We say that this problem is consistent in the sense that, assuming Σ1, Σ2 share a
common eigenbasis {v𝑘}𝑘 with eigenvalues

{
𝜇𝑖𝑘

}
, Σ̃𝑖 = 𝑠𝑖 𝐼, 𝑖 = 1, 2, 𝑘 = 1, . . . , 𝑁ℎ,

then choosing x𝑘 = v𝑘 , we have

min
Σ̃1 ,Σ̃2∈𝐷

max
𝑘∈K

∥Σ2x𝑘−Σ̃1x𝑘 ∥
∥Σ1x𝑘+Σ̃1x𝑘 ∥

∥Σ1x𝑘−Σ̃2x𝑘 ∥
∥Σ2x𝑘+Σ̃2x𝑘 ∥

= min
𝑠1 ,𝑠2

max
𝑘∈K

��� 𝑠1−𝜇2
𝑘

𝑠1+𝜇1
𝑘

𝑠2−𝜇1
𝑘

𝑠2+𝜇2
𝑘

��� = min
𝑠1 ,𝑠2∈R+

𝜌(𝑇 (𝑠1, 𝑠2)),

that is, (7) is equivalent to minimize the spectral radius of the iteration matrix.
We thus propose our numerical procedure to find optimized transmission condi-

tions, summarized in Steps 2-4 of Algorithm 1.4 Martin J. Gander, Roland Masson, and Tommaso Vanzan

Algorithm 1
Require: A set of vector x: , : ∈ K, a characterization of Σ̃1, Σ̃2.
1: [Optional] For 8 = 1, 2, perform # iterations of the power method to get approximations

of selected eigenvectors x8: , 8 = 1, 2, : ∈ K. Map x89 into x: , for 8 = 1, 2, 9 ∈ K and
: = 1, . . . , 2 |K |. Redefine K := {1, . . . , 2 |K | }.

2: Compute H8: = Σ8x: , : ∈ K,.
3: Call an optimization routine to solve (7).
4: Return the matrices Σ̃ 9 , 9 = 1, 2.

fact that problem (6) aims to make the parenthesis (B8 � − Σ3−8), 8 = 1, 2 as small as
possible, but it completely neglects the other terms (B8 � + Σ8).

This observation suggests to consider the minimization problem

min
Σ̃1 ,Σ̃2∈�

max
:∈K

‖Σ2x:−Σ̃1x: ‖
‖Σ1x:+Σ̃1x: ‖

‖Σ1x:−Σ̃2x: ‖
‖Σ2x:+Σ̃2x: ‖

. (7)

We say that this problem is consistent in the sense that, assuming Σ1,Σ2 share a
common eigenbasis {v: }: with eigenvalues

{
`8:

}
, Σ̃8 = B8 �, 8 = 1, 2, : = 1, . . . , #ℎ ,

then choosing x: = v: , we have

min
Σ̃1 ,Σ̃2∈�

max
:∈K

‖Σ2x:−Σ̃1x: ‖
‖Σ1x:+Σ̃1x: ‖

‖Σ1x:−Σ̃2x: ‖
‖Σ2x:+Σ̃2x: ‖

= min
B1 ,B2

max
:∈I

∈
��� B1−`2

:

B1+`1
:

B2−`1
:

B2+`2
:

��� = min
B1 ,B2∈R+

d() (B1, B2)),

that is, (7) is equivalent to minimize the spectral radius of the iteration matrix.
We thus propose our numerical procedure to find optimized transmission condi-

tions, summarized in Steps 2-4 of Algorithm 1. It requires as input a set of probing
vectors and a characterization for the transmission matrices Σ̃8 , that is if the matrices
are identity times a real parameter, diagonal, or tridiagonal, sparse etc. We then
precompute the action of the local Schur complement on the probing vectors. We
finally solve (7) using an optimization routine such as fminsearch in Matlab, which
is based on the Nelder-Mead algorithm.

The application of Σ8 to a vector x: requires a subdomain solve, thus Step 2
requires 2|K | subdomain solves which are embarrassingly parallel. Step 3 does not
require any subdomain solves, and thus is not expensive.

As discussed in Section 3, the choice of probing vectors plays a key role to obtain
good estimates. Due to the extensive theoretical literature available, the probing
vectors should be heuristically related to the eigenvectors associated to the minimum
and maximum eigenvalues of Σ8 . It is possible to set the probing vectors x: equal to
lowest and highest Fourier modes. This approach is efficient when the Fourier analysis
itself would provide relatively good approximations of the parameters. However there
are instances, e.g. curved interfaces or heterogeneous problems, where it is preferable
to have problem-dependent probing vectors. We thus include an additional optional
step (Step 1), in which, starting from a given set of probing vectors, e.g Fourier
modes, we perform # iterations of the power method, which essentially correspond
to # iterations of the OSM, to get more suitable problem-dependent probing vectors.

It requires as input a set of probing vectors and a characterization for the transmission
matrices Σ̃𝑖 , that is if the matrices are identity times a real parameter, diagonal, or
tridiagonal, sparse etc. We then precompute the action of the local Schur comple-
ment on the probing vectors. We finally solve (7) using an optimization routine such
as fminsearch inMatlab, which is based on the Nelder-Mead algorithm.
The application of Σ𝑖 to a vector x𝑘 requires a subdomain solve, thus Step 2

requires 2|K | subdomain solves which are embarrassingly parallel. Step 3 does not
require any subdomain solves, and thus is not expensive.
As discussed in Section 3, the choice of probing vectors plays a key role to obtain

good estimates. Due to the extensive theoretical literature available, the probing
vectors should be heuristically related to the eigenvectors associated to the minimum
and maximum eigenvalues of Σ𝑖 . It is possible to set the probing vectors x𝑘 equal to
lowest and highest Fouriermodes. This approach is efficientwhen the Fourier analysis
itself would provide relatively good approximations of the parameters. However there
are instances, e.g. curved interfaces or heterogeneous problems, where it is preferable
to have problem-dependent probing vectors. We thus include an additional optional
step (Step 1), in which, starting from a given set of probing vectors, e.g Fourier
modes, we perform 𝑁 iterations of the power method, which essentially correspond
to 𝑁 iterations of the OSM, to get more suitable problem-dependent probing vectors.
To compute the eigenvector associated to the minimum eigenvalue of Σ𝑖 , we rely
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Fig. 1: Contour plot of the spectral radius of the iteration matrix 𝑇 (Σ̃1, Σ̃2) with Σ̃𝑖 = 𝑠𝑖 𝐼 (left)
and of 𝑇 (Σ̂1, Σ̂2) with Σ̂𝑖 = 𝑝𝐼 + 𝑞𝐻 (right). The red crosses are the parameters obtained through
Alg. 1.

on the inverse power method which requires to solve a Neumann boundary value
problem. Including Step 1, Algorithm 1 requires in total 2|K |(𝑁 + 2) subdomain
solves, where |K | is the number of probing vectors in the input.

3 Numerical experiments

We start with a sanity check considering a Laplace equation on a rectangle Ω, with
Ω1 = (−1, 0)× (0, 1),Ω2 = (0, 1)× (0, 1) and Γ = {0}× (0, 1). Given a discretization
of the interface Γ with 𝑁ℎ points, we choose as probing vectors the discretization of

𝑥1 = sin(𝜋𝑦), 𝑥2 = sin(
√︁
𝑁ℎ𝜋𝑦), 𝑥3 = sin(𝑁ℎ𝜋𝑦), (8)

motivated by the theoretical analysis in [5], which shows that the optimized pa-
rameters 𝑠𝑖 satisfy equioscillation between the minimum, the maximum and a
medium frequency which scales as

√
𝑁ℎ. We first look for matrices Σ̃𝑖 = 𝑠𝑖 𝐼

representing zeroth order double sided optimized transmission conditions. Then,
we look for matrices Σ̂𝑖 = 𝑝𝐼 + 𝑞𝐻, where 𝐻 is a tridiagonal matrix 𝐻 :=
diag( 2

ℎ2 ) − diag( 1
ℎ2 ,−1) − diag( 1

ℎ2 , +1), where ℎ is the mesh size. At the continuous
level, Σ̂𝑖 represent second order transmission conditions. Fig. 1 shows that Alg. 1
permits to obtain excellent estimates in both cases with just three probing vectors.
We emphasize that Alg. 1 requires 6 subdomain solves, which can be done in paral-
lel, and leads to a convergence factor of order ≈ 0.07 for second order transmission
conditions. It is clear that, depending on the problem at hand, this addition of 6
subdomain solves is negligible, considering the advantage of having such a small
convergence factor.
We now look at a more challenging problem. We solve a second order PDE

−∇ · 𝜈(x)∇𝑢 + a(x)⊤ · ∇𝑢 + 𝜂(x)𝑢 = 𝑓 in Ω, (9)
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Fig. 2: Left: Ω decomposed into Ω1 and Ω2. Middle: optimized parameters obtained using Fourier
analysis or Algorithm 1 with different sets of probing vectors. Right: eigenvectors associated to the
smallest eigenvalues of Σ 𝑗 , 𝑗 = 1, 2.

where Ω is represented in Fig. 2 on the top-left.
The interface Γ is the parametric curve 𝛾(𝑡) : [0, 1] → (𝑟 sin( �̂�𝜋𝑡), 𝑡), with 𝑟 ∈

R+. The coefficients are set to 𝜈(x) = 1, a(x) = (10(𝑦 +𝑥2), 0)⊤, 𝜂(x) = 0.1(𝑥2 + 𝑦2)
in Ω1, 𝜈(x) = 100, a(x) = (10(1 − 𝑥), 𝑥)⊤, 𝜂(x) = 0 in Ω2, 𝑓 (x) = 𝑥2 + 𝑦2 in Ω.
The geometric parameters are 𝑟 = 0.4, �̂� = 6 and the interface is discretized with
𝑁ℎ = 100 points. Driven by the theoretical analysis [7], we rescale the transmission
conditions according to the physical parameters, setting 𝑆𝑖 := 𝑓𝑖 (𝑠)𝐼, where 𝑓𝑖 :=
𝜈𝑖 (𝑠2 + 𝑎2

𝑖1
4𝜈2
𝑖

+ 𝑎2
𝑖2

4𝜈2
𝑖

+ 𝜂𝑖
𝜈𝑖
)1/2 − 𝑎𝑖1

2 . The center panel of Fig. 2 shows a comparison
of the optimized parameters obtained by a Fourier analysis to the one obtained by
Alg. 1 using as probing vectors the sine frequencies (8). It is evident that both
do not deliver efficient estimates. The failure of Alg. 1 is due to the fact that, in
contrast to the Laplace case, the sine frequencies do not contain information about
the slowest modes. On the right panel of Fig 2, we plot the lowest eigenvectors of Σ𝑖 ,
which clearly differ significantly from the simple lowest sine frequency.We therefore
consider Alg. 1 with the optional Step 1 and as starting probing vectors we only use
the lowest and highest sine frequencies. The center panel of Fig. 2 shows that Alg. 1
delivers efficient estimates with just one iteration of the power method. Let us now
study the computational cost. To solve (9) up to a tolerance of 10−8 on the error,
an OSM using the Fourier estimated parameters (black cross in Fig 2) requires 21
iterations, while only 12 are needed by Algorithm 1 with only one iteration of the
power method. In the offline phase of Algorithm 1, we need to solve 4 subdomain
problems in parallel in Step 1, and further 8 subdomain problems again in parallel
in Step 2. Therefore the cost of the offline phase is equivalent to two iterations of
the OSM in a parallel implementation, and consequently Alg. 1 is computationally
attractive even in a single-query context.
Fourier estimates depend on the choice of 𝑘min and 𝑘max and in Fig. 2, we set

𝑘min = 𝜋 and 𝑘max = 𝜋/ℎ. Inspired by [8] and a reviewer’s comment, we optimized
with 𝑘min = 𝜋/|Γ| ≈ 𝜋/4.96 obtaining 𝑠 = 14.41, which is very close to the
optimal 𝑠∗. However, rescaling 𝑘min with |Γ | is not generally a valid approach.
Considering Ω1 as the ellipse of boundary (cos(2𝜋𝑡), 0.5 sin(2𝜋𝑡)), 𝑡 ∈ (0, 1), and
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Fig. 3: Comparison between the optimized parameters obtained through Fourier analysis and Alg.
1 for single sided Robin boundary conditions (left) and double sided Robin boundary conditions
(right).

Ω2 = [0, 2] × [0, 1] \ Ω1, see Fig. 2 bottom-left, then 𝑠∗ = 40, while 𝑠𝑘min=𝜋 = 31.5
and 𝑠𝑘min=𝜋/ |Γ | = 20.44. Thus, rescaling 𝑘min worsens the Fourier estimate.
Next, we consider the Stokes-Darcy system in Ω, with Ω1 = (−1, 0) × (0, 1),

Ω2 = (0, 1) × (0, 1) and Γ = {0} × (0, 1) with homogeneous Dirichlet boundary
conditions along 𝜕Ω. Refs. [6, 13] show that the Fourier analysis fails to provide
optimized parameters since the two subproblems do not share a common separation
of variable expansion in bounded domains, unless periodic boundary conditions are
enforced, see also [7][Section 3.3]. Thus, the sine functions do not diagonalize the
OSM iteration, even in the simplified domainΩwith straight interface. Nevertheless,
we apply Alg. 1 using two different sets of sines as probing vectors, corresponding
to frequencies K1 =

{
1,
√
𝑁ℎ, 𝑁ℎ

}
and K2 =

{
1, 2,
√
𝑁ℎ, 𝑁ℎ

}
. In K2 the first even

frequency is included because in Ref. [6] it was observed that the first odd Fourier
frequency converges extremely fast.
Fig 3 shows the estimated parameters for single and double sided zeroth order

transmission conditions obtained through a Fourier analysis [4] and using Alg. 1.
The left panel confirms the intuition of [6], that is, the first even frequency plays a
key role in the convergence. The right panel shows that Alg. 1, either withK1 orK2
provides better optimized parameters than the Fourier approach.
Next, we consider the stationary heat transfer model coupling the diffusion equa-

tion ∇· (−𝜆∇𝑢1 (x)) = 0 in the porous medium domainΩ1 = (0, 𝐿) × (5, 15) with the
convection diffusion equation ∇ · (𝑢2 (x)V𝑡 (𝑦) − 𝜆𝑡 (𝑦)∇𝑢2 (x)) = 0 in the free flow
domain Ω2 = (0, 𝐿) × (0, 5). Both the turbulent velocity V𝑡 = (𝑉𝑡 (𝑦), 0)𝑇 and the
thermal conductivity 𝜆𝑡 (𝑦) exhibit a boundary layer at the interface Γ = (0, 𝐿) × {5}
and are computed from the Dittus-Boelter turbulent model. Dirichlet boundary con-
ditions are prescribed at the top ofΩ1 and on the left ofΩ2, homogeneous Neumann
boundary conditions are set on the left and right of Ω1 and at the bottom of Ω2, and
a zero Fourier flux is imposed on the right of Ω2. Flux and temperature continuity
is imposed at the interface Γ. The model is discretized by a Finite Volume scheme
on a Cartesian mesh of size 50 × 143 refined on both sides of the interface. Figure 4
shows that the probing algorithm provides a very good approximation of the optimal
solution for the case 𝐿 = 100 m, 𝑉 𝑡 = 5 m/s (mean velocity) both with the 3 sine
vectors (8) and with the 6 vectors obtained from the power method starting from the
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Fig. 4: For 𝐿 = 100 m, 𝑉 𝑡 = 5 m/s (left) and 𝐿 = 10 m, 𝑉 𝑡 = 0.5 m/s (right), comparison of the
double sided Robin parameters 𝑠1 and 𝑠2 obtained from the probing algorithm using either the 3
sine vectors or the 6 vectors obtained from the 3 sines vectors by 2 PM iterations on both sides. It
is compared with the minimizer of the spectral radius 𝜌(𝑇 (𝑠1, 𝑠2)) .

sine vectors. In the case 𝐿 = 10 m, 𝑉 𝑡 = 0.5 m/s, the spectral radius has a narrow
valley with two minima. In that case the probing algorithm fails to find the best local
minimum but still provides a very efficient approximation.
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Additive Schwarz Preconditioners for 𝑪0

Interior Penalty Methods for a State Constrained
Elliptic Distributed Optimal Control Problem

Susanne C. Brenner, Li-Yeng Sung, and Kening Wang

1 Introduction

Let Ω be a bounded convex polygon in R2, 𝑓 ∈ 𝐿2 (Ω), and 𝛽 > 0 be a constant. We
consider the following elliptic optimal control problem: Find (𝑦, 𝑢) ∈ 𝐻1

0 (Ω)×𝐿2 (Ω)
that minimize the functional

𝐽 (𝑦, 𝑢) = 1
2

∫
Ω
(𝑦 − 𝑓 )2 + 𝛽

2

∫
Ω
𝑢2 𝑑𝑥

subject to
−Δ𝑦 = 𝑢 in Ω , 𝑦 = 0 on 𝜕Ω ,

and 𝑦 ≤ 𝜓 in Ω, where 𝜓 ∈ 𝑊3, 𝑝 (Ω) for 𝑝 > 2, and 𝜓 > 0 on 𝜕Ω.
By elliptic regularity (cf. [6]), we can reformulate the model problem as follows:

Find 𝑦 ∈ 𝐾 such that
𝑦 = argmin

𝑣∈𝐾

[
1
2
𝑎(𝑣, 𝑣) − ( 𝑓 , 𝑣)

]
, (1)

where 𝐾 = {𝑣 ∈ 𝐻2 (Ω) ∩ 𝐻1
0 (Ω) : 𝑣 ≤ 𝜓 in Ω},

𝑎(𝑣, 𝑤) = 𝛽
∫
Ω
∇2𝑣 : ∇2𝑤 𝑑𝑥 +

∫
Ω
𝑣𝑤 𝑑𝑥 and ( 𝑓 , 𝑣) =

∫
Ω
𝑓 𝑣 𝑑𝑥.

Here ∇2𝑣 : ∇2𝑤 =
∑2
𝑖, 𝑗=1

𝜕2𝑣
𝜕𝑥𝑖𝜕𝑥 𝑗

𝜕2𝑤
𝜕𝑥𝑖𝜕𝑥 𝑗

is the inner product of the Hessian matrices
of 𝑣 and 𝑤. Once 𝑦 is calculated, then 𝑢 can be determined by 𝑢 = −Δ𝑦.
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A quadratic 𝐶0 interior penalty method for the minimization problem (1) was
analyzed in [4]. The goal of this paper is to apply the ideas in [3] for an obsta-
cle problem of clamped Kirchhoff plates to develop and analyze additive Schwarz
preconditioners for the discrete problem in [4].

2 The 𝑪0 Interior Penalty Method

Let Tℎ be a quasi-uniform triangulation ofΩ consisting of convex quadrilaterals, and
let 𝑉ℎ ⊂ 𝐻1

0 (Ω) be the standard 𝑄𝑘 finite element space (the space of polynomials
of degree ≤ 𝑘 in each variable) associated with Tℎ.
The discrete problem of the optimal control problem (1) resulting from the 𝐶0

interior penalty method is to find

𝑦ℎ = argmin
𝑣∈𝐾ℎ

[
1
2
𝑎ℎ (𝑣, 𝑣) − ( 𝑓 , 𝑣)

]
, (2)

where

𝐾ℎ = {𝑣 ∈ 𝑉ℎ : 𝑣(𝑝) ≤ 𝜓(𝑝), ∀ 𝑝 ∈ Nℎ},
𝑎ℎ (𝑣, 𝑤) = 𝛽

[ ∑︁
𝐷∈Tℎ

∫
𝐷
∇2𝑣 : ∇2𝑤 𝑑𝑥 +

∑︁
𝑒∈E𝑖

ℎ

𝜂

|𝑒 |
∫
𝑒

[[
𝜕𝑣

𝜕𝑛

]] [[
𝜕𝑤

𝜕𝑛

]]
𝑑𝑠

+
∑︁
𝑒∈E𝑖

ℎ

∫
𝑒

({{
𝜕2𝑣

𝜕𝑛2

}} [[
𝜕𝑤

𝜕𝑛

]]
+

{{
𝜕2𝑤

𝜕𝑛2

}} [[
𝜕𝑣

𝜕𝑛

]] )
𝑑𝑠

]
+

∑︁
𝐷∈Tℎ

∫
𝐷
𝑣𝑤 𝑑𝑥,

Nℎ is the set of nodes in Ω associated with 𝑉ℎ, E𝑖ℎ is the set of edges in Tℎ that
are interior to Ω, 𝜂 > 0 is a sufficiently large penalty parameter, and the jump [[·]]
and the average {{·}} are defined as follows. Let 𝑒 be an interior edge shared by two
elements, 𝐷− and 𝐷+, and 𝑛𝑒 be the unit normal vector pointing from 𝐷− to 𝐷+, we
define [[

𝜕𝑣

𝜕𝑛

]]
=
𝜕𝑣+
𝜕𝑛𝑒
− 𝜕𝑣−
𝜕𝑛𝑒

and
{{
𝜕2𝑣

𝜕𝑛2

}}
=

1
2

(
𝜕2𝑣+
𝜕𝑛2
𝑒

+ 𝜕
2𝑣−
𝜕𝑛2
𝑒

)
.

Note that 𝑎ℎ (·, ·) is a consistent bilinear form for the biharmonic equation with the
boundary conditions of simply supported plates (cf. [4]).
It follows from the standard theory that the discrete problem (2) has a unique

solution 𝑦ℎ ∈ 𝐾ℎ characterized by the discrete variational inequality

𝑎ℎ (𝑦ℎ, 𝑣ℎ − 𝑦ℎ) ≥ ( 𝑓 , 𝑣ℎ − 𝑦ℎ) ∀ 𝑣ℎ ∈ 𝐾ℎ . (3)

Moreover, there exists a positive constant 𝐶 independent of ℎ such that (cf. [4])

∥𝑦 − 𝑦ℎ∥ℎ ≤ 𝐶ℎ𝛼,
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where ∥ · ∥ℎ is the mesh-dependent energy norm defined by

∥𝑣∥2ℎ = 𝛽
( ∑︁
𝐷∈Tℎ

|𝑣 |2
𝐻2 (𝐷) +

∑︁
𝑒∈E𝑖

ℎ

1
|𝑒 | ∥ [[𝜕𝑣/𝜕𝑛]] ∥

2
𝐿2 (𝑒)

)
+ ∥𝑣∥2𝐿2 (Ω) ,

ℎ is the mesh size of the triangulation, and 𝛼 ∈ (0, 1] is the index of elliptic regularity
that is determined by the interior angles of Ω.

3 The Primal-Dual Active Set Algorithm

By introducing a Lagrange multiplier 𝜆ℎ : Nℎ → R , the discrete variational
inequality (3) is equivalent to

𝑎ℎ (𝑦ℎ, 𝑣) − ( 𝑓 , 𝑣) = −
∑︁
𝑝∈Nℎ

𝜆ℎ (𝑝)𝑣(𝑝) ∀ 𝑣 ∈ 𝑉ℎ, (4)

𝑦ℎ (𝑝) − 𝜓(𝑝) ≥ 0, 𝜆ℎ (𝑝) ≥ 0 and (𝑦ℎ (𝑝) − 𝜓(𝑝))𝜆ℎ (𝑝) = 0 ∀ 𝑝 ∈ Nℎ .(5)

Moreover, the optimality conditions (5) can be written concisely as

𝜆ℎ (𝑝) = max(0, 𝜆ℎ (𝑝) + 𝑐(𝑦ℎ (𝑝) − 𝜓(𝑝))) ∀ 𝑝 ∈ Nℎ, (6)

where 𝑐 is a large positive number. The system (4) and (6) can then be solved by a
primal-dual active set (PDAS) algorithm (cf. [7, 8]).
Given the 𝑘−th approximation (𝑦𝑘 , 𝜆𝑘), the (𝑘 + 1)−st iteration of the PDAS

algorithm is to find (𝑦𝑘+1, 𝜆𝑘+1) such that

𝑎ℎ (𝑦𝑘+1, 𝑣) − ( 𝑓 , 𝑣) = −
∑︁
𝑝∈Nℎ

𝜆𝑘+1 (𝑝)𝑣(𝑝) ∀ 𝑣 ∈ 𝑉ℎ, (7a)

𝑦𝑘+1 (𝑝) = 𝜓(𝑝) ∀ 𝑝 ∈ A𝑘 , (7b)
𝜆𝑘+1 (𝑝) = 0 ∀ 𝑝 ∈ I𝑘 , (7c)

where A𝑘 = {𝑝 ∈ Nℎ : 𝜆𝑘 (𝑝) + 𝑐(𝑦𝑘 (𝑝) − 𝜓(𝑝)) > 0} is the active set deter-
mined by (𝑦𝑘 , 𝜆𝑘), and I𝑘 = Nℎ\A𝑘 is the inactive set. The iteration terminates
when A𝑘+1 = A𝑘 . Given a sufficiently accurate initial guess, the PDAS algorithm
converges superlinearly to the unique solution of (3) (cf. [7]).
From (7b) and (7c), we can reduce (7a) to an auxiliary system that only involves

the unknowns of 𝑦𝑘+1 (𝑝) for 𝑝 ∈ I𝑘 . But even so, for small ℎ, the reduced aux-
iliary system is still large, sparse, and ill-conditioned. To solve such systems more
efficiently, we can apply the preconditioned conjugate gradient method.
Let Ñℎ be a subset of Nℎ. We define 𝑇ℎ : 𝑉ℎ → 𝑉ℎ, the truncation operator, by

(𝑇ℎ𝑣) (𝑝) =
{
𝑣(𝑝) if 𝑝 ∈ Ñℎ,
0 if 𝑝 ∈ Nℎ\Ñℎ .
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Then 𝑇ℎ is a projection from 𝑉ℎ onto 𝑉ℎ = 𝑇ℎ𝑉ℎ. Moreover, let 𝐴ℎ : 𝑉ℎ → 𝑉 ′ℎ be
defined by

⟨𝐴ℎ𝑣, 𝑤⟩ = 𝑎ℎ (𝑣, 𝑤) ∀ 𝑣, 𝑤 ∈ 𝑉ℎ,
where ⟨·, ·⟩ is the canonical bilinear form on 𝑉 ′ℎ ×𝑉ℎ.
In the context of solving (3), the set Ñℎ represents the inactive set that appears

in an iteration of the PDAS algorithm and 𝐴ℎ represents the stiffness matrix for the
corresponding auxiliary system. Our goal is to develop preconditioners for 𝐴ℎ whose
performance is independent of Ñℎ.

4 A One-Level Additive Schwarz Preconditioner

LetΩ 𝑗 , 1 ≤ 𝑗 ≤ 𝐽, be overlapping subdomains ofΩ such thatΩ =
⋃𝐽
𝑗=1 Ω 𝑗 , diam Ω 𝑗 ≈

𝐻, and the boundaries of Ω 𝑗 are aligned with Tℎ. We assume that there exist non-
negative 𝜃 𝑗 ∈ 𝐶∞ (Ω̄) for 1 ≤ 𝑗 ≤ 𝐽 such that

𝜃 𝑗 = 0 on Ω \Ω 𝑗 ,

𝐽∑︁
𝑗=1
𝜃 𝑗 = 1 on Ω̄ ,

∥∇𝜃 𝑗 ∥𝐿∞ (Ω) ≤
𝐶†
𝛿
, ∥∇2𝜃 𝑗 ∥𝐿∞ (Ω) ≤

𝐶†
𝛿2 ,

where ∇2𝜃 𝑗 is the Hessian of 𝜃 𝑗 , 𝛿 > 0 measures the overlap among subdomains,
and 𝐶† is a positive constant independent of ℎ, 𝐻, and 𝐽. Moreover, we assume that

any point in Ω can belong to at most 𝑁𝑐 many subdomains,

where the positive integer 𝑁𝑐 is independent of ℎ, 𝐻, 𝐽 and 𝛿.
Let 𝑉 𝑗 be the subspace of 𝑉ℎ whose members vanish at all nodes outside Ω 𝑗 , and

let 𝐴 𝑗 : 𝑉 𝑗 → 𝑉 ′𝑗 be defined by

⟨𝐴 𝑗𝑣, 𝑤⟩ = 𝑎ℎ, 𝑗 (𝑣, 𝑤) ∀ 𝑣, 𝑤 ∈ 𝑉 𝑗 ,

where

𝑎ℎ, 𝑗 (𝑣, 𝑤) = 𝛽
[ ∑︁
𝐷∈Tℎ

∫
𝐷
∇2𝑣 : ∇2𝑤 𝑑𝑥 +

∑︁
𝑒∈E𝑖ℎ

𝑒⊂Ω 𝑗\𝜕Ω

𝜂

|𝑒 |
∫
𝑒

[[
𝜕𝑣

𝜕𝑛

]] [[
𝜕𝑤

𝜕𝑛

]]
𝑑𝑠

+
∑︁
𝑒∈E𝑖ℎ

𝑒⊂Ω 𝑗\𝜕Ω

∫
𝑒

({{
𝜕2𝑣

𝜕𝑛2

}} [[
𝜕𝑤

𝜕𝑛

]]
+

{{
𝜕2𝑤

𝜕𝑛2

}} [[
𝜕𝑣

𝜕𝑛

]] )
𝑑𝑠

]
+

∑︁
𝐷∈Tℎ

∫
𝐷
𝑣𝑤 𝑑𝑥.
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The one-level additive Schwarz preconditioner 𝐵𝑂𝐿 : 𝑉 ′ℎ → 𝑉ℎ is then defined
by

𝐵𝑂𝐿 =
𝐽∑︁
𝑗=1

�̃� 𝑗𝐴
−1
𝑗 �̃�

𝑡
𝑗 ,

where �̃� 𝑗 : 𝑉 𝑗 → 𝑉ℎ (1 ≤ 𝑗 ≤ 𝐽) is the natural injection operator, and �̃� 𝑡𝑗 : 𝑉 ′ℎ → 𝑉 ′𝑗
is the transpose of �̃� 𝑗 .
With similar arguments as in [3], we can obtain the following result.

Theorem 1 It holds that

𝜅(𝐵𝑂𝐿𝐴ℎ) = 𝜆max (𝐵𝑂𝐿𝐴ℎ)
𝜆min (𝐵𝑂𝐿𝐴ℎ)

≤ 𝐶1𝛿
−4,

where the positive constant 𝐶1 is independent of 𝐻, ℎ, 𝑗 , 𝛿 and Ñℎ.

Remark 1 The condition number estimate given in Theorem 1 is identical to the one
for the plate bending problem without obstacles, which indicates that the obstacle is
invisible to the one-level additive Schwarz preconditioner.

5 A Two-level Additive Schwarz Preconditioner

A two-level additive Schwarz preconditioner contains not only subdomain solves,
but also a coarse grid solve. Let T𝐻 be a coarse quasi-uniform triangulation for Ω
whose mesh size is comparable to the diameters of the subdomains Ω 𝑗 , 1 ≤ 𝑗 ≤ 𝐽,
and 𝑉𝐻 ⊂ 𝐻1

0 (Ω) be the 𝑄𝑘 finite element space associated with T𝐻 .
Since the𝑄𝑘+2 Bogner-Fox-Schmit (BFS) tensor product element is a 𝐶1 relative

of the 𝑄𝑘 tensor product element (cf. [2]), we define 𝑊𝐻 ⊂ 𝐻2 (Ω) ∩ 𝐻1
0 (Ω) to be

the 𝑄𝑘+2 BFS finite element space associated with T𝐻 . The two spaces 𝑉𝐻 and𝑊𝐻

can be connected by an enriching operator 𝐸𝐻 which is constructed by the averaging
technique (cf. [2, 3]).
Now we define 𝐼0 : 𝑉𝐻 → 𝑉ℎ by

𝐼0 = Πℎ ◦ 𝐸𝐻
where Πℎ : 𝐶0 (Ω̄) → 𝑉ℎ is the nodal interpolation operator.
Let 𝑉0 ⊂ 𝑉ℎ be defined by

𝑉0 = 𝑇ℎ 𝐼0𝑉𝐻 ,

and let the operator 𝐴0 : 𝑉0 → 𝑉 ′0 be defined by

⟨𝐴0𝑣, 𝑤⟩ = 𝑎ℎ (𝑣, 𝑤) ∀ 𝑣, 𝑤 ∈ 𝑉0.

Then the two-level additive Schwarz preconditioner 𝐵𝑇𝐿 : 𝑉 ′ℎ → 𝑉ℎ is given by
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𝐵𝑇𝐿 =
𝐽∑︁
𝑗=0

�̃� 𝑗 𝐴
−1
𝑗 �̃� 𝑡𝑗 ,

where �̃� 𝑗 : 𝑉 𝑗 → 𝑉ℎ (0 ≤ 𝑗 ≤ 𝐽) is the natural injection operator, and �̃� 𝑡𝑗 is the
transpose of �̃� 𝑗 .
Following the arguments in [3], we can obtain an estimate on the condition number

of 𝐵𝑇𝐿𝐴ℎ.

Theorem 2 It holds that

𝜅(𝐵𝑇𝐿𝐴ℎ) ≤ 𝐶2 min
(
(𝐻/ℎ)4, 𝛿−4

)
, (8)

where 𝐶2 is a positive constant independent of 𝐻, ℎ, 𝑗 , 𝛿 and Ñℎ.

Remark 2 When the obstacle is present, it is necessary to include the truncation
operator in the construction of 𝑉0. Therefore, the condition number estimate (8) for
the two-level additive Schwarz preconditioner is different from the one for the plate
bending problem without obstacles (cf. [5]) which takes the form

𝜅(𝐵𝑇𝐿𝐴ℎ) ≤ 𝐶∗
(
1 + (𝐻/𝛿)4

)
.

6 Numerical Results

We consider the obstacle problem (cf. [1]) withΩ = (−0.5, 0.5)2, 𝛽 = 0.1, 𝜓 = 0.01,
and 𝑓 = 10(sin(2𝜋(𝑥1 + 0.5)) + (𝑥2 + 0.5)). We discretize the model problem by
the 𝐶0 interior penalty method that is based on a rectangular mesh, and choose 𝑉ℎ
to be the standard 𝑄2 finite element space with the mesh size ℎ = 2−ℓ , where ℓ is
the refinement level. The resulting discrete variational inequalities are solved by the
PDAS algorithm, in which we choose the constant 𝑐 to be 108. The initial guess for
the PDAS algorithm is taken to be the solution at the previous level or zero when
ℓ = 1.
The graphs of the numerical solution 𝑦ℎ and the discrete active set A𝑘 at refine-

ment level 7 are given in Figure 1.
For comparison, we first calculate the condition number of the un-preconditioned

auxiliary system 𝐴ℎ in each iteration of the PDAS algorithm and then take the
average. The average condition numbers and numbers of iterations of the PDAS
algorithm for various levels are presented in Table 1.
We apply the one-level and two-level additive Schwarz preconditioners to the

auxiliary system in each iteration of the PDAS algorithm. The average condition
numbers of both preconditioned auxiliary systems for 4, 16, 64, and 256 subdomains
with small overlap, 𝛿 = ℎ, are reported in Table 2 andTable 3 respectively. Comparing
with the condition numbers of the unpreconditioned auxiliary systems in Table 1,
both one-level and two-level algorithms show dramatical improvements.
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Fig. 1: The numerical solution 𝑦ℎ (left) and the discrete active set A𝑘 (right) at refinement level 7

𝜅 (𝐴ℎ) PDAS Iterations
ℓ = 1 1.7604 × 101 5
ℓ = 2 2.2085 × 102 10
ℓ = 3 4.3057 × 103 5
ℓ = 4 6.7740 × 104 8
ℓ = 5 1.0849 × 106 12
ℓ = 6 1.8038 × 107 15

Table 1: Average condition number of 𝐴ℎ, and number of iterations of the PDAS algorithm

𝐽 = 4 𝐽 = 16 𝐽 = 64 𝐽 = 256
ℓ = 2 5.8672 × 100 — — —
ℓ = 3 1.9350 × 101 5.1410 × 101 — —
ℓ = 4 9.9423 × 101 2.4134 × 102 6.6698 × 102 —
ℓ = 5 6.9235 × 102 1.7965 × 103 3.4752 × 103 1.0282 × 104

ℓ = 6 5.6185 × 103 1.4676 × 104 2.8898 × 104 5.6312 × 104

Table 2: Average condition number of 𝐵𝑂𝐿𝐴ℎ with small overlap

𝐽 = 4 𝐽 = 16 𝐽 = 64 𝐽 = 256
ℓ = 2 5.4489 × 100 — — —
ℓ = 3 8.1290 × 100 1.2913 × 101 — —
ℓ = 4 3.6660 × 101 1.8647 × 101 3.4614 × 101 —
ℓ = 5 2.1670 × 102 4.0108 × 101 4.6832 × 101 7.9579 × 101

ℓ = 6 1.5552 × 103 2.4043 × 102 5.5854 × 101 1.0981 × 102

Table 3: Average condition number of 𝐵𝑇𝐿𝐴ℎ with small overlap

Moreover, similar simulations for generous overlap 𝛿 = 𝐻 are also performed.
The average condition numbers of the one-level and two level additive Schwarz
preconditioned auxiliary systems for various number of subdomains are presented
in Tables 4 and 5 .
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𝐽 = 4 𝐽 = 16 𝐽 = 64 𝐽 = 256
ℓ = 2 1.0000 × 100 — — —
ℓ = 3 1.0000 × 100 1.1796 × 101 — —
ℓ = 4 1.0000 × 100 1.2828 × 101 1.1154 × 102 —
ℓ = 5 1.0000 × 100 1.3457 × 101 1.1315 × 102 1.5925 × 103

ℓ = 6 1.0000 × 100 1.4041 × 101 1.1760 × 102 1.6453 × 103

Table 4: Average condition number of 𝐵𝑂𝐿𝐴ℎ with generous overlap

𝐽 = 4 𝐽 = 16 𝐽 = 64 𝐽 = 256
ℓ = 2 1.2500 × 100 — — —
ℓ = 3 1.2500 × 100 7.8441 × 100 — —
ℓ = 4 1.2500 × 100 9.1917 × 100 2.4105 × 101 —
ℓ = 5 1.2500 × 100 9.9897 × 100 2.5678 × 101 5.8649 × 101

ℓ = 6 1.2500 × 100 1.0569 × 101 2.6729 × 101 6.3733 × 101

Table 5: Average condition number of 𝐵𝑇𝐿𝐴ℎ with generous overlap

7 Conclusion

We present additive Schwarz preconditioners for the auxiliary systems that appear in
a primal-dual active set algorithm for solving a state constrained elliptic distributed
optimal control problem discretized by a 𝐶0 interior penalty method. Both the one-
level and two-level preconditioners improve the condition numbers of the auxiliary
systems significantly.
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Science Foundation under Grant No. DMS-19-13035.
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Space-Time Finite Element Methods for the
Initial Temperature Reconstruction

Ulrich Langer, Olaf Steinbach, Fredi Tröltzsch, and Huidong Yang

1 Introduction

In this work, we investigate the applicability of unstructured space-time methods to
the numerical solution of inverse problems considering the classical inverse problem
of the reconstruction of the initial temperature in the heat equation from an obser-
vation of the temperature 𝑢𝛿𝑇 ∈ 𝐿2 (Ω) at a finite time horizon as model problem:
Find the initial temperature 𝑢𝛿0 (·) := 𝑢(·, 0) ∈ 𝐿2 (Ω) on Σ0 of the solution 𝑢 of the
backward heat equation

𝜕𝑡𝑢 − Δ𝑥𝑢 = 0 in 𝑄, 𝑢 = 0 on Σ, 𝑢 = 𝑢𝛿𝑇 on Σ𝑇 , (1)

where 𝑄 := Ω × (0, 𝑇) denotes the space-time cylinder with the boundary 𝜕𝑄 =
Σ∪Σ0∪Σ𝑇 , Σ := 𝜕Ω× (0, 𝑇), Σ0 := Ω×{0}, Σ𝑇 := Ω×{𝑇}, the bounded Lipschitz
domain Ω ⊂ R𝑑 , 𝑑 ∈ {1, 2, 3}, and a finite time horizon 𝑇 > 0. The observed
terminal temperature 𝑢𝛿𝑇 may contain some noise characterized by the noise level
𝛿 ≥ 0,

∥𝑢𝛿𝑇 − 𝑢𝑇 ∥𝐿2 (Ω) ≤ 𝛿, (2)
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where 𝑢𝑇 = 𝑢(·, 𝑇) ∈ 𝐿2 (Ω) represents the unpolluted exact data.
In contrast to the forward heat equation with known initial data, the backward

heat equation (1) is severely ill-posed; see [2, Example 2.9]. In fact, the solution
of (1) does not continuously depend on the data 𝑢𝛿𝑇 even when the solution exists.
Following the notation in [2], the problem (1) may be reformulated as an abstract
operator equation in a more general setting: Find 𝑢0 ∈ X such that

𝑆𝑢0 = 𝑢𝑇 , (3)

where 𝑆 : X → Y denotes a bounded linear operator between two Hilbert spaces X
andY. It is clear that there does not exist a continuous inverse operator 𝑆−1 : Y → X
in general. Therefore, we consider a regularized solution, depending on the choice
of Tikhonov’s regularization parameter 𝜚 := 𝜚(𝛿),

𝑢
𝛿, 𝜚
0 := (𝑆∗𝑆 + 𝜚𝐼)−1 𝑆∗𝑢𝛿𝑇 ,

as the unique minimizer of the Tikhonov functional [9]

J𝜚 (𝑧) :=
1
2
∥𝑆𝑧 − 𝑢𝛿𝑇 ∥2Y +

𝜚

2
∥𝑧∥2X . (4)

It is well known that we have the convergence

lim
𝛿→0

𝑢
𝛿, 𝜚
0 = 𝑢†0 in X, if the conditions lim

𝛿→0
𝜚(𝛿) = 0 and lim

𝛿→0

𝛿2

𝜚(𝛿) = 0

are satisfied.Here, 𝑢†0 denotes the best-approximated solution to the operator equation
(3); see [2, Theorem 5.2] for a more detailed discussion, and also [1, 7].
The main focus of this work is to describe a space-time finite element method

(FEM) on fully unstructured simplicial meshes to solve the minimization problem
(4) subject to the solution of the backward heat equation (1). Such a space-time
method has been studied for the forward heat equation in [8], and for other parabolic
optimal control problems in [5, 6].
The remainder of this paper is structured as follows: In Section 2, we discuss the

related optimal control problem. Its solution is obtained by the optimality system
consisting of the (forward) heat equation, the adjoint heat equation, and the gradient
equation. Based on the Banach–Nečas–Babuška theory [3], we establish unique solv-
ability of the resulting coupled system, when eliminating the unknown initial datum.
In Section 3, for the numerical solution of the inverse problem (1), we first consider
the discrete optimal control problem, which is based on the space-time discretization
of the forward problem. The solution is characterized by a discrete gradient equation,
which turns out to be the Schur complement system of the discretized coupled vari-
ational formulation. First numerical results are reported in Section 4. These results
show the potential of the space-time approach proposed. Finally, some conclusions
are drawn in Section 5.
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2 The related optimal control problem

In our case, the Hilbert spaces X and Y are specified as X = Y = 𝐿2 (Ω), and
the image 𝑆𝑧 of the operator 𝑆 : 𝐿2 (Ω) → 𝐿2 (Ω) in the Tikhonov functional (4)
is defined by the solution 𝑢 ∈ 𝑋 := 𝐿2 (0, 𝑇 ;𝐻1

0 (Ω)) ∩ 𝐻1 (0, 𝑇 ;𝐻−1 (Ω)) of the
forward heat conduction problem

𝜕𝑡𝑢 − Δ𝑥𝑢 = 0 in 𝑄, 𝑢 = 0 on Σ, 𝑢 = 𝑧 on Σ0, (5)

and its evaluation on Σ𝑇 , i.e., (𝑆𝑧) (𝑥) = 𝑢(𝑥, 𝑇), 𝑥 ∈ Ω. Here, the control 𝑧 ∈ 𝐿2 (Ω)
represents the initial data in (5). Rewriting the minimization of the functional (4) in
terms of 𝑧, we obtain the optimal control problem

J𝜚 (𝑧) :=
1
2
∥𝑢(𝑥, 𝑇) − 𝑢𝛿𝑇 ∥2𝐿2 (Ω) +

𝜚

2
∥𝑧∥2

𝐿2 (Ω) → min
𝑧∈𝐿2 (Ω)

, (6)

where the state 𝑢 ∈ 𝑋 is associated to the control 𝑧 subject to (5).
To set up the necessary and sufficient optimality conditions for the optimal control

𝑧 with associated state 𝑢, we introduce the adjoint equation

−𝜕𝑡 𝑝 − Δ𝑥 𝑝 = 0 in 𝑄, 𝑝 = 0 on Σ, 𝑝 = 𝑢 − 𝑢𝛿𝑇 on Σ𝑇 . (7)

It has a unique solution 𝑝 ∈ 𝑋 , the adjoint state. The adjoint equation can be
derived by a formal Lagrangian technique as in [10]. If 𝑧 is the optimal control with
associated state 𝑢 ∈ 𝑋 , then a unique adjoint state 𝑝 ∈ 𝑋 solving (7) exists such that
the gradient equation

𝑝 + 𝜚 𝑧 = 0 on Σ0 (8)

is satisfied. Using this equation, we can eliminate the unknown initial datum 𝑧 in the
state equation (5) to conclude

𝜕𝑡𝑢 − Δ𝑥𝑢 = 0 in 𝑄, 𝑢 = 0 on Σ, 𝑢 = − 1
𝜚
𝑝 on Σ0 (9)

for the optimal state 𝑢. The reduced optimality system (7),(9) is necessary and
sufficient for optimality of 𝑢 with associated adjoint state 𝑝. In what follows, we will
describe a space-time finite element approximation of this system.
The space-time variational formulation of the heat equation in (9) (without initial

condition) is to find 𝑢 ∈ 𝑋 such that

𝑏(𝑢, 𝑣) :=
∫ 𝑇

0

∫
Ω

[
𝜕𝑡𝑢(𝑥, 𝑡)𝑣(𝑥, 𝑡) + ∇𝑥𝑢(𝑥, 𝑡) · ∇𝑥𝑣(𝑥, 𝑡)

]
𝑑𝑥 𝑑𝑡 = 0 (10)

is satisfied for all 𝑣 ∈ 𝑌 := 𝐿2 (0, 𝑇 ;𝐻1
0 (Ω)). The spaces 𝑋 and 𝑌 are equipped with

the norms

∥𝑣∥𝑌 = ∥∇𝑥𝑣∥𝐿2 (𝑄) and ∥𝑢∥𝑋 =
√︃
∥𝜕𝑡𝑢∥2𝑌 ∗ + ∥𝑢∥2𝑌 =

√︃
∥𝑤𝑢∥2𝑌 + ∥𝑢∥2𝑌 ,
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with 𝑤𝑢 ∈ 𝑌 being the unique solution of the variational problem∫ 𝑇

0

∫
Ω
∇𝑥𝑤𝑢 (𝑥, 𝑡) · ∇𝑥𝑣(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 =

∫ 𝑇

0

∫
Ω
𝜕𝑡𝑢(𝑥, 𝑡) 𝑣(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 ∀ 𝑣 ∈ 𝑌 .

We multiply the adjoint heat equation (7) by a test function 𝑞 ∈ 𝑋 , integrate over 𝑄,
and apply integration by parts both in space and time. Then we insert the terminal
data 𝑢(𝑇) − 𝑢𝛿𝑇 of 𝑝 in the arising term 𝑝(𝑇), and substitute the term 𝑝(0) by
−𝜌𝑧 = −𝜌𝑢(0) in view of (8). In this way, we arrive at the weak form of the adjoint
problem (7)

0 =
∫ 𝑇

0

∫
Ω

[
− 𝜕𝑡 𝑝(𝑥, 𝑡) 𝑞(𝑥, 𝑡) − Δ𝑥 𝑝(𝑥, 𝑡) 𝑞(𝑥, 𝑡)

]
𝑑𝑥 𝑑𝑡

= −
∫
Ω
[𝑢(𝑥, 𝑇) − 𝑢𝛿𝑇 (𝑥)] 𝑞(𝑥, 𝑇) 𝑑𝑥 − 𝜚

∫
Ω
𝑢(𝑥, 0) 𝑞(𝑥, 0) 𝑑𝑥

+
∫ 𝑇

0

∫
Ω

[
𝑝(𝑥, 𝑡) 𝜕𝑡𝑞(𝑥, 𝑡) + ∇𝑥 𝑝(𝑥, 𝑡) · ∇𝑥𝑞(𝑥, 𝑡)

]
𝑑𝑥 𝑑𝑡 .

We end up with the variational problem to find (𝑢, 𝑝) ∈ 𝑋 × 𝑌 such that

B(𝑢, 𝑝; 𝑣, 𝑞) = ⟨𝑢𝛿𝑇 , 𝑞(𝑇)⟩𝐿2 (Ω) ∀ (𝑣, 𝑞) ∈ 𝑌 × 𝑋, (11)

where the bilinear form B(·, ·; ·, ·) is given as

B(𝑢, 𝑝; 𝑣, 𝑞) := 𝑏(𝑢, 𝑣) − 𝑏(𝑞, 𝑝) + ⟨𝑢(𝑇), 𝑞(𝑇)⟩𝐿2 (Ω) + 𝜚 ⟨𝑢(0), 𝑞(0)⟩𝐿2 (Ω) .

We note that the bilinear form 𝑏(·, ·), as defined by (10), is bounded:

|𝑏(𝑢, 𝑣) | ≤
√

2 ∥𝑢∥𝑋 ∥𝑣∥𝑌 ∀𝑢 ∈ 𝑋, 𝑣 ∈ 𝑌 .

Since 𝑋 is continuously embedded in 𝐶 ( [0, 𝑇]; 𝐿2 (Ω)), there is a positive constant
𝜇 such that ∥𝑢(0)∥𝐿2 (Ω) ≤ 𝜇 ∥𝑢∥𝑋 and ∥𝑢(𝑇)∥𝐿2 (Ω) ≤ 𝜇 ∥𝑢∥𝑋,

𝜇 =

(
1 + 1

2

[ 𝑐𝐹
𝑇

]2
+

√︂
1
4

[ 𝑐𝐹
𝑇

]4
+

[ 𝑐𝐹
𝑇

]2
)1/2

,

where 𝑐𝐹 is the constant in Friedrichs’ inequality in 𝐻1
0 (Ω). With these ingredients,

we are in the position to prove that the bilinear form B(·, ·; ·, ·) is bounded, i.e., for
all (𝑢, 𝑝), (𝑞, 𝑣) ∈ 𝑋 × 𝑌 , there holds

|B(𝑢, 𝑝; 𝑣, 𝑞) | ≤ 2 (1 + 𝜚) 𝜇2
√︃
∥𝑢∥2𝑋 + ∥𝑝∥2𝑌

√︃
∥𝑞∥2𝑋 + ∥𝑣∥2𝑌 .

Moreover, we can establish the following inf-sup stability condition which can be
proved similarly to [5, Lemma 3.2].
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Lemma 1 For simplicity, let us assume 𝜚 ∈ (0, 1]. Then there holds the inf-sup
stability condition

3
10

𝜚
√︃
∥𝑢∥2𝑋 + ∥𝑝∥2𝑌 ≤ sup

0≠(𝑣,𝑞) ∈𝑌×𝑋

B(𝑢, 𝑝; 𝑣, 𝑞)√︃
∥𝑞∥2𝑋 + ∥𝑣∥2𝑌

∀ (𝑢, 𝑝) ∈ 𝑋 × 𝑌 .

Moreover, for any (0, 0) ≠ (𝑣, 𝑞) ∈ 𝑌 × 𝑋 , there exist (𝑢, 𝑝) ∈ 𝑋 × 𝑌 satisfying

B(𝑢, 𝑝; 𝑣, 𝑞) > 0.

Now, using the Banach–Nečas–Babuška theorem (see, e.g., [3]), we can ensure
well-posedness of the variational optimality problem (11) for any fixed positive
regularization parameter 𝜚.

3 Space-time finite element methods

For the space-time finite element discretization of the variational formulation (11),
we first introduce conforming finite element spaces 𝑋ℎ ⊂ 𝑋 and𝑌ℎ ⊂ 𝑌 . In particular,
we consider 𝑋ℎ = 𝑌ℎ spanned by piecewise linear continuous basis functions which
are defined with respect to some admissible decomposition of the space-time domain
𝑄 into shape regular simplicial finite elements. In addition, we will use the subspace
𝑌0,ℎ ⊂ 𝑌ℎ of basis functions with zero initial values.Moreover, 𝑍ℎ ⊂ 𝐿2 (Ω) is a finite
element space to discretize the control 𝑧. The space-time finite element discretization
of the forward problem (5) reads to find 𝑢ℎ ∈ 𝑋ℎ such that

𝑏(𝑢ℎ, 𝑣ℎ) = 0 ∀𝑣ℎ ∈ 𝑌0,ℎ, ⟨𝑢ℎ − 𝑧ℎ, 𝑣ℎ⟩𝐿2 (Σ0) = 0 ∀𝑣ℎ ∈ 𝑌ℎ\𝑌0,ℎ . (12)

When denoting the degrees of freedom of 𝑢ℎ at Σ0, at Σ𝑇 , and in 𝑄 by 𝑢0, 𝑢𝑇 , and
𝑢𝐼 , respectively, the variational formulation (12) is equivalent to the linear system

©«
𝑀00
𝐾0𝐼 𝐾𝐼 𝐼 𝐾𝑇𝐼

𝐾𝐼𝑇 𝐾𝑇𝑇

ª®¬
©«
𝑢0
𝑢𝐼
𝑢𝑇

ª®¬
= ©«

𝑀⊤ℎ 𝑧
0
0

ª®¬
,

where the block entries of the stiffness matrix 𝐾ℎ and the mass matrices 𝑀00 and
𝑀ℎ are defined accordingly. After eliminating 𝑢0, the resulting system corresponds
to the space-time finite element approach as considered in [8]. In particular, we can
compute 𝑢𝑇 = 𝐴ℎ𝑧 to determine 𝑢ℎ (𝑇) in dependency on the initial datum 𝑧ℎ, where

𝐴ℎ =
(
𝐾𝑇𝑇 − 𝐾𝐼𝑇𝐾−1

𝐼 𝐼 𝐾𝑇𝐼

)−1
𝐾𝐼𝑇𝐾

−1
𝐼 𝐼 𝐾0𝐼𝑀

−1
00 𝑀

⊤
ℎ = 𝐴ℎ𝑀

⊤
ℎ .

Instead of the cost functional (6), we now consider the discrete cost functional
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J𝜚,ℎ (𝑧ℎ) = 1
2
∥𝑢ℎ (𝑥, 𝑇) − 𝑢𝛿𝑇 ∥2𝐿2 (Ω) +

𝜚

2
∥𝑧ℎ∥2𝐿2 (Ω)

=
1
2
(𝐴⊤ℎ𝑀𝑇𝑇 𝐴ℎ𝑧, 𝑧) − (𝐴⊤ℎ 𝑓 , 𝑧) +

1
2
∥𝑢𝛿𝑇 ∥2𝐿2 (Ω) +

𝜚

2
(𝑀ℎ𝑧, 𝑧),

whose minimizer is given as the solution of the linear system

𝐴⊤ℎ (𝑀𝑇𝑇 𝐴ℎ𝑧 − 𝑓 ) + 𝜚 𝑀ℎ𝑧 = 0. (13)

Note that 𝑀𝑇𝑇 is the mass matrix formed by the basis functions of 𝑋ℎ at Σ𝑇 , 𝑀ℎ

is the mass matrix related to the control space 𝑍ℎ, and 𝑓 is the load vector of the
target 𝑢𝛿𝑇 tested with basis functions from 𝑋ℎ at Σ𝑇 . When inserting 𝑢𝑇 = 𝐴ℎ𝑧 and
introducing 𝑝

0
:= 𝐴⊤ℎ (𝑀𝑇𝑇𝑢𝑇 − 𝑓 ), 𝑝𝑇 := (𝐾𝑇𝑇 − 𝐾𝐼𝑇𝐾−1

𝐼 𝐼 𝐾𝑇𝐼 )−⊤ (𝑀𝑇𝑇𝑢𝑇 − 𝑓 ),
𝑝
𝐼

:= −𝐾−⊤𝐼 𝐼 𝐾⊤𝐼𝑇 𝑝𝑇 , this finally results in the linear system to be solved:

©«

−𝑀00 −𝐾⊤0𝐼
−𝐾⊤𝐼 𝐼 −𝐾⊤𝐼𝑇

𝑀𝑇𝑇 −𝐾⊤𝑇𝐼 −𝐾⊤𝑇𝑇
𝜚𝑀ℎ 𝑀ℎ

𝑀00 −𝑀⊤ℎ
𝐾0𝐼 𝐾𝐼 𝐼 𝐾𝑇𝐼

𝐾𝐼𝑇 𝐾𝑇𝑇

ª®®®®®®®®®¬

©«

𝑢0
𝑢𝐼
𝑢𝑇
𝑧
𝑝

0
𝑝
𝐼
𝑝
𝑇

ª®®®®®®®®®®¬

=

©«

0
0
𝑓

0
0
0
0

ª®®®®®®®®®¬

. (14)

In the particular case, when 𝑍ℎ = 𝑌ℎ |Σ0 ⊂ 𝐻1
0 (Ω) is the space of piecewise linear

basis functions as well, the mass matrices 𝑀00 = 𝑀ℎ = 𝑀ℎ coincide, and therefore
we can eliminate 𝑧 = 𝑢0 and 𝑝0

= −𝜚𝑧 = −𝜚𝑢0 to obtain

©«

𝜚𝑀00 −𝐾⊤0𝐼
−𝐾⊤𝐼 𝐼 −𝐾⊤𝐼𝑇

𝑀𝑇𝑇 −𝐾⊤𝑇𝐼 −𝐾⊤𝑇𝑇
𝐾0𝐼 𝐾𝐼 𝐼 𝐾𝑇𝐼

𝐾𝐼𝑇 𝐾𝑇𝑇

ª®®®®®¬

©«

𝑢0
𝑢𝐼
𝑢𝑇
𝑝
𝐼
𝑝
𝑇

ª®®®®®¬
=

©«

0
0
𝑓

0
0

ª®®®®®¬
. (15)

Note that (15) is nothing but theGalerkin discretization of the variational formulation
(11) when using 𝑋ℎ ⊂ 𝑋 and 𝑌0,ℎ ⊂ 𝑌 as finite element ansatz and test spaces.
Obviously, the linear system (13) and, therefore, (15) are uniquely solvable.
In practice, the noise level 𝛿 ≥ 0 is usually given by themeasurement environment,

and one has to choose suitable discretization and regularization parameters ℎ and 𝜌.
This is well investigated for linear inverse problems; see, e.g., the classical book by
Tikhonov and Arsenin [9] and the more recent publications [2, 4]. In our numerical
experiments presented in the next section, we only play with the parmeters 𝛿 and ℎ
for a fixed small 𝜚.
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4 Numerical results

We take Ω = (0, 1) and 𝑇 = 1, i.e., 𝑄 = (0, 1)2, and consider the manufactured
observation data 𝑢𝛿𝑇 (𝑥) := 𝑒−𝜋2 sin(𝜋𝑥) + 𝛿 sin(10𝜋𝑥) with some noise represented
by the second term; see exact and noisy data with 𝛿 ∈ {0, 10−5, 5 ·10−6, 2.5 ·10−6} in
Fig. 1. To study the convergence of the space-time finite element solution to the exact

Fig. 1: Comparison of the exact (𝛿 = 0) and noisy (𝛿 > 0) observation data.

initial datum sin(𝜋𝑥), we use the target 𝑢𝑇 (𝑥) = 𝑒−𝜋
2 sin(𝜋𝑥) without any noise.

The reconstructed initial data with respect to a varying mesh size are illustrated
in the left plot of Fig. 2, where 𝜚 = 10−14. We clearly see the convergence of the
approximations to the exact initial datum with respect to the mesh refinement. The
right plot of Fig. 2 shows the reconstructed initial approximation with different noise
levels 𝛿. For a decreasing 𝛿, we observe an improved reconstruction.

5 Conclusions

We have applied the space-time FEM from [8] to the numerical solution of the clas-
sical inverse heat conduction problem to determine the initial datum from measured
observation data at some time horizon 𝑇 . The numerical results show the potential
of this approach for more interesting inverse problems. The space-time FEM is very
much suited for designing smart adaptive algorithms along the line proposed in [4]
determining the optimal choice of 𝜚 and ℎ for a given noise level 𝛿 in a multilevel
(nested iteration) setting.
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Fig. 2: Convergence of the reconstructed initial data with respect to the mesh refinement ℎ ∈
{1/16, 1/32, 1/64}, 𝛿 = 0, 𝜚 = 10−14 (left), and convergence with respect to the noise level
𝛿 ∈ {0.5, 0.4, 0.3, 0.2, 10−1, 10−3, 10−5 }, ℎ = 1/64, 𝜚 = 10−14 (right).
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Numerical Results for an Unconditionally Stable
Space-Time Finite Element Method for the Wave
Equation

Richard Löscher, Olaf Steinbach, and Marco Zank

1 Introduction

As a model problem, we consider the Dirichlet boundary value problem for the wave
equation,

𝜕𝑡𝑡𝑢(𝑥, 𝑡) − Δ𝑥𝑢(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) for (𝑥, 𝑡) ∈ 𝑄 := Ω × (0, 𝑇),
𝑢(𝑥, 𝑡) = 0 for (𝑥, 𝑡) ∈ Σ := 𝜕Ω × [0, 𝑇],

𝑢(𝑥, 0) = 𝜕𝑡𝑢(𝑥, 𝑡) |𝑡=0 = 0 for 𝑥 ∈ Ω,




(1)

whereΩ ⊂ R𝑑 , 𝑑 = 1, 2, 3, is some bounded Lipschitz domain, 𝑇 > 0 is a finite time
horizon, and 𝑓 is some given source. For simplicity, we only consider homogeneous
boundary and initial conditions, but inhomogeneous data or other types of boundary
conditions can be handled as well. To compute an approximate solution of the wave
equation (1), different numerical methods are available. Classical approaches are
time-stepping schemes together with finite element methods in space, see [1] for
an overview. An alternative is to discretize the time-dependent problem without
separating the temporal and spatial variables. However, on the one hand, most space-
time approaches are based on discontinuous Galerkin methods, see, e.g., [3, 6]. On
the other hand, conforming tensor-product space-time discretizations with piecewise
polynomial, continuous ansatz and test functions are of Petrov–Galerkin type, see,
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e.g., [7, 8, 12], where a stabilization is needed to avoid a CFL condition, i.e., a
relation between the time mesh size and the spatial mesh size.
In this work, we use a modified Hilbert transformation to introduce a new space-

time variational formulation of thewave equation (1),where ansatz and test spaces are
equal. Conforming discretizations of this new variational setting, using polynomial,
globally continuous ansatz and test functions, lead to space-time Galerkin–Bubnov
finite elementmethods, which are unconditionally stable and provide optimal conver-
gence rates in ∥ · ∥𝐿2 (𝑄) and | · |𝐻1 (𝑄) , respectively. The rest of the paper is organized
as follows: In Section 2, a modifiedHilbert transformation and its main properties are
given. Section 3 states the space-time variational setting for the wave equation and
introduces the new space-time Galerkin–Bubnov finite element method. Numerical
examples for a one- and a two-dimensional spatial domain are presented in Section 4.
Finally, we draw some conclusions in Section 5.

2 A modified Hilbert transformation

In this section, we summarize the definition and some of the most important proper-
ties of the modified Hilbert transformationH𝑇 as introduced in [8], see also [9, 11].
Since the modified Hilbert transformation covers the dependency in time only, in
this section, we consider functions 𝑢(𝑡) for 𝑡 ∈ (0, 𝑇), where a generalization to
functions in (𝑥, 𝑡) is straightforward.
For 𝑢 ∈ 𝐿2 (0, 𝑇), we consider the Fourier series expansion

𝑢(𝑡) =
∞∑︁
𝑘=0

𝑢𝑘 sin
(( 𝜋

2
+ 𝑘𝜋

) 𝑡
𝑇

)
, 𝑢𝑘 :=

2
𝑇

∫ 𝑇

0
𝑢(𝑡) sin

(( 𝜋
2
+ 𝑘𝜋

) 𝑡
𝑇

)
d𝑡,

and we define the modified Hilbert transformationH𝑇 as

(H𝑇𝑢) (𝑡) =
∞∑︁
𝑘=0

𝑢𝑘 cos
(( 𝜋

2
+ 𝑘𝜋

) 𝑡
𝑇

)
, 𝑡 ∈ (0, 𝑇). (2)

By interpolation, we introduce 𝐻𝑠0, (0, 𝑇) := [𝐻1
0, (0, 𝑇), 𝐿2 (0, 𝑇)]𝑠 for 𝑠 ∈ [0, 1],

where the space 𝐻1
0, (0, 𝑇) covers the initial condition 𝑢(0) = 0 for 𝑢 ∈ 𝐻1 (0, 𝑇).

Analogously, we define 𝐻𝑠,0 (0, 𝑇) for 𝑠 ∈ [0, 1]. With these notations, the mappingH𝑇 : 𝐻𝑠0, (0, 𝑇) → 𝐻𝑠,0 (0, 𝑇) is an isomorphism for 𝑠 ∈ [0, 1], where the inverse
is the 𝐿2 (0, 𝑇) adjoint, i.e., ⟨H𝑇𝑢, 𝑤⟩𝐿2 (0,𝑇) = ⟨𝑢,H−1

𝑇 𝑤⟩𝐿2 (0,𝑇) for all 𝑢, 𝑤 ∈
𝐿2 (0, 𝑇). In addition, the relations

⟨𝑣,H𝑇𝑣⟩𝐿2 (0,𝑇) > 0 for 0 ≠ 𝑣 ∈ 𝐻𝑠0, (0, 𝑇), 0 < 𝑠 ≤ 1,

⟨𝜕𝑡H𝑇𝑢, 𝑣⟩𝐿2 (0,𝑇) = −⟨H−1
𝑇 𝜕𝑡𝑢, 𝑣⟩𝐿2 (0,𝑇) for 𝑢 ∈ 𝐻1

0, (0, 𝑇), 𝑣 ∈ 𝐿2 (0, 𝑇)
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hold true. For the proofs of these aforementioned properties, we refer to [8, 9, 11].
Furthermore, the modified Hilbert transformation (2) allows a closed representation
[8, Lemma 2.8] as Cauchy principal value integral, i.e., for 𝑢 ∈ 𝐿2 (0, 𝑇),

(H𝑇𝑢) (𝑡) = v.p.
∫ 𝑇

0

1
2𝑇

(
1

sin 𝜋 (𝑠+𝑡)
2𝑇

+ 1
sin 𝜋 (𝑠−𝑡)

2𝑇

)
𝑢(𝑠) d𝑠, 𝑡 ∈ (0, 𝑇).

This representation can be used for an efficient realization, also using low-rank
approximations of related discrete matrix representations, see [9] for a more detailed
discussion.

3 Space-time variational formulations

A possible space-time variational formulation for the Dirichlet boundary value prob-
lem (1) is to find 𝑢 ∈ 𝐻1,1

0;0, (𝑄) := 𝐿2 (0, 𝑇 ;𝐻1
0 (Ω)) ∩ 𝐻1

0, (0, 𝑇 ; 𝐿2 (Ω)) such that

−⟨𝜕𝑡𝑢, 𝜕𝑡𝑣⟩𝐿2 (𝑄) + ⟨∇𝑥𝑢,∇𝑥𝑣⟩𝐿2 (𝑄) = ⟨ 𝑓 , 𝑣⟩𝐿2 (𝑄) (3)

is satisfied for all 𝑣 ∈ 𝐻1,1
0;,0 (𝑄) := 𝐿2 (0, 𝑇 ;𝐻1

0 (Ω)) ∩ 𝐻1
,0 (0, 𝑇 ; 𝐿2 (Ω)). Note

that the space 𝐻1
0, (0, 𝑇 ; 𝐿2 (Ω)) covers zero initial conditions, while the space

𝐻1
,0 (0, 𝑇 ; 𝐿2 (Ω)) involves zero terminal conditions at 𝑡 = 𝑇 . For 𝑓 ∈ 𝐿2 (𝑄), there
exists a unique solution 𝑢 of (3), satisfying the stability estimate

∥𝑢∥𝐻1,1
0;0, (𝑄)

:= |𝑢 |𝐻1 (𝑄) :=
√︃
∥𝜕𝑡𝑢∥2𝐿2 (𝑄) + ∥∇𝑥𝑢∥2𝐿2 (𝑄) ≤

1√
2
𝑇 ∥ 𝑓 ∥𝐿2 (𝑄) ,

see [4, 8, 12]. Note that the solution operator L : 𝐿2 (𝑄) → 𝐻1,1
0;0, (𝑄), L 𝑓 := 𝑢, is

not an isomorphism, i.e., L is not surjective, see [10] for more details.
A direct numerical discretization of the variational formulation (3) would result

in a Galerkin–Petrov scheme with different ansatz and test spaces, being zero at
the initial and the terminal time, respectively. Hence, introducing some bijective
operator 𝐴 : 𝐻1,1

0;0, (𝑄) → 𝐻1,1
0;,0 (𝑄), we can express the test function 𝑣 in (3) as

𝑣 = 𝐴𝑤 for 𝑤 ∈ 𝐻1,1
0;0, (𝑄) to end up with a Galerkin–Bubnov scheme. While the time

reversal map 𝜅𝑇𝑤(𝑥, 𝑡) := 𝑤(𝑥, 𝑇 − 𝑡) as used, e.g., in [2], is rather of theoretical
interest, in the case of a tensor-product space-time finite element discretization, one
may use the transformation 𝐴𝑤ℎ (𝑥, 𝑡) := 𝑤ℎ (𝑥, 𝑇) − 𝑤ℎ (𝑥, 𝑡), see [8]. However,
the resulting numerical scheme is only stable when a CFL condition is satisfied,
e.g., ℎ𝑡 < ℎ𝑥/

√
𝑑 when using piecewise linear basis functions and a tensor-product

structure also in space. Although it is possible to derive an unconditionally stable
scheme by using some stabilization approach, see [7, 12], our particular interest is in
using an appropriate transformation 𝐴 to conclude an unconditionally stable scheme
without any further stabilization. A possible choice is the use of the modified Hilbert
transformationH𝑇 as introduced in Section 2. So, with the properties ofH𝑇 , given
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in Section 2, we conclude that

−⟨𝜕𝑡𝑢, 𝜕𝑡H𝑇𝑤⟩𝐿2 (𝑄) = ⟨𝜕𝑡𝑢,H−1
𝑇 𝜕𝑡𝑤⟩𝐿2 (𝑄) = ⟨H𝑇𝜕𝑡𝑢, 𝜕𝑡𝑤⟩𝐿2 (𝑄)

for all 𝑢, 𝑤 ∈ 𝐻1,1
0;0, (𝑄), which leads to the variational formulation to find 𝑢 ∈

𝐻1,1
0;0, (𝑄) such that

⟨H𝑇𝜕𝑡𝑢, 𝜕𝑡𝑤⟩𝐿2 (𝑄) + ⟨∇𝑥𝑢,∇𝑥H𝑇𝑤⟩𝐿2 (𝑄) = ⟨ 𝑓 ,H𝑇𝑤⟩𝐿2 (𝑄) (4)

is satisfied for all 𝑤 ∈ 𝐻1,1
0;0, (𝑄). Since the mapping H𝑇 : 𝐻1,1

0;0, (𝑄) → 𝐻1,1
0;,0 (𝑄) is

an isomorphism, unique solvability of the new variational formulation (4) follows
from the unique solvability of the variational formulation (3).
Let 𝑉ℎ = span{𝜙𝑖}𝑀𝑖=1 ⊂ 𝐻1,1

0;0, (𝑄) be some conforming space-time finite element
space. The Galerkin–Bubnov formulation of the variational formulation (4) is to find
𝑢ℎ ∈ 𝑉ℎ such that

⟨H𝑇𝜕𝑡𝑢ℎ, 𝜕𝑡𝑤ℎ⟩𝐿2 (𝑄) + ⟨∇𝑥𝑢ℎ,∇𝑥H𝑇𝑤ℎ⟩𝐿2 (𝑄) = ⟨ 𝑓 ,H𝑇𝑤ℎ⟩𝐿2 (𝑄) (5)

is satisfied for all 𝑤ℎ ∈ 𝑉ℎ. Note that for any conforming space-time finite element
space 𝑉ℎ ⊂ 𝐻1,1

0;0, (𝑄), the related bilinear form in (5) is positive definite, since
both summands are discretizations of second-order differential operators, which
lead, together with the properties of H𝑇 , to two positive definite bilinear forms.
Further details on the numerical analysis of this new Galerkin–Bubnov variational
formulation (5) are far beyond the scope of this contribution, we refer to [5]. The
discrete variational formulation (5) corresponds to the linear system 𝐾ℎ𝑢 = 𝑓 with
the stiffness matrix 𝐾ℎ = 𝐴ℎ + 𝐵ℎ, and

𝐴ℎ [𝑖, 𝑗] =
∫ 𝑇

0

∫
Ω
H𝑇𝜕𝑡𝜙 𝑗 (𝑥, 𝑡) 𝜕𝑡𝜙𝑖 (𝑥, 𝑡) d𝑥 d𝑡,

𝐵ℎ [𝑖, 𝑗] =
∫ 𝑇

0

∫
Ω
∇𝑥𝜙 𝑗 (𝑥, 𝑡) · ∇𝑥H𝑇𝜙𝑖 (𝑥, 𝑡) d𝑥 d𝑡

for 𝑖, 𝑗 = 1, . . . , 𝑀 . Since the realization of the modified Hilbert transformationH𝑇
is much easier for solely time-dependent functions, see [9, 11], here we choose as
a special case a tensor-product ansatz. For this purpose, let the bounded Lipschitz
domain Ω ⊂ R𝑑 be an interval Ω = (0, 𝐿) for 𝑑 = 1, polygonal for 𝑑 = 2, or
polyhedral for 𝑑 = 3. We consider admissible decompositions

𝑄 = Ω × [0, 𝑇] =
𝑁𝑥⋃
𝑖=1
𝜔𝑖 ×

𝑁𝑡⋃
ℓ=1
[𝑡ℓ−1, 𝑡ℓ]

with 𝑁 := 𝑁𝑥 ·𝑁𝑡 space-time elements, where the time intervals (𝑡ℓ−1, 𝑡ℓ) with mesh
sizes ℎ𝑡 ,ℓ = 𝑡ℓ − 𝑡ℓ−1 are defined via the decomposition

0 = 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑁𝑡−1 < 𝑡𝑁𝑡 = 𝑇
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of the time interval (0, 𝑇). The maximal and the minimal time mesh sizes are
denoted by ℎ𝑡 := ℎ𝑡 ,max := maxℓ ℎ𝑡 ,ℓ , and ℎ𝑡 ,min := minℓ ℎ𝑡 ,ℓ , respectively. For
the spatial domain Ω, we consider a shape-regular sequence (T𝜂)𝜂∈N of admissible
decompositions T𝜂 := {𝜔𝑖 ⊂ R𝑑 : 𝑖 = 1, . . . , 𝑁𝑥} of Ω into finite elements 𝜔𝑖 ⊂ R𝑑
with mesh sizes ℎ𝑥,𝑖 and the maximal mesh size ℎ𝑥 := max𝑖 ℎ𝑥,𝑖 . The spatial
elements 𝜔𝑖 are intervals for 𝑑 = 1, triangles for 𝑑 = 2, and tetrahedra for 𝑑 = 3.
Next, we introduce the finite element space 𝑄1

ℎ,0 (𝑄) := 𝑆1
ℎ𝑥 ,0 (Ω) ⊗ 𝑆1

ℎ𝑡 ,0, (0, 𝑇) of
piecewise multilinear, continuous functions, i.e.,

𝑆1
ℎ𝑥 ,0 (Ω) :=𝑆1

ℎ𝑥
(Ω) ∩ 𝐻1

0 (Ω) = span{𝜓1
𝑗 }𝑀𝑥𝑗=1,

𝑆1
ℎ𝑡 ,0, (0, 𝑇) :=𝑆1

ℎ𝑡
(0, 𝑇) ∩ 𝐻1

0, (0, 𝑇) = span{𝜑1
ℓ }𝑁𝑡ℓ=1,

where𝜓1
𝑗 , 𝑗 = 1, . . . , 𝑀𝑥 , are the spatial nodal basis functions, and 𝜑1

ℓ , ℓ = 1, . . . , 𝑁𝑡 ,
are the temporal nodal basis functions. In fact, 𝑆1

ℎ𝑡
(0, 𝑇) is the space of piecewise

linear, continuous functions on intervals, and 𝑆1
ℎ𝑥
(Ω) is the space of piecewise linear,

continuous functions on intervals (𝑑 = 1), triangles (𝑑 = 2), and tetrahedra (𝑑 = 3).
Choosing 𝑉ℎ = 𝑄1

ℎ,0 (𝑄) in (5) leads to the space-time Galerkin–Bubnov varia-
tional formulation to find 𝑢ℎ ∈ 𝑄1

ℎ,0 (𝑄) such that

⟨H𝑇𝜕𝑡𝑢ℎ, 𝜕𝑡𝑤ℎ⟩𝐿2 (𝑄) + ⟨∇𝑥𝑢ℎ,∇𝑥H𝑇𝑤ℎ⟩𝐿2 (𝑄) = ⟨𝑄0
ℎ 𝑓 ,H𝑇𝑤ℎ⟩𝐿2 (𝑄) (6)

for all 𝑤ℎ ∈ 𝑄1
ℎ,0 (𝑄). Here, for an easier implementation, we approximate the

right-hand side 𝑓 ∈ 𝐿2 (𝑄) by

𝑓 ≈ 𝑄0
ℎ 𝑓 ∈ 𝑆0

ℎ𝑥
(Ω) ⊗ 𝑆0

ℎ𝑡
(0, 𝑇), (7)

where 𝑄0
ℎ : 𝐿2 (𝑄) → 𝑆0

ℎ𝑥
(Ω) ⊗ 𝑆0

ℎ𝑡
(0, 𝑇) is the 𝐿2 (𝑄) projection on the space

𝑆0
ℎ𝑥
(Ω) ⊗ 𝑆0

ℎ𝑡
(0, 𝑇) of piecewise constant functions. The discrete variational formu-

lation (6) is equivalent to the global linear system

𝐾ℎ𝑢 = �̃� (8)

with the system matrix

𝐾ℎ = 𝐴
H𝑇
ℎ𝑡
⊗ 𝑀ℎ𝑥 + 𝑀H𝑇ℎ𝑡 ⊗ 𝐴ℎ𝑥 ∈ R

𝑁𝑡 ·𝑀𝑥×𝑁𝑡 ·𝑀𝑥 ,

where𝑀ℎ𝑥 ∈ R𝑀𝑥×𝑀𝑥 and 𝐴ℎ𝑥 ∈ R𝑀𝑥×𝑀𝑥 denote spatialmass and stiffnessmatrices
given by

𝑀ℎ𝑥 [𝑖, 𝑗] = ⟨𝜓1
𝑗 , 𝜓

1
𝑖 ⟩𝐿2 (Ω) , 𝐴ℎ𝑥 [𝑖, 𝑗] = ⟨∇𝑥𝜓1

𝑗 ,∇𝑥𝜓1
𝑖 ⟩𝐿2 (Ω) , 𝑖, 𝑗 = 1, . . . , 𝑀𝑥 ,

and 𝑀H𝑇ℎ𝑡 ∈ R𝑁𝑡×𝑁𝑡 and 𝐴
H𝑇
ℎ𝑡
∈ R𝑁𝑡×𝑁𝑡 are defined by

𝑀H𝑇ℎ𝑡 [ℓ, 𝑘] := ⟨𝜑1
𝑘 ,H𝑇𝜑1

ℓ⟩𝐿2 (0,𝑇) , 𝐴H𝑇ℎ𝑡 [ℓ, 𝑘] := ⟨H𝑇𝜕𝑡𝜑1
𝑘 , 𝜕𝑡𝜑

1
ℓ⟩𝐿2 (0,𝑇)
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for ℓ, 𝑘 = 1, . . . , 𝑁𝑡 . The matrices 𝑀H𝑇ℎ𝑡 , 𝐴
H𝑇
ℎ𝑡
are nonsymmetric, but positive defi-

nite, which follows from the properties ofH𝑇 , given in Section 2. Additionally, the
matrices 𝑀ℎ𝑥 , 𝐴ℎ𝑥 are positive definite. Thus, standard properties of the Kronecker
product yield that the system matrix 𝐾ℎ is also positive definite. Hence, the global
linear system (8) is uniquely solvable.

4 Numerical results

In this section, numerical examples for the Galerkin–Bubnov finite element method
(6) for a one- and a two-dimensional spatial domain are given. For both cases,
the number of degrees of freedom is given by dof = 𝑁𝑡 · 𝑀𝑥 . The assembling of
the matrices 𝐴H𝑇ℎ𝑡 , 𝑀

H𝑇
ℎ𝑡
is done as proposed in [11, Subsection 2.2]. Further, to

accelerate the computations, data-sparse approximations as known from boundary
element methods, e.g., hierarchical matrices, can be used, see [9]. The integrals for
computing the projection 𝑄0

ℎ 𝑓 in (7) are calculated by using high-order quadrature
rules. The global linear system (8) is solved by a direct solver.
For the first numerical example, we consider the one-dimensional spatial domain

Ω := (0, 1) with the terminal time 𝑇 = 10, i.e., the rectangular space-time domain

𝑄 := Ω × (0, 𝑇) := (0, 1) × (0, 10). (9)

As an exact solution, we choose

𝑢1 (𝑥, 𝑡) = 𝑡2 sin(10𝜋𝑥) sin(𝑡 𝑥), (𝑥, 𝑡) ∈ 𝑄. (10)

The spatial domain Ω = (0, 1) is decomposed into nonuniform elements with the
vertices

𝑥0 = 0, 𝑥1 = 1/4, 𝑥2 = 1, (11)

whereas the temporal domain (0, 𝑇) = (0, 10) is decomposed into nonuniform
elements with the vertices

𝑡0 = 0, 𝑡1 = 5/4, 𝑡2 = 5/2, 𝑡3 = 10 = 𝑇, (12)

see Fig. 1 for the resulting space-time mesh. We apply a uniform refinement strategy
for the meshes (11), (12). The numerical results for the smooth solution 𝑢1 in (10) are
given in Table 1, where we observe unconditional stability, quadratic convergence
in ∥ · ∥𝐿2 (𝑄) , and linear convergence in | · |𝐻1 (𝑄) .
For the second numerical example, the two-dimensional spatial Γ-shaped domain

Ω := (−1, 1)2 \ ([0, 1] × [−1, 0]) ⊂ R2 (13)

and the terminal time 𝑇 = 2 are considered for the solution

𝑢2 (𝑥1, 𝑥2, 𝑡) = sin(𝜋𝑥1) sin(𝜋𝑥2) (sin(𝑡𝑥1𝑥2))2, (𝑥1, 𝑥2, 𝑡) ∈ 𝑄 = Ω×(0, 𝑇). (14)
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Table 1: Numerical results of the Galerkin–Bubnov finite element discretization (6) for the space-
time cylinder (9) for the function 𝑢1 in (10) for a uniform refinement strategy.

dof ℎ𝑥,max ℎ𝑥,min ℎ𝑡,max ℎ𝑡,min ∥𝑢1 − 𝑢1,ℎ ∥𝐿2 (𝑄) eoc |𝑢1 − 𝑢1,ℎ |𝐻1 (𝑄) eoc

3 0.7500 0.2500 7.5000 1.2500 5.0e+02 - 3.2e+03 -
18 0.3750 0.1250 3.7500 0.6250 4.2e+02 0.3 2.7e+03 0.2
84 0.1875 0.0625 1.8750 0.3125 3.2e+02 0.4 2.5e+03 0.1
360 0.0938 0.0312 0.9375 0.1562 8.4e+01 1.9 2.1e+03 0.2
1488 0.0469 0.0156 0.4688 0.0781 2.6e+01 1.7 1.0e+03 1.0
6048 0.0234 0.0078 0.2344 0.0391 7.2e+00 1.9 5.0e+02 1.1
24384 0.0117 0.0039 0.1172 0.0195 1.8e+00 2.0 2.5e+02 1.0
97920 0.0059 0.0020 0.0586 0.0098 4.7e-01 2.0 1.2e+02 1.0
392448 0.0029 0.0010 0.0293 0.0049 1.2e-01 2.0 6.2e+01 1.0
1571328 0.0015 0.0005 0.0146 0.0024 2.9e-02 2.0 3.1e+01 1.0

Fig. 1 Starting meshes for
the one-dimensional spatial
domain (left) and the two-
dimensional spatial domain
(right).
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Table 2:Numerical results of the Galerkin–Bubnov finite element discretization (6) for the Γ-shape
(13) and 𝑇 = 2 for the function 𝑢2 in (14) for a uniform refinement strategy.

dof ℎ𝑥 ℎ𝑡,max ℎ𝑡,min ∥𝑢2 − 𝑢2,ℎ ∥𝐿2 (𝑄) eoc |𝑢2 − 𝑢2,ℎ |𝐻1 (𝑄) eoc

20 0.3536 1.5000 0.1250 1.756e-01 - 1.331e+00 -
264 0.1768 0.7500 0.0625 6.370e-02 1.5 6.882e-01 1.0
2576 0.0884 0.3750 0.0312 1.903e-02 1.7 3.439e-01 1.0
22560 0.0442 0.1875 0.0156 5.206e-03 1.9 1.730e-01 1.0
188480 0.0221 0.0938 0.0078 1.306e-03 2.0 8.555e-02 1.0
1540224 0.0110 0.0469 0.0039 3.284e-04 2.0 4.268e-02 1.0

The spatial domain Ω is decomposed into uniform triangles with uniform mesh size
ℎ𝑥 as given in Fig. 1 for the first level. The temporal domain (0, 2) = (0, 𝑇) is
decomposed into nonuniform elements with the vertices

𝑡0 = 0, 𝑡1 = 1/8, 𝑡2 = 1/4, 𝑡3 = 1/2, 𝑡4 = 2 = 𝑇. (15)

When a uniform refinement strategy is applied for the temporal mesh (15) and for the
spatial mesh, the numerical results for the smooth solution 𝑢2 are given in Table 2,
where unconditional stability is observed and the convergence rates in ∥ · ∥𝐿2 (𝑄) and
| · |𝐻1 (𝑄) are optimal.
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5 Conclusions

In this work, we introduced new conforming space-time Galerkin–Bubnov meth-
ods for the wave equation. These methods are based on a space-time variational
formulation, where ansatz and test spaces are equal, using also integration by parts
with respect to the time variable and the modified Hilbert transformation H𝑇 . As
discretizations of this variational setting, we considered a conforming tensor-product
approach with piecewise multilinear, continuous basis functions. However, a gen-
eralization to piecewise polynomials of higher-order degree is straightforward. We
gave numerical examples, where the unconditional stability, i.e., no CFL condition
is required, and optimal convergence rates in space-time norms were illustrated. For
a more detailed stability and error analysis, we refer to our ongoing work [5]. Other
topics include the realization for arbitrary space-time meshes, a posteriori error es-
timates and adaptivity, and the parallel solution including domain decomposition
methods.
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Décomposition de Domaine et Problème de
Helmholtz: Thirty Years After and Still Unique

Martin J. Gander and Hui Zhang

1 Introduction

In 1990, Bruno Després published a short note [5] in Comptes rendus de l’Académie
des sciences. Série 1, Mathématique. “The aim of this work is, after construction
of a domain decomposition method adapted to the Helmholtz problem, to show its
convergence.” The idea has been further developed in [12], [3], [9], [4] and [2] by
employing radiation conditions with a special structure, subdomains without overlap
and iterations in parallel or one-sweep. As of today, it seems the unique means by
which Schwarz iterations (not Krylov-Schwarz) for the Helmholtz equation have
been proved to converge in general geometry and variable media; otherwise, e.g.,
using PML ([1]) as boundary conditions requires the (sub)domain to be convex. This
paper is to show that those algorithmic parameters are difficult to perturb even in a
rectangle while maintaining convergent Schwarz iterations.
To this end, we consider the Helmholtz equation in Ω = (𝑋−0 , 𝑋+𝑁 ) × (0, 1):

(Δ+𝑘2)𝑢 = 𝑓 in Ω, B∓𝑢 = 0 at {𝑋−0 , 𝑋+𝑁 }×(0, 1), C𝑢 = 0 at (𝑋−0 , 𝑋+𝑁 )×{0, 1}, (1)

where 𝑘 > 0, and B∓, C are some trace operators. In the free space problem
C = 𝜕n − i𝑘 and in the waveguide problem C = 𝜕n (n being the unit outer normal
vector). Assume thatΩ = ∪𝑁𝑙=1Ω𝑙 withΩ𝑙 = (𝑋−𝑙−1, 𝑋

+
𝑙 )×(0, 1), 𝑋±𝑙 := 𝑙𝐻± 𝐿2 ,𝐻 > 0

and 𝐿 ≥ 0. The optimized Schwarz method iteratively solves (1) restricted to Ω𝑙 for
𝑢𝑙 ≈ 𝑢 |Ω𝑙 in parallel or in some order of 𝑙 = 1, .., 𝑁 with the transmission conditions
B−𝑢𝑙 = B−𝑢𝑙−1 at {𝑋−𝑙−1} × (0, 1), 𝑙 > 1 and B+𝑢𝑙 = B+𝑢𝑙+1 at {𝑋+𝑙 } × (0, 1), 𝑙 < 𝑁 .
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Fig. 1: Fourier frequencies from the Sturm-Liouville problem with C = 𝜕n − i𝑘 for 𝑘 = 100.

From the Sturm-Liouville problem −𝜑′′ = 𝜉2𝜑 in (0, 1), C𝜑 = 0 at {0, 1}, the
expansion 𝑢(𝑥, 𝑦) = ∑

𝜉 �̂�(𝑥, 𝜉)𝜑(𝑦; 𝜉) transforms (1) to an ODE for �̂�(𝑥, 𝜉) for
each 𝜉, and the iteration operator acting on {𝑔∓𝑙 := B∓𝑢𝑙 at {𝑋−𝑙−1, 𝑋

+
𝑙 } × (0, 1)} to a

matrix for each 𝜉; see [8]. The spectral radius of the iteration matrix as a function
of 𝜉 or Re 𝜉/𝑘 is called the convergence factor 𝜌. The Schwarz iterations converge
geometrically if and only if sup𝜉 𝜌 < 1. When C = 𝜕n, 𝜉 ∈ {0,±𝜋,±2𝜋,±3𝜋, ..}.
When C = 𝜕n − i𝑘 , 𝜉’s are complex roots of a nonlinear equation; see e.g. Figure 1.

2 What can we change from Després’ original method?

In the original method, B∓ = 𝜕n − i𝑘 . From Figure 2 we see that all the curves are
below 𝜌 = 1, albeit 𝜌 → 1 as Re 𝜉 → ∞, and the curves seemingly have a limit
profile for a fixed 𝑁 but increasing 𝑘 , while they move higher up as 𝑁 grows.

Can we add overlap? The short answer is ‘no’ for large overlap and ‘yes’ for small
overlap; see Figure 3 and Figure 4. This is in contrast to the Laplace equation for
which [10] claimed its proof “also applies ... with overlapping subdomains”, though,
an actual proof appeared only in [11] by rather different techniques.

Can we reorder subdomain iterations? Després’ original method uses parallel
iterations between subdomains. The sequential iterations from Ω1 to Ω𝑁 or one-
sweep iterations through other orderings (e.g. red-black) of {Ω1, ..,Ω𝑁 } behave
similarly. In contrast, the double sweep iterations with the forward sweep from Ω1
to Ω𝑁 followed by a backward sweep from Ω𝑁−1 to Ω1 can diverge; see Figure 5. It
is less divergent for larger 𝑘𝐻, which suggests the next question.

What if we fix the subdomain size? In this case, the double sweeps converge very
well and even better with large overlap; see Figure 6.

Can we add a real part to the Robin coefficient?Yes, if the real parts of the Robin
coefficients for two adjacent subdomains are equal in absolute value but opposite in
sign, as shown in [9, 4]; otherwise it may diverge. See Figure 7 and Figure 8.

Can we use second-order conditions? Yes, if the imaginary part of the Robin co-
efficient (i.e., tangential operator) is sign-definite on interfaces and outer boundaries,



First Schwarz Method for Helmholtz: 30 Years After and Still Unique 597

0.0 0.5 0.8 0.95 1.0 1.05 1.2 1.5 2.0
(Re )/k

0.0

0.2

0.4

0.6

0.8

1.0

k=50, N=5, H=0.2, L=0
k=50, N=10, H=0.1, L=0
k=50, N=20, H=0.05, L=0
k=50, N=40, H=0.025, L=0
k=50, N=80, H=0.0125, L=0
k=50, N=160, H=0.00625, L=0

0.0 0.5 0.8 0.95 1.0 1.05 1.2 1.5 2.0
(Re )/k

0.0

0.2

0.4

0.6

0.8

1.0

k=200, N=5, H=0.2, L=0
k=200, N=10, H=0.1, L=0
k=200, N=20, H=0.05, L=0
k=200, N=40, H=0.025, L=0
k=200, N=80, H=0.0125, L=0
k=200, N=160, H=0.00625, L=0

0.0 0.5 0.8 0.95 1.0 1.05 1.2 1.5 2.0
(Re )/k

0.0

0.2

0.4

0.6

0.8

1.0

k=800, N=5, H=0.2, L=0
k=800, N=10, H=0.1, L=0
k=800, N=20, H=0.05, L=0
k=800, N=40, H=0.025, L=0
k=800, N=80, H=0.0125, L=0
k=800, N=160, H=0.00625, L=0

0.0 0.5 0.8 0.95 1.0 1.05 1.2 1.5 2.0
(Re )/k

0.0

0.2

0.4

0.6

0.8

1.0

k=3200, N=5, H=0.2, L=0
k=3200, N=10, H=0.1, L=0
k=3200, N=20, H=0.05, L=0
k=3200, N=40, H=0.025, L=0
k=3200, N=80, H=0.0125, L=0
k=3200, N=160, H=0.00625, L=0

Fig. 2: 𝜌 of Després’ method for free space on [0, 1]2.
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Fig. 3: 𝜌 of Després’ method plus 𝐿 = 𝐻
10 overlap for free space on [− 𝐿2 , 1 + 𝐿2 ] × [0, 1].
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Fig. 4: 𝜌 of Després’ method plus 𝐿 = 1
32𝑘 overlap for free space on [− 𝐿2 , 1 + 𝐿2 ] × [0, 1].
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Fig. 5: 𝜌 of Després’ method in double sweep for free space on [0, 1]2.
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Fig. 6: 𝜌 of Després’ method plus 𝐿 = 𝐻
10 overlap in double sweep for free space on [− 𝐿2 , 𝑁5 +

𝐿
2 ] × [0, 1].

as proved in [12, 3]. The 2nd-order Taylor approximation
√︁
𝑘2 − 𝜉2 ≈ 𝑘 (1 − 𝜉 2

2𝑘2 ) is
sign-changing across 𝜉2 = 2𝑘2 and thus B∓ = 𝜕n − i𝑘 (1 + Δ𝑆

2𝑘2 ) (Δ𝑆 is the Laplacian
on interfaces) falls outside the theory. So, [12] proposed to reverse the sign in front
of Δ𝑆 , and [6] uses B∓ = 𝜕n − i𝑘 (1 − Δ𝑆

2𝑘2 )−1. See Figure 9 for comparison.
Can we change the outer boundary conditions?Yes, the proof in [5] and others all

work as long as on part of the outer boundary a radiation condition is imposed with
imaginary part of the tangential operator being sign-definite. It is thus interesting to
check, e.g., with C = 𝜕n and B∓ the 2nd-order Taylor; see Figure 10.

Can we treat variable media? Yes, if the Robin coefficients for any two adjacent
subdomains have equal imaginary parts, as proved in [3]. What if the symmetry
is broken? For example, the optimal Schwarz method (see, e.g., the review [7])
uses the Dirichlet-to-Neumann maps from the two sides of an interface, which are
generally not equal for propagating modes in variable media. In Després’ method,
to keep the symmetry one can use an average wavenumber on the interfaces, e.g.,
𝑘𝑖 𝑗 =

√︃
(𝑘2
𝑖 + 𝑘2

𝑗 )/2 forB∓ = 𝜕n− i𝑘𝑖 𝑗 on 𝜕Ω𝑖∩𝜕Ω 𝑗 . To mimic the optimal Schwarz
method, one can use the wavenumber from the other side, e.g., B∓ = 𝜕n − i𝑘𝑖∓1 for
𝑢𝑖 on 𝜕Ω𝑖 ∩ 𝜕Ω𝑖∓1. In our example, we split the first dimension into five equal layers
on [0, 1]2 and assume the wavenumber 𝑘 in R2\[0, 1]2 is a constant; see Figure 11.
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Fig. 7: 𝜌 of Després’ method with left/right Robin coeff. −i𝑘 (1 ± 0.1i) for free space on [0, 1]2.
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Fig. 8: 𝜌 of Després’ method with interface Robin coefficient−i𝑘 (1+0.1i) for free space on [0, 1]2.
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Fig. 9: 𝜌 of Després’ method plus a 2nd-order term for free space on [0, 1]2.
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Fig. 10: 𝜌 of Després’ method with B∓ the 2nd-order Taylor for waveguide on [0, 1]2.
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Space–Time Parallel Methods for Evolutionary
Reaction–Diffusion Problems

Andrés Arrarás, Francisco J. Gaspar, Laura Portero, and Carmen Rodrigo

1 Introduction and problem setting

In recent years, the gradual saturation of parallelization in space has been a strong
motivation for the design and analysis of new parallel-in-time algorithms. Among
these methods, the parareal algorithm, first introduced by Lions, Maday and Turinici
[9], has received significant attention. This scheme has been formulated in the
literature as a multiple shooting method [7], a predictor-corrector scheme [13], and
a two-level multigrid method in time (see [3, 5] in the linear setting, and [7] for
nonlinear problems using the full approximation storage (FAS) multigrid solver).
The key idea of the parareal method is to decompose the time interval into

a certain number of subintervals, and solve the original problem concurrently over
each one of them. In doing so, it defines two propagation operators which provide fine
and coarse approximations to the exact solution. Since the coarse propagator usually
considers large stepsizes, implicit time integrators are often used in this case to ensure
stability. Choosing the implicit Euler method as the coarse propagator, different
fine propagators have been analyzed in the literature: implicit Euler [7, 11, 18],
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trapezoidal rule [7, 11, 18], Radau IIA [7], diagonally implicit Runge–Kutta (DIRK)
[18] and Gauss Runge–Kutta [18], among others. Several combinations of 𝐴- and
𝐿-stable singly diagonally Runge–Kutta (SDIRK) fine and coarse propagators have
been further studied in [6].
The main contribution of this work is to consider domain decomposition splitting

time integrators as the fine and coarse propagators of the parareal algorithm. Since
these methods are related to an overlapping decomposition of the spatial domain,
spatial parallelization can also be exploited. Consequently, the resulting algorithms
allow for parallelization in both time and space. This class of splitting methods
was introduced in [15] in the context of regionally-additive schemes, and has been
subsequently extended for solving linear parabolic problems [1, 2, 10, 12, 16] (see
[4] for a recent work on nonlinear degenerate parabolic equations). The advantage
of the new algorithms with respect to related existing methods (as parareal Schwarz
waveform relaxation methods) is that they do not require any iteration to adjust
the boundary conditions of the subdomains. As shown later, they are robust with
respect to the discretization parameters, the number of disjoint components in each
subdomain, the overlapping size and the coarsening factor under consideration.
In the rest of this section, we introduce the time-dependent reaction–diffusion

problem to be solved, and derive the stiff system of ordinary differential equations
resulting from the spatial discretization. More precisely, let us consider an initial-
boundary value problem of the form



𝑢𝑡 + 𝐿𝑢 = 𝑓 , in Ω × (0, 𝑇],
𝑢 = 𝑔, on Γ × (0, 𝑇],
𝑢 = 𝑢0, in Ω × {0},

(1)

where Ω ⊂ R2 is a bounded connected Lipschitz domain with boundary Γ = 𝜕Ω,
and 𝐿 = 𝐿 (x) is an elliptic operator such that 𝐿𝑢 = −∇ · (𝐾∇𝑢) + 𝑐𝑢. Herein,
𝐾 = 𝐾 (x) ∈ R2×2 is a symmetric tensor with coefficients 𝐾𝑖, 𝑗 ∈ 𝐿∞ (Ω), for
𝑖, 𝑗 ∈ {1, 2}, that satisfies

𝜅∗ 𝜉𝑇𝜉 ≤ 𝜉𝑇𝐾 𝜉 ≤ 𝜅∗ 𝜉𝑇𝜉 ∀ 𝜉 ∈ R2 and for almost all x ∈ Ω,

for some 0 < 𝜅∗ ≤ 𝜅∗ < ∞. In addition, the functions 𝑢 = 𝑢(x, 𝑡), 𝑓 = 𝑓 (x, 𝑡), 𝑔 =
𝑔(x, 𝑡), 𝑢0 = 𝑢0 (x) and 𝑐 = 𝑐(x), with 𝑐 ≥ 0, are assumed to be sufficiently smooth,
and 𝑔 and 𝑢0 further satisfy suitable compatibility conditions, so that problem (1)
admits a unique weak solution (see [14] for details).
Following the method of lines, we first define a suitable mesh Ωℎ covering the

spatial domainΩ, where ℎ refers to the maximal grid spacing. Then, using a suitable
discretization of the spatial variables (by means of finite difference, finite element
or finite volume schemes), we obtain the initial value problem1

1 If we consider a standard finite element method for discretizing (1), we initially obtain a system
of ordinary differential equations of the form 𝑀ℎ𝑈′ℎ (𝑡) + 𝐿ℎ𝑈ℎ (𝑡) = 𝐹ℎ (𝑡) , which is similar to
the first equation in (2), but involves two symmetric and positive definite matrices, usually referred
to as the mass (𝑀ℎ) and stiffness (𝐿ℎ) matrices. Now, considering the Cholesky decomposition
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Fig. 1: Overlapping decompositions {Ω𝑘 }𝑠𝑘=1 of the unit square Ω into 𝑠 = 2 (left) and 𝑠 = 4
(right) subdomains. Each subdomain Ω𝑘 is further decomposed into {Ω𝑘𝑙 }𝑠𝑘𝑙=1 disjoint connected
components, with 𝑠𝑘 = 2 (left) and 𝑠𝑘 = 4 (right).

{
𝑈 ′ℎ (𝑡) + 𝐿ℎ𝑈ℎ (𝑡) = 𝐹ℎ (𝑡), 𝑡 ∈ (0, 𝑇],
𝑈ℎ (0) = Rℎ𝑢0,

(2)

where Rℎ stands for an appropriate restriction or projection operator acting on the
initial condition. If we denote by 𝑀 the number of degrees of freedom in Ωℎ for any
𝑡 ∈ [0, 𝑇],𝑈ℎ (𝑡) ∈ R𝑀 and 𝐿ℎ ∈ R𝑀×𝑀 denote the corresponding approximations
to 𝑢(x, 𝑡) and 𝐿 (x), respectively. Finally, 𝐹ℎ (𝑡) ∈ R𝑀 includes the approximation to
𝑓 (x, 𝑡) and the contribution of the boundary data 𝑔(x, 𝑡).

2 Domain decomposition splitting methods

In this section, we describe how to construct a smooth partition of unity subordinate
to an overlapping decomposition of the spatial domain Ω. In addition, we define
suitable splittings for the discrete operator 𝐿ℎ and the right-hand side 𝐹ℎ, and
further use them in a time integrator with a multiterm partitioning structure.
Let {Ω𝑘}𝑠𝑘=1 be an overlapping decomposition of Ω into 𝑠 subdomains, i.e.,

Ω =
⋃𝑠
𝑘=1 Ω𝑘 . Each subdomain Ω𝑘 ⊂ Ω is further defined as an open set involving

𝑠𝑘 connected components Ω𝑘 =
⋃𝑠𝑘
𝑙=1 Ω𝑘𝑙 , for 𝑘 = 1, 2, . . . , 𝑠, that are considered to

be pairwise disjoint (Ω𝑘𝑖 ∩Ω𝑘 𝑗 = ∅, for 𝑖 ≠ 𝑗). The overlapping size is denoted by 𝜀.
Figure 1 shows two different decompositions of the unit square into 𝑠 = 2 and 𝑠 = 4
subdomains, each consisting of 𝑠𝑘 = 2 and 𝑠𝑘 = 4 disjoint connected components,
respectively.
Subordinate to this descomposition, we define a smooth partition of unity consist-

ing of a family of 𝑠 non-negative and C∞ (Ω) functions {𝜌𝑘 (x)}𝑠𝑘=1. Each function
𝜌𝑘 : Ω→ [0, 1] is chosen to be
𝑀ℎ = 𝑁ℎ𝑁𝑇ℎ , where 𝑁ℎ is a lower triangular matrix with positive diagonal entries, we can define
the new unknown 𝑉ℎ (𝑡) = 𝑁𝑇ℎ𝑈ℎ (𝑡) . It is immediate to see that 𝑉ℎ (𝑡) satisfies a system like
(2); in particular, 𝑉′ℎ (𝑡) + �̂�ℎ𝑉ℎ (𝑡) = �̂�ℎ (𝑡) , where �̂�ℎ = 𝑁−1

ℎ 𝐿ℎ𝑁
−𝑇
ℎ is symmetric and positive

definite and �̂�ℎ (𝑡) = 𝑁−1
ℎ 𝐹ℎ (𝑡) (cf. [8]).
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𝜌𝑘 (x) =



0, if x ∈ Ω \Ω𝑘 ,
ℎ𝑘 (x), if x ∈ ⋃𝑠

𝑙=1; 𝑙≠𝑘 (Ω𝑘 ∩Ω𝑙),
1, if x ∈ Ω𝑘 \

⋃𝑠
𝑙=1; 𝑙≠𝑘 (Ω𝑘 ∩Ω𝑙),

where ℎ𝑘 (x) is C∞ (Ω) and such that 0 ≤ ℎ𝑘 (x) ≤ 1 and
∑𝑠
𝑘=1 ℎ𝑘 (x) = 1, for any

x ∈ ⋃𝑠
𝑙=1; 𝑙≠𝑘 (Ω𝑘∩Ω𝑙). By construction, the family of functions {𝜌𝑘 (x)}𝑠𝑘=1 satisfies

supp(𝜌𝑘 (x)) ⊂ Ω𝑘 , 0 ≤ 𝜌𝑘 (x) ≤ 1,
∑𝑠
𝑘=1 𝜌𝑘 (x) = 1, (3)

for any x ∈ Ω. In practice, ℎ𝑘 (x)maynot necessarily beC∞ (Ω), but only a continuous
and piecewise smooth function [10].
In this framework, given the parabolic problem (1), we can define a domain

decomposition operator splitting 𝐿 = 𝐿1 + 𝐿2 + . . . + 𝐿𝑠 and 𝑓 = 𝑓1 + 𝑓2 + . . . + 𝑓𝑠
such that each split term is given by

𝐿𝑘𝑢 = −∇ · (𝜌𝑘𝐾∇𝑢) + 𝜌𝑘𝑐𝑢, 𝑓𝑘 = 𝜌𝑘 𝑓 , for 𝑘 = 1, 2, . . . , 𝑠. (4)

Accordingly, in the discrete setting (2), we may introduce the domain decomposition
matrix splitting 𝐿ℎ = 𝐿1ℎ + 𝐿2ℎ + . . . + 𝐿𝑠ℎ and 𝐹ℎ = 𝐹1ℎ + 𝐹2ℎ + . . . + 𝐹𝑠ℎ,
where each term 𝐿𝑘ℎ and 𝐹𝑘ℎ is defined to be a suitable spatial discretization of
its continuous counterpart (4), for 𝑘 = 1, 2, . . . , 𝑠. Typically, the discrete split terms
𝐿𝑘ℎ have a simpler structure than 𝐿ℎ, but they do not commute pairwise. This
lack of commutativity demands the use of suitable time integrators which preserve
the unconditional stability even in the non-commuting case. The simplest of such
methods is given by the so-called fractional implicit Euler scheme, first proposed by
Yanenko in [19] and described in the sequel.
Let us divide the time interval [0, 𝑇] into 𝑁𝑡 subintervals [𝑡𝑛, 𝑡𝑛+1], with stepsize

Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 = 𝑇/𝑁𝑡 , for 𝑛 = 0, 1, . . . , 𝑁𝑡 − 1. We further define the fully
discrete solution 𝑈𝑛ℎ ≈ 𝑈ℎ (𝑡𝑛) at times 𝑡𝑛 = 𝑛Δ𝑡, for 𝑛 = 0, 1, . . . , 𝑁𝑡 . Then, given
𝑈0
ℎ = Rℎ𝑢0, the fractional implicit Euler method can be written recursively, for

𝑛 = 0, 1, . . . , 𝑁𝑡 − 1, as

(𝐼 + Δ𝑡 𝐿𝑘ℎ)𝑈𝑛+𝑘/𝑠ℎ = 𝑈𝑛+(𝑘−1)/𝑠
ℎ + Δ𝑡 𝐹𝑘ℎ (𝑡𝑛+1), for 𝑘 = 1, 2, . . . , 𝑠. (5)

Note that one integration step with (5) can be seen as 𝑠 consecutive steps with the
implicit Eulermethod, eachwith a different right-hand side function. In consequence,
this time integrator is first-order convergent [17]. Eliminating the internal stages
𝑈𝑛+𝑘/𝑠ℎ , for 𝑘 = 1, 2, . . . , 𝑠 − 1, (5) can be expressed as

𝑈𝑛+1ℎ =

(
𝑠∏
𝑘=1
(𝐼 + Δ𝑡 𝐿𝑘ℎ)

)−1

𝑈𝑛ℎ +
𝑠∑︁
𝑗=1

©«
𝑠∏
𝑘= 𝑗

(𝐼 + Δ𝑡 𝐿𝑘ℎ)ª®¬
−1

Δ𝑡 𝐹𝑗ℎ (𝑡𝑛+1). (6)

For later use, we will denote the right-hand side of this expression by SΔ𝑡 (𝑈𝑛ℎ ). The
linear system to be solved at the 𝑘-th internal stage of (5) involves just the split
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Δ𝑇 Δ𝑡

𝑇0 𝑇1 𝑇2 . . . 𝑇𝑝

𝑡0 𝑡1 𝑡2 . . . 𝑡𝑚 𝑡𝑁𝑡

Fig. 2: Fine and coarse time grids considered in the parareal method.

term 𝐿𝑘ℎ in the system matrix. As stated in (3), the function 𝜌𝑘 (x) has compact
support on Ω𝑘 . Hence, by construction, the entries of 𝐿𝑘ℎ corresponding to the
nodes that lie outside of this subdomain are zero. Moreover, since Ω𝑘 involves 𝑠𝑘
disjoint connected componentsΩ𝑘𝑙 , the previous linear system is indeed a collection
of 𝑠𝑘 uncoupled subsystems, which can be solved in parallel.

3 The parareal method

In this section, we briefly review the basis for the parareal algorithm, and further
establish the connection with domain decomposition splitting schemes in order to
derive our new proposal.
Let us first divide the time interval [0, 𝑇] into 𝑝 large time subintervals [𝑇𝑛, 𝑇𝑛+1],

for 𝑛 = 0, 1, . . . , 𝑝 − 1, with stepsize Δ𝑇 = 𝑇𝑛+1 − 𝑇𝑛 = 𝑇/𝑝. Thus, 𝑇𝑛 = 𝑛Δ𝑇 , for
𝑛 = 0, 1, . . . , 𝑝. Subsequently, we further divide each [𝑇𝑛, 𝑇𝑛+1] into 𝑚 ≥ 2 smaller
time subintervals [𝑡𝑛, 𝑡𝑛+1], for 𝑛 = 0, 1, . . . , 𝑁𝑡 − 1, with stepsize Δ𝑡 = Δ𝑇/𝑚 =
𝑇/𝑁𝑡 , where 𝑁𝑡 = 𝑝𝑚. In this case, 𝑡𝑛 = 𝑛Δ𝑡, for 𝑛 = 0, 1, . . . , 𝑁𝑡 . The parameter
𝑚 is sometimes referred to as coarsening factor. A representation of these fine and
coarse grids is shown in Figure 2.
In this setting, the parareal method makes use of two propagation operators which

provide fine and coarse approximations to the solution of (2). We will denote by
FΔ𝑡 the fine propagator, with stepsize Δ𝑡, and by GΔ𝑇 the coarse propagator, with
stepsize Δ𝑇 . Essentially, the algorithm generates a sequence of iterations 𝑈𝑛,ℓℎ , for
ℓ = 0, 1, . . ., which converges to the solution of (2). To this end, we sequentially
obtain an initial approximation to the numerical solution at the coarse time levels by
using the coarse propagator GΔ𝑇 on the interval [0, 𝑇]: given𝑈0,0

ℎ = Rℎ𝑢0,

𝑈𝑛+1,0ℎ = GΔ𝑇 (𝑈𝑛,0ℎ ), for 𝑛 = 0, 1, . . . , 𝑝 − 1. (7)

Then, for ℓ = 0, 1, . . ., until convergence, we do:

1. On each subinterval [𝑇𝑛, 𝑇𝑛+1], we solve on the fine grid using the fine propagator
FΔ𝑡 : given �̃�𝑛𝑚ℎ = 𝑈𝑛,ℓℎ , for 𝑛 = 0, 1, . . . , 𝑝 − 1,

�̃�
𝑛𝑚+ 𝑗+1
ℎ = FΔ𝑡 (�̃�𝑛𝑚+ 𝑗ℎ ), for 𝑗 = 0, 1, . . . , 𝑚 − 1. (8)
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2. On the interval [0, 𝑇], we solve on the coarse grid using the coarse propagator
GΔ𝑇 : given𝑈0,ℓ+1

ℎ = Rℎ𝑢0,

𝑈𝑛+1,ℓ+1ℎ = GΔ𝑇 (𝑈𝑛,ℓ+1ℎ ) + �̃�𝑛𝑚ℎ − GΔ𝑇 (𝑈𝑛,ℓℎ ), for 𝑛 = 0, 1, . . . , 𝑝 − 1. (9)

As suggested in [18], if we denote �̃�𝑛𝑚ℎ = F𝑚Δ𝑡 (𝑈𝑛,ℓℎ ), indicating that we are taking
𝑚 steps of the fine propagator with initial value𝑈𝑛,ℓℎ and a stepsize Δ𝑡, the previous
algorithm can be compactly written as

𝑈𝑛+1,ℓ+1ℎ = GΔ𝑇 (𝑈𝑛,ℓ+1ℎ ) + F𝑚Δ𝑡 (𝑈𝑛,ℓℎ ) − GΔ𝑇 (𝑈𝑛,ℓℎ ), for 𝑛 = 0, 1, . . . , 𝑝 − 1.

Based on this expression, the parareal method can be interpreted as a predictor-
corrector scheme in which GΔ𝑇 (𝑈𝑛,ℓ+1ℎ ) plays the role of the predictor, while
F𝑚Δ𝑡 (𝑈𝑛,ℓℎ ) − GΔ𝑇 (𝑈𝑛,ℓℎ ) is the correction term. Note that, at the (ℓ + 1)-th itera-
tion, we can use 𝑝 processors to compute both {F𝑚Δ𝑡 (𝑈𝑛,ℓℎ )}

𝑝
𝑛=1 and {GΔ𝑇 (𝑈𝑛,ℓℎ )}

𝑝
𝑛=1

in parallel.
Now, we are in position to introduce the new family of parareal domain decompo-

sition splitting methods by suitably combining the fractional implicit Euler method
(5) with the parareal algorithm (7)-(9). More precisely, we propose using (5) for
solving the fine- and coarse-grid problems in the parareal method. Recalling the def-
inition of SΔ𝑡 (𝑈𝑛ℎ ) as the right-hand side of (6), we shall consider FΔ𝑡 (·) = SΔ𝑡 (·)
in (8), and GΔ𝑇 (·) = SΔ𝑇 (·) in (7) and (9). In consequence, the resulting method
allows for parallelization in both space and time. Remarkably, unlike related existing
schemes (e.g., parareal Schwarz waveform relaxation methods), our proposal does
not require Schwarz iterations, since the internal stages in (5) are solved sequentially
(i.e., interface conditions need not be imposed on subdomains during the solution
process). In the next section, we illustrate the performance of the new algorithm as
compared to the classical parareal method using implicit Euler propagators FΔ𝑡 and
GΔ𝑇 .

4 Numerical experiments

Let us consider the two-dimensional heat equation with a simple reaction term (i.e.,
𝐾 = 𝐼 and 𝑐 = 1) on Ω × [0, 𝑇] = [0, 1]3, with homogeneous initial and Dirichlet
boundary conditions, whose right-hand side is chosen such that the exact solution is
𝑢(𝑥, 𝑦, 𝑡) = 𝑡𝑒−𝑡𝑥(1 − 𝑥)𝑦(1 − 𝑦). We consider a five-point finite difference spatial
discretization with 𝑁 = 𝑁𝑥 = 𝑁𝑦 spatial nodes on each direction (so that the total
number of degrees of freedom for the spatial discretization is 𝑀 = 𝑁2), and the
parareal time integrator with 𝑝 coarse intervals, each containing 𝑚 fine subintervals.
Both the fine and coarse propagators,FΔ𝑡 andGΔ𝑇 , are chosen to be either the implicit
Euler method or the fractional implicit Euler method. In the sequel, we will refer to
these methods as Euler and DD-Euler, respectively. In the latter case, Ω is further
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Table 1: Number of iterations, varying the number 𝑘 of disjoint components (left) and the overlap-
ping size 𝜀 (right), for a fixed value of Δ𝑡 = 𝑇/(𝑝𝑚) and increasing values of 𝑁 .

Parameters: 𝑝 = 16, 𝑚 = 20, 𝜀 = 2−6

𝑁 10 20 40 80 160
Euler 8 8 8 8 8
DD-Euler 𝑘 = 2 11 13 14 14 14

𝑘 = 4 12 13 15 14 15
𝑘 = 8 9 14 15 14 15

Parameters: 𝑝 = 16, 𝑚 = 20, 𝑘 = 4
𝑁 10 20 40 80 160

Euler 8 8 8 8 8
DD-Euler 𝜀 = 2−4 12 12 13 14 13

𝜀 = 2−5 12 13 12 14 15
𝜀 = 2−6 12 13 15 14 15

Table 2: Number of iterations, varying the number 𝑘 of disjoint components (left) and the overlap-
ping size 𝜀 (right), for a fixed value of 𝑁 and decreasing values of Δ𝑡 = 𝑇/(𝑝𝑚) .

Parameters: 𝑝 = 16, 𝑁 = 160, 𝜀 = 2−6

𝑚 20 40 80 160 320
Euler 8 8 8 8 8
DD-Euler 𝑘 = 2 14 15 15 15 15

𝑘 = 4 15 15 15 15 15
𝑘 = 8 15 16 16 16 16

Parameters: 𝑝 = 16, 𝑁 = 160, 𝑘 = 4
𝑚 20 40 80 160 320

Euler 8 8 8 8 8
DD-Euler 𝜀 = 2−4 13 13 14 14 14

𝜀 = 2−5 15 15 16 16 16
𝜀 = 2−6 15 15 15 15 15

decomposed into 𝑠 = 2 subdomains, each consisting of 𝑘 disjoint components, with
overlapping size 𝜀. Figure 1 (left) illustrates the case 𝑠 = 2 and 𝑘 = 2.
Tables 1 and 2 show the asymptotic dependence of the two parareal algorithms

on the parameters 𝑁 and 𝑚. In addition, for the DD-Euler method, we also show
the asymptotic dependence on the values 𝑘 and 𝜀. In all the cases, we stop the
iteration process when the difference between the iterate and the target solution2
is less than 10−8. Notice that the number of iterations for the DD-Euler method
does not increase when considering either a larger number 𝑘 of disjoint connected
components or a smaller overlapping size 𝜀. Although not reported here, a similar
number of iterations is obtained for larger values of 𝑝. In conclusion, the newly
proposed algorithms are robust with respect to the discretization parameters, the
number of disjoint components 𝑘 , the overlapping size 𝜀, and the coarsening factor
𝑚.
Finally, for the implicit Euler method, if we have a time grid with 𝑝𝑚 nodes, we

need to solve sequentially 𝑝𝑚 linear systems with 𝑁2 unknowns. If we perform 𝑖𝑡𝐸
iterations of the parareal Euler method to satisfy the stopping criterion, we need to
solve sequentially 𝑖𝑡𝐸 (𝑚 + 𝑝 + 1) linear systems with 𝑁2 unknowns. Thus, for large
values of 𝑚 with respect to 𝑝, the parallelization of computations make the effective
cost of the parareal Euler method smaller than that of the classical Euler scheme. In
turn, if we perform 𝑖𝑡𝐷𝐷 iterations of the parareal DD-Euler method, considering 𝑠

2 The target solution is the solution obtained at the coarse time levels using the fine propagator FΔ𝑡
on the whole time interval in a sequential way.
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subdomains and 𝑘 disjoint connected components, and assuming 𝜀 ≈ 0, we need to
solve sequentially 𝑖𝑡𝐷𝐷 (𝑚 + 𝑝 + 1) 𝑠 linear systems with 𝑁2/(𝑠𝑘) unknowns. Thus,
for large values of 𝑚 with respect to 𝑝 and large values of 𝑘 , the effective cost of
the parareal DD-Euler method will be even smaller than that of the parareal Euler
method.
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Parallel Domain Decomposition Solvers for the
Time Harmonic Maxwell Equations

Sven Beuchler, Sebastian Kinnewig, and Thomas Wick

1 Introduction

The time harmonic Maxwell (THM) equations are of great interest in applied math-
ematics [12, 15, 11, 5, 6, 14] and current physics applications, e.g., the excellence
cluster PhoenixD.1 However, the numerical solution is challenging. This is specif-
ically true for high wave numbers. Various solvers and preconditioners have been
proposed, while the most promising are based on domain decomposition methods
(DDM) [16]. In [5], a quasi-optimal domain decomposition (DD) algorithm was
proposed, mathematically analyzed and demonstrated to perform well for several
numerical examples.
The goal of this work is to employ the domain decomposition method from [5]

and to re-implement the algorithm in the modern finite element library deal.II [2].
Therein, the construction of the subdomain interface conditions is a crucial aspect
for which we use Impedance Boundary Conditions. Instead of handling the resulting
linear system with a direct solver, which is typically done for the THM, we apply
a well chosen block preconditioner to the linear system so we can solve it with
an iterative solver like GMRES (generalized minimal residuals). Additionally high
polynomial Nédélec elements are used in the implementation of the DDM, see [17].
This implementation is computationally compared to several other (classical)

preconditioners such as incomplete LU, additive Schwarz, Schur complement. These
comparisons are done for different wave numbers. Higher wave numbers are well-
known to cause challenges for the numerical solution.

Sven Beuchler, Sebastian Kinnewig, Thomas Wick
Leibniz University Hannover, Institute of Applied Mathematics, Welfengarten 1, 30167 Hannover,
Germany {beuchler,kinnewig,wick}@ifam.uni-hannover.de
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Disciplines), Leibniz Universität Hannover, Germany

1 https://www.phoenixd.uni-hannover.de/en/
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The outline of this work is as follows: In the section 2 we introduce some notation.
In section 3 we introduce the domain decomposition method (DDM) for the THM,
furthermore we introduce a block preconditioner which will allow us to solve the
THM with iterative solves instead of direct solvers inside of DDM. In the section
4 we will compare the results of the block preconditioner with the performance of
different preconditioners. Moreover we will present some results of the combination
of the preconditioner and the DDM for two benchmark problems.

2 Equations and finite element discretization

Let Ω ⊂ R𝑑 , 𝑑 ∈ {2, 3} be a bounded domain with sufficiently smooth boundary Γ.
The latter is partitioned into Γ = Γ∞∪Γinc. Furthermore, the time harmonicMaxwell
equations are then defined as follows: Find the electric field 𝑬 ∈ H (curl, Ω) := {𝑣 ∈
L2 (Ω), curl (𝑣) ∈ L2 (Ω)} such that




curl
(
𝜇−1 curl 𝑬

) − 𝜔2𝑬 = 0 in Ω
𝜇−1𝛾𝑡 (curl(𝑬)) − 𝑖𝜅𝜔𝛾𝑇 (𝑬) = 0 on Γ∞
𝛾𝑇 (𝑬) = −𝛾𝑇 (

𝑬inc
)
on Γinc

, (1)

where 𝑬inc : R𝑑 → C𝑑 , 𝑑 ∈ {2, 3} is some given incident electric field, 𝜔 > 0 is the
wave number which is defined by 𝜔 := 2𝜋

𝜆 , where 𝜆 > 0 is the wave length, 𝜇 > 0
is the relative permeability and 𝜅 > 0 is the relative permittivity. Let Ω be a domain
with smooth interface. Following [9, 15], we define traces 𝛾𝑡 : H (curl, Ω) →
H−1/2
× (div, Γ) and 𝛾𝑇 : H (curl, Ω) → H−1/2

× (curl, Γ) by

𝛾𝑡 (𝒗) = 𝒏 × 𝒗 and 𝛾𝑇 (𝒗) = 𝒏 × (𝒗 × 𝒏)

where the vector 𝒏 is the normal to Ω, H−1/2
× (div, Γ) := {𝒗 ∈ H−1/2 (Γ) : 𝒗 ·

𝒏 = 0, divΓ 𝒗 ∈ H−1/2 (Γ)} is the space of well-defined surface divergence fields,
H−1/2
× (curl, Γ) := {𝒗 ∈ H−1/2 : 𝒗 · 𝒏 = 0, curlΓ 𝒗 ∈ H−1/2 (Γ)} is the space of
well-defined surface curls.
System (1) is called time harmonic, because the time dependence can be expressed

by 𝑒𝑖𝜔𝜏 , where 𝜏 ≥ 0 denotes the time. For the implementation with the help of a
Galerkin finite element method, we need the discrete weak form. Let N 𝑝

ℎ := {𝑣ℎ ∈
𝑋 : 𝑣ℎ |𝐾 (𝑥) = 𝑎𝐾 (𝑥) +

(
𝑥 × 𝑏𝐾 (𝑥)

)
, 𝑎𝐾 , 𝑏𝐾 ∈ [𝑃𝑝 (𝐾)]3 ∀ 𝐾 ∈ 𝜏ℎ (Ω)} be the

Nédélec space [15], where 𝑋 = {𝒗 ∈ H(curl,Ω) : 𝒗 × 𝒏|Γinc = 𝒗 × 𝒏|Γ∞ ∈ 𝐿2 (Γ∞)}.
Based on the de-Rham cohomology, basis functions can be developed, [17]. Find
𝑬ℎ ∈ N 𝑝

ℎ (Ω) such that∫
Ω

(
𝜇−1 curl (𝑬ℎ) curl

(
𝝋ℎ

) − 𝜔2𝑬ℎ𝝋ℎ

)
d𝑥

+
∫
Γ∞
𝑖𝜅𝜔𝛾𝑇 (𝑬ℎ) 𝛾𝑇

(
𝝋ℎ

)
d𝑠 =

∫
Γinc

𝛾𝑇
(
𝑬incℎ

)
𝛾𝑇

(
𝝋ℎ

)
d𝑠 ∀𝝋ℎ ∈ N 𝑝

ℎ (Ω). (2)
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In order to obtain a block system for the numerical solution process, we define the
following elementary integrals

(𝐴)𝑢,𝑣 =
∫
Ω
𝜇−1 curl

(
𝝋𝑢

)
curl

(
𝝋𝑣

)
, (𝑀)𝑢,𝑣 =

∫
Ω
𝝋𝑢𝝋𝑣

(𝐵)𝑢,𝑣 =
∫
Γ∞
𝑖𝜅𝜔𝛾𝑇

(
𝝋𝑢

)
𝛾𝑇

(
𝝋𝑣

)
, (𝑠)𝑢 =

∫
Γinc

𝛾𝑇
(
𝑬inc

)
𝛾𝑇

(
𝝋𝑢

)
,

(3)

where 𝜑𝑢, 𝜑𝑣 ∈ N 𝑝
ℎ (Ω). To this end, System (1) can be written in the form(

𝐴 − 𝜔2𝑀 −𝐵
𝐵 𝐴 − 𝜔2𝑀

) (
𝑬𝑅𝐸
𝑬 𝐼𝑀

)
=

(
𝒔𝑅𝐸
𝒔𝐼𝑀

)
, (4)

where 𝑬 = 𝑬𝑅𝐸 + 𝑖𝑬 𝐼𝑀 and 𝒔 = 𝒔𝑅𝐸 + 𝑖𝒔𝐼𝑀 , where 𝑖 denotes the imaginary number.

3 Numerical solution with domain decomposition and
preconditioners

3.1 Domain decomposition

Due to the difficult structure of the time harmonic Maxwell equations, a successful
approach to solve the THM is based on the DDM [16]. As the name suggests, the
domain is divided into smaller subdomains. As these subdomains become small
enough they can be handled by a direct solver. To this end, we divide the domain as
follows: Ω =

⋃𝑁dom
𝑖=0 Ω𝑖 where 𝑁dom is the number of domains, since we consider a

non-overlapping DDM Ω𝑖 ∩ Ω 𝑗 = ∅, if 𝑖 ≠ 𝑗 ∀𝑖, 𝑗 ∈ {1, . . . , 𝑁dom} and we denote
the interface from two neighbouring cells by 𝜕Ω𝑖 ∩ 𝜕Ω 𝑗 = Σ𝑖 𝑗 = Σ 𝑗𝑖 , ∀𝑖, 𝑗 ∈
{1, . . . , 𝑁dom}.
The second step of the DD is an iterative method, indexed by 𝑘 , to compute the

overall electric field 𝑬. Therefore we begin by solving System (1) on each subdomain
Ω𝑖 , we denote the solution of every subsystem by 𝑬𝑘=0

𝑖 . From this we can compute
the first interface condition by

𝑔𝑘=0
𝑗𝑖 := −𝜇−1𝛾𝑡𝑖

(
curl

(
𝑬𝑘=0
𝑖

))
− 𝑖𝑘𝑆

(
𝛾𝑇𝑖

(
𝑬𝑘=0
𝑖

))
, (5)

where 𝑆 describes some boundary operator, which we will discuss in more detail
below. Afterward, we obtain the next iteration step 𝑬𝑘+1𝑖 via:
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curl
(
𝜇−1 curl

(
𝑬𝑘+1𝑖

) ) − 𝜔2𝑬𝑘+1𝑖 = 0 in Ω𝑖
𝜇−1𝛾𝑡𝑖

(
curl

(
𝑬𝑘+1𝑖

) ) − 𝑖𝜅𝜔𝛾𝑇𝑖 (
𝑬𝑘+1𝑖

)
= 0 on Γ∞𝑖

𝛾𝑇𝑖
(
𝑬𝑘+1𝑖

)
= −𝛾𝑇𝑖

(
𝑬inc𝑖

)
on Γinc𝑖

𝜇−1𝑆
(
𝛾𝑡𝑖

(
curl

(
𝑬𝑘+1𝑖

) ) ) − 𝑖𝜅𝜔𝛾𝑇𝑖 (
𝑬𝑘+1𝑖

)
= 𝑔𝑘𝑗𝑖 on Σ𝑖, 𝑗

(6)

Once 𝑬𝑘+1𝑖 is computed, the interface is updated by

𝑔𝑘+1𝑗𝑖 = −𝜇−1𝛾𝑡𝑖

(
curl

(
𝑬𝑘+1𝑖

))
− 𝑖𝑘𝑆

(
𝛾𝑇𝑖

(
𝑬𝑘+1𝑖

))
= −𝑔𝑘𝑖 𝑗 − 2𝑖𝑘𝑆

(
𝛾𝑇𝑖

(
𝑬𝑘+1𝑖

))
(7)

where 𝑬𝑘𝑖 → 𝑬 |Ω𝑖 as 𝑘 → ∞. This convergence depends strongly on the chosen
surface operator 𝑆. For a convergence analysis when the IBC are considered, see [7]
This iteration above can be interpreted as one step of the Jacobi fixed point method

for the linear system
(1 − A)𝒈 = 𝒃 (8)

where 1 is the identity operator, 𝒃 is the vector of the incident electric field, A
is defined by A𝒈𝑘 = 𝒈𝑘+1 and Equations (6), (7). Convergence is achieved for
∥(1 − A)𝒈𝑘 − 𝑏∥ < 𝑇𝑂𝐿 with some small tolerance 𝑇𝑂𝐿 > 0. Often, 𝑇𝑂𝐿 =
10−6, . . . , 10−8. Instead of a Jacobi fixed point method one can also use a GMRES
method to solve (8) more efficiently.
The crucial point of the DD is the choice of the interface conditions between

the subdomains. The easiest choice is a non-overlapping Schwarz decomposition,
where Dirichlet like interface conditions are used. For large wave numbers, e.g.
the parameter 𝜔 becomes large, the system is highly indefinite. Consequently, a
convergence of this algorithm for the time harmonic Maxwell equations for all 𝜔
cannot be expected; see [8, 10]. An analysis for an overlapping additive Schwarz
method is given in [4].
Rather, we need more sophisticated tools in which the easiest choice are

Impedance Boundary Conditions (IBC), which can be classified as Robin like inter-
face conditions

𝑆 = 1. (9)

3.2 Preconditioner

As it is clear, the DDM is an iterative method, where we have to solve system (6) on
each subdomain in each iteration step 𝑘 . Usually, this is done by a direct solver, but
instead, we can use a GMRES solver, which is preconditioned by an approximation
of the block system (

𝐴 − 𝜔2𝑀 0
0 𝐴 − 𝜔2𝑀

)−1
. (10)
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Therefore we need to compute an approximation of (𝐴−𝜔2𝑀)−1, and we obtain this
approximation by applying the AMG preconditioner provided by MueLu [3], where
for the level transitions a direct solver is used. The latter is necessary, since otherwise
the AMG preconditioner does not perform well for the THM. On the one hand, this
procedure is cost expensive. On the other hand, we can reuse the preconditioner each
time we solve system (6).
An other possible choice is to use the AMG preconditioner to compute directly

an approximation of (
𝐴 − 𝜔2𝑀 −𝐵
−𝐵 𝐴 − 𝜔2𝑀

)−1
.

With this preconditioner only a fewGMRES iterations are needed to solve the system
(6). Since we computing an approximation of the complete inverse this comes with
much higher memory consumption, than using (10) as preconditioner. Actually the
memory consumption while using an iterative solver with (10) as an preconditioner
is even lower, than the memory consumption from a direct solver, which we show
numerically in the next chapter. Therefore the block diagonal preconditioner is used
in the following.

4 Numerical tests

In this section, we compare the performance of different preconditioners for two
numerical examples. We choose a simple wave guide as our benchmark problem,
moreover we test the performance of our method on a Y beam splitter. Our im-
plementation is based on the open-source finite element library deal.II [2] with
Trilinos [13] and MueLu [3]. As a direct solver, MUMPS (Multifrontal Massively
Parallel Sparse Direct Solver) [1] is used. We perform an additive domain decom-
position and compute each step in parallel with MPI. For the computations an Intel
Xeon Platinum 8268 CPU was used with up to 32 cores.

4.1 Example 1: Block benchmark

Before we test the domain decomposition method, we want to compare the per-
formance of different preconditioners on a single domain. Therefore we consider a
simple 2D squared domain decomposed of a material with a higher refractive index
in the center a carrier material with a lower refractive index beside it, see Figure 1.
Table 1 displays the GMRES iterations with a relative accuracy of 𝜖 = 10−8 for

differenent preconditioners:

• ILU, incomplete LU decomposed of (4),
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Fig. 1: As a benchmark problem, we consider a
1 × 1 square with different wave numbers (here
𝜆 = 50). In the center is a material with the
refractive index 𝑛center = 1.516 and as cladding
the refractive index of air was used 𝑛air = 1.0.
For the discretizationNédélec elements with the
polynomial degree 𝑝 = 1 are used.

• the implemented additive Schwarz preconditioner of [2, 13] 2,
• a Schur complement preconditioner based on 3,
• the block preconditioner (10).

Overall, the GMRES iteration numbers grow for large 𝜔. In the case of the block
preconditioner the GMRES iteration number first decreases and than increases for
higher wave numbers.

Table 1: Example 1: GMRES iterations with different preconditioners.

wave number 𝜔 GMRES iterations with the preconditioner
ILU additive Schwarz Schur complement block preconditioner

5.0 165 515 156 75
10.0 349 750 161 52
20.0 833 >2000 172 26
40.0 >2000 - diverged 25
60.0 - - diverged 38
80.0 - - diverged 49
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Fig. 2: On the left side: memory usage in dependence of the number of dofs. On the right side:
walltime in dependence of the number of MPI-threads.

2 https://www.dealii.org/current/doxygen/deal.II/classTrilinosWrappers_1_
1PreconditionSSOR.html

3 https://www.dealii.org/current/doxygen/deal.II/step_22.html
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4.2 Example 2: Y beam splitter

Fig. 3: Intensity plot of the y beam splitter, on the left side is the intensity on the x-y plane and on
the right side is the intensity at the output.

Similar as in the simple wave guide, we consider for the Y beam splitter an
material with a higher refractive index placed inside of an carrier material with a
lower refractive index. Here we consider a 3D model of a Y beam splitter. The mesh
was divided into 9 subdomains, and the average number of GMRES iterations to
solve the subdomains are given in table 2, are for the wave number 𝜆 = 20. For the
discretization Nédélec elements with the polynomial degree 𝑝 = 3 are used.

Table 2: Example 2: GMRES iterations on each domain for the block preconditioner

subdomain id 1 2 3 4 5 6 7 8 9

average number of GMRES iterations 34 40 41 31 35 39 37 33 32

5 Conclusion

In this contribution, we implemented a domain decomposition method with a block
preconditioner for the time harmonic Maxwell equations. Therein, a crucial aspect
is the construction of the subdomain interface conditions. Our algorithmic devel-
opments are demonstrated for two configurations of practical relevance, namely a
block benchmark and a Y beam splitter.
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Adaptive Finite Element Thin-Plate Spline With
Different Data Distributions

Lishan Fang and Linda Stals

AbstractThe finite element thin-plate spline fits large scattered data efficiently while
retaining the smoothing properties of the thin plate-spline. Its computational cost
is reduced by adaptive refinement that only refines sensitive regions identified by
an error indicator. Several traditional error indicators of the finite element method
were adapted for the finite element thin-plate spline and their performance has been
evaluated using a large number of uniformly distributed data. In this article, we build
on that work to examine three new data distribution patterns, which are the uniform
distribution with missing data, random distribution and random normal distribution.
A numerical experiment is conducted to assess the performance of the finite element
thin-plate spline and three error indicators with these four data distribution patterns.

1 Introduction

The thin-plate spline is a data fitting technique that possessesmany favourable proper-
ties like insensitivity to noise [6]. One obstacle of its usage is the high computational
cost and memory requirement for large data sets. The finite element thin-plate spline
(TPSFEM) was proposed by Roberts, Hegland and Altas [11] to efficiently inter-
polate large data sets with similar smoothing properties as the thin-plate spline. It
uses simple 𝐻1 finite elements resulting in a sparser system of equations as opposed
to ones with higher-order finite elements used in [5]. A detailed formulation of the
TPSFEM is provided by Stals and Roberts [16] and a brief description is given below
similar to the one shown by Fang [8].
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Let {(𝒙 (𝑖) , 𝑦 (𝑖) ) : 𝑖 = 1, 2, . . . , 𝑛} be the observed data of size 𝑛 and dimension 𝑑
on a domain Ω, where 𝒙 (𝑖) ∈ R𝑑 and 𝑦 (𝑖) ∈ R are i-th predictor value and response
value, respectively. The TPSFEM 𝑠 is defined as a combination of piecewise linear
basis functions 𝒃, where 𝑠(𝒙) = 𝒃(𝒙)𝑇 𝒄 and 𝒄 are coeffciients of the basis functions.
The TPSFEM 𝑠 minimises functional

𝐽 (𝒄, 𝒈1, . . . , 𝒈𝑑) = 𝒄𝑇 𝐴𝒄 − 2𝒅𝑇 𝒄 + 𝒚𝑇 𝒚/𝑛 + 𝛼
𝑑∑︁
𝑘=1

𝒈𝑇𝒌 𝐿𝒈𝒌 , (1)

subject to Constraint 𝐿𝒄 =
∑𝑑
𝑘=1 𝐺𝑘 𝒈𝑘 , where 𝒈𝑘 are coefficients of gradient approx-

imations of 𝑠 in dimension 𝑘 , 𝐴 = 1
𝑛

∑𝑛
𝑖=1 𝒃(𝒙 (𝑖) )𝒃(𝒙 (𝑖) )𝑇 , 𝒅 = 1

𝑛

∑𝑛
𝑖=1 𝒃(𝒙 (𝑖) )𝑦 (𝑖) ,

𝒚 = [𝑦 (1) , . . . , 𝑦 (𝑛) ]𝑇 , 𝐿 is a discrete approximation to the negative Laplacian and
𝐺𝑘 is a discrete approximation to the gradient operator in dimension 𝑘 .
Smoothing parameter 𝛼 balances the goodness of fit and smoothness of 𝑠. It is

estimated iteratively using a stochastic estimator of the generalised cross-validation
from Hutchinson [9] and more details are provided in [7]. It may also be calculated
using alternate approaches discussed in [5]. Minimiser (1) is solved using Lagrange
multipliers and the size of the resulting system of equations is proportional to the
number of basis functions. This system is more efficiently solved than that of the
thin-plate spline. A comparison using data from Section 4 between the TPSFEM and
compactly supported basis functions (CSRBFs) fromWendland [17] with radius 0.5
is shown in Table 1. The TPSFEM achieves similar root mean square error (RMSE)
and maximum errors (MAX) as the CSRBFs using a system with significantly fewer
nonzero entries. A comprehensive comparison is in progress and will be provided
in [15].

Table 1: Computational cost
Technique No. basis Dimension No. nonzero RMSE MAX
TPSFEM 900 3603 52,060 0.027 0.20
TPSFEM 1600 6403 93,538 0.014 0.091
CSRBFs 1024 1024 496,274 0.0098 0.157

The remainder of the article is organised as follows. In Section 2,we show adaptive
refinement and error indicators of the TPSFEM. In Section 3, four two-dimensional
data distribution patterns are displayed and compared regarding their influence on
the maximum distance to any data. In Section 4, a numerical experiment is presented
to examine the influence of these patterns. In Section 5, we summarise this article
and the findings of the experiment.

2 Adaptive Refinement

The accuracy of finite element approximations depends on the mesh size of the finite
element grid [10]. The accuracy is improved by adaptive refinement that adapts
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the accuracy of the approximation within sensitive regions, like peaks, dynamically
during an iterative process. An error indicator marks regions that require finer
elements to achieve higher accuracy for refinement. Many error indicators have
been developed for approximating partial differential equations but they may not be
applicable for the TPSFEM.
The formulation of the TPSFEM is different from that of the traditional finite

element method and it may not provide the information required by some error indi-
cators. For example, the TPSFEM uses the observed data instead of given functions
of partial differential equations and the data is often perturbed by noise or irregularly
distributed. Fang [8] adapted the iterative adaptive refinement process and three error
indicators of the finite element method for the TPSFEM. In this article, we will focus
on the performance of these three error indicators, which are the auxiliary problem
error indicator, recovery-based error indicator and norm-based error indicator.
The auxiliary problem error indicator evaluates approximation quality by solving

a local approximation, which is the TPSFEMbuilt on a union of elements [1, 8, 10]. It
solvesMinimiser (1) using a small subset of the observed data within those elements.
The local approximations are locally more accurate than the global TPSFEM 𝑠 and
the approximation quality is measured by the difference between them. The recovery-
based error indicator estimates errors by post-processing the gradient approximations
of the TPSFEM [18]. It improves the discontinuous gradient approximations of 𝑠with
piecewise linear basis functions and calculates the error as the difference between the
two gradient approximations. The norm-based error indicator uses an error bound
on the 𝐿∞ norm of the TPSFEM to optimise the approximation [13]. It approximates
second-order derivatives of 𝑠 to identify regions that change rapidly and refine them
to improve accuracy.
These three error indicators use different information of the TPSFEM to indicate

regions with large errors. The recovery-based error indicator and norm-based error
indicator only use 𝒄 values in Minimiser (1) and they were adapted without major
changes. In contrast, the original auxiliary problem error indicator solves boundary
value problems and was modified to use data instead of a given function [2, 7].
Consequently, it is more susceptible to changes in the data like noise [8]. When the
data distribution pattern changes, these error indicators may behave differently.
As opposed to the finite element method, the error of the TPSFEM may not

converge with a smaller mesh size ℎ. Roberts, Hegland and Altas [11] proved that
the error convergence of the TPSFEM depends on the smoothing parameter 𝛼,
maximum distance to data 𝑑𝒙 and ℎ. The new iterative adaptive refinement process
updates the optimal 𝛼 after the grid is refined and prevents it from dominating the
error [8]. Besides, previous studies tested the performance of the error indicators
using uniformly distributed data sets of size 1,000,000, which provide sufficiently
small 𝑑𝒙 [8]. When the data is irregularly distributed, we may not have sufficiently
small 𝑑𝒙 over the whole domain and the error convergence will be affected.
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3 Data Distribution

The observed data distributes differently depending on the application. For exam-
ple, data is stored as maps of pixels for digital images or sampled randomly for
surface reconstructions [4, 12]. Previous studies on the TPSFEM already deployed
several data distribution patterns, including the uniform distribution [8], uniform
distribution with missing data [14], random distribution [16] and random normal
distribution [11]. We focus on these four data distribution patterns in this article.

(a) (b) (c)

Fig. 1: Data distribution of 10,000 data points with (a) uniform distribution with data missing; (b)
random distribution; and (c) random normal distribution

The uniform distribution places data uniformly on the domain with fixed 𝑑𝒙,
which minimises its influence on the error convergence of the TPSFEM. However,
other data distribution patterns may have varied 𝑑𝒙 across the domain. Data points
in certain regions may be missing and the TPSFEM needs to recover these surfaces.
An example is shown in Figure 1(a), where data points in eleven square regions are
missing and some of them neighbours each other. The error in these regions may
not be improved by smaller ℎ since 𝑑𝒙 is large. Besides, the auxiliary problem error
indicator uses data that is not available in those regions and the performance may be
affected.
In many applications, the predictor values of data are sampled randomly with

equal probabilities instead of a perfect uniform distribution, as shown in Figure 1(b).
The random normal distribution places data points using a probability density func-
tion defined by a mean and a variance [3]. An example with variance 1.5; and
mean 2.5 and 0 for predictor values 𝒙1 and 𝒙2 is shown in Figure 1(c). The density
of the predictor values is higher at their mean than the rest of the domain. When a
randomly distributed data set contains a large number of data points, the data density
will be close across the domain. While it may not have a significant influence on
the interpolant 𝑠 due to sufficiently small 𝑑𝒙, it may affect the error indicators as
some elements may contain few data points. In comparison, a randomly normally
distributed data set has different data densities across the domain with varied 𝑑𝒙.
While the error convergence behaviour may not be affected by randomly distributed
data, the error indicators were not developed to handle data with various densities
and their performance may be affected [5].
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4 Numerical Experiment

A numerical experiment was conducted to test the error indicators using these
data distribution patterns. The data consists of 10,000 data points limited in-
side [−3.6, 3.6]2 and is modeled by the peaks function 𝑓 from MATLAB, where
𝑓 (𝒙) = 3(1 − 𝑥1)2𝑒−𝑥2

1−(𝑥2+1)2 − 10(𝑥1/5 − 𝑥3
1 − 𝑥5

2)𝑒−𝑥
2
1−𝑥2

2 − 1
3 𝑒
−(𝑥1+1)2−𝑥2

2 . It has
oscillatory surfaces at the center of the domain and flat surfaces near its bound-
aries [11]. Gaussian noise with mean 0 and standard deviation 0.01 is also included
in some data sets to assess the performance in the presence of noise. The distribution
patterns of irregularly distributed data sets have been shown in Figure 1.
We focus on the efficiency of uniform and adaptive grids, which is measured by

the error metric versus the number of nodes in the grid. A grid that achieves a low
errormetricwith a smaller number of nodes is consideredmore efficient.We consider
both the root mean square error (RMSE) and approximate error, which measures
how closely 𝑠 fits data and reproduces 𝑓 , respectively [7, 8]. The approximate error 𝑒
is defined as 𝑒 =

√︃∑𝑚
𝑖=1 ℎ

2
𝑖 𝑒

2
𝑖 , where 𝑒𝑖 is the difference between 𝑠 and 𝑓 at 𝑖-th

node, ℎ𝑖 is the longest edge connected to 𝑖-th node and 𝑚 is the number of nodes in
the grid. The efficiency of final grids are calculated as products of the error metric
and the number of nodes and is provided in the legend of each convergence plot.

4.1 Results

The convergence of the RMSE for data sets with the four distribution patterns is
shown in Figure 2. Adaptive refinement focuses on refining the oscillatory surfaces
at the centre and error convergence rates of all three adaptive grids are higher than
that of the uniform grid in Figure 2(a). When the data is uniformly distributed, the
three error indicators have similar performance and produce adaptive grids more
than twice as efficient as the uniform grid.
Figure 2(c) shows similar error convergence of uniform and adaptive grids with

randomdistribution. The TPSFEMand error indicators are not affected as 𝑑𝒙 remains
sufficiently small within a large number of randomly distributed data points. In
contrast, 𝑑𝒙 is large in some regions where data points are missing or the data is
randomly normally distributed shown in figures 1(a) and 1(c), respectively. While
this does not markedly affect the TPSFEM, it slightly weakens the performance of
the auxiliary problem error indicator, as shown in figures 2(b) and 2(d), respectively.
Local approximations of the auxiliary problems are built with different numbers of
data points and the accuracy deteriorates.
The convergence of the approximate error for data sets with the four distribution

patterns is shown in Figure 3. The error convergence rates of the approximate error
with the uniform or random distribution in figures 3(a) and 3(c) are similar to
those of the RMSE in figures 2(a) and 2(c). The TPSFEM closely reproduces the
original smooth function 𝑓 when 𝑑𝒙 is sufficiently small in these two distribution
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Fig. 2: RMSE for (a) uniform distribution; (b) uniform distribution with missing data; (c) random
distribution; and (d) random normal distribution.

patterns. When the data is scarce in some regions, the TPSFEM interpolates smooth
surfaces, which may not recover 𝑓 especially when it is oscillatory. Consequently,
the convergence of the approximate errors for the uniform distribution with missing
data or random normal distribution slows down in the last few iterations as shown in
figures 3(b) and 3(d), respectively. Similarly, the auxiliary problem error indicator
underperforms compared to the other two error indicators.
In the presence of noise, theRMSEvalues of the TPSFEMstop decreasing at some

point depending on the noise level of data as demonstrated by Fang [8]. Therefore, we
only consider the approximate error here. The convergence of the approximate error
for data sets with noise is shown in Figure 4. All error convergence rates are lower
than those without noise since the TPSFEM may not reproduce 𝑓 from noisy data.
The error convergence rates with the uniform or random distribution are higher than
the others in Figure 3. Elements in these two distribution patterns contain a similar
number of data points and the effects of noise are cancelled out when data points
are projected on the finite element grid. In comparison, the error with the uniform
distribution with missing data and random normal distribution stops decreasing at
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Fig. 3: Approximate error for (a) uniform distribution; (b) uniform distribution with missing data;
(c) random distribution; and (d) random normal distribution.

the last two iterations. The error convergence rates with random normal distribution
in Figure 3(d) are the lowest of four distribution patterns. Since some elements may
contain few data points, it is more sensitive to noise in data, which leads to marked
difference to 𝑓 .
The three error indicators perform differently in the experiment. The performance

of the auxiliary problem error indicator worsens when data is perturbed by noise,
especially for random distribution in Figure 4(c). Since some elements may contain
few data points, the accuracy of the local approximation is more susceptible to
noise and may indicate large errors incorrectly. In contrast, the recovery-based error
indicator and norm-based error indicator use 𝒄 values to indicate large errors. Since
the effects of the data distribution pattern and noise have been minimised by the
TPSFEM, these two error indicators produce efficient adaptive grids for data sets
with noise in Figure 4.
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Fig. 4:Approximate error for data sets perturbed by noise with (a) uniform distribution; (b) uniform
distribution with missing data; (c) random distribution; and (d) random normal distribution.

5 Conclusion

In this article, we explore four data distribution patterns and investigate their effects
on the efficiency of adaptive grids generated using three error indicators. The four
data distribution patterns lead to different maximum distances to data and affect the
performance of the TPSFEM and its error indicators. While the TPSFEM may not
restore the original function in regions with scarce data, it recovers a smooth surface
to closely interpolate the data. Besides, the uniform and random distributions have
close data densities across the domain and thus have less influence on the TPSFEM
than the uniform distribution with missing data and random normal distribution.
We also find that all the error indicators significantly improves the efficiency of
adaptive grids with all data four distribution patterns. The auxiliary problem error
indicator uses data for local approximations and is more vulnerable to changes in the
data distribution patterns and noise. In contrast, the recovery-based error indicator
and norm-based error indicator only use the information of the TPSFEM and are
insensitive to these two factors.
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A Multirate Accelerated Schwarz Waveform
Relaxation Method

Ronald D. Haynes and Khaled Mohammad

1 Introduction

Schwarz Waveform relaxation (SWR) [1, 2, 6] is an iterative algorithm for solving
time dependent partial differential equations (PDEs) in parallel. The domain of the
PDE is partitioned into overlapping or non-overlapping subdomains, then the PDE
is solved iteratively on each subdomain. The emphasis has focused on developing
artificial transmission conditions which exchange information between neighboring
subdomains and lead to fast convergence.
The initial guess at the subdomain boundaries is often chosen to be a constant

(maybe a continuation of the initial condition for the PDE). We show here, that
in some situations, we can dramatically reduce the number of SWR iterations to
convergence by computing an improved initial guess at the subdomain boundaries
using a multirate (MR) time integrator. The MR time integrator naturally produces
a spatial splitting over time windows, while the SWR portion of the algorithm can
fix a potential loss of accuracy in the MR approach. The efficacy of the resulting
accelerated SWR (ASWR) algorithm is demonstrated for a test problem.

2 Background Material

We assume the PDE has been semi-discretized in space using finite differences,
leading to a system of ordinary differential equations (ODEs) of the form
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Khaled Mohammad
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𝑦′ = 𝑓 (𝑡, 𝑦),
𝑦(𝑡0) = 𝑦0, 𝑦 ∈ 𝑅𝑁 .

(1)

We integrate (1) using a MR method largely due to Savenco et al. [5].
Consider the embedded Rosenbrock method given by

(𝐼 − 𝛾Δ𝑡 𝑓𝑦 (𝑡𝑛−1, 𝑦𝑛−1))K1 = Δ𝑡 𝑓 (𝑡𝑛−1, 𝑦𝑛−1) + 𝛾Δ𝑡2 𝑓𝑡 (𝑡𝑛−1, 𝑦𝑛−1),
(𝐼 − 𝛾Δ𝑡 𝑓𝑦 (𝑡𝑛−1, 𝑦𝑛−1))K2 = Δ𝑡 𝑓 (𝑡𝑛−1 + Δ𝑡, 𝑦𝑛−1 + K1)

− 𝛾Δ𝑡2 𝑓𝑡 (𝑡𝑛−1, 𝑦𝑛−1) − 2K1,

𝑦𝑛 = 𝑦𝑛−1 + K1,

�̂�𝑛 = 𝑦𝑛−1 + 3
2
K1 + 1

2
K2,

where 𝑓𝑦 (𝑡𝑛, 𝑦𝑛) is the Jacobian matrix and 𝑓𝑡 (𝑡𝑛, 𝑦𝑛) is the time derivative. In what
follows, 𝑓𝑡 is estimated using a forward difference. The first order approximation
(ROS1), 𝑦𝑛, is used as the time integrator to obtain the numerical results presented
in this paper, while the second order approximation (ROS2), �̂�𝑛, provides an estimate
of the local error vector, 𝐸𝑛. In our tests we use 𝛾 = 1/2 which results in 𝐴–stable
ROS1 and ROS2 methods [4]. The approximation is linearly implicit, requiring a
linear solve at each time step. This can be efficient for non-linear problems.
ROS1 and ROS2 can be used together to produce an adaptive (single rate) time

stepper based on local error control. The local error of the 𝑖𝑡ℎ component for the
ODEs (1) at time 𝑡 = 𝑡𝑛, 𝐸𝑛,𝑖 , can be estimated as 𝐸𝑛,𝑖 = |𝑦𝑛,𝑖 − �̂�𝑛,𝑖 |, for 𝑖 =
1, . . . , 𝑁 . If ∥𝐸𝑛∥∞ (obtained with time step Δ𝑡) is less than the required tolerance,
the integration proceeds with a (possibly larger) new time step, otherwise the step
is repeated with a smaller step size. In either case the new time step is given by
Δ𝑡new = 𝜃Δ𝑡 (𝑡𝑜𝑙/∥𝐸𝑛∥∞)1/2, where 𝜃 < 1 is a safety factor and 𝑡𝑜𝑙 is the tolerance.

3 A Multirate Approach

The local error control mechanism can also be used as the basis for a MR approach,
see [5]. Suppose a local error, 𝐸𝑛, is obtained with a time step Δ𝑡. We can estimate
the time step required by each component of the ODE system, Δ𝑡𝑛,𝑖 to achieve
the tolerance 𝑡𝑜𝑙 as Δ𝑡𝑛,𝑖 = 𝜃Δ𝑡 (𝑡𝑜𝑙/𝐸𝑛,𝑖)1/2, for 𝑖 = 1, 2, . . . , 𝑁 . We denote the
minimum time step required by any component asΔ𝑡𝑚𝑖𝑛 = min𝑖=1,...,𝑁 Δ𝑡𝑛,𝑖 . Figure 1
shows two scenarios for the size of the local error during the integration of parabolic
PDEs of interest here.
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Fig. 1: Identifying fast components using the local error.

In the figure on the left all of the components of the local error are below the
required tolerance. In this case the time step is accepted, and likely increased for the
next step. The plot on the right shows a situation where some components of the
local error are larger than the required tolerance. In the MR approach, only these
(fast) components are recomputed (using the smaller time step, Δ𝑡min). The other
(slow) components are accepted without further computation. Coupling between the
fast and slow components is typically handled by interpolation or using dense output
formulae. The single rate approach, in contrast, would recompute all components
with a smaller time step if the norm of the local error is larger than the tolerance. The
process is then repeated for the next global time step. In [5] the size of the global
time step is chosen using a MR factor which is controlled by a heuristic based on the
estimated computational savings.
In [5] uniform or recursive refinements are suggested for the fast components. An

error analysis for linear systems and the 𝜃–method with one level of refinement is
given in [3]. For parabolic time dependent PDEs which have groups of components
evolving at different time scales, the MR method demonstrates a gain in efficiency.
In our experience, however, the approach is quite sensitive to the choice of slow and
fast components and the accuracy of the interpolation method.
To illustrate this we consider the traveling wave equation

𝑢𝑡 = 𝜖𝑢𝑥𝑥 + 𝜉𝑢2 (1 − 𝑢), (2)

for 0 < 𝑥 < 5, 0 < 𝑡 ≤ 𝑇 = 3, with initial and boundary conditions 𝑢(𝑥, 0) =
(1 + 𝑒𝜆(𝑥−1) )−1 and 𝑢𝑥 (0, 𝑡) = 𝑢𝑥 (5, 𝑡) = 0, where 𝜖 = 10−2, 𝜉 = 1/𝜖 and 𝜆 =√︁
𝜉/2𝜖 . In space, 𝑢 is discretized with 𝑁 = 1000 grid points and standard second
order differences. For comparison purposes a single rate reference solution has been
integrated in time using Matlab’s 𝑜𝑑𝑒15𝑠 with tolerance 10−10. The solution is a
travelling wave solution with a sharp interface between 𝑢 = 1 and 𝑢 = 0 moving to
the right.
In Tables 1 and 2, we use Savenco’s code, see [5], for both the single rate and

MR approaches. We modify the inputs to control the MR time step size, the number
of points added to fast region identified by the local error test, and the interpolation
used to generate the slow components needed during the refinement of the fast
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components. The errors at the final time are measured by subtracting the single or
the MR solution from the reference solution in the infinity norm. The work estimates
are based on the cost of the linear solves in the timestepping. The CPU times
(in seconds) for both the single rate and MR approaches are reported for various
tolerances.
Table 1 shows that the MR approach is able to reduce the CPU time, albeit with

some decrease in the accuracy. The reduction in CPU time is more dramatic for
smaller required tolerances. The loss in accuracy can be reduced by adding points
to the fast regions identified by the component-wise local error test or by increasing
the accuracy of the interpolation used at the interfaces of the regions, see Table 2.

Single-rate Multirate
Tol Error Work CPU Error Work CPU

1.00e-03 3.204e-03 1639638 3.790 1.406e-02 131260 3.020
5.00e-04 1.924e-03 2256254 5.530 2.586e-03 167978 2.990
1.00e-04 4.835e-04 4862858 3.990 6.812e-03 319690 4.530
5.00e-05 2.541e-04 6816810 5.580 3.294e-03 442186 4.120
1.00e-05 5.427e-05 15057042 12.120 5.460e-04 971304 6.880

Table 1: Errors, Work and 𝐶𝑃𝑈 time in seconds at 𝑇 = 3 of Savcenco’s MR approach with
uniform refinement and using the dense output method.

Added Points Error𝐿 Error𝑄 Error𝐷
0 8.392e-03 3.407e-03 3.271e-03
5 2.061e-03 1.052e-03 1.028e-03
10 7.418e-04 5.623e-04 5.582e-04
15 5.062e-04 4.751e-04 4.744e-04
20 4.654e-04 4.600e-04 4.599e-04

Table 2: Errors obtained using linear and quadratic interpolation and dense output for (2) at 𝑇 = 3
using a fixed MR time step Δ𝑚𝑡 = 2Δ𝑠𝑡 with 𝑇𝑜𝑙 = 10−4 while varying the number of points
added to the fast region.

The number of added points which allows the MR algorithm to recover the single
rate error for a given tolerance depends on theMR time step size, the final integration
time, the PDE being solved, and the discretizations used. This is difficult to determine
a priori.

4 An Accelerated SWR approach

Consider our test problem discretized using 1000 uniformly spaced points on [0, 5].
We solve the global domain problem with MR time steps of Δ𝑚𝑡 = 𝑚Δ𝑠𝑡 with a
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multirate factor 𝑚 and Δ𝑠𝑡 = 0.01 (a time step which keeps the local error below a
tolerance of 𝑡𝑜𝑙 = 5 × 10−3 for the single rate (global) algorithm). In Figure 2, the
horizontal lines show multirate time steps with 𝑚 = 20. The local error estimate is
used to identify the fast region (shown in red) and the slow regions, during each MR
time step.
To implement a SWR iteration the domain is partitioned into ten equal subdo-

mains, as shown in the left of Figure 2. We refer to this as a static partitioning.
Overlapping subdomains are obtained by adding a small overlap (not shown) to the
left and right of the interior interfaces. We generate initial guesses for the SWR
iteration as follows. If an interface lies in a slow region then an interpolant in time,
constructed using the solution obtained from theMR time step, is used. If an interface
lies in a fast region then an improved initial guess is constructed by refining the fast
region using a single rate method with a time step of Δ𝑠𝑡, as described in Section 3.
A (classical) SWR iteration is used from these initial guesses, here the SWR iterates
are also computed using Δ𝑠𝑡 (in practice one could use an adaptive time stepping for
the subdomain solves). The process is then repeated over the next Δ𝑚𝑡, and so on.
To demonstrate, in Figure 3 we plot the results of this experiment for ASWR with
static partitioning (S-ASWR) on the second (left) and fourth (right) time windows.
The vertical axis shows the error between the single rate and SWR solutions. The
two norm of the error (in time) is calculated along all interfaces. SWR is accelerated
if any of the subdomain boundaries lie in a fast region and hence is able to benefit
from the refined solution. The reduction in the iteration count on each time window
depends on the position of the interface in the fast region. For this example, we will
see that with a good placement of the interface one SWR iteration is able to correct
the loss of accuracy inherent in the MR algorithm.
Motivated by the improvement, should a subdomain boundary lie in a fast region,

we can build an improved dynamic partitioning algorithm. After completing a global
MR time step, assuming a sufficient number of processors we partition the whole
domain by introducing an interface in each fast region, and partition the rest of
domain so that the subdomains are of (approximately) equal size. This is illustrated
in the right plot in Figure 2. Placing the interface in the middle of the fast region
attempts to minimize the coupling between the fast and slow components. With
this dynamic partitioning D-ASWR accelerates convergence in an approximately
uniform way over all time windows, see Figure 4 where the SWR errors are shown
on the second time window for two different multirate time steps.
The difficulty in choosing the appropriate number of points to add to the fast

region and the interpolation required in the MR method is pushed aside and instead
the refined fast solution can be used to accelerate a correction using SWR. The
computation of the global time step and the subsequent partitioning from the MR
algorithm provides: information that can guide the SWR partitioning, improved
initial guesses at the interfaces for the subsequent SWR correction, and information
about the single rate or SWR time step required to globally achieve the local error
tolerance.
A general algorithm would handle multiple fast regions during a multirate time

step. Interfaces are introduced into each fast region and SWR initial guesses are



638 Ronald D. Haynes and Khaled Mohammad

obtained by refining the fast regions (in parallel). A global time step for the SWR
iteration can be chosen to be the smallest time step used over all the fast regions.Again
with a sufficient number of processors awell load–balanced splitting is possiblewhile
keeping interfaces in the fast regions.
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Fig. 2: Partitioning approaches for ASWR.
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Fig. 3: Convergence histories for classical S-ASWR with 𝑆 = 10 and 𝑚 = 20 on the second (left)
and fourth (right) time window using a static partitioning. An overlap of 10 points is used during
the SWR.
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Fig. 4: Convergence histories for D-ASWR with 𝑚 = 20, 10 points of overlap, on 𝑆 = 10
subdomains (left) and 𝑚 = 10, 5 points of overlap, on 𝑆 = 15 subdomains (right) on the second
time window using a dynamic partitioning.
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The number of SWR iterations can be further minimized by introducing a non-
overlapping splitting and an optimized SWR iteration.

5 A Comparison

In Table 3, we provide a comparison of the single rate, MR, static and dynamic
ASWR algorithms. Single rate results are given, then the local error estimate is used
to identify and refine the fast region. MR results (using the algorithm in Section 3)
with 0 and 20 points added to the identified fast region are provided. Finally, one
classical ASWR iteration is used with static and dynamic partitioning with 𝑆 = 15
subdomains for Δ𝑠𝑡 = 0.01, 𝑆 = 26 for Δ𝑠𝑡 = 0.005, 𝑆 = 30 for Δ𝑠𝑡 = 0.0025, 𝑆 = 34
for Δ𝑠𝑡 = 0.00125 and only one point of overlap. A multirate factor of 𝑚 = 10 is
used for the MR and ASWR results.

Single-rate MR (0) MR (20) S-ASWR D-ASWR
Δ𝑠𝑡 Error Work Error Work Error Work Error Work Error Work
0.01 0.0273 300000 0.0345 51910 0.0274 63930 0.0279 72198 0.0274 74505
0.005 0.0131 600000 0.2126 84760 0.0138 108600 0.0243 115085 0.0130 110360
0.025 0.0042 1200000 0.0950 162710 0.0043 210680 0.0107 215412 0.0037 207800
0.0125 0.0012 2400000 0.0391 317990 0.0012 413980 0.0309 423535 0.0002 400996

Table 3: Errors and work at 𝑇 = 3 for the single rate method, MR with 0 and 20 added points to
the fast region, and static and dynamic ASWR.

Table 3 shows that the MR method without points added to the fast region loses
accuracy compared to the single rate method. The refined fast region allow us to
accelerate the SWR convergence recovering the lost accuracy with a cost less than
the cost of the single rate solution. Increasing the number of subdomains further
makes the simulation more efficient. The S-ASWR method (with static partioning)
has a higher error than the D-ASWR approach after one SWR correction. This is due
to the somewhat random placement of the interfaces in the S-ASWR approach. One
iteration of D-ASWR is sufficient to achieve the required tolerance for this problem.

6 Conclusions

The MR approach proposed in [5] provides an automatic way to identify the fast
and slow components of a problem based on a local error estimate. The coupling
between this fast-slow splitting leads to a loss in accuracy as compared to a single
rate approach. The error can be reduced by increasing the size of the fast region (to
reduce the coupling) but the required size of the overlap is problem dependent.
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We propose algorithms which use the MR splitting to provide a decomposition
of the space-time domain and improved initial guesses for the SWR (correction),
resulting in an ASWR algorithm. The robustness and efficiency of the ASWR comes
from the large reduction in the number of SWR iterations to reach the single rate
accuracy and the increase in the number of subdomains. This can be achieved with
the dynamic partitioning approach. Future work will include an analysis of these
ASWR algorithms.

Acknowledgement The authors would like to thank E. Savcenco for providing his
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A Convergence Analysis of the Parallel Schwarz
Solution of the Continuous Closest Point Method

Alireza Yazdani, Ronald D. Haynes, and Steven J. Ruuth

1 Introduction

Consider the surface intrinsic positive Helmholtz equation

(𝑐 − ΔS)𝑢 = 𝑓 , (1)

whereΔS denotes the Laplace-Beltrami operator associatedwith the surfaceS ⊂ R𝑑 ,
and 𝑐 > 0 is a constant. Discretization of this equation arises in many applications
including the time-stepping of reaction-diffusion equations on surfaces [10], the
comparison of shapes [15], and the solution of Laplace-Beltrami eigenvalue prob-
lems [9]. As a consequence, considerable recent work has taken place to develop
efficient, high-speed solvers for this and other related PDEs on surfaces.
There are several methods to solve surface intrinsic differential equations (DEs).

If a surface parameterization (a mapping from the surface to a parameter space) is
known, then the equation can be solved in the parameter domain [4]. For triangulated
surfaces, a finite element discretization can be created [5]. Alternatively, we can
solve the DE in a neighborhood of the surface using standard PDE methods in the
underlying embedding space [2, 16, 3, 12]. Here, we discretize via the closest point
method (CPM), which is an embedding method suitable for the discretization of
PDEs on surfaces. The closest point method leads to non-symmetric linear systems
to solve. On complex geometries or when varying scales arise, iterative solvers
can be slow despite the sparsity of the underlying systems. In order to develop an
efficient iterative solver which is also capable of parallelism, Parallel Schwarz (PS)
and Optimized Parallel Schwarz (OPS) algorithms have been applied to the CPM for
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(1) in [13]. Here, we study the convergence of the PS-CPM at the continuous level for
smooth, closed 1-manifolds where periodicity is inherent in the geometry. As shown
in Section 3, this problem, posed in R𝑑 , is equivalent to a one-dimensional periodic
problem. This leads us to study the 1-dimensional periodic problem in detail.
While there has been substantial work carried out on Schwarz methods, they have

not been widely used for solving surface DEs. The shallow-water equation is solved
with a PS iteration on the cubed-sphere with a finite volume discretization in [17].
PS and OPSmethods for the 2D positive definite Helmholtz problem are investigated
on the unit sphere in [8]. In [8], the analysis is based on latitudinal subdomains that
are periodic in longitude. Hence, the Fourier transform is a natural choice to solve
the subproblems analytically and obtain the contraction factor. PS and OPS methods
are also analyzed with an overset grid for the shallow-water equation in [14]. In
that work, the discretization in 1D is reduced to the positive definite Helmholtz
problem on the unit circle. The unit circle case is investigated with two equal-sized
subdomains, and a convergence factor is derived for the configuration in terms of the
overlap parameter. In addition, the 2D positive definite Helmholtz problem on the
sphere is analyzed where the subdomains are derived from aYin-Yang grid system. It
is worth noting a key difference between our work and [14]. In our problem, domain
subdivision is carried out in the underlying embedding space. As a consequence, the
unequal-sized subdomain case is essential to our understanding of the problem.
The convergence of PS and OPS for general surfaces remains unknown. Section 2

reviews the CPM. Section 3 studies the PS-CPM combination for the surface intrinsic
positiveHelmholtz equation (1) by analyzing an equivalent one-dimensional periodic
problem. This section proves convergence and derives convergence factors. Although
(1) on 1-manifolds can be solved through parameterization, we only investigate
the convergence of the PS-CPM for 1-manifolds in this paper with the hope of
extending our work to higher dimensional manifolds in the future. Section 4 provides
a numerical experiment in which the PS-CPM contraction factor converges to its PS
counterpart by increasing the grid resolution. Finally, Section 5 gives conclusions.

2 The Closest Point Method

The CPM was first introduced in [16] for explicitly solving evolutionary PDEs
on surfaces. It is an embedding method and allows the use of standard Cartesian
methods for the discretization of surface intrinsic differential operators. The surface
representation and extension of quantities defined on the surface to the surrounding
embedding space is done using the closest point mapping cpS (𝑥) = argmin

𝑠∈S
|𝑥 − 𝑠 |

for 𝑥 ∈ R𝑑 . This mapping gives the closest point in Euclidean distance to the surface
for any point 𝑥 in the embedding space. It is smooth for any point in the embedding
space within a distance 𝑅0 of a smooth surface, where 𝑅0 is a lower bound for the
surface radii of curvature [3].
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Suppose the closest point mapping of a manifold is smooth over a tubular neigh-
borhood Ω ⊂ R𝑑 of the manifold. We introduce �̃� : Ω → R as the solution to the
embedding CPM problem. Two principles are fundamental to the CPM: equivalence
of gradients and equivalence of divergence [16]. Assuming a smooth manifold S,
the equivalence of gradients principle gives us ∇�̃�(cpS) = ∇S𝑢 since �̃�(cpS) is
constant in the normal direction to the manifold. Further, applying the equivalence
of divergence principle, ∇ · (∇�̃�(cpS)) = ∇S · (∇�̃�(cpS)) holds on the manifold.
Therefore, on the manifold,

Δ�̃�(cpS) = ∇ · (∇�̃�(cpS)) = ∇S · (∇�̃�(cpS)) = ∇S · (∇S𝑢) = ΔS𝑢. (2)

Amodified version of (2) offers improved stability at the discrete level and is normally
used in elliptic problems [11, 9, 7]. The regularized Laplace operator is

Δ#
ℎ�̃� = Δ�̃�(cpS) −

2𝑑
ℎ2

[
�̃� − �̃�(cpS)

]
, (3)

where 0 < ℎ ≪ 1. As in [11, 9], we take the parameter ℎ to be equal to the mesh
spacing in the fully discrete setting.
Equation (3) gives our replacement for the Laplace-Beltrami operator. Applying

it, and extending the function 𝑓 off the manifold using the closest point mapping
gives our embedding equation for (1):

(𝑐 − Δ#
ℎ) �̃� = 𝑓 (cpS), 𝑥 ∈ Ω. (4)

Standard numerical methods in the embedding space may be applied to (4) to
complete the discretization. In this paper, we apply standard second order finite
differences on regular grids to approximate the derivative operators. Because discrete
points do not necessarily lie on S, an interpolation scheme is needed to recover
surface values. Utilizing tensor product barycentric Lagrangian interpolation [1], an
extension matrix E is defined to extend values off of the manifold. Note that the
extension matrix may be viewed as a discretization of the closest point mapping.
Using a mesh spacing ℎ and degree-𝑝 interpolation polynomials, it is sufficient

to numerically approximate equation (4) in a narrow tube around S of radius 𝑟 =√︁
(𝑑 − 1) (𝑝 + 1)2 + (𝑝 + 3)2ℎ/2. A more thorough explanation of the CPM at the
discrete level can be found in [11].

3 The PS-CPM Convergence Analysis

PS is an overlapping domain decomposition method which is designed to iteratively
solve DEs over subdomains, distributing the computational costs. It is also capable
of parallelism and can be combined with the CPM, a method whose underlying
linear system is sparse. We assume S to be a smooth, closed 1-manifold in R𝑑 with
arclength 𝐿. We consider the case with two subdomains, but the discussion can be
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generalized to any finite number of subdomains [18]. We let the disjoint subdomains
be S̃1 and S̃2. We parameterize the manifold by arclength 𝑠 starting at a boundary
of S̃1. Next, we let the overlapping subdomains be S1 = [𝑎1, 𝑏1] and S2 = [𝑎2, 𝑏2].
Since overlapping subdomains are needed, we have 𝑎1 < 0 and 𝑏2 > 𝐿. Define
ℓ1 ≡ 𝑏1 − 𝑎1 and ℓ2 ≡ 𝑏2 − 𝑎2 to be the subdomain lengths. Further, let 𝛿1 = 𝑏1 − 𝑎2
and 𝛿2 = 𝑏2 − (𝑎1 + 𝐿) denote the subdomain overlaps at 𝑠 = ℓ1 and 𝑠 = ℓ2,
respectively. In addition, we assume 0 < 𝛿1 + 𝛿2 < min{ℓ1, ℓ2}. In the CPM, the
overlapping subdomains Ω1 and Ω2, corresponding to S1 and S2, are constructed
using a graph-based partitioning algorithm applied over the computational tube [13].
Then, the PS-CPM for equation (1) is: for 𝑛 = 0, 1, . . . and for 𝑗 = 1, 2 solve{

(𝑐 − Δ#
ℎ) �̃�𝑛+1𝑗 = 𝑓 (cpS), in Ω 𝑗 ,

�̃�𝑛+1𝑗 = �̃�𝑛 (cpS), on Γ 𝑗𝑘 , 𝑘 ≠ 𝑗
(5)

where Γ 𝑗𝑘 for 𝑗 , 𝑘 = 1, 2 are the boundaries of subdomains 𝑗 and 𝑘 .
To begin, an initial guess is needed over the subdomain boundaries. An iteration

may then be completed by solving all subproblems. This gives new boundary values
that can be used to initiate the next iteration, and so on, until convergence. In this form
of the Schwarz algorithm, there is no concept of a global solution. In order to construct
the global solution, a weighted average of subdomain solutions is utilized [6]. In this
paper, at any time, the approximation of the global solution is given as the union of
the disjoint subdomain solutions 𝑢𝑛 = 𝑢𝑛1 | S̃1

∪𝑢𝑛2 | S̃2
. This is called restricted additive

Schwarz (RAS), and we use the labels PS and RAS interchangeably. Our analysis
examines the equivalent one dimensional periodic problem formulated below.

Theorem 1 In the limit as ℎ → 0, and using two subdomains S1 = [𝑎1, 𝑏1] and
S2 = [𝑎2, 𝑏2], the PS-CPM for the positive surface intrinsic Helmholtz equation (5)
is equivalent to:



(𝑐 − d2

d𝑠2 )𝑢𝑛+11 = 𝑓 , in S1,

𝑢𝑛+11 (𝑎1) = 𝑢𝑛2 (𝑎1 + 𝐿),
𝑢𝑛+11 (𝑏1) = 𝑢𝑛2 (𝑏1),

,



(𝑐 − d2

d𝑠2 )𝑢𝑛+12 = 𝑓 , in S2,

𝑢𝑛+12 (𝑎2) = 𝑢𝑛1 (𝑎2),
𝑢𝑛+12 (𝑏2) = 𝑢𝑛1 (𝑏2 − 𝐿),

(6)

where 𝐿 is the manifold length.

Proof For a smooth manifold S, the regularized operator Δ#
ℎ is consistent with

the Laplace operator on the manifold [11]. Thus the CPM is consistent with the
surface intrinsic PDE problems in the limit ℎ → 0 where ℎ denotes the mesh size.
Parameterizing a one-dimensional manifold S in R𝑑 by arclength 𝑠, the differential
operator ΔS becomes d2/d𝑠2, yielding our result. □

In [14], the convergence of (6) is studied for an equal-sized partitioning. The
partitioning arising from the PS-CPM problems in (5) is performed within the
embedding space. As a consequence, our subdomainswill be unequal. Thismotivates
us to investigate the convergence of the method for an unequal-sized partitioning.
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By defining the errors 𝜖𝑛𝑗 = 𝑢𝑛𝑗 − 𝑢 |S 𝑗 , 𝑗 = 1, 2, and using the linearity of (1),
iteration (6) is reduced to:



(𝑐 − d2

d𝑠2 )𝜖𝑛+11 = 0, in S1,

𝜖𝑛+11 (𝑎1) = 𝜖𝑛2 (𝑎1 + 𝐿),
𝜖𝑛+11 (𝑏1) = 𝜖𝑛2 (𝑏1),

,



(𝑐 − d2

d𝑠2 )𝜖𝑛+12 = 0, in S2,

𝜖𝑛+12 (𝑎2) = 𝜖𝑛1 (𝑎2),
𝜖𝑛+12 (𝑏2) = 𝜖𝑛1 (𝑏2 − 𝐿).

(7)

After solving the ODEs in (7), error values at the boundaries can be computed. At
each iteration, these error values depend on the error values at the boundaries from
the previous iteration. To state this concisely, we define an error vector at iteration 𝑛
which is comprised of the error values at the boundaries:

𝝐𝑛 := [𝜖𝑛1 (𝑏2 − 𝐿), 𝜖𝑛1 (𝑎2), 𝜖𝑛2 (𝑏1), 𝜖𝑛2 (𝑎1 + 𝐿)]𝑇 . (8)

We obtain, in matrix form, 𝝐𝑛+1 = MPS𝝐
𝑛, where

MPS =



0 0 𝑟1 𝑝1
0 0 𝑞1 𝑠1
𝑟2 𝑝2 0 0
𝑞2 𝑠2 0 0


(9)

is called the iteration matrix. It has entries

𝑝 𝑗 =
1 − 𝑒2

√
𝑐 (ℓ 𝑗−𝛿 𝑗−1)

1 − 𝑒2
√
𝑐ℓ 𝑗

𝑒
√
𝑐𝛿 𝑗−1 , 𝑟 𝑗 =

1 − 𝑒2
√
𝑐𝛿 𝑗−1

1 − 𝑒2
√
𝑐ℓ 𝑗

𝑒
√
𝑐 (ℓ 𝑗−𝛿 𝑗−1) ,

𝑞 𝑗 =
1 − 𝑒2

√
𝑐 (ℓ 𝑗−𝛿 𝑗 )

1 − 𝑒2
√
𝑐ℓ 𝑗

𝑒
√
𝑐𝛿 𝑗 , 𝑠 𝑗 =

1 − 𝑒2
√
𝑐𝛿 𝑗

1 − 𝑒2
√
𝑐ℓ 𝑗
𝑒
√
𝑐 (ℓ 𝑗−𝛿 𝑗 ) , (10)

for 𝑗 = 1, 2 and 𝛿0 ≡ 𝛿2. The definitions of 𝛿 𝑗 and ℓ 𝑗 may be found at the beginning
of this section. The following lemma holds for the quantities in (10):

Lemma 1 ([18])
Suppose 0 < 𝛿1 + 𝛿2 < min{ℓ1, ℓ2}. Then the scalars 𝑝 𝑗 , 𝑞 𝑗 , 𝑟 𝑗 , 𝑠 𝑗 , 𝑗 = 1, 2,

appearing in (10) satisfy 0 < 𝑞 𝑗 + 𝑠 𝑗 < 1 and 0 < 𝑝 𝑗 + 𝑟 𝑗 < 1.

Now, we arrive at the most important result of this section.

Theorem 2 Under the restrictions on the partitioning of the manifold S detailed
in Lemma 1 above, the PS iteration (6) for the positive Helmholtz equation on any
closed, smooth one-dimensional manifold converges globally.

Proof Wemust show the spectral radius of the iteration matrix, 𝜌(MPS), is less than
1. ∥MPS∥∞ bounds the spectral radius, 𝜌(MPS) ≤ ∥MPS∥∞ = max{𝑟 𝑗 + 𝑝 𝑗 , 𝑞 𝑗 + 𝑠 𝑗 }.
In Lemma 1, we have shown that 0 < 𝑝 𝑗 + 𝑟 𝑗 < 1 and 0 < 𝑞 𝑗 + 𝑠 𝑗 < 1. Therefore,
∥MPS∥∞ < 1, and consequently the algorithm converges. □

We define the convergence factor 𝜅 as the ratio of the ∞-norm of the error
vector (8) at two steps 𝑛 + 2 and 𝑛, 𝜅 = ∥𝝐𝑛+2∥∞/∥𝝐𝑛∥∞. Considering the inequality
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∥𝝐𝑛+1∥∞ ≤ ∥MPS∥∞∥𝝐𝑛∥∞, ∥MPS∥2∞ is an upper bound for the convergence factor.
That is, 𝜅 ≤ ∥MPS∥2∞. In the following corollary, we show that the our analysis for
the equal-sized partitioning agrees with the one obtained in [14].

Corollary 1 Assume an equal-sized partitioning for the PS iteration (6). That is,
S1 = [−𝛿, 𝐿/2 + 𝛿], S2 = [𝐿/2 − 𝛿, 𝐿 + 𝛿]. Then, the convergence factor can be
calculated as 𝜅 ≤ (𝑝 + 𝑟)2 = (𝑒

√
𝑐𝐿/2 + 𝑒

√
𝑐𝛿)2/(1 + 𝑒

√
𝑐 (𝐿/2+𝛿) )2.

Proof If we make the simplifying assumption that both subdomains are of equal
size and have a common overlap size, then 𝑞1 = 𝑞2 = 𝑝1 = 𝑝2 = 𝑝 and 𝑠1 = 𝑠2 =
𝑟1 = 𝑟2 = 𝑟 . The iteration matrix becomes a doubly stochastic matrix with row and
column sums of 𝑝 + 𝑟, and subsequently 𝜌(MPS) = 𝑝 + 𝑟. By a direct substitution
for 𝑝 and 𝑟 , we obtain 𝜅 = 𝜌(MPS)2 = (𝑒

√
𝑐𝐿/2 + 𝑒

√
𝑐𝛿)2/(1 + 𝑒

√
𝑐 (𝐿/2+𝛿) )2. □

4 Numerical Simulation

Here we numerically verify the results obtained in Section 3. Since numerical so-
lutions of the PS-CPM and the PS algorithm will be compared, we use RAS as the
domain decomposition method to build a global approximate solution. It is shown
in [6] that RAS and PS are identical iterations and have the same convergence rate.
Hence, we will use RAS-CPM instead of PS-CPM hereafter.
Theorem 1 shows that the CPM equipped with RAS as a solver is in the limit

as ℎ → 0 equivalent to RAS applied to a 1D periodic problem. To verify this, we
numerically solve (1) with 𝑐 = 1 and 𝑓 (𝑠) = sin(2𝜋𝑠/𝐿) using the RAS-CPM for
the boundary of a Möbius strip with width 1, whose center circle has radius 1. The
initial guess for the discrete solution is taken as 𝑈 (0) = 0. Two disjoint subdomains
are created by splitting the length of the curve in a 1:2 ratio, and overlapping
subdomains are formed using overlaps 𝛿 = 𝛿1 = 𝛿2 = 0.1𝐿. The solution using the
RAS-CPM with grid spacing ℎ = 0.01 and fourth degree barycentric Lagrangian
interpolation applied in a dimension-by-dimension fashion is shown in Fig. 1 (left).
Here, the disjoint subdomains are visualized as point clouds. Convergence histories
for various grid spacings are depicted in Fig. 1 (right). Here, the RAS and the RAS-
CPM contraction factors are compared with the theoretical result. The errors are
defined as the max-norm of the difference of the DD solution and the single domain
solution. As we observe in Fig.1 (right), the RAS error has the same decay rate as
that described in Theorem 1 (shown as the dashed line). In addition, the RAS-CPM
error tends toward the RAS error as the mesh size is reduced.
As another experiment, (1) is solved with two equal-sized subdomains, assuming

S is the unit circle. The disjoint subdomains are shown in Fig. 2 (left). Fig. 2 (right)
shows the effect of the overlap parameter 𝛿 onRAS-CPM for three different grids (ℎ =
0.05, 0.01, 0.005). For a given ℎ and 𝛿, the numerical convergence factor changes
slightly as the iteration progresses, hence we present an average of the convergence
factor over all iterations. To compare with the result in Corollary 1, the theoretical
convergence factor associated with a double iteration, (𝑒𝐿/2 + 𝑒𝛿)2/(1+ 𝑒𝐿/2+𝛿)2, is
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Fig. 1: Left: RAS-CPM solution of the surface intrinsic Helmholtz equation on edge of a Möbius
strip. The disjoint subdomains are depicted. Right: Error versus the double iteration number.
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Fig. 2: Left: Equal-sized disjoint subdomains for the unit circle. Right: Comparison of the RAS-
CPMconvergence factor and theoretical convergence factor for different values of overlap parameter
in an equal-sized subdomain configuration for the unit circle.

shown in Fig. 2 (right) as a dashed line. The observed RAS-CPM contraction factor
converges to the theoretical value as the grid quality improves. By increasing the
overlap, 𝜅 is reduced and a better convergence factor is obtained.

5 Conclusion

Employing RAS as a solver for the CPMparallelizes the solution of PDEs on surfaces
and enhances the performance for large scale problems. In this paper, convergence
of the (continuous) CPM equipped with a restricted additive Schwarz solver was
investigated for a one-dimensional manifold in R𝑑 . Convergence was shown for
the two-subdomain case; extensions to any finite number of subdomains is under
investigation [18]. Observed convergence rates agree with our theory as the mesh
spacing is refined. Indeed, the results apply to any convergent discretization (e.g., a
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finite element discretization) of RAS solvers applied to surface PDEs as the mesh
spacing approaches zero. Finally, note that other variants of Schwarz methods –
sequential restricted additive Schwarz, optimized restricted additive Schwarz, and
multiplicative methods – can be utilized as a solver or a preconditioner for the CPM.
We plan to extend our analysis to these cases as well.

Acknowledgements The authors gratefully acknowledge the financial support of NSERC Canada
(RGPIN 2016-04361 and RGPIN 2018-04881).
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Dual-Primal Preconditioners for Newton-Krylov
Solvers for the Cardiac Bidomain Model

Ngoc Mai Monica Huynh, Luca F. Pavarino, and Simone Scacchi

1 Introduction

We present here an overview of Newton-Krylov solvers for implicit time discretiza-
tions of the cardiac Bidomain equations, preconditioned by Balancing Domain De-
composition with Constraints (BDDC) [5] or Dual-Primal Finite Element Tearing
and Interconnecting (FETI-DP) [7] algorithms.
The Bidomainmodel describes the propagation of the electric signal in the cardiac

tissue by means of two parabolic partial differential equations (PDEs) [3, 13]; it is
coupled through the non-linear reaction term to a system of ordinary differential
equations (ODEs), modeling the ionic currents through the cell membrane and the
associated opening and closing process of ionic channel gates.
One of the main issues to face when computing these systems is the choice of

an appropriate solver, which can combine computational efficiency and accuracy in
representing the solution. As a matter of fact, the need of accurately representing
phenomena both at macroscopic and at microscopic level leads to time and space
discretizationswithmillions of degrees of freedom (dofs) ormore. The solution of the
associated large discrete systems for increasing dimensions represent a challenging
computation, requiring efficient parallel solvers [4, 14].
In this work we show some parallel numerical results obtained with two non-

linear solvers, each of whom derives from a different solution strategy: a monolithic
(or coupled) solution approach and a staggered (or decoupled) approach. Both these
approaches arise from an implicit time discretization of the Bidomain model, which
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is solved coupled to or decoupled from the ionic equations, respectively, as in Refs.
[11, 12].
In Sec. 2 a brief description of the model is provided, while in Sec. 3 we present

our solution strategies. Parallel numerical experiments in Sec. 4 using the PETSc
library [1] end this work.

2 The Bidomain cardiac electrical model

The propagation of the electrical impulse in the cardiac tissue is modeled by a system
of two parabolic reaction-diffusion PDEs coupled through the non-linear reaction
term to a system of ODEs describing the flow of ionic currents inward and outward
the cell membrane:




𝜒𝐶𝑚
𝜕𝑣

𝜕𝑡
− div (𝐷𝑖 · ∇𝑢𝑖) + 𝐼ion (𝑣, 𝑤) = 0

−𝜒𝐶𝑚 𝜕𝑣
𝜕𝑡
− div (𝐷𝑒 · ∇𝑢𝑒) − 𝐼ion (𝑣, 𝑤) = −𝐼𝑒app in Ω × (0, 𝑇),

𝜕𝑤

𝜕𝑡
− 𝑅(𝑣, 𝑤) = 0

(1)

where 𝑢𝑖 and 𝑢𝑒 are the intra- and extracellular potentials, 𝑣(𝑥, 𝑡) = 𝑢𝑖 (𝑥, 𝑡) −𝑢𝑒 (𝑥, 𝑡)
is the transmembrane potential and 𝑤 represents the opening and closing process of
the ionic channel gates in the cell membrane. Here,𝐶𝑚 is the membrane capacitance,
𝐼ion the ionic membrane current (both for unit area of the membrane surface), 𝜒 is
the membrane surface to volume ratio and 𝐼app is the applied external current. This
system is known in the literature as Bidomain model [3, 13].
In this work, we consider a phenomenological ionic model, named the Rogers-

McCulloch ionic model [15]. More realistic and complex ionic models have been
integrated in different numerical studies, see e.g. Refs. [4, 14].

3 Dual-Primal Newton-Krylov methods

Space and time discretizations. The cardiac domain Ω is discretized in space
with a structured quasi-uniform grid of hexahedral finite elements, leading to the
semi-discrete system



𝜒𝐶𝑚M 𝜕

𝜕𝑡

[
u𝑖
u𝑒

]
+ A

[
u𝑖
u𝑒

]
+

[
𝑀 Iion (v,w)
−𝑀 Iion (v,w)

]
=

[
0

−𝑀 Ie
app

]
,

𝜕w
𝜕𝑡

= 𝑅 (v,w) ,
(2)
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with the stiffness and mass block-matrices A =

[
𝐴𝑖 0
0 𝐴𝑒

]
,M =

[
𝑀 −𝑀
−𝑀 𝑀

]
.

Regarding the time discretization, in the literature it is very common to adopt
operator splitting strategies [2, 16] or implicit-explicit (IMEX) schemes [4, 17], in
order to avoid the elevated computational costs related to the solution of the non-
linear discrete problem. Here we propose two ways for the solution of the discretized
system using the Backward Euler method: a monolithic, or coupled, solution strategy
where at each time step we solve the non-linear system with the discrete Bidomain
coupled with the ionic model, as in Refs. [8, 12], and a staggered, or decoupled,
solution approach (as in Refs. [9, 11]). Both approaches rely on a preconditioned
Krylov method nested within a Newton loop.

Coupled solution approach. The monolithic strategy can be summarized in al-
gorithmic steps as follows. At the 𝑛-th time step, solve the non-linear system
Fcoupled (s𝑛+1) = 0, with s𝑛+1 = (u𝑛+1𝑖 , u𝑛+1𝑒 ,w𝑛+1):

Fcoupled (s𝑛+1) =


(𝜒𝐶𝑚M + 𝜏A)

[
u𝑛+1𝑖

u𝑛+1𝑒

]
+ 𝜏

[
𝑀Iion (v𝑛+1,w𝑛+1)
−𝑀Iion (v𝑛+1,w𝑛+1)

]
−G

w𝑛+1 − 𝜏𝑅(v𝑛+1,w𝑛+1) − w𝑛

withG = 𝜒𝐶𝑚M
[
u𝑛𝑖
u𝑛𝑒

]
+𝜏

[
0

−𝑀Ie
app

]
and being 𝜏 = 𝑡𝑛+1− 𝑡𝑛. This non-linear system

is solved with a Newton method:

1. compute and solve the Jacobian linear system DF(s𝑛) ds𝑛+1 = −F(s𝑛), where
ds𝑛+1 := (du𝑛+1𝑖 , du𝑛+1𝑒 , dw𝑛+1) is the increment at step 𝑛 + 1;

2. update u𝑛+1𝑖 = u𝑛𝑖 + du𝑛+1𝑖 , u𝑛+1𝑒 = u𝑛𝑒 + du𝑛+1𝑒 and w𝑛+1 = w𝑛 + dw𝑛+1.
Since the linear system in Step 1 is non-symmetric (due to the presence of the gating
term), it is necessary to use the Generalized Minimal Residual method (GMRES)
for its solution.

Decoupled solution approach. As alternative to the previous strategy, the staggered
approach requires first the solution of the ionic model, then solve and update the
Bidomain equations. For each time step 𝑛,

a. given the intra- and extracellular potentials at the previous step, hence v :=
u𝑛𝑖 − u𝑛𝑒 , compute the gating

w𝑛+1 − 𝜏𝑅(v,w𝑛+1) = w𝑛;

b. solve and update the Bidomain non-linear system. Given u𝑛𝑖,𝑒 at the previous
time step and given w𝑛+1, compute u𝑛+1 = (u𝑛+1𝑖 , u𝑛+1𝑒 ) by solving the system
Fdecoupled (u𝑛+1) = G

Fdecoupled (u𝑛+1) = (𝜒𝐶𝑚M + 𝜏A)
[
u𝑛+1𝑖
u𝑛+1𝑒

]
+ 𝜏

[
𝑀Iion (v𝑛+1,w𝑛+1)
−𝑀Iion (v𝑛+1,w𝑛+1)

]
,
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G = 𝜒𝐶𝑚M
[
u𝑛𝑖
u𝑛𝑒

]
+ 𝜏

[
0

−𝑀Ie
app

]
.

The Jacobian linear system associated to the non-linear problem in step (b) is sym-
metric, thus allowing us to use the Conjugate Gradient (CG) method within each
Newton iteration.

Dual-primal preconditioners. In both approaches, a linear system has to be solved
within each Newton loop, either by GMRES (in case of the coupled approach) or by
CGmethod (for the decoupled case), preconditioned by a dual-primal substructuring
algorithm.
In this work, we focus on the most common dual-primal iterative substructuring

algorithms, the BDDC and FETI-DP methods.
FETI-DP methods were first proposed in Ref. [7] and are based on the transposition
of the linear system to a constrained minimization problem.
Conversely, BDDCmethods were introduced in Ref. [5] as an alternative to FETI-DP
and provide a preconditioner for the discretized linear problem.

Convergence rate bound. In Ref. [10] these two algorithms are shown to be spec-
trally equivalent, thus allowing us to derive a convergence rate estimate for the
preconditioned operator, which holds for both preconditioners in case the same
coarse space is chosen. In the coupled approach, the bound is related to the residual
at the 𝑚-th iteration of GMRES, while in the decoupled strategy the bound is for
the condition number. Details on the derivation of both bounds can be found in the
works of the authors [9, 8].

4 Numerical experiments

The parallel numerical experiments are
performed on an idealized left ventricu-
lar geometry, modeled as a portion of half
truncated ellipsoid, see Fig. 1.
Boundary and initial conditions represent
an isolated tissue with resting potential.
We simulate the initial excitation process
on the time interval [0, 2] ms following
an extracellular stimulus. Fig. 1: Computational domain.

Different supercomputers are taken into account: the Galileo cluster from the Cineca
centre (a Linux Infiniband cluster equipped with 1084 nodes, each with 36 2.30
GHz Intel Xeon E5-2697 v4 cores and 128 GB/node, for a total of 39024 cores,
www.hpc.cineca.it) for the tests related to the coupled solution approach and the
weak scaling of the decoupled case; the Linux cluster Indaco at the University of
Milan (a Linux Infiniband cluster with 16 nodes, each carrying 2 processors Intel
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Xeon E5-2683 v4 2.1 GHzwith 16 cores each, https://www.indaco.unimi.it/)
for the strong scaling of the decoupled approach.
Our C code is based on the parallel library PETSc [1] from the Argonne National

Laboratory. BDDC and FETI-DP preconditioners are built-in in PETSc library, both
applied with default parameters (coarse space made up of vertices and edge averages,
direct subdomain solver with a LU factorization, etc), while Boomer Algebraic
MultiGrid (bAMG) is from the Hypre library [6]. In our tests, we always assign one
subdomain to each processor. In the strong scaling tests, part of the speedup comes
from the superlinear computational complexity of the sparse subdomain solvers
based on LU factorization.
We manually implement the Newton method for the coupled case, with an absolute
residual stopping criterion with tolerance 10−4, while for the decoupled case we
use the default non-linear solver (SNES) from PETSc library and we adopt the
default SNES convergence test as stopping criterion, based on the comparison of the
𝐿2-norm of the non-linear function at the current iterate and at the current step (see
PETScmanual [1] for tolerance values and further details). The linear systems arising
in Steps 1 and (b) of the two approaches are solved with GMRES and CG methods
respectively, both using PETSc default stopping criteria and default tolerances. We
compare the following quantities: the average Newton iterations per time step nit,
the average linear iterations per Newton iteration lit and the average CPU solution
time per time step time in seconds.

Coupled tests. The linear system arising from the discretization of the Jacobian
problem at each Newton step is solved with GMRES method, preconditioned by
BDDC preconditioners and bAMG.

Coupled weak scaling. We report here a weak scaling test. We fix the local mesh to
12 · 12 · 12 elements and we increase the number of subdomains (and therefore the
number of processors) from 32 to 256, yielding an ellipsoidal portion of increasing
dimensions. It is clear from Table 1 that BDDC performs better than bAMG in terms
of average number of linear iterations per non-linear step, as this parameter is lower
for BDDC and does not increase with the number of processors. As a matter of fact,
there is an increasing reduction rate up to 90% for the average linear iterations. In
contrast, BDDC’s average CPU time is higher than bAMG CPU time (we do not
have a clear explanation of this fact), but we remark that BDDC timings do not
increase significantly when the number of processors is increased from 32 to 256,
while bAMG timings more than double.

Coupled strong scaling. We fix the global mesh to 128 ·128 ·24 elements (resulting
in more than 1 million of global dofs) and we increase the number of processors
from 32 to 256. As the number of processor increases, the local number of dofs
decreases and BDDC’s average number of linear iterations and CPU times decrease
(see Table 2), while bAMG iterations increase and the CPU timings decrease less
than expected, even if they are lower than BDDC timings. Moreover, in order to test
the efficiency of the proposed solver on the parallel architecture, we compute the
parallel speedup 𝑇1

𝑇𝑁
, which is the ratio between the runtime 𝑇1 needed by 1 ( or 𝑁1)
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Table 1: Coupled weak scaling test. Local mesh of 12 · 12 · 12 elements. Comparison of Newton-
Krylov solvers preconditioned by BDDC and bAMG. Cluster: Galileo.

procs. global n. dofs BDDC bAMG
nit lit time nit lit time

32 180,075 2 45 6.8 2 142 1.5
64 356,475 2 32 6.9 2 145 1.9
128 705,675 2 23 7.0 2 158 2.1
256 1,404,075 2 23 8.5 2 212 3.2

processor and the average runtime 𝑇𝑁 needed by 𝑁 processors to solve the problem.
Here, we set 𝑁1 = 32. While bAMG is sub-optimal, BDDC outperforms the ideal
linear speedup.

Table 2: Coupled strong scaling test. Global mesh of 128 · 128 · 24 elements (1,248,075 dofs).
Comparison of Newton-Krylov solvers preconditioned by BDDC and bAMG. Parallel speedup
(𝑆𝑝), with ideal speedup in brackets. Cluster: Galileo.

procs. BDDC bAMG
nit lit time 𝑆𝑝 nit lit time 𝑆𝑝

32 2 37 189.3 - 2 187 15.1 -
64 2 44 59.1 3.2 (2) 2 222 9.2 1.6 (2)
128 2 29 20.1 9.4 (4) 2 240 5.3 2.8 (4)
256 2 46 10.2 18.5 (8) 2 280 3.2 4.7 (8)

Decoupled tests. The outer Newton loop is solved with the non-linear solver SNES
of the PETSc library, which implements a Newton method with cubic backtracking
linesearch. The linear system arising from the discretization of the Jacobian problem
at each Newton step is solved with the CG method, preconditioned by BDDC or
FETI-DP preconditioners.

Decoupled weak scaling. We fix here the local mesh size to 16 · 16 · 16 and we
increase the number of processors from 32 to 2048. Also in this case, the good
performance of the dual-primal algorithms is confirmed by the average number of
linear iterations per Newton step, which is low and remains stable as the number of
subdomains increases (see Table 3).

Decoupled strong scaling. We now compare the performance of the dual-primal
preconditioners while varying the number of processors from 64 to 256 over a time
interval of [0, 100] ms, for a total of 2000 time steps. The global mesh is fixed to
192 · 96 · 24 elements (936,050 dofs). We can observe an overall reduction of the
CPU time while increasing the number of subdomains from 64 to 128. As concerns
FETI-DP behavior, the increase of average CPU time and average number of linear
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Table 3: Decoupled weak scaling test. Local mesh of 16 · 16 · 16 elements. Comparison of Newton-
Krylov solvers preconditioned by BDDC and FETI-DP. Cluster: Galileo.

procs dofs BDDC FETI-DP
nit lit time nit lit time

32 278,850 1 30 5.4 1 20 4.7
64 549,250 1 37 6.2 1 20 6.5
128 1,090,050 1 26 7.5 1 19 6.6
256 2,171,650 1 25 8.7 1 17 10.7
512 4,309,890 1 27 10.5 1 18 11.4
1024 8,586,370 1 28 12.5 1 19 11.0
2048 17,139,330 1 28 26.6 1 19 21.4

iterations between 128 and 256 processors is unexpected and further investigations
should be devoted to explain this result (Figure 2).
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Fig. 2: Decoupled strong scaling. Global mesh of 192 ·96 ·24 elements (936,050 dofs). Comparison
between BDDC (left column) and FETI-DP (right column) preconditioners. Top: average number
of linear iterations per time step; bottom: average CPU time in seconds of each SNES solver call.
Cluster: Indaco.
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5 Conclusion

We designed and numerically tested two different solution strategies for the solution
of implicit time discretizations of the Bidomain model. Each of these solvers is
preconditioned by a dual-primal substructuring algorithm, which perform better
than the algebraic multigrid method in terms of number of iterations, scalability, and
speedup, even if the computational times of algebraic multigrid are still better for
these parameter settings. Future works should extend these solver to the solution of
coupled cardiac electro-mechanical models and to more complex ionic models.
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Domain Decomposition Algorithms for
Physics-Informed Neural Networks

Hyea Hyun Kim1 and Hee Jun Yang2

1 Introduction

Domain decomposition algorithms are widely used as fast solutions of algebraic
equations arising from discretization of partial differential equations. The original
algebraic equations are partitioned and solved in each subdomain combined with
an iterative procedure. The resulting solution for the original algebraic equations
is then obtained from the iterative procedure. In such approaches, the convergence
often gets slow as more subdomains are introduced. To accelerate the convergence,
a global coarse problem is formed and combined in the iterative procedure. We refer
[9] for a general introduction to domain decomposition algorithms.
Recently, there have been developed many successful approaches to solve partial

differential equations using deep neural networks, see [1, 8, 7, 5]. The advantage
of these new approaches is that they can be used for partial differential equations
without much concern on discretization methods suitable for the given problem. On
the other hand, a suitable design of the neural network and a suitable choice of data
sets for training the parameters are important for these new approaches. In general,
the network can be large and the data set can be also large. The parameter training
then becomes inefficient and even may encounter numerical instability.
The purpose of this study is to develop domain decomposition algorithms for

solutions of partial differential equations using deep neural networks. The idea is
similar to the classical domain decomposition methods. The problem is solved using
independent smaller neural networks iteratively and the smaller neural networks are
trained as solutions of local problems, that are restriction of the original problem to
smaller subdomains. In previous pioneering studies by [3, 4], the same idea is used
but there has been no study for accelerating the convergence of the iterative scheme.
In this work, an additional global coarse network is introduced and it is trained as

1Department of Applied Mathematics and Institute of Natural Sciences, Kyung Hee Univer-
sity, Korea. hhkim@khu.ac.kr ·2Department of Mathematics, Kyung Hee University, Korea.
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a solution of the global problem using a coarse data set. The global coarse network
is then used to accelerate the convergence of the iterative solution obtained from
the independent smaller neural networks. The smaller neural networks and global
coarse network are trained in each iteration. Their parameter training can be done
in parallel. Among several neural network approaches, we will consider the PINN
(Physics Informed Neural Network) method by [7]. Our domain decomposition
approach can be applied to other methods by [1, 8, 5] as well.
In this work we report the first successful result for parallel algorithms for PINN

using both local networks and one global coarse network. The introduction of the
global coarse network is noble and it accelerate the convergence of the iteration.
Numerical results also present that the use of the global coarse network makes the
parallel algorithm scalable, i.e., the number of iterations is robust to the increase of
the number of subdomains.
This paper is organized as follows. In Section 2, we introduce the method by

PINN for solving partial differential equations and in Section 3 we propose a two-
level overlapping domain decomposition algorithm for solving partial differential
equations utilizing the PINN approach. In Section 4, numerical results are presented
for a model elliptic problem in two dimensions and conclusions are given.

2 Physics informed neural networks (PINN)

Wewill introduce the physics-informed neural networks (PINN) which are trained to
solve supervised learning tasks in order to satisfy any given laws of physics described
by partial differential equations, see [7]. We consider a general differential operator
with a boundary condition,

L(𝑢) = 𝑓 , in Ω,
B(𝑢) = 𝑔, on 𝜕Ω,

(1)

where L can be a differential operator defined for a function 𝑢 and B describes a
given boundary condition on 𝑢, and 𝑓 , 𝑔 are given functions. We assume that the
model problem in (1) is well-posed and the solution 𝑢 exists. We then approximate
the solution 𝑢 in (1) by a neural network,𝑈 (𝑥; 𝜃), that can be trained by minimizing
the cost function J (𝜃) consisting of the two terms

J (𝜃) = J𝑋Ω (𝜃) + J𝑋𝜕Ω (𝜃),

where

J𝑋Ω (𝜃) :=
1
|𝑋Ω |

∑︁
𝑥∈𝑋Ω

|L(𝑈 (𝑥; 𝜃)) − 𝑓 (𝑥) |2,

J𝑋𝜕Ω (𝜃) :=
1
|𝑋𝜕Ω |

∑︁
𝑥∈𝑋𝜕Ω

|B(𝑈 (𝑥; 𝜃)) − 𝑔(𝑥) |2.
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In the above, 𝑋𝐷 denotes the collection of points chosen from the region 𝐷 and |𝑋𝐷 |
denotes the number of points in the set 𝑋𝐷 . The cost function J𝑋Ω (𝜃) and J𝑋𝜕Ω (𝜃)
are designed so that the optimized neural network 𝑈 (𝑥; 𝜃) satisfies the equations in
(1) derived from physics laws.

3 A two-level overlapping algorithm for PINN

We consider the following model elliptic problem in two dimensional domain Ω,

−△𝑢 = 𝑓 in Ω,
𝑢 = 𝑔 on Ω.

(2)

We propose an iterative scheme to find its solution 𝑢 by using overlapping subdomain
partition, {Ω𝑖}𝑖 , with an overlapping width 𝛿. For a given 𝑢 (𝑛) , we solve the following
problem in each subdomain Ω𝑖 to find 𝑢 (𝑛+1)𝑖 ,

−△𝑢 (𝑛+1)𝑖 = 𝑓 in Ω𝑖 ,

𝑢 (𝑛+1)𝑖 = 𝑢 (𝑛) on 𝜕Ω𝑖 ,

𝑢 (𝑛+1)𝑖 = 𝑢 (𝑛) in Ω \Ω𝑖 .
(3)

Using 𝑢 (𝑛+1)𝑖 , the next iterate is given by

𝑢 (𝑛+1) = (1 − 𝑁𝜏)𝑢 (𝑛) + 𝜏
𝑁∑︁
𝑖=1

𝑢 (𝑛+1)𝑖 , (4)

where 𝑁 denotes the number of subdomains and 𝜏 denotes the relaxation parameter.
Let 𝑁𝑐 be the maximum number of subdomains sharing the same geometric position
inΩ. With 𝜏 ≤ 1/𝑁𝑐, 𝑢 (𝑛) converges to the solution 𝑢 of (2) under a suitably chosen
space of functions, see [10, 9, 2, 6]. We can rewrite the above iteration formula as
follows: for any 𝑥 in Ω

𝑢 (𝑛+1) (𝑥) = (1 − |𝑠(𝑥) |𝜏)𝑢 (𝑛) (𝑥) + 𝜏
∑︁
𝑖∈𝑠 (𝑥)

𝑢 (𝑛+1)𝑖 (𝑥), (5)

where 𝑠(𝑥) denotes the set of subdomain indices sharing 𝑥 and |𝑠(𝑥) | denotes the
number of elements in the set 𝑠(𝑥). We introduce

�̂� (𝑛+1) (𝑥) :=
1
|𝑠(𝑥) |

∑︁
𝑖∈𝑠 (𝑥)

𝑢 (𝑛+1)𝑖 (𝑥)

and rewrite the above iteration formula into
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𝑢 (𝑛+1) (𝑥) = (1 − |𝑠(𝑥) |𝜏)𝑢 (𝑛) (𝑥) + |𝑠(𝑥) |𝜏�̂� (𝑛+1) (𝑥).

Using this formula, we can see that �̂� (𝑛+1) (𝑥) also converges to 𝑢(𝑥).
For 𝑖 in 𝑠(𝑥), the solution 𝑢 (𝑛+1)𝑖 (𝑥) is updated after solving the local problem

in (3). We thus define 𝑈𝑖 (𝑥; 𝜃 (𝑛+1)𝑖 ) as a neural network function to approximate
𝑢 (𝑛+1)𝑖 (𝑥) in eachΩ𝑖 . Using the method of PINN, we can find the optimal parameters
𝜃 (𝑛+1)𝑖 . Using them, we define

𝑈 (𝑛+1) (𝑥) :=
1
|𝑠(𝑥) |

∑︁
𝑖∈𝑠 (𝑥)

𝑈𝑖 (𝑥; 𝜃 (𝑛+1)𝑖 ). (6)

We now propose the following one-level method:
Algorithm 1: One-level method (input:𝑈 (0) , output:𝑈 (𝑛+1) )
Step 0: Let𝑈 (0) (𝑥) be given and 𝑛 = 0.
Step 1: Find 𝜃 (𝑛+1)𝑖 in𝑈𝑖 (𝑥; 𝜃 (𝑛+1)𝑖 ) for

−△𝑢 = 𝑓 in Ω𝑖 ,

𝑢 = 𝑈 (𝑛) on 𝜕Ω𝑖 .

Step 2: Update𝑈 (𝑛+1) at each data set 𝑋𝜕Ω𝑖 as, see (6),

𝑈 (𝑛+1) (𝑥) = (1 − 𝜏 |𝑠(𝑥) |)𝑈 (𝑛) (𝑥) + 𝜏 |𝑠(𝑥) |𝑈 (𝑛+1) .

Step 3: Go to Step 1 with 𝑛 = 𝑛 + 1 or set the output as 𝑈 (𝑛+1) if the stopping
condition is met.

Using sufficiently large enough neural network functions𝑈𝑖 (𝑥; 𝜃 (𝑛)𝑖 ), we can ap-
proximate 𝑢 (𝑛+1)𝑖 (𝑥) and𝑈 (𝑛+1) (𝑥) will thus approximate �̂� (𝑛+1) (𝑥). Since �̂� (𝑛+1) (𝑥)
converges to 𝑢(𝑥),𝑈 (𝑛+1) (𝑥) will converge to 𝑢(𝑥). We note that if one wishes to take
𝑈 (𝑛+1) (𝑥) as the final output then one needs to store all the parameters 𝜃 (𝑚)𝑖 for all
previous steps 𝑚. In addition, the evaluation of𝑈 (𝑛+1) (𝑥) at any given point 𝑥 can be
very expensive.We thus take𝑈 (𝑛+1) (𝑥) as the final solution in our algorithm.Wewill
only need to store the parameters 𝜃 (𝑛+1)𝑖 at the final step. Since the local problems in
the above algorithm are solved by the PINNmethod, the function𝑈 (𝑛+1) (𝑥) needs to
be evaluated at 𝑥 in the data set 𝑋𝜕Ω𝑖 . In our algorithm, we only store these function
values at each iteration and use them when we solve the local problems (3) using the
PINN method.
As we can see in numerical results provided in Section 4, the convergence of the

one-level algorithm gets slower as more subdomains are introduced in the partition.
We thus improve the one-level algorithm by enriching the boundary condition 𝑈 (𝑛)
with a suitable coarse correction term. For a given 𝑈 (𝑛) , we consider the following
global problem:
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−△𝑢 (𝑛)𝑐 = 𝑓 in Ω𝛿 ,

−△𝑢 (𝑛)𝑐 = −△𝑈 (𝑛) in Ω \Ω𝛿 ,

𝑢 (𝑛)𝑐 = 𝑔 on 𝜕Ω,

(7)

where Ω𝛿 denotes the overlapping region of the subdomain partition {Ω𝑖}𝑖 . For the
solution 𝑢 (𝑛)𝑐 , we can obtain the following error equation,

−△(𝑢 − 𝑢 (𝑛)𝑐 ) = 0 in Ω𝛿 ,

−△(𝑢 − 𝑢 (𝑛)𝑐 ) = −△(𝑢 −𝑈 (𝑛) ) in Ω \Ω𝛿 ,

𝑢 − 𝑢 (𝑛)𝑐 = 0 on 𝜕Ω.

(8)

From the above error equation, we have 𝑢 − 𝑢 (𝑛)𝑐 with smaller errors than 𝑢 −𝑈 (𝑛) .
We will then find a coarse correction term𝑈 (𝑛)𝑐 (𝑥; 𝜃 (𝑛)𝑐 ) that approximates 𝑢 (𝑛)𝑐 with
the parameters 𝜃 (𝑛)𝑐 determined by the PINN method. Using the coarse correction
term, for 𝛼 > 0 we set

𝑈 (𝑛) = (1 − 𝛼)𝑈 (𝑛) + 𝛼𝑈 (𝑛)𝑐
and use it when we evaluate the boundary condition for the local problems in (3). We
note that when we find 𝜃 (𝑛)𝑐 using the PINN method we will only need to evaluate
−△𝑈 (𝑛) at the data set 𝑋Ω\Ω𝛿 without the need to store the parameters 𝜃 (𝑚)𝑖 for all
previous steps 𝑚.
We now summarize the two-level method:
Algorithm 2: Two-level method (input:𝑈 (0) , output:𝑈 (𝑛+1) )
Step 0: Let𝑈 (0) (𝑥) be given and 𝑛 = 0.
Step 1-1: Find𝑈 (𝑛)𝑐 (𝑥; 𝜃 (𝑛)𝑐 ) for (7) and set

𝑈 (𝑛) (𝑥) = (1 − 𝛼)𝑈 (𝑛) (𝑥) + 𝛼𝑈 (𝑛)𝑐 (𝑥; 𝜃 (𝑛)𝑐 ).

Step 1-2: Find 𝜃 (𝑛+1)𝑖 in𝑈𝑖 (𝑥; 𝜃 (𝑛+1)𝑖 ) for

−△𝑢 = 𝑓 in Ω𝑖 ,

𝑢 = 𝑈 (𝑛) on 𝜕Ω𝑖 .

Step 2: Update𝑈 (𝑛+1) (𝑥) at each data set 𝑋𝜕Ω𝑖 as, see (6),

𝑈 (𝑛+1) (𝑥) = (1 − 𝜏 |𝑠(𝑥) |)𝑈 (𝑛) (𝑥) + 𝜏 |𝑠(𝑥) |𝑈 (𝑛+1) .

Step 3: Go to Step 1-1 with 𝑛 = 𝑛 + 1 or set the output as 𝑈 (𝑛+1) if the stopping
condition is met.
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4 Numerical results

We perform numerical results of the proposed two algorithms for the model problem
in (2) with 𝑓 and 𝑔 given according to the known exact solution 𝑢(𝑥, 𝑦) and with Ω
as a unit rectangular domain. The domain Ω is partitioned into uniform rectangular
subdomains with an overlapping width 𝛿. For the iterates𝑈 (𝑛) , we stop the iteration
when the relative 𝑙2-error between the two successive iterates is less than 5 × 10−3.
When training parameters 𝜃 (𝑛)𝑖 and 𝜃 (𝑛)𝑐 , we stop the iteration when the relative errors
for cost function values between 100 steps is less than 10−4 or when the number of
iterations is more than the maximum number of epochs, that is set as 5000. For local
problems, we use neural network functions as a two block Resnet with each block
consisting of 10 hidden layers and with Tanh as the activation function, that give
921 parameters 𝜃 (𝑛)𝑖 for each local problem. To train the parameters, we use 200 data
points for 𝑋Ω𝑖 and 40 data points for 𝑋𝜕Ω𝑖 . For the coarse problem, we use the same
network and the same size of data sets.
In our method, we have two parameters 𝜏 and 𝛼. For 𝜏, we can set 𝜏 as less than

or equal to 1/𝑁𝑐 and 𝛼 as a number between 0 and 1. When 𝛼 = 0, the two-level
algorithm is identical to the one-level algorithm.With 𝛼 > 0, the method is enhanced
with the coarse correction term.
In Table 1, we report the performance of the proposed method with various 𝛼 and

𝑁 for the exact solution 𝑢(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦). The relative 𝐿2-errors to the exact
solution and the number of iterations are presented. We set 𝜏 as 1/4, note 𝑁𝑐 = 4.
Without the coarse correction term, i.e., 𝛼 = 0, the one-level method shows that the
number of iterations increases as increasing 𝑁 . For the other choices of 𝛼(> 0),
the coarse correction term accelerates the convergence and the number of iterations
seems robust to the increase of the number of subdomains.

Table 1: The performance with 𝜏 = 1/4 depending on 𝛼 and 𝑁 (the subdomain partition): the
numbers are relative 𝐿2-errors to the exact solution and the numbers inside the parenthesis are the
number of iterations.

𝑁 𝛼 = 0 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 1

2 × 2 0.0098(22) 0.0073(14) 0.0117(19) 0.0082(21)
3 × 3 0.0282(34) 0.0243(17) 0.0260(14) 0.0310(14)
4 × 4 0.0402(52) 0.0070(18) 0.0237(10) 0.0431( 8)
5 × 5 0.0769(67) 0.0255(21) 0.0298(13) 0.0392(10)

We compare our Algorithm 1 and that in the previous study by [4]. Under the
same setting with Table 3 of [4], we apply our Algorithm 1 and obtain much less
iteration and more accurate solutions, see Table 2.
To show the advantage of partitioning the problem, we consider a more difficult

problem with the exact solution given by

𝑢(𝑥, 𝑦) = 100𝑥(1 − 𝑥)𝑦(1 − 𝑦) sin((𝑥 − 0.5) (𝑦 − 0.5)/0.05). (9)
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Table 2: The performance of Algorithm 1 under the same setting for the model in [4, Table 3]:
relative 𝐿2-errors and the number of iterations (numbers inside the parenthesis) depending on the
number of layers (L), and the number of units (U).

𝑁 L
U 10 20 30 40 50 100

4 2 0.0040(2) 0.0037(2) 0.0030(2) 0.0043(2) 0.0023(2) 0.0029(2)
4 3 0.0042(2) 0.0034(2) 0.0046(2) 0.0030(2) 0.0037(2) 0.0061(2)
4 4 0.0075(2) 0.0046(2) 0.0038(2) 0.0045(2) 0.0060(2) 0.0047(2)

To approximate the highly oscillatory solution with high contrast, we use a single
neural network with its number of parameters as 9109 and with 2000 interior points
and 400 boundary points for training the parameters using 250000 epochs. With
this, we solve the model problem in the whole domain Ω = (0 1)2. For the same
model problem, we partition the domain into 9 overlapping subdomains and employ
a smaller neural network with 921 number of parameters. For the global coarse
network, we use the same number of parameters. For training parameters in both
local and coarse neural networks, 200 interior points and 40 boundary points are
used. The computation time and the accuracy of trained solutions are compared in
Table 3. We can observe the advantage of partitioning with much less computation
time and less errors than the single domain case. When the local solutions are
solved in parallel, the computation time can be further reduced. For the analysis of
computational time, we let 𝑇𝑠 be the training time for one local or coarse neural
network, and 𝑇 be the training time for the single neural network of the whole
domain. Let 𝑖𝑡𝑒𝑟 be the number of iterations in our Algorithm 2. Assuming that the
local networks are trained in parallel, the total computation time becomes 𝑖𝑡𝑒𝑟 ×2𝑇𝑠 .
With a proper size of local and coarse neural networks, the computation time 𝑇𝑠 can
become much smaller than 𝑇 and the total computation time is thus expected to be
much smaller than 𝑇 .

Table 3: The performance of the proposed method for the model problem in (9): single domain
and 9 subdomains with different 𝛼 values, the numbers inside the parenthesis are the number of
iterations.

single domain 𝛼 = 0 𝛼 = 0.25 𝛼 = 0.5 𝛼 = 1.0

𝐿2-error 0.0754 0.0820 (93) 0.0623 (56) 0.0705 (61) 0.0793 (61)
time(sec) 289840 74702 49980 54442 54442

In conclusions, a two-level algorithm suitable for deep neural network architecture
is proposed and tested.By partitioning the large deep neural network, the computation
time is greatly reduced with a more accurate solution in our test example. More
rigorous numerical study and convergence analysis will be done in a more complete
paper.
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Numerical Study of an Additive Schwarz
Preconditioner for a Thin Membrane Diffusion
Problem

Piotr Krzyżanowski

1 Introduction

In the biology of the cell one has to take into account the situation when two
different materials — for example, the cytoplasm and the nucleus — are separated
by a permeable membrane. Chemicals inside the cell diffuse not only inside both the
nucleus and in the cytoplasm, but they also pass through the membrane as well. A
mathematical model of such phenomenon, which gained some popularity (see e.g.
[7, 14] and the literature therein) has been introduced by Kedem and Kachalsky,
where a system of diffusive PDEs is coupled by specific boundary conditions on the
inner interface. In this paper we will investigate a simplified problem, hoping our
approach may be applicable to more complicated cases as well.
Let us denote by Ω ⊂ 𝑅𝑑 (𝑑 = 2, 3) the domain occupied by the cell. It

naturally decomposes into disjoint open sets: the surrounding cytoplasm Ω1 and
𝑁 −1 organelles (the nucleus, mitochondria, etc.), denoted hereΩ2, . . . ,Ω𝑁 , so that
Ω̄ =

⋃𝑁
𝑖=1 Ω̄𝑖 and Ω𝑖 ∩Ω 𝑗 = ∅, cf. Figure 1. The interface between the 𝑖-th organelle

and the outer cell will be denoted Γ𝑖 = 𝜕Ω1 ∩ 𝜕Ω𝑖 = 𝜕Ω𝑖 and for the simplicity of
the notation we set Γ =

⋃𝑁
𝑖=2 Γ̄𝑖 . Our model problem reads:

− div(𝜚𝑖∇𝑢𝑖) + 𝐾𝑖𝑢𝑖 = 𝐹𝑖 in Ω𝑖 , 𝑖 = 1, . . . , 𝑁, (1)

with interface conditions

−𝜚1∇𝑢1 · 𝑛1 = 𝐺𝑖 · (𝑢1 − 𝑢𝑖) = 𝜚𝑖∇𝑢𝑖 · 𝑛𝑖 on Γ𝑖 (2)

for 𝑖 = 2, . . . , 𝑁 , where 𝑛𝑖 denotes the unit outer normal vector to Ω𝑖 . The system is
completed with a non-permeability external boundary condition,

Piotr Krzyżanowski
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Poland, e-mail: p.
krzyzanowski@mimuw.edu.pl
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−𝜚1∇𝑢1 · 𝑛 = 0 on 𝜕Ω. (3)

Here, 𝜚1, . . . , 𝜚𝑁 and 𝐾1, . . . , 𝐾𝑁 are prescribed positive constants, which can be
different between the subdomains. For the source terms we assume 𝐹𝑖 ∈ 𝐿2 (Ω𝑖),
𝑖 = 1, . . . , 𝑁 . The unknown functions 𝑢𝑖 defined in Ω̄𝑖 , 𝑖 = 1, . . . , 𝑁 may represent
e.g. the hes1 mRNA concentration in the cell [14].
Positive constant parameters 𝐺𝑖 model the thickness of the interface; roughly

speaking, the permeability constant 𝐺𝑖 ∼ 1/𝐻𝑖 , where 𝐻𝑖 is the thickness of the
membrane between Ω𝑖 and Ω1; therefore for thin interfaces 𝐺𝑖 ≫ 1. In order to
address the interface conditions (2), we incorporate them directly into the bilinear
form, obtaining the following weak formulation of (1)–(3):

Problem 1 Find (𝑢1, . . . , 𝑢𝑁 ) ∈ 𝑉 = 𝐻1 (Ω1) × · · · × 𝐻1 (Ω𝑁 ) such that
𝑁∑︁
𝑖=1

∫
Ω𝑖
𝜚𝑖∇𝑢𝑖 · ∇𝜑𝑖 +𝐾𝑖𝑢𝑖𝜑𝑖 𝑑𝑥 +

𝑁∑︁
𝑖=2

∫
Γ𝑖
𝐺𝑖 (𝑢𝑖 − 𝑢1) (𝜑𝑖 − 𝜑1) 𝑑𝑠 =

𝑁∑︁
𝑖=1

∫
Ω𝑖
𝐹𝑖𝜑𝑖 𝑑𝑥

for all (𝜑1, . . . , 𝜑𝑁 ) ∈ 𝑉 .
The bilinear form appearing in Problem 1 is symmetric and elliptic. Note that the

interface integral term in Problem 1 results from the permeability condition (2) and
it penalizes the jump of the solution across the interface Γ.
We discretize Problem 1 with a composite discontinuous Galerkin ℎ-𝑝 finite

element method [8]. Inside Ω𝑖 , we use a continuous ℎ-𝑝 method, while allowing for
the discontinuity of the solution across Γ. In order not to complicate the exposition,
we will assume from now on that each Ω𝑖 is a polyhedron.
Let us define a simplicial, quasi-uniform, conforming triangulation Tℎ with mesh

size ℎ over Ω, whose elements are aligned with Ω𝑖 , so that Γ crosses no element in
Tℎ. In this way each Ω𝑖 , 𝑖 = 1, . . . , 𝑁 is supplied with its own triangulation Tℎ (Ω𝑖).
We define the corresponding local continuous finite element spaces as

𝑉 𝑝ℎ (Ω𝑖) = {𝑣 ∈ 𝐶 (Ω𝑖) : 𝑣 |𝐾 ∈ P 𝑝 (𝐾) ∀𝐾 ∈ Tℎ (Ω𝑖)},

where P 𝑝 is the space of polynomials of degree at most 𝑝 ≥ 1. The finite element
approximation of Problem 1 then reads:

Problem 2 Find 𝑢 ∈ 𝑉 𝑝ℎ = {𝑣 ∈ 𝐿2 (Ω) : 𝑣 |Ω𝑖 ∈ 𝑉
𝑝
ℎ (Ω𝑖), 𝑖 = 1, . . . , 𝑁} such that

A(𝑢, 𝑣) = ∑𝑁
𝑖=1

∫
Ω𝑖
𝐹𝑖𝜑𝑖 𝑑𝑥 for all 𝜑 ∈ 𝑉 𝑝ℎ , where

A(𝑢, 𝑣) =
𝑁∑︁
𝑖=1

∫
Ω𝑖
𝜚𝑖∇𝑢𝑖 · ∇𝜑𝑖 + 𝐾𝑖𝑢𝑖𝜑𝑖 𝑑𝑥 +

𝑁∑︁
𝑖=2

∫
Γ𝑖
𝐺𝑖 · (𝑢𝑖 − 𝑢1) (𝜑𝑖 − 𝜑1) 𝑑𝑠

Our goal in this paper is to describe and experimentally evaluate the performance
of a preconditioner for Problem 2, based on the additive Schwarz method, see e.g.
[15], in terms of the convergence rate of the preconditioned conjugate gradients
iterative solver. The penalty constant 𝐺𝑖 is an independent parameter of the original
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problem, in contrast to the analogous term in the interior penalty discontinuous
Galerkin method. For the latter, a preconditioner for Poisson equation with 𝜚𝑖 =
1 was developed and proved optimal with respect to discretization and penalty
constant in [5], where numerical evidence was provided that this method leads to
the condition number which grows linearly with the contrast ratio in the diffusion
coefficient. Another approach was considered in [9] and [12], where it was proved the
convergence rate is uniformly bounded with respect to diffusion coefficient jumps;
however, the dependence on the penalizing constant was not investigated. Here, we
provide extensive tests of the preconditioning properties of a method first introduced
in [13], which is inspired by [5] and [12]. It turns out that the method considered
here is robust with respect to both the problem’s parameters and to discretization
parameters as well.
The rest of paper is organized as follows. In Section 2, a preconditioner based on

the additive Schwarz method for solving Problem 2 is presented. We report on its
performance in a series of numerical experiments in Section 3. We conclude with
final remarks in Section 4.

2 Additive Schwarz preconditioner

In this section we consider a preconditioner based on the nonoverlapping additive
Schwarz method, first proposed, in a different setting, in [2] and later developed in
many papers, including [9, 4, 12, 3]. The space 𝑉 𝑝ℎ is decomposed as follows:

𝑉 𝑝ℎ = 𝑉0 +
𝑁∑︁
𝑖=1
𝑉𝑖 ,

where for 𝑖 = 1, . . . , 𝑁 the local spaces are

𝑉𝑖 = {𝑣 ∈ 𝑉 𝑝ℎ : 𝑣 |Ω 𝑗 = 0 for all 𝑗 ≠ 𝑖},

so that 𝑉𝑖 is a zero–extension of functions from 𝑉 𝑝ℎ (Ω𝑖). Note that 𝑉
𝑝
ℎ is already

a direct sum of these local spaces. In the setting of Problem 2, the main goal of
the coarse space 𝑉0 is to deal with the penalization term; we define 𝑉0 as the finite
element space of piecewise polynomial functions which are continuous in entire Ω,

𝑉0 = {𝑣 ∈ 𝐶 (Ω) : 𝑣 |𝐾 ∈ P 𝑝 (𝐾) for all 𝐾 ∈ Tℎ}.

The choice of the coarse space is inspired by the work by Antonietti et al. [5] for
the standard Poisson problem and notably leads to a problem whose number of
unknowns is smaller than the original only by a small fraction.
As mentioned above, A(·, ·) is symmetric positive definite on 𝑉 𝑝ℎ ⊂ 𝑉 . We

define operators 𝑇𝑖 : 𝑉 𝑝ℎ → 𝑉𝑖 , 𝑖 = 0, 1, . . . , 𝑁 , by “inexact” solvers 𝐴𝑖 (𝑇𝑖𝑢, 𝑣) =
A(𝑢, 𝑣) ∀𝑣 ∈ 𝑉𝑖 .We will assume that 𝐴𝑖 (·, ·) are symmetric, positive definite, and



668 Numerical study of an additive Schwarz method for thin membrane diffusion

they induce a linear operator which is spectrally equivalent to the operator induced
by A(·, ·) on 𝑉𝑖 . The preconditioned operator is

𝑇 = 𝑇0 +
𝑁∑︁
𝑖=1
𝑇𝑖 . (4)

While all 𝑇𝑖 , 𝑖 = 0, 1, . . . , 𝑁 , can be applied in parallel, the performance of the
preconditioner is affected by the specific choice of subspace solvers 𝐴𝑖 (·, ·). In the
experiments in the following section, we will choose the algebraic multigrid (AMG)
solvers, see e.g. [16]. In particular, it is well known that AMG can be a robust
preconditioner for discontinuous coefficient problems discretized with continuous
finite elements, so a parallel AMGmakes a reasonable choice for the inexact solver on
𝑉0 (other choices, e.g. the additive average Schwarz method [10], are also possible).
From the definition of 𝑇𝑖 it follows that virtually all degrees of freedom are solved

twice when 𝑇 is applied, so there is room for the improvement of the complexity
of the method. On the other hand, as it will be shown in the following section, the
method converges independently of the size of the permeability coefficients.

3 Numerical experiments

Since the number of problem parameters is large we restrict ourselves to the case
when 𝜚1 = 𝐾1 = 1 and 𝜚2 = . . . = 𝜚𝑁 , 𝐾2 = . . . = 𝐾𝑁 and 𝐺2 = . . . = 𝐺𝑁 = 𝐺.
Our goal in this section is to investigate the influence of various parameters of
the problem: the diffusion coefficient contrast 𝜚 = 𝜚2/𝜚1, the reaction coefficient
contrast 𝐾 = 𝐾2/𝐾1, the value of the permeability coefficient 𝐺, the number of
subdomains 𝑁 , and discretization parameters: the mesh size and the polynomial
degree, on the convergence rate of the preconditioned conjugate gradients (PCG)
iteration and the condition number of𝑇 . Our implementation is based on the FEniCS
software [1] with PETSc [6] as the linear algebra backend. For the inexact solvers on
the subspaces we chose the algebraic multigrid method: BoomerAMG solver from
the hypre library [11], with default parameters. We performed tests for Ω in 2D and
3D; example domains are depicted in Figure 1. The organelles were allowed to touch
neither the boundary of the domain, nor other organelles.
The domain Ω was triangulated with unstructured, quasi-uniform mesh with

resolution parameter 𝑟 , roughly proportional to ℎ−1. For the finite element polynomial
degrees 1 ≤ 𝑝 ≤ 3 this resulted in discrete problem sizes summarized in Table 1.
In tables below, we report the number of iterations required to reduce the initial

residual norm by a factor of 108; in parentheses, we also provide the condition
number estimate of 𝑇 , with the mantissa rounded to the nearest integer. The initial
guess was always equal to zero. If the convergence criterion was not reached in 100
iterations, we place a dash. Experiments which were not performed due to hardware
limitations are marked with ‘N/A‘. For comparison, we also include results when the
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Fig. 1: Types of domains and subdomains. Left: elliptic shaped Ω with regularly placed circular
𝑁 = 11 organelles. Center: elliptic shapedΩwith randomly placed nonoverlapping circular 𝑁 = 33
organelles. Right: 3D ellipsoid with regularly placed organelles (visualized is a cross–section of
the domain; colors reflect the value of the solution).

↓ 𝑟 → 𝑝 1 2 3
16 4.4 · 102 1.7 · 103 3.7 · 103

32 1.7 · 103 6.5 · 103 1.4 · 104

64 6.2 · 103 2.5 · 104 5.5 · 104

128 2.5 · 104 9.7 · 104 2.2 · 105

↓ 𝑟 → 𝑝 1 2 3
16 1.3 · 104 9.6 · 104 3.2 · 105

24 6.1 · 104 4.7 · 105 N/A
32 9.6 · 104 7.4 · 105 N/A

Table 1: Approximate total number of degrees of freedom for various values of mesh resolution
parameter 𝑟 and polynomial degree 𝑝. Left: 2D case; right: 3D case.

problemwas solved with the PCG, where the BoomerAMGwas used to precondition
the whole discrete system resulting from Problem 2.
While varying other parameters, if not specified otherwise, we assume default

values 𝜚 = 𝐾 = 1, 𝑝 = 2, 𝑁 = 22 and 𝑟 = 128 in 2D case or 𝑟 = 32 in 3D case. In
Tables 2–3 we investigate the dependence of the convergence rate on 𝑟 , 𝑝, 𝜚, 𝐾 for
both moderate and very large value of 𝐺. It turns out that the performance of 𝑇 is
essentially uniform across the range (with some small degradation for certain extreme
values of 𝜚 or 𝐾) regardless of 𝐺, while the AMG suffers for most combinations of
parameters when 𝐺 is large. Tables 6–7 confirm analogous behavior in 3D.
In Table 4 we repeat the first experiment with irregularly scattered organelles

(cf. the middle picture in Figure 1) with no significant differences. From Table 5
it follows 𝑇 performs well, independently of the number of inclusions, again, with
some increase of the number of iterations for large 𝜚.
Finally, in Table 8 we provide more detailed insight into the convergence rate of

𝑇 for 𝐺 in the range 100 . . . 1012, while keeping other parameters fixed. It turns out
that the number of iterations of 𝑇 stays essentially constant.

4 Conclusions

Numerical experiments indicate the preconditioner under consideration performs
well in a broad range of problem parameters. The main advantage of the proposed
preconditioner over the AMG preconditioner applied directly to the discrete prob-
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↓ 𝑟 → 𝑝 1 2 3 1 2 3
16 10 (2 · 100) 10 (2 · 100) 10 (2 · 100) 6 (1 · 100) 6 (1 · 100) 7 (1 · 100)
32 10 (2 · 100) 10 (2 · 100) 10 (2 · 100) 6 (1 · 100) 6 (1 · 100) 7 (1 · 100)
64 10 (2 · 100) 10 (2 · 100) 10 (2 · 100) 6 (1 · 100) 6 (1 · 100) 7 (1 · 100)
128 10 (2 · 100) 10 (2 · 100) 11 (2 · 100) 6 (1 · 100) 7 (1 · 100) 7 (1 · 100)
16 7 (2 · 100) 9 (2 · 100) 11 (3 · 100) 46 (3 · 105) 96 (3 · 105) −
32 9 (2 · 100) 9 (2 · 100) 11 (2 · 100) 69 (3 · 105) − −
64 9 (2 · 100) 10 (2 · 100) 11 (2 · 100) 92 (3 · 105) − −
128 9 (2 · 100) 10 (2 · 100) 11 (3 · 100) − − −

Table 2: Iteration count (the condition number estimate in parentheses) for varying mesh resolution
𝑟 and polynomial degree 𝑝: 𝑇 (left) vs. AMG preconditioner (right). Top: 𝐺 = 100; bottom:
𝐺 = 106. 2D case, regularly placed 𝑁 = 22 subdomains. 𝜚 = 𝐾 = 1.

↓ 𝜚 → 𝐾 10−6 100 106 10−6 100 106

10−6 10 (2 · 100) 10 (2 · 100) 10 (2 · 100) 13 (3 · 100) 13 (3 · 100) 7 (1 · 100)
100 12 (3 · 100) 10 (2 · 100) 10 (2 · 100) 9 (2 · 100) 7 (1 · 100) 7 (1 · 100)
106 15 (4 · 100) 13 (3 · 100) 11 (2 · 100) 11 (2 · 100) 9 (1 · 100) 7 (1 · 100)
10−6 11 (2 · 100) 12 (3 · 100) 11 (2 · 100) − − 40 (4 · 101)
100 10 (2 · 100) 10 (2 · 100) 11 (2 · 100) − − 40 (4 · 101)
106 14 (3 · 100) 13 (3 · 100) 10 (2 · 100) 52 (1 · 106) 44 (7 · 105) 13 (3 · 100)

Table 3: Iteration count (the condition number estimate in parentheses) for varying contrast ratios
𝜚 and 𝐾 for 𝑇 (left) vs. AMG preconditioner (right). Top: 𝐺 = 100; bottom: 𝐺 = 106. 2D case,
regularly placed 𝑁 = 22 subdomains. 𝑟 = 128, 𝑝 = 2.

↓ 𝑟 → 𝑝 1 2 3 1 2 3
16 9 (2 · 100) 9 (2 · 100) 10 (2 · 100) 6 (1 · 100) 6 (1 · 100) 7 (1 · 100)
32 10 (2 · 100) 10 (2 · 100) 10 (2 · 100) 6 (1 · 100) 6 (1 · 100) 7 (1 · 100)
64 10 (2 · 100) 10 (2 · 100) 10 (2 · 100) 6 (1 · 100) 6 (1 · 100) 7 (1 · 100)
128 10 (2 · 100) 10 (2 · 100) 10 (2 · 100) 6 (1 · 100) 7 (1 · 100) 8 (1 · 100)
16 7 (2 · 100) 9 (2 · 100) 10 (2 · 100) 32 (2 · 105) 64 (3 · 105) 93 (3 · 105)
32 8 (2 · 100) 9 (2 · 100) 11 (2 · 100) 68 (3 · 105) − −
64 9 (2 · 100) 10 (2 · 100) 11 (2 · 100) 85 (3 · 105) − −
128 10 (2 · 100) 10 (2 · 100) 12 (3 · 100) − − −

Table 4: Iteration count (the condition number estimate in parentheses) for varying mesh resolution
𝑟 and polynomial degree 𝑝:𝑇 (left) vs.AMGpreconditioner (right). Top:𝐺 = 100 bottom:𝐺 = 106.
2D case, irregularly placed 𝑁 = 19 subdomains. 𝜚 = 𝐾 = 1.

lem is the robustness of the former with respect to the permeability parameter 𝐺.
Theoretical analysis of the preconditioner will be presented elsewhere.
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→ 𝑁 19 35 51 19 35 51
↓ 𝜚
10−6 10 (2 · 100) 10 (2 · 100) 11 (2 · 100) 12 (3 · 100) 13 (3 · 100) 16 (4 · 100)
100 10 (2 · 100) 10 (2 · 100) 10 (2 · 100) 7 (1 · 100) 7 (1 · 100) 7 (1 · 100)
106 12 (2 · 100) 13 (3 · 100) 14 (3 · 100) 8 (1 · 100) 9 (1 · 100) 10 (1 · 100)
10−6 11 (2 · 100) 11 (2 · 100) 11 (2 · 100) − − −
100 10 (2 · 100) 10 (2 · 100) 10 (2 · 100) − − −
106 13 (3 · 100) 13 (3 · 100) 13 (3 · 100) 44 (7 · 105) 61 (7 · 105) 69 (9 · 105)

Table 5: Iteration count (the condition number estimate in parentheses) for varying contrast ratios
𝜚 and number of subdomains 𝑁 : 𝑇 (left) vs. AMG preconditioner (right). Top: 𝐺 = 100 bottom:
𝐺 = 106. 2D case, irregularly placed subdomains. 𝑟 = 128, 𝑝 = 2, 𝐾 = 1.

↓ 𝑟 → 𝑝 1 2 3 1 2 3
24 10 (2 · 100) 10 (2 · 100) 11 (3 · 100) 5 (1 · 100) 7 (2 · 100) 9 (2 · 100)
32 9 (2 · 100) 9 (2 · 100) N/A 5 (1 · 100) 6 (1 · 100) N/A
48 9 (2 · 100) 10 (2 · 100) N/A 5 (1 · 100) 6 (1 · 100) N/A
32 8 (2 · 100) 10 (2 · 100) 11 (3 · 100) 86 (1 · 105) − −
64 7 (2 · 100) 9 (2 · 100) N/A 83 (1 · 105) − N/A
128 8 (2 · 100) 9 (2 · 100) N/A 92 (1 · 105) − N/A

Table 6: Iteration count (the condition number estimate in parentheses) for varying mesh resolution
𝑟 and polynomial degree 𝑝:𝑇 (left) vs.AMGpreconditioner (right). Top:𝐺 = 100 bottom:𝐺 = 106.
3D case. 𝜚 = 𝐾 = 1, 𝑁 = 22.

↓ 𝜚 → 𝐾 10−6 100 106 10−6 100 106

10−6 9 (2 · 100) 11 (2 · 100) 12 (2 · 100) 9 (2 · 100) 10 (2 · 100) 12 (2 · 100)
100 10 (2 · 100) 10 (2 · 100) 12 (2 · 100) 7 (1 · 100) 6 (1 · 100) 12 (2 · 100)
106 12 (3 · 100) 11 (2 · 100) 9 (2 · 100) 9 (1 · 100) 8 (1 · 100) 6 (1 · 100)
10−6 9 (2 · 100) 11 (2 · 100) 15 (3 · 100) − − 42 (3 · 101)
100 9 (2 · 100) 9 (2 · 100) 15 (3 · 100) − − 42 (3 · 101)
106 12 (3 · 100) 12 (3 · 100) 10 (2 · 100) 34 (6 · 105) 33 (5 · 105) 14 (4 · 100)

Table 7: Iteration count (the condition number estimate in parentheses) for varying contrast ratios
𝜚 and 𝐾 : 𝑇 (left) vs. AMG preconditioner (right). Top: 𝐺 = 100; bottom: 𝐺 = 106. 3D case,
𝑟 = 32, 𝑝 = 2, 𝑁 = 22.
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Additive Schwarz Methods for Convex
Optimization — Convergence Theory and
Acceleration

Jongho Park

1 Introduction

This paper is concerned with additive Schwarz methods for convex optimization
problems of the form

min
𝑢∈𝑉
{𝐸 (𝑢) := 𝐹 (𝑢) + 𝐺 (𝑢)} , (1)

where 𝑉 is a reflexive Banach space, 𝐹 : 𝑉 → R is a Frechét differentiable convex
function, and 𝐺 : 𝑉 → R is a proper, convex, lower semicontinuous function which
is possibly nonsmooth. We further assume that 𝐸 is coercive, so that (1) admits a
solution 𝑢∗ ∈ 𝑉 . There are plenty of scientific problems of the form (1), e.g., nonlinear
elliptic problems [13], variational inequalities [1, 12], and mathematical imaging
problems [5, 10], and has been much research on Schwarz methods corresponding
to them.
In this paper, we present a unified view to some notable recent results [8, 9]

on additive Schwarz methods for convex optimization (1). The starting point is
the generalized additive Schwarz lemma presented in [9]. Based on the relevancy
between additive Schwarz methods and gradient methods for (1) investigated in the
generalized additive Schwarz lemma, two main results are considered: the abstract
convergence theory [9] that generalizes some important existing results [1, 13, 15]
and the momentum acceleration scheme [8] that greatly improves the convergence
rate for additive Schwarz methods. In addition, we propose a novel backtracking
strategy for additive Schwarzmethods that further improves the convergence rate.We
present numerical results for additive Schwarz methods equipped with the proposed
backtracking strategy in order to highlight numerical efficiency.

Jongho Park
Natural Science Research Institute, KAIST, Daejeon 34141, Korea
e-mail: jongho.park@kaist.ac.kr
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2 Additive Schwarz methods

In this section, we present an abstract additive Schwarz method for (1). In what
follows, an index 𝑘 runs from 1 to 𝑁 . Let 𝑉𝑘 be a reflexive Banach space and
𝑅∗𝑘 : 𝑉𝑘 → 𝑉 be a bounded linear operator such that 𝑉 =

∑𝑁
𝑘=1 𝑅

∗
𝑘𝑉𝑘 and its adjoint

𝑅𝑘 : 𝑉∗ → 𝑉∗𝑘 is surjective. In order to describe local problems, we define 𝑑𝑘 : 𝑉𝑘 ×
𝑉 → R and 𝐺𝑘 : 𝑉𝑘 × 𝑉 → R as functions which are proper, convex, and lower
semicontinuous with respect to their first arguments. For positive constants 𝜏 and 𝜔,
an additive Schwarz operator ASM𝜏,𝜔 : 𝑉 → 𝑉 is defined by

ASM𝜏,𝜔 (𝑣) = 𝑣 + 𝜏
𝑁∑︁
𝑘=1

𝑅∗𝑘 �̃�𝑘 ,

where

�̃�𝑘 ∈ arg min
𝑤𝑘 ∈𝑉𝑘

{
𝐹 (𝑣) + ⟨𝐹 ′(𝑣), 𝑅∗𝑘𝑤𝑘⟩ + 𝜔𝑑𝑘 (𝑤𝑘 , 𝑣) + 𝐺𝑘 (𝑤𝑘 , 𝑣)

}
. (2)

We note that (2) may admits nonunique minimizers; we take �̃�𝑘 as any one among
them in this case. If we set

𝑑𝑘 (𝑤𝑘 , 𝑣) = 𝐷𝐹 (𝑣 + 𝑅∗𝑘𝑤𝑘 , 𝑣), 𝐺𝑘 (𝑤𝑘 , 𝑣) = 𝐺 (𝑣 + 𝑅∗𝑘𝑤𝑘), 𝜔 = 1 (3a)

in (2), then the minimization problem is reduced to

min
𝑤𝑘 ∈𝑉𝑘

𝐸 (𝑣 + 𝑅∗𝑘𝑤𝑘), (3b)

which is the case of exact local problems. Here 𝐷𝐹 denotes the Bregman distance

𝐷𝐹 (𝑢, 𝑣) = 𝐹 (𝑢) − 𝐹 (𝑣) − ⟨𝐹 ′(𝑣), 𝑢 − 𝑣⟩ , 𝑢, 𝑣 ∈ 𝑉.

We note that other choices of 𝑑𝑘 and𝐺𝑘 , i.e., cases of inexact local problems, include
various numerical methods such as block coordinate descent methods and constraint
decomposition methods [5, 12]; see [9, Sect. 6.4] for details.
The abstract additive Schwarz method for (1) is presented in Algorithm 1. Con-

stants 𝜏0 and 𝜔0 in Algorithm 1 will be given in Section 3. Note that dom𝐺 denotes
the effective domain of 𝐺, i.e., dom𝐺 = {𝑣 ∈ 𝑉 : 𝐺 (𝑣) < ∞} .
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We note that other choices of 𝑑𝑘 and𝐺𝑘 , i.e., cases of inexact local problems, include
various numerical methods such as block coordinate descent methods and constraint
decomposition methods [5, 12]; see [9, Sect. 6.4] for details.

The abstract additive Schwarz method for (1) is presented in Algorithm 1. Con-
stants 𝜏0 and 𝜔0 in Algorithm 1 will be given in Section 3. Note that dom𝐺 denotes
the effective domain of 𝐺, i.e., dom𝐺 = {𝑣 ∈ 𝑉 : 𝐺 (𝑣) < ∞} .

Algorithm 1 Additive Schwarz method for (1)
Choose 𝑢 (0) ∈ dom𝐺, 𝜏 ∈ (0, 𝜏0 ], and 𝜔 ≥ 𝜔0.
for 𝑛 = 0, 1, 2, . . .

𝑢 (𝑛+1) = ASM𝜏,𝜔 (𝑢 (𝑛) )
end
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An important observation made in [9, Lemma 4.5] is that Algorithm 1 can
be interpreted as a kind of a gradient method equipped with a nonlinear distance
function [14]. A rigorous statement is presented in the following.

Proposition 1 (generalized additive Schwarz lemma)
For 𝜏, 𝜔 > 0, we have

ASM𝜏,𝜔 (𝑣) = arg min
𝑢∈𝑉

{
𝐹 (𝑣) + ⟨𝐹 ′(𝑣), 𝑢 − 𝑣⟩ + 𝑀𝜏,𝜔 (𝑢, 𝑣)

}
, 𝑣 ∈ 𝑉,

where the functional 𝑀𝜏,𝜔 : 𝑉 ×𝑉 → R is given by

𝑀𝜏,𝜔 (𝑢, 𝑣) = 𝜏 inf

{
𝑁∑︁
𝑘=1
(𝜔𝑑𝑘 + 𝐺𝑘) (𝑤𝑘 , 𝑣) : 𝑢 − 𝑣 = 𝜏

𝑁∑︁
𝑘=1

𝑅∗𝑘𝑤𝑘 , 𝑤𝑘 ∈ 𝑉𝑘
}

+ (1 − 𝜏𝑁)𝐺 (𝑣), 𝑢, 𝑣 ∈ 𝑉.

In the field of mathematical optimization, there has been numerous research on
gradient methods for solving convex optimization problems [4, 6, 14]. Therefore,
invoking Proposition 1, we can adoptmany valuable tools from the field ofmathemat-
ical optimization in order to analyze and improve Schwarz methods. In particular,
we present two fruitful results in the remainder of the paper: novel convergence
theory [9] and acceleration [8] for additive Schwarz methods.

3 Convergence theory

This section is devoted to an abstract convergence theory of additive Schwarz meth-
ods for convex optimization. The convergence theory introduced in this section
directly generalizes the classical theory for linear problems [15, Chapter 2] to con-
vex optimization problems. Similar to [15, Chapter 2], the following three conditions
are considered: stable decomposition, strengthened convexity, and local stability.

Assumption 1 (stable decomposition)
There exists a constant 𝑞 > 1 such that for any bounded and convex subset 𝐾 of

𝑉 , the following holds: for any 𝑢, 𝑣 ∈ 𝐾 ∩ dom𝐺, there exists 𝑤𝑘 ∈ 𝑉𝑘 , 1 ≤ 𝑘 ≤ 𝑁 ,
with 𝑢 − 𝑣 = ∑𝑁

𝑘=1 𝑅
∗
𝑘𝑤𝑘 , such that

𝑁∑︁
𝑘=1

𝑑𝑘 (𝑤𝑘 , 𝑣) ≤
𝐶𝑞0,𝐾
𝑞
∥𝑢 − 𝑣∥𝑞 ,

𝑁∑︁
𝑘=1

𝐺𝑘 (𝑤𝑘 , 𝑣) ≤ 𝐺 (𝑢) + (𝑁 − 1)𝐺 (𝑣),

where 𝐶0,𝐾 is a positive constant depending on 𝐾 .

Assumption 2 (strengthened convexity)
There exists a constant 𝜏0 ∈ (0, 1] which satisfies the following: for any 𝑣 ∈ 𝑉 ,

𝑤𝑘 ∈ 𝑉𝑘 , 1 ≤ 𝑘 ≤ 𝑁 , and 𝜏 ∈ (0, 𝜏0], we have
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(1 − 𝜏𝑁) 𝐸 (𝑣) + 𝜏
𝑁∑︁
𝑘=1

𝐸 (𝑣 + 𝑅∗𝑘𝑤𝑘) ≥ 𝐸
(
𝑣 + 𝜏

𝑁∑︁
𝑘=1

𝑅∗𝑘𝑤𝑘

)
.

Assumption 3 (local stability)
There exists a constant 𝜔0 > 0 which satisfies the following: for any 𝑣 ∈ dom𝐺,

and 𝑤𝑘 ∈ 𝑉𝑘 , 1 ≤ 𝑘 ≤ 𝑁 , we have

𝐷𝐹 (𝑣 + 𝑅∗𝑘𝑤𝑘 , 𝑣) ≤ 𝜔0𝑑𝑘 (𝑤𝑘 , 𝑣), 𝐺 (𝑣 + 𝑅∗𝑘𝑤𝑘) ≤ 𝐺𝑘 (𝑤𝑘 , 𝑣).

Assumption 1 is compatible with various variants of stable decomposition pre-
sented in existing works [1, 13, 15]. Assumption 2 trivially holds with 𝜏0 = 1/𝑁 due
to the convexity of 𝐸 . However, a better value for 𝜏0 independent of 𝑁 can be found
by the usual coloring technique. In the same spirit as [15], Assumption 3 gives a
one-sided measure of approximation properties of the local solvers. It was shown
in [9, Sect. 4.1] that the above assumptions reduce to [15, Assumptions 2.2 to 2.4] if
they are applied to linear elliptic problems. Under the above three assumptions, we
have the following convergence theorem for Algorithm 1 [9, Theorem 4.7].

Theorem 1 Suppose that Assumptions 1, 2, and 3 hold. In Algorithm 1, we have

𝐸 (𝑢 (𝑛) ) − 𝐸 (𝑢∗) = 𝑂
( 𝜅ASM

𝑛𝑞−1

)
,

where 𝜅ASM is the additive Schwarz condition number defined by 𝜅ASM = 𝜔𝐶𝑞0 /𝜏𝑞−1.

Meanwhile, it is well-known that the Łojasiewicz inequality holds in many appli-
cations [11]; it says that the energy functional 𝐸 of (1) is sharp around the minimizer
𝑢∗. We summarize this property in Assumption 4.

Assumption 4 (sharpness)
There exists a constant 𝑝 > 1 such that for any bounded and convex subset 𝐾 of

𝑉 satisfying 𝑢∗ ∈ 𝐾 , we have
𝜇𝐾
𝑝
∥𝑢 − 𝑢∗∥ 𝑝 ≤ 𝐸 (𝑢) − 𝐸 (𝑢∗), 𝑢 ∈ 𝐾,

for some 𝜇𝐾 > 0.

We can obtain an improved convergence result for Algorithm 1 compared to
Theorem 1 under an additional sharpness assumption on 𝐸 [9, Theorem 4.8].

Theorem 2 Suppose that Assumptions 1, 2, 3, and 4 hold. In Algorithm 1, we have

𝐸 (𝑢 (𝑛) ) − 𝐸 (𝑢∗) =




𝑂

((
1 −

(
1 − 1

𝑞

)
min

{
𝜏,

(
𝜇

𝑞𝜅ASM

) 1
𝑞−1

})𝑛)
, if 𝑝 = 𝑞,

𝑂

(
(𝜅 𝑝ASM/𝜇𝑞)

1
𝑝−𝑞

𝑛
𝑝 (𝑞−1)
𝑝−𝑞

)
, if 𝑝 > 𝑞,

where 𝜅ASM was defined in Theorem 1.
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Theorems 1 and 2 are direct consequences of Proposition 1 in the sense that
they can be easily deduced by invoking theories of gradient methods for convex
optimization [9, Sect. 2].

4 Acceleration

An important observation on Schwarz methods for linear problems is that they
can be interpreted as preconditioned Richardson iterations with appropriate pre-
conditioners. Replacing Richardson iterations by conjugate gradient iterations with
the same preconditioners, we can obtain improved algorithms that converge faster.
Since Proposition 1 says that additive Schwarz methods for (1) are in fact gradient
methods, in the same spirit, we may adopt some acceleration schemes for gradient
methods (see, e.g., [4, 7]) in order to improve additive Schwarz methods. Motivated
by the FISTA (Fast Iterative Shrinkage-Thresholding Algorithm) momentum [2]
and the gradient adaptive restarting scheme [7], the following accelerated variant of
Algorithm 1 was considered in [8].
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Theorems 1 and 2 are direct consequences of Proposition 1 in the sense that
they can be easily deduced by invoking theories of gradient methods for convex
optimization [9, Sect. 2].

4 Acceleration

An important observation on Schwarz methods for linear problems is that they
can be interpreted as preconditioned Richardson iterations with appropriate pre-
conditioners. Replacing Richardson iterations by conjugate gradient iterations with
the same preconditioners, we can obtain improved algorithms that converge faster.
Since Proposition 1 says that additive Schwarz methods for (1) are in fact gradient
methods, in the same spirit, we may adopt some acceleration schemes for gradient
methods (see, e.g., [4, 7]) in order to improve additive Schwarz methods. Motivated
by the FISTA (Fast Iterative Shrinkage-Thresholding Algorithm) momentum [2]
and the gradient adaptive restarting scheme [7], the following accelerated variant of
Algorithm 1 was considered in [8].

Algorithm 2 Accelerated additive Schwarz method for (1)
Let 𝑢 (0) = 𝑣 (0) ∈ dom𝐺, 𝜏 > 0, and 𝑡0 = 1.
for 𝑛 = 0, 1, 2, . . .

𝑢 (𝑛+1) = ASM𝜏,𝜔 (𝑣 (𝑛) )
{
𝑡𝑛+1 = 1, 𝛽𝑛 = 0, if 〈𝑣 (𝑛) − 𝑢 (𝑛+1) , 𝑢 (𝑛+1) − 𝑢 (𝑛) 〉 > 0,

𝑡𝑛+1 = 1+
√

1+4𝑡2
𝑛

2 , 𝛽𝑛 = 𝑡𝑛−1
𝑡𝑛+1 , otherwise.

𝑣 (𝑛+1) = 𝑢 (𝑛+1) + 𝛽𝑛 (𝑢 (𝑛+1) − 𝑢 (𝑛) )
end

The major part of each iteration of Algorithm 2 is to compute the additive Schwarz
operator ASM𝜏,𝜔; the computational cost for momentum parameters 𝑡𝑛 and 𝛽𝑛 is
marginal. Therefore, the main computational cost of Algorithm 2 is the same as the
one of Algorithm 1. Nevertheless, it was shown numerically in [8] that Algorithm 2
achieves much faster convergence to the energy minimum compared to Algorithm 1.

In the remainder of this section, we consider how to further improve Algorithm 2.
More precisely, we present a backtracking strategy for additive Schwarz methods that
allows for local optimization of the parameter 𝜏. Mimicking [3, 6], at each iteration
of additive Schwarz methods, we choose 𝜏 as large as possible satisfying

𝐸 (𝑢 (𝑛+1) ) ≤ 𝐹 (𝑢 (𝑛) ) + 〈𝐹 ′(𝑢 (𝑛) ), 𝑢 (𝑛+1) − 𝑢 (𝑛)〉 + 𝑀𝜏,𝜔 (𝑢 (𝑛+1) , 𝑢 (𝑛) ).

Themajor part of each iteration of Algorithm 2 is to compute the additive Schwarz
operator ASM𝜏,𝜔; the computational cost for momentum parameters 𝑡𝑛 and 𝛽𝑛 is
marginal. Therefore, the main computational cost of Algorithm 2 is the same as the
one of Algorithm 1. Nevertheless, it was shown numerically in [8] that Algorithm 2
achieves much faster convergence to the energy minimum compared to Algorithm 1.
In the remainder of this section, we consider how to further improve Algorithm 2.

More precisely, we present a backtracking strategy for additive Schwarzmethods that
allows for local optimization of the parameter 𝜏. Mimicking [3, 6], at each iteration
of additive Schwarz methods, we choose 𝜏 as large as possible satisfying

𝐸 (𝑢 (𝑛+1) ) ≤ 𝐹 (𝑢 (𝑛) ) + ⟨𝐹 ′(𝑢 (𝑛) ), 𝑢 (𝑛+1) − 𝑢 (𝑛)⟩ + 𝑀𝜏,𝜔 (𝑢 (𝑛+1) , 𝑢 (𝑛) ).
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An optimal 𝜏 can be found by a logarithmic grid search. Algorithm 2 accompanied
with the backtracking strategy is presented in Algorithm 3. Note that the parameter
𝜌 ∈ (0, 1) in Algorithm 3 plays a role of an adjustment parameter for the grid search.
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An optimal 𝜏 can be found by a logarithmic grid search. Algorithm 2 accompanied
with the backtracking strategy is presented in Algorithm 3. Note that the parameter
𝜌 ∈ (0, 1) in Algorithm 3 plays a role of an adjustment parameter for the grid search.

Algorithm 3 Accelerated additive Schwarz method for (1) with backtracking
Let 𝑢 (0) = 𝑣 (0) ∈ dom𝐺, 𝜏 > 0, 𝑡0 = 1, and 𝜌 ∈ (0, 1) .
for 𝑛 = 0, 1, 2, . . .

𝜏 ← 𝜏/𝜌
repeat

𝑢 (𝑛+1) = ASM𝜏,𝜔 (𝑣 (𝑛) )
if 𝐸 (𝑢 (𝑛+1) ) > 𝐹 (𝑢 (𝑛) ) + 〈𝐹 ′ (𝑢 (𝑛) ) , 𝑢 (𝑛+1) − 𝑢 (𝑛) 〉 +𝑀𝜏,𝜔 (𝑢 (𝑛+1) , 𝑢 (𝑛) )

𝜏 ← 𝜌𝜏

end if
until 𝐸 (𝑢 (𝑛+1) ) ≤ 𝐹 (𝑢 (𝑛) ) + 〈𝐹 ′ (𝑢 (𝑛) ) , 𝑢 (𝑛+1) − 𝑢 (𝑛) 〉 +𝑀𝜏,𝜔 (𝑢 (𝑛+1) , 𝑢 (𝑛) ){

𝑡𝑛+1 = 1, 𝛽𝑛 = 0, if 〈𝑣 (𝑛) − 𝑢 (𝑛+1) , 𝑢 (𝑛+1) − 𝑢 (𝑛) 〉 > 0,

𝑡𝑛+1 = 1+
√

1+4𝑡2
𝑛

2 , 𝛽𝑛 = 𝑡𝑛−1
𝑡𝑛+1 , otherwise.

𝑣 (𝑛+1) = 𝑢 (𝑛+1) + 𝛽𝑛 (𝑢 (𝑛+1) − 𝑢 (𝑛) )
end

Different from the existing works [3, 6], adopting the backtracking strategy for
additive Schwarz methods has an own difficulty that evaluation of𝑀𝜏,𝜔 (𝑢 (𝑛+1) , 𝑢 (𝑛) )
is not straightforward due to its complicated definition. The following proposition
provides a way to evaluate 𝑀𝜏,𝜔 (𝑢 (𝑛+1) , 𝑢 (𝑛) ) without major computational cost.

Proposition 2 If 𝑢 = ASM𝜏,𝜔 (𝑣), then it satisfies that

𝑀𝜏,𝜔 (𝑢, 𝑣) = 𝜏
𝑁∑︁
𝑘=1
(𝜔𝑑𝑘 + 𝐺𝑘 ) (�̃�𝑘 , 𝑣) + (1 − 𝜏𝑁)𝐺 (𝑣),

where �̃�𝑘 , 1 ≤ 𝑘 ≤ 𝑁 , were defined in (2). In particular, if the exact local prob-
lems (3) are used, then we have

𝐹 (𝑣) + 〈𝐹 ′(𝑣), 𝑢 − 𝑣〉 + 𝑀𝜏,𝜔 (𝑢, 𝑣) = (1 − 𝜏𝑁)𝐸 (𝑣) + 𝜏
𝑁∑︁
𝑘=1

𝐸 (𝑣 + 𝑅∗𝑘 �̃�𝑘 ).

Proof See the proof of [9, Lemma 4.5]. �
Thanks to Proposition 2, one can compute 𝑀𝜏,𝜔 (𝑢 (𝑛+1) , 𝑢 (𝑛) ) in Algorithm 3

without solving the infimum in the definition of 𝑀𝜏,𝜔 . As discussed in [3], the
backtracking strategy improves the convergence rate because it allows for adaptive
adjustment of 𝜏 depending on the local flatness of the energy functional.
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Thanks to Proposition 2, one can compute 𝑀𝜏,𝜔 (𝑢 (𝑛+1) , 𝑢 (𝑛) ) in Algorithm 3
without solving the infimum in the definition of 𝑀𝜏,𝜔 . As discussed in [3], the
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backtracking strategy improves the convergence rate because it allows for adaptive
adjustment of 𝜏 depending on the local flatness of the energy functional.
In order to show the computational efficiency of Algorithm 3, we present nu-

merical results applied to a finite element 𝑠-Laplacian problem (𝑠 ≥ 1). We set
Ω = [0, 1]2 ⊂ R2. We decompose the domainΩ intoN = 𝑁 ×𝑁 square subdomains
{Ω𝑘}N𝑘=1in which each subdomain has the sidelength 𝐻 = 1/𝑁 . Each subdomainΩ𝑘 ,
1 ≤ 𝑘 ≤ N , is partitioned into 2 × 𝐻/ℎ × 𝐻/ℎ uniform triangles to form a global
triangulation Tℎ of Ω. Similarly, we partition each Ω𝑘 into two uniform triangles
and let T𝐻 be a coarse triangulation of Ω consisting of such triangles. Overlapping
subdomains {Ω′𝑘}N𝑘=1 are constructed in a way that Ω

′
𝑘 is a union of Ω𝑘 and its

surrounding layers of fine elements in Tℎ with the width 𝛿 such that 0 < 𝛿 < 𝐻/2.
The model finite element 𝑠-Laplacian problem is written as

min
𝑢∈𝑆ℎ (Ω)

{
1
𝑠

∫
Ω
|∇𝑢 |𝑠 𝑑𝑥 −

∫
Ω
𝑓 𝑢 𝑑𝑥

}
, (4)

where 𝑓 ∈ (𝐿𝑠 (Ω))∗ and 𝑉 = 𝑆ℎ (Ω) is the continuous piecewise linear finite
element space on Tℎ with the homogeneous Dirichlet boundary condition. We set
𝑉𝑘 = 𝑆ℎ (Ω′𝑘), 1 ≤ 𝑘 ≤ N , and take 𝑅∗𝑘 : 𝑉𝑘 → 𝑉 as the natural extension operator,
where 𝑆ℎ (Ω′𝑘) is the continuous piecewise linear finite element space on the Tℎ-
elements in Ω′𝑘 with the homogeneous Dirichlet boundary condition. As a coarse
space, we set 𝑉0 by the continuous piecewise linear space 𝑆𝐻 (Ω) on T𝐻 and take
𝑅∗0 : 𝑉0 → 𝑉 as the natural interpolation operator.
For numerical experiments, we set 𝑠 = 4, 𝑓 = 1, and 𝑢 (0) = 0. Exact local and

coarse solvers (3) were used; they were solved numerically by FISTA with gradient
adaptive restarts [7]. The initial step size 𝜏 was chosen as 1/5 (cf. [9, Sect. 5.1]).

(a) (b)

Fig. 1: Decay of the energy error 𝐸 (𝑢(𝑛) ) −𝐸 (𝑢∗) in additive Schwarz methods (𝜏 = 1/5, 𝜔 = 1)
for the 𝑠-Laplacian problem (4) (ℎ = 1/26,𝐻 = 1/23, 𝛿 = 4ℎ). (a) Algorithm 3 with various values
of 𝜌. (b) Comparison of various additive Schwarz methods. FISTA denotes the FISTA momentum
without restarts and ALG3 denotes Algorithm 3 with 𝜌 = 0.5.
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Figure 1 plots the energy error 𝐸 (𝑢 (𝑛) ) − 𝐸 (𝑢∗) of various additive Schwarz
methods when ℎ = 1/26, 𝐻 = 1/23, and 𝛿 = 4ℎ. As shown in Figure 1(a), Algo-
rithm 3 shows faster convergence to the energy minimum compared to Algorithm 2
for various values of 𝜌. Hence, we can say that the backtracking strategy proposed in
this paper is effective for acceleration of convergence. Although Algorithm 3 shows
better performance than Algorithm 2 for all values of 𝜌, it remains as a future work
to discover how to find an optimal 𝜌. Figure 1(b) presents a numerical comparison
of Algorithm 1, Algorithm 1 equipped with the FISTA momentum, Algorithms 2
and 3. We can observe that all of the FISTA momentum, adaptive restarting tech-
nique, and backtracking strategy provide positive effects on the convergence rate
of additive Schwarz methods. Consequently, Algorithm 3, which assembles all of
the aforementioned acceleration schemes, show the best convergence rate among all
methods. Since the main computational costs of all algorithms are essentially the
same, we conclude that Algorithm 3 numerically outperforms all the others.
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Non-local Impedance Operator for
Non-overlapping DDM for the Helmholtz
Equation

Francis Collino, Patrick Joly and Emile Parolin

In the context of time harmonicwave equations, the pioneeringwork ofB.Després [4]
has shown that it is mandatory to use impedance type transmission conditions in the
coupling of sub-domains in order to obtain convergence of non-overlapping domain
decomposition methods (DDM). In later works [2, 3], it was observed that using
non-local impedance operators leads to geometric convergence, a property which is
unattainable with local operators. This result was recently extended to arbitrary geo-
metric partitions, including configurations with cross-points, with provably uniform
stability with respect to the discretization parameter [1].
We present a novel strategy to construct suitable non-local impedance operators

that satisfy the theoretical requirements of [1] or [2, 3]. It is based on the solution
of elliptic auxiliary problems posed in the vicinity of the transmission interfaces.
The definition of the operators is generic, with simple adaptations to the acoustic
or electromagnetic settings, even in the case of heterogeneous media. Besides, no
complicated tuning of parameters is required to get efficiency. The implementation
in practice is straightforward and applicable to sub-domains of arbitrary geometry,
including ones with rough boundaries generated by automatic graph partitioners.

1 General approach for a two-domain decomposition

We consider the Helmholtz equation in a bounded Lipschitz domain Ω ⊂ R𝑑 , 𝑑 ∈
{1, 2, 3}, with a first order absorbing boundary condition imposed on the boundary Γ:
Find 𝑢 ∈ 𝐻1 (Ω) such that

(− div𝔞∇ − 𝜅2𝔫)𝑢 = 𝑓 , in Ω, (𝔞𝜕n − 𝚤𝜅)𝑢 = 𝑔, on Γ, (1)
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mail: francis.collino@orange.fr;patrick.joly@inria.fr;emile.parolin@inria.fr
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where 𝑓 ∈ 𝐿2 (Ω) and 𝑔 ∈ 𝐿2 (Γ), 𝜅 denotes the wavenumber, 𝔞 and 𝔫 are two strictly
positive and bounded functions (so that the medium is purely propagative) and n
is the outward normal to Γ. The well-posedness of this problem is guaranteed by
application of the Fredholm alternative and a unique continuation principle.

A geometrically convergent DD method.We consider a non-overlapping partition
in two domains, excluding the presence of (boundary) cross-points, by introducing a
closed Lipschitz interface Σ that splits the domain Ω into an interior domain Ω1 and
exterior domain Ω2, see Figure 1 (left). The Domain Decomposition (DD) method
consists in solving iteratively the Helmholtz equation in parallel in each sub-domain
by imposing two transmission conditions. Introducing a boundary operator 𝑇 on Σ
we consider here impedance-like transmission conditions:{

(+𝔞𝜕n1 − 𝚤𝜅𝑇)𝑢1 = (−𝔞𝜕n2 − 𝚤𝜅𝑇)𝑢2,

(−𝔞𝜕n1 − 𝚤𝜅𝑇)𝑢1 = (+𝔞𝜕n2 − 𝚤𝜅𝑇)𝑢2,
on Σ,

where we denoted by n1 (resp. n2) the outward unit normal vector to Ω1 (resp. Ω2).
The DD method is best analysed in the form of an interface problem. Let us

introduce (𝑤1, 𝑤2) ∈ 𝐻1 (Ω1) × 𝐻1 (Ω2) a lifting of the source defined as follows
{
(− div𝔞∇ − 𝜅2𝔫)𝑤1 = 𝑓 |Ω1 , in Ω1,

(+𝔞𝜕n1 − 𝚤𝜅𝑇)𝑤1 = 0, on Σ,



(− div𝔞∇ − 𝜅2𝔫)𝑤2 = 𝑓 |Ω2 , in Ω2,

(+𝔞𝜕n − 𝚤𝜅)𝑤2 = 𝑔, on Γ,
(+𝔞𝜕n2 − 𝚤𝜅𝑇)𝑤2 = 0, on Σ,

(2)
and we define for any 𝑥 𝑗 ∈ 𝐻−1/2 (Σ), 𝐿 𝑗𝑥 𝑗 := 𝑣 𝑗 ∈ 𝐻1 (Ω 𝑗 ), 𝑗 ∈ {1, 2}, such that

{
(− div𝔞∇ − 𝜅2𝔫)𝑣1 = 0, in Ω1,

(+𝔞𝜕n1 − 𝚤𝜅𝑇)𝑣1 = 𝑥1, on Σ,



(− div𝔞∇ − 𝜅2𝔫)𝑣2 = 0, in Ω2,

(+𝔞𝜕n − 𝚤𝜅)𝑣2 = 0, on Γ,
(+𝔞𝜕n2 − 𝚤𝜅𝑇)𝑣2 = 𝑥2, on Σ.

(3)

Assuming that the operator 𝑇 is self-adjoint positive definite, one can prove that the
local sub-problems appearing in (2) and (3) are well posed [3, Lem. 2.5]. Finally let
us introduce for any 𝑥 ∈ 𝐻−1/2 (Σ) the so-called local scattering operators, 𝑗 ∈ {1, 2}

𝑆 𝑗𝑥 := (−𝔞𝜕n 𝑗 − 𝚤𝜅𝑇)𝐿 𝑗𝑥,

and set S :=
[
𝑆1 0
0 𝑆2

]
, 𝚷 :=

[
0 Id
Id 0

]
, b :=

[(−𝔞𝜕n2 − 𝚤𝜅𝑇)𝑤2
(−𝔞𝜕n1 − 𝚤𝜅𝑇)𝑤1

]
.

S is the global scattering operator and 𝚷 is referred to as the exchange operator
since its action consists in swapping information between the two sub-domains.
It can be shown [2, Th. 2] that if 𝑢 satisfies the model problem (1) then the two
(incoming) Robin traces x := ((+𝔞𝜕n1 − 𝚤𝜅𝑇)𝑢 |Ω1 , (+𝔞𝜕n2 − 𝚤𝜅𝑇)𝑢 |Ω2 ), satisfy the
interface problem

(Id −𝚷S)x = b. (4)
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Reciprocally, if x = (𝑥1, 𝑥2) satisfies the interface problem (4), then the concatenation
of (𝐿1𝑥1 + 𝑤1, 𝐿2𝑥2 + 𝑤2) is solution to the original problem (1).
One of the simplest iterative method to solve (4) is the (relaxed) Jacobi algorithm.

Let x0 and a relaxation parameter 0 < 𝑟 < 1 be given, a sequence (x𝑛)𝑛∈N is
constructed using the (relaxed) Jacobi algorithm as follows

x𝑛+1 = [(1 − 𝑟)Id + 𝑟𝚷S] x𝑛 + 𝑟b, 𝑛 ∈ N. (5)

Theorem 1 [3, Th. 2.1] If 𝑇 is a positive self-adjoint isomorphism between the trace
spaces 𝐻1/2 (Σ) and 𝐻−1/2 (Σ), then the above algorithm converges geometrically

∃ 0 ≤ 𝜏 < 1, 𝐶 > 0, ∥𝑢1 − (𝐿1𝑥
𝑛
1 + 𝑤1)∥𝐻1 + ∥𝑢2 − (𝐿2𝑥

𝑛
2 + 𝑤2)∥𝐻1 ≤ 𝐶𝜏𝑛.

Note that the isomorphism property is essential to ensure the geometric nature
of the convergence, and, together with the positivity and self-adjointness properties,
necessarily requires 𝑇 to be non-local. Alternatively, a more efficient algorithm to
use in practice is theGmres algorithm. The convergence rate of theGmres algorithm
is necessarily better (i.e. the algorithm is always faster) than the convergence of the
Jacobi algorithm, but much more delicate to analyse.

A suitable impedance operator.We propose to construct impedance operators that
satisfy the above theoretical requirements of the convergence analysis from elliptic
(or dissipative) version of conventional Dirichlet-to-Neumann (DtN) maps. To do
so, we introduce two strips B1 ⊂ Ω1 and B2 ⊂ Ω2 so that B1 (resp. B2) has two
disconnected (and not intersecting) boundaries Σ and Σ1 (resp. Σ2), see Figure 1
(left). We do not exclude the case Σ1 = ∅ for which we have B1 = Ω1. We denote by
n1 (resp. n2) the outward unit normal vector to B1 (resp. B2).
We define two operators, for 𝑗 ∈ {1, 2} and any 𝑥 ∈ 𝐻1/2 (Σ),

𝑇𝑗𝑥 := 𝜅−1𝔞𝜕n 𝑗𝑢 𝑗 , 𝑢 𝑗 ∈ 𝐻1 (B 𝑗 ),


(− div𝔞∇ + 𝜅2𝔫)𝑢 𝑗 = 0, in B 𝑗 ,
𝔞𝜕n 𝑗𝑢 𝑗 + 𝜅𝑢 𝑗 = 0, on Γ 𝑗 ,
𝑢 𝑗 = 𝑥, on Σ.

(6)

It is a straightforward consequence of the surjectivity of the Dirichlet trace operator
and the Lax-Milgram Lemma to prove the following result, which then guarantees
that we fall within the situation of Theorem 1.

Proposition 1 The impedance operator defined as 𝑇 = 1
2 (𝑇1 + 𝑇2), is a self-adjoint

positive isomorphism from 𝐻1/2 (Σ) to 𝐻−1/2 (Σ).

2 Quantitative analysis for the wave-guide

The aim of this section is to derive convergence estimates to study in particular
the influence of the width of the strip in the definition of the auxiliary problems,
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which has a direct influence on the computational cost of the proposed method. We
consider the theoretical (because unbounded) configuration of an infinite wave guide
of width 𝐿, so that Ω := {(𝑥, 𝑦) ∈ R2 |0 < 𝑥 < 𝐿}, see Figure 1 (right). The media is
considered homogeneous (𝔞 ≡ 𝔫 ≡ 1); we impose homogeneous Dirichlet boundary
conditions on the sides 𝑢(0, ·) = 𝑢(𝐿, ·) = 0 and require 𝑢 to be outgoing [5].

Ω1 Ω2B1 B2

Σ1ΣΣ2Γ

x

y

+δ

−δ

0 L

Σ

Σ2

Σ1

Ω2

Ω1

B2,δ

B1,δ

Fig. 1: Geometric configurations.

Remark 1 The above problem is well-posed except at cut-off frequencies 𝜅𝐿 ∈ 𝜋Z,
configurations which are thus excluded in what follows.

The domain Ω is divided in its upper region Ω2 := {(𝑥, 𝑦) ∈ Ω|𝑦 > 0} and lower
regionΩ1 := {(𝑥, 𝑦) ∈ Ω|𝑦 < 0} and the interface is Σ := (0, 𝐿) × {0}. Suppose that
we have at hand a suitable impedance operator 𝑇 (described below), in spite of the
different geometry and the unboundedness, the same DD algorithm of Section 1 is
formally applicable with minor adaptations. For completeness and because it will
be important in the following, we simply provide the full definition of the local
scattering operators, for 𝑗 ∈ {1, 2} and any x ∈ 𝐻−1/2 (Σ)

𝑆 𝑗x := (−𝜅−1𝜕n 𝑗−𝚤𝑇)𝑢 𝑗 |𝑦=0, 𝑢 𝑗 ∈ 𝐻1 (Ω 𝑗 ),


(−Δ − 𝜅2)𝑢 𝑗 = 0, in Ω 𝑗 ,

𝑢 𝑗 (0, ·) = 𝑢 𝑗 (𝐿, ·) = 0, on 𝜕Ω 𝑗 \ Σ,
(𝜅−1𝜕n 𝑗 − 𝚤𝑇)𝑢 𝑗 = x, on Σ,

and 𝑢 𝑗 is supposed outgoing.

A family of suitable impedance operators. We introduce now several possible
impedance operators on the model of (6). The domain of the auxiliary problem
that defines the impedance operator is bounded in the 𝑦-direction, for a positive
parameter 𝛿 > 0, let B 𝑗 , 𝛿 :=

{(𝑥, 𝑦) ∈ Ω 𝑗 |0 ≤ |𝑦 | ≤ 𝛿
}
, 𝑗 ∈ {1, 2}. We consider the

operators, indexed by the width 𝛿 and the type of boundary condition ∗ ∈ {𝐷, 𝑁, 𝑅}
(for Dirichlet, Neumann and Robin), for 𝑗 ∈ {1, 2} and any x ∈ 𝐻1/2 (Σ)

𝑇∗𝑗 , 𝛿x := 𝜅−1𝜕n 𝑗 𝑣
∗
𝑗 |𝑦=0,

where 𝑣∗𝑗 solves the (elliptic) problem,
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(−Δ + 𝜅2)𝑣∗𝑗 = 0, in B 𝑗 , 𝛿 ,
𝑣∗𝑗 (0, 𝑦) = 𝑣∗𝑗 (𝐿, 𝑦) = 0, |𝑦 | ≤ 𝛿,
𝑣∗𝑗 (·, 0) = x, on Σ,

and



𝑣𝐷𝑗 = 0,
𝜕n 𝑗 𝑣

𝑁
𝑗 = 0,

(𝜕n 𝑗 + 𝜅)𝑣𝑅𝑗 = 0,
on Σ 𝑗 .

The impedance operators are then, 𝑇∗𝛿 := 1
2 (𝑇∗1, 𝛿 + 𝑇∗2, 𝛿). The aim of this section

is to investigate the effect on the convergence of the type of boundary condition
∗ ∈ {𝐷, 𝑁, 𝑅}; as well as the shrinking of the width 𝛿 of the strips B1, 𝛿 and B2, 𝛿 .

Modal analysis, convergence factor. Because of the separable geometry, we are
able to conduct a quantitative study. The main tool for this is the Hilbert basis
{sin(𝑘𝑚𝑥)}𝑚∈N of 𝐿2 (]0, 𝐿 [) where we introduced the mode numbers 𝑘𝑚 := 𝑚 𝜋

𝐿 ,
𝑚 ∈ N. All the operators involved are diagonalized on this basis.
Symbol of the impedance operators. By symmetry, we need only to study the upper
half-region. Standard computations show that the coefficients (𝑣∗𝑚,2)𝑚∈N of 𝑣

∗
2 satisfy,

𝑣∗𝑚,2 (𝑦) = 𝑥𝑚
𝑒−𝜇𝑚𝑦 + 𝛼∗𝛿,𝑚𝑒𝜇𝑚𝑦

1 + 𝛼∗𝛿,𝑚
, 0 ≤ 𝑦 ≤ 𝛿 where




𝛼𝐷𝛿,𝑚 = −𝑒−2𝜇𝑚 𝛿 ,

𝛼𝑁𝛿,𝑚 = 𝑒−2𝜇𝑚 𝛿 ,

𝛼𝑅𝛿,𝑚 = 𝜅−1𝜇𝑚−1
𝜅−1𝜇𝑚+1 𝑒

−2𝜇𝑚 𝛿 ,

where we set 𝜇𝑚 :=
√︁
𝑘2
𝑚 + 𝜅2, and introduced in addition the coefficients (𝑥𝑚)𝑚∈N

of the decomposition of x on the same modal basis. The symbol of the transmission
operator 𝑇∗𝛿 is then

𝑡∗𝛿,𝑚 = 𝜅−1𝜇𝑚
1 − 𝛼∗𝛿,𝑚
1 + 𝛼∗𝛿,𝑚

> 0, 𝑚 ∈ N.

Symbol of the scattering operators. Relying again on symmetry, we consider only
𝑗 = 2. From the definitions of the scattering operators 𝑆 𝑗 , we formally have

𝑆 𝑗 = −
(
Λ 𝑗 + 𝚤𝑇∗𝛿

) (
Λ 𝑗 − 𝚤𝑇∗𝛿

)−1
,

where we introduced the (propagative) DtN operators, for any x ∈ 𝐻1/2 (Σ)

Λ 𝑗x := 𝜅−1𝜕n 𝑗𝑢 𝑗 |𝑦=0, 𝑢 𝑗 ∈ 𝐻1 (Ω 𝑗 ),


(−Δ − 𝜅2)𝑢 𝑗 = 0, in Ω 𝑗 ,

𝑢 𝑗 (0, ·) = 𝑢 𝑗 (𝐿, ·) = 0, on 𝜕Ω 𝑗 \ Σ,
𝑢 𝑗 (·, 0) = x, on Σ,

and 𝑢 𝑗 is supposed outgoing. The coefficients (𝑢2,𝑚)𝑚∈N of 𝑢2 satisfy

𝑢2,𝑚 (𝑦) = 𝑥𝑚𝑒−𝜉𝑚𝑦 , 0 ≤ 𝑦, 𝑚 ∈ N,

and we set 𝜉𝑚 :=

{
−𝚤

√︁
𝜅2 − 𝑘2

𝑚, if 𝑘𝑚 ≤ 𝜅,√︁
𝑘2
𝑚 − 𝜅2, if 𝜅 ≤ 𝑘𝑚,

𝑚 ∈ N.
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The symbols of the operators Λ 𝑗 and the scattering operators 𝑆 𝑗 are then, for 𝑚 ∈ N,

�̂� 𝑗 ,𝑚 = 𝜅−1𝜉𝑚, 𝑠∗𝛿, 𝑗,𝑚 =
−�̂� 𝑗 ,𝑚 − 𝚤𝑡∗𝛿,𝑚
�̂� 𝑗 ,𝑚 − 𝚤𝑡∗𝛿,𝑚

= −
𝑧∗𝛿, 𝑗,𝑚 − 𝚤
𝑧∗𝛿, 𝑗,𝑚 + 𝚤

, with 𝑧∗𝛿, 𝑗,𝑚 = − �̂� 𝑗 ,𝑚
𝑡∗𝛿,𝑚

.

Modal and global convergence factors. Finally, the modal and global convergence
factors of the algorithm (5) can be estimated respectively by (we skip the technical
details which can be found in [3, Th. 4.2])

𝜏∗𝛿,𝑚 := max±

���(1 − 𝑟) ± 𝑟√︃𝑠∗𝛿,1,𝑚𝑠∗𝛿,2,𝑚
��� , and 𝜏∗𝛿 := sup

𝑚∈N
𝜏∗𝛿,𝑚.

Study of the convergence factor 𝜏∗𝛿 .We stress that, ultimately, much of the analysis
boils down to the properties of the Cayley transform 𝑧 ↦→ 𝑧−𝚤

𝑧+𝚤 in the complex plane,
allowing to get a rather deep understanding of the convergence [6, Lem. 6.5]. For
instance, the positivity of 𝑇∗𝛿 implies that in the propagative regime (𝑘𝑚 < 𝜅) the
ratio 𝑧∗𝛿, 𝑗,𝑚 ∈ 𝚤R+ \ {0}, whereas in the evanescent regime (𝜅 < 𝑘𝑚) the ratio
𝑧∗𝛿, 𝑗,𝑚 ∈ R \ {0}. The properties of the Cayley transform imply, in turn, that the
scattering operators 𝑆 𝑗 are contractions (|𝑠∗𝛿, 𝑗,𝑚 | < 1) [6, Cor. 6.6] so that all modal
convergence factors satisfy 𝜏∗𝛿,𝑚 < 1. To study the global convergence factor we will
use the following technical result whose proof rests on simple Taylor expansions.

Lemma 1 Let 𝑧(𝜖) ∈ C, 𝜖 > 0. The asymptotic behavior of the modal convergence
factor of the form

𝜏𝑧 = max±

���(1 − 𝑟) ± 𝑟 𝑧(𝜖) − 𝚤
𝑧(𝜖) + 𝚤

���,
as 𝜖 goes to 0 can be deduced from the one of 𝑧(𝜖): we have

𝑧(𝜖) ∈ 𝚤R+,
(𝜁 ∈ R+)



𝑧(𝜖) ∼ 𝚤𝜁 ,
𝑧(𝜖) ∼ 𝚤𝜁𝜖,
𝑧(𝜖) ∼ 𝚤𝜁𝜖−1,

⇒


𝜏𝑧 = 1 − 2𝑟 (1 + 𝜁)−1 min(1, 𝜁) + O(𝜖),
𝜏𝑧 = 1 − 2𝑟𝜁𝜖 + O(𝜖2),
𝜏𝑧 = 1 − 2𝑟𝜁−1𝜖 + O(𝜖2),

𝑧(𝜖) ∈ R,
(𝜁 ∈ R)



𝑧(𝜖) ∼ 𝜁,
𝑧(𝜖) ∼ 𝜁𝜖,
𝑧(𝜖) ∼ 𝜁𝜖−1,

⇒


𝜏𝑧 = 1 − 2𝑟 (1 − 𝑟) (1 + 𝜁2)−1 min(1, 𝜁2) + O(𝜖),
𝜏𝑧 = 1 − 2𝑟 (1 − 𝑟)𝜁2𝜖2 + O(𝜖3),
𝜏𝑧 = 1 − 2𝑟 (1 − 𝑟)𝜁−2𝜖2 + O(𝜖3).

Interest in using non-local operators (𝛿 fixed). It is immediate to check that

𝑧∗𝛿, 𝑗,𝑚 ∼ −1, as 𝑚 →∞, for ∗ ∈ {𝐷, 𝑁, 𝑅}.

Lemma 1 (with 𝑧(𝜖) ≡ 𝑧∗𝛿, 𝑗,𝑚, 𝜖 ≡ 1/𝑚), implies that lim𝑚→+∞ 𝜏∗𝛿,𝑚 = 1−𝑟 (1−𝑟) <
1. Notice that the limit is independent of both 𝛿 and the type of boundary condition.
This is not surprising as the highest modes “do not see”, in some sense, the boundary
condition. Since we have already established that 𝜏∗𝛿,𝑚 < 1 for all 𝑚, it follows that,

𝜏∗𝛿 < 1, for ∗ ∈ {𝐷, 𝑁, 𝑅}.
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We see here a manifestation of the effect of choosing an operator with the “right”
order that adequately deals with the highest frequency modes. For instance, if we
were to use a multiple of the identity as proposed originally by Després [4], then in
this case we would obtain 𝑧(𝑚−1) ∼ −𝜉𝑚 so that the asymptotic convergence factor
would behave like 1 − O(𝑚−2) and the global convergence rate would be 1.
Influence of the strip width 𝛿. From the previous expressions, we obtain that all
transmission operators become local in the limit 𝛿→ 0 and, for a fixed 𝑚,

𝑧𝐷𝛿, 𝑗,𝑚 ∼ −𝜉𝑚𝛿, 𝑧𝑁𝛿, 𝑗,𝑚 ∼ −𝜉𝑚𝜅−2𝛿−1, 𝑧𝑅𝛿, 𝑗,𝑚 ∼ −𝜉𝑚𝜅−1, as 𝛿→ 0.

Lemma 1 (with 𝑧(𝜖) ≡ 𝑧∗𝛿, 𝑗,𝑚, 𝜖 ≡ 𝛿) implies that, in the cases ∗ ∈ {𝐷, 𝑁}, the
modal convergence factor 𝜏∗𝛿,𝑚 converges to 1 as O(𝛿) in the propagative regime
(𝑘𝑚 < 𝜅) and as O(𝛿2) in the evanescent regime (𝜅 < 𝑘𝑚). In contrast, in the case
∗ = 𝑅, the modal convergence factor 𝜏𝑅𝛿,𝑚 is bounded away from 1 in all regimes.
We wish to study now the global convergence factor 𝜏𝑅𝛿 . We report in Figure 2

(left) the mode number of the slowest converging mode with respect to 𝛿/𝜆, for
𝜆 := 2𝜋/𝜅 and 𝜅 = 3𝜋. This reveals that, for ∗ ∈ {𝐷, 𝑁}, the maximum modal factor
is attained for a fixed mode number 𝑚 as 𝛿 → 0. Therefore, our theoretical and
numerical analysis have demonstrated that

𝜏∗𝛿 = 1 − O(𝛿2), as 𝛿→ 0, ∗ ∈ {𝐷, 𝑁}.

In contrast, in the case ∗ = 𝑅, the maximum modal factor is attained for the mode
number 𝑚 ∝ 𝛿−1/2 as 𝛿 → 0. This motivates to study the case 𝛿𝑚 = 𝑘−2

𝑚 in the limit
𝑚 → +∞. We have

𝑧𝑅𝛿𝑚 , 𝑗 ,𝑚 ∼ 𝜅(1 + 𝜅)−1 𝛿−1/2
𝑚 , as 𝑚 → +∞ with 𝛿𝑚 = 𝑘−2

𝑚 .

Therefore, using Lemma 1 (with 𝑧(𝜖) ≡ 𝑧𝑅𝛿𝑚 , 𝑗 ,𝑚, 𝜖 ≡ 𝛿
1/2
𝑚 ), the above theoretical

and numerical analysis shows that

𝜏𝑅𝛿 = 1 − O(𝛿), as 𝛿→ 0.

To conclude, we report in Figure 2 (right) the global convergence factor 𝜏∗𝛿 with
respect to 𝛿/𝜆, for 𝜆 := 2𝜋/𝜅 and 𝜅 = 3𝜋. For 𝛿 large enough we observe that the
convergence factor is constant and the same for all three cases. This can be explained
by the dissipative nature of the auxiliary problems and the fact that the boundary
condition ∗ is imposed far away from the source of the problem. For sufficiently
small 𝛿, the asymptotic regime is attained and corroborates our previous findings.
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Fig. 2: Slowest-converging mode (left) and convergence factor �̂�∗𝛿 (right) for the wave-guide.
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Fig. 3: Iteration count (left) and convergence history (right) in the circular configuration for the
Jacobi algorithm (top row) and the Gmres algorithm (bottom row).

3 Finite element computations in a circular geometry

We provide the results of actual computations using P1-Lagrange finite elements
with the relaxed Jacobi algorithm (𝑟 = 1/2) and the restarted Gmres algorithm
(restart 20 iterations). The problem is (1) in a homogeneous (𝔞 ≡ 𝔫 ≡ 1) disk of
radius 𝑅 = 2 with an interface at 𝑅 = 1. We compute the relative error using the
𝜅-weighted 𝐻1-norm ∥𝑢∥2 := ∥𝑢∥2

𝐿2 + 𝜅−2∥∇𝑢∥2
𝐿2 . We report in the left column of

Figure 3 the iteration count to reach a set tolerance of 10−8 with respect to 𝛿/𝜆, with
𝜆 := 2𝜋/𝜅 and 𝜅 = 1 and mesh size ℎ = 𝜆/400. We observe a quasi-quadratic growth
for sufficiently smaller 𝛿 for the Dirichlet and Neumann conditions. In contrast,
for the Robin condition, the growth is only linear and we still benefit of the non-
local effect up to 𝛿 ≈ 𝜆/50. We also report in the right column of Figure 3 the
convergence history in the case 𝜅 = 10, mesh size ℎ = 𝜆/40 and 𝛿 = 𝜆/20 (i.e. strip
width of two mesh cells). We added the results using the Després operator 𝑇 = Id
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for comparison. The efficiency of the approach, using the Robin-type condition, is
clearly demonstrated.
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Asynchronous Multi-Subdomain Methods With
Overlap for a Class of Parabolic Problems

Mohamed Laaraj and Karim Rhofir

1 Introduction

In previous work [3] and [5], we presented asynchronous iterations for solving sec-
ond order elliptical partial differential equations based on an overlapping domain
decompositions. Asynchronous iterations are not only a family of algorithms suitable
for asynchronous computations on multiprocessors, but also a general framework in
order to formulate general iteration methods associated with a fixed point mapping
on a product space, including the most standard ones such as the successive approx-
imation method (Jacobi, Gauss-Seidel and their block versions). in this chapter, we
will associate with the alternate method of Schwarz for the parabolic problems of
the second order, an affine fixed point map of which we show that the linear part is a
contraction in uniform norm. In this context we will develop a method of analyzing
the multi-subdomain case, as well as asynchronous iterations for parabolic prob-
lems. We will give a new technical result to update a Hopf maximum principle and
construct a new exponential weighted norm. The work is devoted to the framework
of a class of parabolic problems of the second order with Dirichlet condition. We
associate with a method based on the resolution of sub-problems on subdomains
with overlap, a fixed point map defined by the restrictions on subdomains without
overlap. We examine a mathematical property, the contraction with respect to a
new norm of this fixed point map. One important feature of the results presented
here is the use of exponential weighted norms, which allows us to obtain a stronger
convergence property than the usual uniform norm. One thus obtains a result of con-
vergence of the asynchronous iterations for a norm finer than the usual one, and this
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including for the basic situation of the very traditional alternate method of Schwarz.
At the level of subdomains having a common border portion with the boundary of
the domain, this requires the implementation of the principle of the maximum of
Hopf. The formalism used is particularly effective, compared to that used previously
described, to examine the influence of the size of the overlaps and the comparison of
the contraction constant of the application of fixed point. After the introduction, we
present in the second section the problem formulation, introduce the notation used
in the sequel and give our new technical result. In the third section we define the
linear mapping T which defines the substructured solution process. Then we define
the linear fixed point mapping 𝑇 which is the composition of T with a suitable
restriction operator 𝑅. We prove that 𝑇 is a linear mapping in a suitable function
space context. We also study the contraction property of 𝑇 . We finally introduce
an affine mapping whose linear part is 𝑇 and whose fixed point is the solution of
the parabolic partial differential equation. We state in the closing proposition the
convergence of asynchronous iterations applied to the approximation of this affine
fixed point mapping.

2 Notation and Assumptions

LetΩ be an open bounded domain ofR𝑛 with boundary 𝜕Ω and𝑚 an integer such that
𝑚 ≥ 2. In order to formulate our algorithm, we need an overlapping decomposition
ofΩwith certain overlap properties.We build such a decomposition by decomposing
Ω into 𝑚 non-overlapping open subdomains Ω̃𝑖 as

Ω̃𝑖 ∩ Ω̃ 𝑗 = ∅ if 𝑖 ≠ 𝑗 and ∪𝑚𝑖=1 Ω̃𝑖 = Ω (1)

and 𝜕Ω (resp. 𝜕Ω̃𝑖) the boundary ofΩ (resp. Ω̃𝑖) and Γ̃𝑖 = 𝜕Ω̃𝑖 ∩Ω ; Γ̃′𝑖 = 𝜕Ω̃𝑖 ∩ 𝜕Ω
such that Ω = ∪𝑚𝑖=1

(
Γ̃𝑖 ∪ Ω̃𝑖

)
. From this non-overlapping decomposition of Ω the

desired overlapping decomposition which will be used by our algorithm. To Ω̃𝑖 , we
associate Ω𝑖 , the overlapping multi-subdomain decomposition: Ω̃𝑖 ⊂ Ω𝑖 ⊂ Ω , Ω =
∪𝑚𝑖=1Ω𝑖 , and

Γ𝑖 = 𝜕Ω𝑖 ∩Ω ; Γ′𝑖 = 𝜕Ω𝑖 ∩ 𝜕Ω (2)

such that :
Ω̃𝑖 ∩ Γ𝑖 = ∅, 𝑖 = 1, . . . , 𝑚 (3)

For the exchange of information between subdomains, we will also employ the index
notation

Γ𝑖, 𝑗 = Γ𝑖 ∩ Ω̃ 𝑗 , 𝑗 ∈ 𝐽 (𝑖) (4)

where the index set 𝐽 is defined by

𝐽 (𝑖) =
{
𝑗 : Γ𝑖 ∩ Ω̃ 𝑗 ≠ ∅, 𝑗 ≠ 𝑖

}
(5)
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2.1 Technical result

Consider a bounded domain 𝐷 of R𝑛, the boundary 𝜕𝐷 = Γ ∪ Γ′ and an other
domain 𝐷 ⊂ 𝐷 such that 𝜕𝐷 ∩ 𝜕𝐷 ⊂ Γ′ and Γ ∩ 𝐷 = ∅

Fig. 1: Illustrative example of decomposition

Lemma 1 Consider the kernel 𝑘 (𝑥, 𝑦) defined on 𝐷 × Γ. Suppose that 𝑘 (𝑥, 𝑦) is
continuously differentiable

(
𝜕𝑘
𝜕𝑥 𝑗
(𝑥, 𝑦) exist and continuous on 𝐷 × Γ

)
then for all

integrable function 𝑔 : 𝑦 → 𝑔(𝑦), 𝑔 ∈ 𝐿1 (Γ), the function 𝑟 (𝑥) =
∫
Γ
𝑘 (𝑥, 𝑦)𝑔(𝑦)𝑑𝑦

admits continuous partial derivatives with respect to the components 𝑥 𝑗 of 𝑥 on 𝐷,
which can be expressed by :

𝜕𝑟

𝜕𝑥 𝑗
(𝑥) =

∫
Γ

𝜕𝑘

𝜕𝑥 𝑗
(𝑥, 𝑦)𝑔(𝑦)𝑑𝑦.

2.2 Problem statement

We introduce the time interval [0; 𝑡]. Let define :
{

𝑄 = Ω × [
0; 𝑡

]
; 𝑄𝑖 = Ω̃𝑖 ×

[
0; 𝑡

]
; 𝑄𝑖 = Ω𝑖 ×

[
0; 𝑡

]
𝜕𝑄𝑖 = 𝜕Ω̃𝑖 ×

[
0; 𝑡

]
; 𝜕𝑄𝑖 = 𝜕Ω𝑖 ×

[
0; 𝑡

]
; 𝜕𝑄 = 𝜕Ω × [

0; 𝑡
] (6)

and {
Σ𝑖 = Γ𝑖 ×

[
0; 𝑡

]
; Σ′𝑖 = Γ′𝑖 ×

[
0; 𝑡

]
Σ𝑖, 𝑗 = Γ𝑖, 𝑗 ×

[
0; 𝑡

] (7)

For 0 < 𝑡 ≤ 𝑡, we denote :{
𝑄𝑎𝑖 = Ω̃𝑖 ×

[
0; 𝑡

]
; 𝑄𝑎𝑖 = Ω𝑖 ×

[
0; 𝑡

]
; 𝑄𝑎 = Ω × [

0; 𝑡
]

Σ𝑎𝑖 = Γ𝑖 ×
[
0; 𝑡

]
; Σ′𝑎𝑖 = Γ

′
𝑖 ×

[
0; 𝑡

]
; Σ𝑎𝑖, 𝑗 = Γ𝑖, 𝑗 ×

[
0; 𝑡

] (8)
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and
Γ = ∪𝑚𝑖=1 ∪ 𝑗∈𝐽 (𝑖) Γ𝑖, 𝑗 = ∪𝑚𝑖=1Γ𝑖 , Σ = ∪𝑚𝑖=1 ∪ 𝑗∈𝐽 (𝑖) Σ𝑖, 𝑗 = ∪𝑚𝑖=1Σ𝑖 (9)

Suppose that

𝐿1 (Σ) =
𝑚∏
𝑖=1

∏
𝑗∈𝐽 (𝑖)

𝐿1 (
Σ𝑖, 𝑗

)
(10)

and{
𝐴 a second order elliptic operator with regular coefficients on Ω

and suppose that there exist 𝑒 ∈ 𝐶 (Ω), 𝑒 > 0 such that : 𝐴𝑒 = 𝜆𝑒, 𝜆 ∈ 𝑅, 𝜆 > 0
(11)

and 𝑝, 𝑞, 𝑟 integers

𝑓 ∈ 𝐿 𝑝 (𝑄) ; 𝑔 ∈ 𝐿𝑞 (Σ) ; 𝑢0 ∈ 𝐿𝑟 (Ω), 𝑝, 𝑞 > 1 and 𝑟 ≥ 1. (12)

We consider the linear parabolic problem with Cauchy conditions




𝜕𝑢

𝜕𝑡
+ 𝐴𝑢 = 𝑓/𝑄

𝑢 = 𝑔/𝜕𝑄
𝑢(𝑥, 0) = 𝑢0

/Ω

(13)

Assume that the problem (13) has a unique solution 𝑢∗ in a suitable function space.
On 𝑄 = Ω × [

0, 𝑡
]
, we define the weighted norm :

|𝑢 |𝑡𝑒,∞ = max
(𝑥,𝑡) ∈𝑄

|𝑢(𝑥, 𝑡) |
𝑒(𝑥) (14)

We can notice that if the initial condition 𝑢0
/Ω = 0, then |𝑢 |𝑡𝑒,∞ = max(𝑥,𝑡) ∈𝑄𝑎 |𝑢(𝑥,𝑡) |𝑒 (𝑥)

3 Fixed point mappings

3.1 The linear mapping T

Consider the function space C𝑡 =
𝑚∏
𝑖=1
𝐶

(
𝐶 (Ω̃𝑖);

]
0, 𝑡

] )
and define the linear mapping

T : 𝐿1 (Σ) → C𝑡 , T : 𝑤 → �̃�

Note that C𝑡 ≠ 𝐶
(
𝐶 (Ω;

]
0, 𝑡

] )
. For each given function 𝑤 ∈ 𝐿1 (Σ),

𝑤 = {. . . , 𝑤𝑖 , . . .}𝑖=1,...,𝑚 , 𝑤𝑖 =
{
. . . , 𝑤𝑖, 𝑗 , . . .

}
𝑗∈𝐽 (𝑖) ∈ 𝐿1 (Σ𝑖)
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we compute using the solutions 𝑣𝑖 of the subproblems

𝜕𝑣𝑖
𝜕𝑡
+ 𝐴𝑣𝑖 = 0 in 𝑄𝑖 , 𝑣𝑖/Σ𝑖, 𝑗 = 𝑤𝑖, 𝑗 , 𝑗 ∈ 𝐽 (𝑖), 𝑣𝑖/Σ′𝑖 = 0, 𝑣𝑖 (𝑥, 0) = 0 on Ω𝑖 (15)

where, we suppose the following regularity of subdomain solutions

𝑣𝑖 ∈
{
𝐶∞ (𝑄𝑎𝑖 ), 𝑖 𝑓 Γ′𝑖 ≠ ∅
𝐶1 (𝑄𝑎𝑖 ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(16)

Now we take the restriction �̃�𝑖 = 𝑣
𝑖/𝑄𝑖

and we define the linear operator T𝑖 by
T𝑖 (𝑤) = �̃�𝑖 . Finally we set

�̃� = {. . . , �̃�𝑖 , . . .} = {. . . ,T𝑖 (𝑤), . . .} = T (𝑤)

Proposition 1 T ∈ L(𝐿1 (Σ);C𝑡 ) is a linear isotone mapping with respect to the
natural order.

3.2 The linear mapping 𝑻

Let 𝐶𝑒 (𝑄 𝑗 ) be the space formed by all elements of 𝐶 (𝑄 𝑗 ) endowed with the norm��𝑤 𝑗 ��𝑡𝑒,∞, 𝑗 = max(𝑥,𝑡) ∈𝑄 𝑗
|𝑤 𝑗 (𝑥,𝑡) |
𝑒 (𝑥) where 𝑒(𝑥) denotes the eigenfunction in (11). We

define 𝐶𝑡𝑒 =
𝑚∏
𝑗=1
𝐶𝑒 (𝑄 𝑗 ) equipped with the norm |𝑤 |𝑡𝑒,∞ = max 𝑗=1,...,𝑚

��𝑤 𝑗 ��𝑡𝑒,∞, 𝑗
where 𝑤 = {. . . , 𝑤𝑖 , . . .} ∈ 𝐶𝑒 .
Define 𝑅′𝑖 the restriction operator from C𝑡 to

∏
𝑗∈𝐽 (𝑖)

𝐶 (𝑄 𝑗 )
by 𝑅′𝑖 (𝑤) = 𝑤𝑖 =

{
. . . , 𝑤 𝑗 , . . .

}
𝑗∈𝐽 (𝑖) and 𝑅

′′
𝑖 the restriction operator from∏

𝑗∈𝐽 (𝑖)
𝐶 (𝑄 𝑗 ) to

∏
𝑗∈𝐽 (𝑖)

𝐶 (Σ𝑎𝑖, 𝑗 ) which at each 𝑤𝑖 we associate
{
. . . , 𝑤𝑖, 𝑗 , . . .

}
𝑗∈𝐽 (𝑖)

where 𝑤𝑖, 𝑗 are defined by :
𝑤𝑖, 𝑗 = 𝑤 𝑗/Σ𝑎𝑖, 𝑗

and
𝑅𝑖 = 𝑅

′′
𝑖 ◦ 𝑅′𝑖

Then

𝑅(𝑤) = {𝑅1 (𝑤), . . . , 𝑅𝑚 (𝑤)} and 𝑅 ∈ L(
∏
𝑖

𝐶 (𝑄𝑖);
𝑚∏
𝑖=1

∏
𝑗∈𝐽 (𝑖)

𝐶 (Σ𝑎𝑖, 𝑗 ))

We define the mapping 𝑇 = {. . . , 𝑇𝑖 , . . .} at each 𝑖 ∈ {1, . . . , 𝑚} by :

�̃�𝑖 = 𝑇𝑖 (𝑤) = T𝑖 ◦ 𝑅𝑖 (𝑤) = T𝑖 ◦ 𝑅(𝑤)
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then
�̃� = {. . . , �̃�𝑖 , . . .}𝑖=1,...,𝑚 = 𝑇 (𝑤)

Proposition 2 𝑇 ∈ L(C𝑡𝑒) is a linear isotone mapping with respect to the natural
order.

3.3 Contraction property of 𝑻

Using (11), we take the restriction Ψ̃𝑡𝑒,𝑖 = Ψ𝑡 ,𝑒
𝑖/𝑄𝑖
where Ψ𝑡 ,𝑒𝑖 is solution of :




𝜕Ψ𝑡,𝑒𝑖
𝜕𝑡 + 𝐴Ψ𝑡 ,𝑒𝑖 = 0/𝑄𝑖
Ψ𝑡 ,𝑒
𝑖/Σ𝑖∪Σ′𝑖

= 𝑒/Σ𝑖∪Σ′𝑖
Ψ𝑡 ,𝑒𝑖 (., 0) = 0/Ω𝑖

(17)

Lemma 2 Ψ̃𝑡𝑒,𝑖 (𝑡 ,𝑥)
𝑒 (𝑥) is well defined and continuous on 𝑄𝑖 , and

max
(𝑥,𝑡) ∈𝑄𝑖

Ψ̃𝑡𝑒,𝑖 (𝑡, 𝑥)
𝑒(𝑥) ≤ 𝜇𝑖 < 1 (18)

Proposition 3 𝑇 ∈ L(C𝑡𝑒) is a contraction with contraction constant

𝜇 = max
𝑖=1,...,𝑚

𝜇𝑖 , where 𝜇𝑖 = max
(𝑥,𝑡) ∈𝑄𝑖

Ψ̃𝑡𝑖,𝑒 (𝑥, 𝑡)
𝑒(𝑥) (19)

First, we resolve the subproblems for 𝑖 = 1, · · · , 𝑚: 𝜕𝑢𝑖𝜕𝑡 + 𝐴𝑢𝑖 = 𝑓𝑖/𝑄𝑖 , 𝑢𝑖/Σ𝑖 =
0/Σ𝑖 , 𝑢𝑖/Σ′𝑖 = 𝑔𝑖/Σ′𝑖 , 𝑢𝑖 (𝑥, 0) = 𝑢0 on Ω𝑖 . Restricting 𝑢𝑖 to 𝑢𝑖 = 𝑢

𝑖/𝑄𝑖
and consider

the new subproblems 𝜕𝑣𝑖𝜕𝑡 + 𝐴𝑣𝑖 = 𝑓𝑖/𝑄𝑖 , 𝑣𝑖/Σ𝑖 = 𝑤/Σ𝑖 , 𝑣𝑖/Σ′𝑖 = 𝑔𝑖/Σ′𝑖 , 𝑣𝑖 (𝑥, 0) = 𝑢0,
we get the restricted values �̃�𝑖 = 𝑣

𝑖/𝑄𝑖
so that the fixed point is given by

�̃�𝑖 = 𝑢𝑖 + 𝑇𝑖 (𝑤). (20)

Proposition 4 The asynchronous iterations initialized by 𝑢0, applied to the affine
fixed point mapping : 𝐹 (𝑤) = 𝑇 (𝑤) + 𝑢 give rise to a sequence of iterates which
converges, with respect to the uniform weighted norm | |𝑡𝑒,∞ towards 𝑢∗ the solution
of problem (13).

Proof The proof of all proposed will be given in the extended version paper. □
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4 Constants of contraction comparison with respect to the
weighted exponential norm

Let 𝐴0 an operator verifying the previously conditions and 𝛼 ∈ R, we define the
operator 𝐴𝛼 by 𝐴𝛼 = 𝐴0 + 𝛼𝐼.
We consider two open subdomains Ω𝑘𝑖 , 𝑘 = 1, 2 such that : Ω1

𝑖 ⊂ Ω2
𝑖 then 𝑄

1
𝑖 =

Ω1
𝑖 ×

]
0; 𝑡

]
; 𝑄2

𝑖 = Ω2
𝑖 ×

]
0; 𝑡

]
; 𝑄1

𝑖 ⊂ 𝑄2
𝑖 . Denote :{

Γ𝑘𝑖 = 𝜕Ω𝑘𝑖 ∩Ω ; Γ′𝑘𝑖 = 𝜕Ω𝑘𝑖 ∩ 𝜕Ω
Σ𝑘𝑖 = Γ𝑘𝑖 ×

]
0; 𝑡

]
; Σ′𝑘𝑖 = Γ′𝑘𝑖 ×

]
0; 𝑡

]
and assume that for 𝑘 = 1, 2 : Γ𝑘𝑖 , Γ

′𝑘
𝑖 satisfy (3), Ψ

𝑡 ,𝑒,𝑘
𝑖 , Ψ𝑡 ,𝑘𝑒,𝑖 are obtained by (17)

and (18) with respect to Ω𝑘𝑖 . Lets 𝑇1 (resp 𝑇2) the fixed point mapping associate to
𝑄1 (resp 𝑄2), and 𝜇1 (resp 𝜇2) the contraction constant of 𝑇1 (resp 𝑇2) defined by
(19).

Proposition 5 Under previous notations, Ψ̃𝑡 ,2𝑒,𝑖 < Ψ̃𝑡 ,1𝑒,𝑖 and 𝜇2 < 𝜇1 < 1

Let us to solve the problem, with 𝐴 = 𝐴𝛽 for 𝛽 ∈ R :




𝜕𝑢

𝜕𝑡
+ 𝐴𝑢 = 𝑓/𝑄
𝑢 = 𝑔/𝜕𝑄

𝑢(𝑥, 0) = 𝑢0
/Ω

(21)

Let D bounded domain of R𝑛, 𝑡 ∈ R+. Let 𝛼 ∈ R, 𝑒D a positive function on D .
We define on D × [

0, 𝑡
]
, the weighted exponential norm | |𝑡𝑒D ,∞,𝛼 by :

| 𝑢 |𝑡𝑒D ,∞,𝛼 = max
(𝑥,𝑡) ∈D×[0,𝑡]

����exp(−𝛼𝑡)𝑢(𝑥, 𝑡)
𝑒D (𝑥)

���� (22)

Replacing D (resp. 𝑒D) by Ω̃𝑖 (resp. 𝑒Ω̃𝑖 ), we can define on 𝐶𝑒(𝑄𝑖), the norm

| |𝑡𝑒,∞,𝛼,𝑖 by : |𝑢𝑖 |𝑡𝑒,∞,𝛼,𝑖 = |𝑢𝑖 |𝑡𝑒Ω̃𝑖 ,∞,𝛼 = max(𝑥,𝑡) ∈Ω̃𝑖×[0,𝑡]
��� exp(−𝛼𝑡)𝑢(𝑥,𝑡)

𝑒 (𝑥)
���

Then, we define on 𝐶𝑡𝑒 the norm | |𝑡𝑒,∞,𝛼 by : |𝑢 |𝑡𝑒,∞,𝛼 = max𝑖=1,...,𝑚 |𝑢𝑖 |𝑡𝑒,∞,𝛼,𝑖
Taking 𝑣 = exp(−𝛼𝑡)𝑢 , then 𝑣 verify :




exp(𝛼𝑡) 𝜕𝑣
𝜕𝑡
+ exp(𝛼𝑡)𝐴𝑣 + exp(𝛼𝑡)𝛼𝑣 = 𝑓/𝑄

exp(𝛼𝑡)𝑣 = 𝑔/𝜕𝑄
𝑣(𝑥, 0) = 𝑢0

/Ω

(23)

If 𝐴𝛼 = 𝐴 + 𝛼𝐼, then the problem become as :
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𝜕𝑣

𝜕𝑡
+ 𝐴𝛼𝑣 = exp(−𝛼𝑡) 𝑓/𝑄
𝑣 = exp(−𝛼𝑡)𝑔/𝜕𝑄
𝑣(𝑥, 0) = 𝑢0

/Ω

(24)

where 𝐴𝛼 = 𝐴0 + (𝛼 + 𝛽) 𝐼 = 𝐴𝛼+𝛽 and if we choose 𝛼 = −𝛽 then 𝐴𝛼 = 𝐴0.

Proposition 6 Lets 𝛼 ≥ 0 and 𝑤 ∈ 𝐶𝑡𝑒. For the subproblems 𝜕𝑢𝑖
𝜕𝑡 + 𝐴𝑢𝑖 + 𝛼𝑢𝑖 =

𝑓𝑖/𝑄𝑖 , 𝑢𝑖/Σ𝑖 = 𝑤/Σ𝑖 , 𝑢𝑖/Σ′𝑖 = 0/Σ′𝑖 , 𝑢𝑖 (𝑥, 0) = 0/Ω𝑖 . we correspond 𝑇𝛼 the affine fixed
point application and 𝜇𝛼 its constant contraction, then 𝜇𝛼 is strictly decreasing as
a function of 𝛼.

Let 𝑤 ∈ 𝐶𝑡𝑒, and suppose that 𝑢𝑖 solution of the subproblems



𝜕𝑢𝑖
𝜕𝑡
+ 𝐴𝑢𝑖 = 𝑓/𝑄𝑖

𝑢𝑖/Σ′𝑖 = 𝑔𝑖/Σ′𝑖
𝑢𝑖/Σ𝑖 = 𝑤/Σ′𝑖
𝑢𝑖 (𝑥, 0) = 𝑢0

/Ω𝑖

(25)

We can define the affine fixed point application 𝐹 by 𝑢𝑖 = 𝐹𝑖 (𝑤) = 𝑇𝑖 (𝑤) + 𝑢

Proposition 7 𝐹 is a fixed point mapping with respect to the weighted exponential
norm with contraction constant 𝜇 where 𝜇 is a contraction constant of the fixed point
mapping F associated to 𝐴0 with respect to the weighted norm | |𝑡𝑒,∞,𝛼 defined by
(22).

Proof The proof of all proposed will be given in the extended version paper. □

Proposition 8 The asynchronous iterations initialized by 𝑢0, applied to the affine
fixed point mapping : 𝐹 (𝑤) = 𝑇 (𝑤) + 𝑢 give rise to a sequence of iterates which
converges, with respect to the uniform weighted norm | |𝑡𝑒,∞,𝛼 towards 𝑢∗ the solution
of problem (25).

The proof is based on the use of El Tarazi’s theorem [2].

Remark 1 1. Si 𝛽 > 0, the norm | |𝑡𝑒,∞,𝛼, for 𝛼 = −𝛽 is more fine than | |𝑡𝑒,∞
(which means it converges faster).

2. If 𝛽 < 0, we obtain the convergence for the norm | |𝑡𝑒,∞,𝛼 with 𝛼 = −𝛽 which is
less fine than | |𝑡𝑒,∞. For this last norm and any 𝛽 < 0 there is no convergence
in general.

3. Let 𝜆 the smallest positive eigenvalue of 𝐴0. For 𝛽 ∈ ]−𝜆, 0], 𝐴 = 𝐴𝛽 satisfies
the previous conditions with however the contraction constant which satisfy
𝜇 ≤ 𝜇𝛽 < 1 and when 𝛽↘ −𝜆, 𝜇𝛽 ↗ 1.

4. It is possible to make the change 𝑣 = 𝑠 (−𝛼𝑡)𝑢, 𝑠 ∈ 𝑅+∗ , instead 𝑣 = exp(−𝛼𝑡)𝑢
and all the results still valid.
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Toward a New Fully Algebraic Preconditioner
for Symmetric Positive Definite Problems

Nicole Spillane

1 Introduction

We set out to solve the linear system Ax∗ = b, for a given symmetric positive
definite (spd) matrix A ∈ R𝑛×𝑛. There exist a variety of two-level methods for
which fast convergence is guaranteed without making assumptions on the number of
subdomains, their shape, or the distribution of the coefficients in the underlying PDE
(see e.g [12, 5, 15, 16, 8, 11, 13, 6, 19, 18, 3]). These methods have in common to
select vectors for the coarse space by computing low- or high-frequency eigenvectors
of well-chosen generalized eigenvalue problems (of the formM𝐴y = 𝜆M𝐵y) posed
in the subdomains. To the best of the author’s knowledge, none of these methods
can be applied if the so-called local Neumann matrices are not known. Specifically,
the definition of either M𝐴 or M𝐵 is based on a family of symmetric positive
semi-definite (spsd) matrices N𝑠 that satisfy

∃𝐶 > 0, such that
𝑁∑︁
𝑠=1

x⊤R𝑠⊤N𝑠R𝑠x ≤ 𝐶 x⊤Ax; ∀x ∈ R𝑛, (1)

where it has been assumed that there are 𝑁 subdomains with restriction operators
R𝑠 . The Neumann matrices are a natural choice for N𝑠 and the above estimate then
holds with constant 𝐶 equal to the maximal multiplicity of a mesh element. This
limitation is very well known (and stated clearly in e.g.:, [1, 2]).
In this work, it is proposed to relax the assumptions on the matrices N𝑠 in (1)

by allowing them to be symmetric (but not necessarily positive semi-definite). Such
matricesN𝑠 , then denoted B𝑠 , can always be defined algebraically. Special treatment
must be applied to the non-positive part of B𝑠 and this will be reflected in the cost
of setting up and applying the preconditioner. In Section 2, the new preconditioner

Nicole Spillane
CNRS, CMAP, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex,
France, e-mail: nicole.spillane@cmap.polytechnique.fr
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is defined and the result on the condition number is given. In Section 3, some
preliminary numerical illustrations are provided. Finally, Section 4 offers up some
conclusive remarks about the new preconditioner, as well as some of its current
limitations that are addressed in the full length article [7].

2 Definition of the new preconditioner and theory

This section introduces the new preconditionerH(𝜏) and proves the resulting bound
for the condition number ofH(𝜏)A. Themethodology is as follows. In Subsection 2.1,
some elements of the abstract Schwarz setting are defined in their algebraic form.
Then, in Subsection 2.2, a new matrix A+ is introduced for which an algebraic
splitting into spsd matrices is available by construction (i.e., (1) is satisfied). The
availability of this splitting makes it possible to apply the abstract GenEO theory
[14] to choose a coarse space. Hence, in Subsection 2.3, a two-level preconditioner
H+ (𝜏), with a GenEO coarse space parametrized by a threshold 𝜏, is defined for A+.
The spectral bound for H+ (𝜏)A+ is given. Finally in Subsection 2.4, the Woodbury
matrix identity [17] is applied to find a formula for A−1 − A−1+ and this (provably
low-rank) term is added to H+ (𝜏) in order to form the new preconditioner H(𝜏) for
A. A spectral bound for H(𝜏)A follows.

2.1 Algebraic Domain Decomposition

Let Ω = ⟦1, 𝑛⟧ be the set of all indices in R𝑛. In all that follows, it is assumed
that Ω has been partitioned into a family of subdomains (Ω𝑠)𝑠=1,...,𝑁 and that the
partition has minimal overlap in the sense given by Definition 1. The usual restriction
operators are also defined.

Definition 1 A set (Ω𝑠)𝑠=1,...,𝑁 of 𝑁 ∈ N subsets of Ω = ⟦1, 𝑛⟧ is called a partition
of Ω if Ω =

⋃𝑁
𝑠=1 Ω

𝑠 . Each Ω𝑠 is called a subdomain. The partition is said to have at
least minimal overlap if: for any pair of indices (𝑖, 𝑗) ∈ ⟦1, 𝑛⟧2, denoting by 𝐴𝑖 𝑗 the
coefficient of A at the 𝑖-th line and 𝑗-th column,

𝐴𝑖 𝑗 ≠ 0⇒ (∃ 𝑠 ∈ ⟦1, 𝑁⟧ such that {𝑖, 𝑗} ⊂ Ω𝑠) .

Moreover, for each 𝑠 ∈ ⟦1, 𝑁⟧, let 𝑛𝑠 be the cardinality of Ω𝑠 . Finally, let the
restriction matrix R𝑠 ∈ R𝑛𝑠×𝑛 be zero everywhere except for the block formed by
the columns in Ω𝑠 which is the 𝑛𝑠 × 𝑛𝑠 identity matrix.
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2.2 Definition of A+ and related operators

The starting point for the algebraic preconditioner is to relax condition (1) by allowing
symmetric, but possibly indefinite, matrices in the splitting of A.

Definition 2 Let B ∈ R𝑛×𝑛 be the matrix whose (𝑖, 𝑗)-th entry is

𝐵𝑖 𝑗 :=

{
𝐴𝑖 𝑗

#{𝑠;{𝑖, 𝑗 }⊂Ω𝑠 } if 𝐴𝑖 𝑗 ≠ 0,
0 otherwise.

Then, for each 𝑠 = 1, . . . , 𝑁 , let B𝑠 := R𝑠BR𝑠⊤ (∈ R𝑛𝑠×𝑛𝑠 ).

Theorem 1 Thanks to the minimal overlap assumption, the symmetric matrices B𝑠
are well-defined and satisfy A =

∑𝑁
𝑠=1 R𝑠⊤B𝑠R𝑠 .

The proof is given in [7][Theorem 3.2]. In particular, (1) holds with N𝑠 = B𝑠 and
𝐶 = 1. Next, each B𝑠 is split into a spsd and a symmetric negative semi-definite part.

Definition 3 Let 𝑠 ∈ ⟦1, 𝑁⟧. Since B𝑠 is symmetric, there exist a diagonal matrix
𝚲𝑠 and an orthogonal matrixV𝑠 such that B𝑠 = V𝑠𝚲𝑠V𝑠⊤. It can further be assumed
that the diagonal entries of 𝚲𝑠 (which are the eigenvalues of B𝑠) are sorted in
non-decreasing order and that

𝚲𝑠 =

(
𝚲𝑠− 0
0 𝚲𝑠+

)
, V𝑠 =

[
V𝑠− |V𝑠+

]
, 𝚲𝑠+ is spd, −𝚲𝑠− is spsd.

Finally, let
A𝑠+ := V𝑠+𝚲𝑠+V𝑠+⊤ and A𝑠− := −V𝑠−𝚲𝑠−V𝑠−⊤.

With words, the positive (respectively, non-positive) eigenvalues of B𝑠 are on
the diagonal of 𝚲𝑠+ (respectively, 𝚲𝑠−) and the corresponding eigenvectors are in the
columns of V𝑠+ (respectively, V𝑠−). It is also clear that

B𝑠 = A𝑠+ − A𝑠−, A𝑠+ is spsd, and A𝑠− is spsd.

In the next definition, these new local matrices are assembled into global matrices
and in particular the all important matrix A+ is defined.

Definition 4 Let A+ and A− be the two matrices in R𝑛×𝑛 defined by

A+ :=
𝑁∑︁
𝑠=1

R𝑠⊤A𝑠+R𝑠 , and A− :=
𝑁∑︁
𝑠=1

R𝑠⊤A𝑠−R𝑠 .

It is clear that A = (A+ − A−) and A− is spsd. As a result, A+ is spd .
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2.3 Two-level preconditioner for A+ with a GenEO coarse space

Following [14], there are many possible choices for a two-level preconditioner for
A+ with a GenEO coarse space. This is not the novelty here so only one is given with
no further comment on other possibilities.
Theorem 2 Let 𝜏 > 1 be a threshold. Let H+ (𝜏) be defined by

H+ (𝜏) :=
𝑁∑︁
𝑠=1

R𝑠⊤ (R𝑠A+R𝑠⊤) −1R𝑠 + R0 (𝜏)⊤ (R0 (𝜏)A+R0 (𝜏)⊤)−1R0 (𝜏),

where the lines of R0 (𝜏) form a basis for the GenEO coarse space𝑉0 (𝜏). The coarse
space is in turn defined according to [14][Definition 5] by

𝑉0 (𝜏) :=
𝑁∑︁
𝑠=1

span
{
R𝑠⊤y𝑠; (𝜆𝑠 , y𝑠) ∈ R+ × R𝑛𝑠 solution of (2) and 𝜆𝑠 < 𝜏−1} .

where the generalized eigenvalue problem is

(D𝑠)−1A𝑠+ (D𝑠)−1y𝑠 = 𝜆𝑠R𝑠A+R𝑠⊤y𝑠; for D𝑠 := R𝑠
(
𝑁∑︁
𝑡=1

R𝑡⊤R𝑡
)−1

R𝑠⊤. (2)

If 𝜏 > 1 and N+ is the minimal number of colors that are needed to color each sub-
domain in such a way that two subdomains with the same color are A+-orthogonal,
then the eigenvalues of the preconditioned operator satisfy

𝜆(H+ (𝜏)A+) ∈
[((1 + 2N+)𝜏)−1 ,N+ + 1

]
. (3)

Proof This is the result in [14][Remark 3,Corollary 4,Assumption 6]. □

2.4 New preconditioner for A

Definition 5 Let 𝑛− = rank(A−). Let 𝚲− ∈ R𝑛−×𝑛− and V− ∈ R𝑛×𝑛− be the diagonal
matrix and the orthogonal matrix that are obtained by removing the null part of A−
from its diagonalization in such a way that A− = V−𝚲−V⊤− with 𝚲− spd.
It now holds that A = A+ − V−𝚲−V⊤− and the Woodbury matrix identity [17]

applied to computing the inverse of A, viewed as a modification of A+, gives

A−1 = A−1
+ + A−1

+ V−
(
𝚲−1
− − V⊤−A−1

+ V−
)−1

V⊤−A−1
+ . (4)

This leads to the main theorem in this article in which the new algebraic precondi-
tioner for A is defined and the corresponding spectral bound is proved.
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Theorem 3 For 𝜏 > 1, let the new preconditioner be defined as

H(𝜏) := H+ (𝜏) + A−1
+ V−

(
𝚲−1
− − V⊤−A−1

+ V−
)−1

V⊤−A−1
+ .

The eigenvalues of the preconditioned operator satisfy

𝜆(H(𝜏)A) ∈ [((1 + 2N+)𝜏)−1 ,N+ + 1
]
, (5)

where, once more N+ is the coloring constant with respect to the operator A+.

Proof The estimate for the eigenvalues of H+ (𝜏)A+ in (3) is equivalent to

((1 + 2N+)𝜏)−1 ⟨x,A−1
+ x⟩ ≤ ⟨x,H+ (𝜏)x⟩ ≤ (N+ + 1)⟨x,A−1

+ x⟩, ∀x ∈ R𝑛.

Adding, ⟨x,A−1+ V−
(
𝚲−1
− − V⊤−A−1+ V−

)−1
V⊤−A−1+ x⟩ to each term, it holds that

((1 + 2N+)𝜏)−1 ⟨x,A−1x⟩ ≤ ⟨x,H(𝜏)x⟩ ≤ (N+ + 1)⟨x,A−1x⟩, ∀x ∈ R𝑛,

where (4) was applied as well as N+ ≥ 1 and 𝜏 ≥ 1. This is equivalent to (5). □

Remark 1 (Cost of the new preconditioner) In order to apply the preconditioner,
the matrix A−1+ V− must be formed. This can be done by solving iteratively 𝑛− linear
systems preconditioned byH+ (𝜏). It is likely that blockKrylovmethods would be ad-
vantageous. Note that unfortunatelyA−1+ V− is dense as is

(
𝚲−1
− − V⊤−A−1+ V−

)
. Setting

up and applying the second coarse problem A−1+ V−
(
𝚲−1
− − V⊤−A−1+ V−

)−1
V⊤−A−1+ is

the most costly part of the algorithm.
The good news is that the number 𝑛− of columns in V− (which equals the rank

of A−) satisfies 𝑛− ≤
∑𝑁
𝑠=1 𝑛

𝑠 − 𝑛. Consequently, the rank of A− is low compared to
the rank 𝑛 of A (𝑛− ≪ 𝑛) as long as there is little overlap between subdomains. Note
that 𝑛− can be (and hopefully is) much smaller even than

∑𝑁
𝑠=1 𝑛

𝑠 − 𝑛.

3 Numerical Illustration

The results in this section are obtained using the software FreeFem++ [9], GNU
Octave [4] and METIS [10]. The linear systems that are considered arise from
discretizing with P1 finite elements some two-dimensional linear elasticity problems.

Fig. 1: Testcase 1 – partition (𝑁 = 4) and distribution of 𝐸 (108 if white and 103 if dark)
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The first test case is posed on the domain Ω = [4, 1] discretized by 112 × 28
elements. The problem size is 𝑛 = 6496 degrees of freedom. The coefficients in the
linear elasticity equation are 𝜈 = 0.3 for Poisson’s ratio and

𝐸 (𝑥, 𝑦) = 108 if 𝑦 ∈ [1/7, 2/7]∪[3/7, 4/7]∪[5/7, 6/7]; 𝐸 (𝑥, 𝑦) = 103 otherwise.

The domain is partitioned into 4 subdomains with Metis. No overlap is added.
Figure 1 shows both the partition into subdomains and the distribution of 𝐸 . For this
problem, the coloring constants with respect to A and A+ are N = 2, and N+ = 3.
The problem is solved with the one-level Additive Schwarz (AS), the two-level AS
with the GenEO coarse space from [14][Section 5.2.2] and the new method. The
value of the threshold 𝜏 for the last two methods is chosen to be 𝜏 = 10. The
theoretical bounds for GenEO and the new method is that the eigenvalues are in
the interval [1/50 = 0.02, 3] and [1/70 ≈ 0.014, 4], respectively. The A-norm of
the error at each iteration of the preconditioned conjugate gradient is represented
in Figure 2. The quantities of interest are in Table 1. The one-level method is not
efficient on this problem. This was to be expected. Both the GenEO solver and the
new solver converge fast. With 𝜏 = 10 in both methods, the coarse space for the
new method is larger than with GenEO (58 versus 49 coarse vectors). For the new
method there is also an additional problem of size 49. The results show that the new
preconditioner converges a little bit faster than GenEO. A study with more values of
all the parameters is needed to compare GenEO and the new solver as the parameter
𝜏 does not play exactly the same role in the setup of both preconditioners. Since there
is a lot more information injected into GenEO (through the Neumann matrices), it is
expected that GenEO will be more efficient. However the new method has the very
significant advantage of being algebraic, and being almost as efficient as GenEO
would be an achievement.
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Fig. 2: Testcase 1 – Convergence history for the one-level method, the two-level GenEO method
and the new method.
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𝜆min 𝜆max 𝜅 It #𝑉0 𝑛−
One-level AS 2 · 10−4 2.0 1.0 · 104 >100 0 0

Two-level AS with GenEO 0.059 3.0 51 65 49 0
New method 0.24 2.93 12 30 58 49

Table 1: Testcase 1 – Extreme eigenvalues (𝜆min and 𝜆max), condition number (𝜅), iteration count
(It), size of coarse space (#𝑉0), and size of second coarse space in new method (𝑛− = rank(A−))

It is very good news that the coarse space and the space𝑉− did not explode on the
previous test case. The second test case is a rather easy problem posed onΩ = [1, 1]
with a distribution of both coefficients that is homogeneous: 𝜈 = 0.3 and 𝐸 = 108.
Two partitions are considered: one into 𝑁 = 16 regular subdomains and the other
into 𝑁 = 16 subdomains with Metis. No overlap is added to the subdomains. The
results are presented in Table 2. For the problem with regular subdomains, the new
method selects a coarse space of size 44 (versus 40 for GenEO). This means, that
even without the knowledge of the Neumann matrix, a coarse space is constructed
that has almost the same number of vectors as the optimal coarse space for this
problem which consists of 3 × 12 = 36 rigid body modes (there are 4 non-floating
subdomains). Of course the second coarse space also adds to the cost.

𝑁 = 16 regular subdomains 𝑁 = 16 subdomains with Metis
𝜆min 𝜆max 𝜅 It #𝑉0 𝑛− 𝜆min 𝜆max 𝜅 It #𝑉0 𝑛−

One-level AS 2 · 10−3 4.0 1996 97 0 0 1.7 · 10−3 3.0 1817 >100 0 0
Two-level AS with GenEO 0.07 4.0 60 61 40 0 0.095 3.4 36 54 74 0

New method 0.19 4.0 21 39 44 24 0.26 3.0 11.3 31 117 94

Table 2: Testcase 2 – Extreme eigenvalues (𝜆min and 𝜆max), condition number (𝜅), iteration count
(It), size of coarse space (#𝑉0), and size of second coarse space in new method (𝑛− = rank(A−))

4 Conclusion

A new algebraic preconditioner was defined for the first time and bounds for the
spectrum of the resulting preconditioned operator were proved. They are indepen-
dent of the number of subdomains and any parameters in the problem. The new
preconditioner has two coarse spaces. One of them is dense and a sparse approxima-
tion is under investigation. The full length article [7] proposes variants of the new
preconditioner that have cheaper choices for H+ and less exotic coarse solves.
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Aitken-Schwarz Heterogeneous Domain
Decomposition for EMT-TS Simulation

H. Shourick21, D. Tromeur-Dervout1, and L. Chedot2

1 Introduction

The introduction of renewable energies into the power grid leads to the use of
more components based on power electronics which have to be well dimensioned
in order not to be damaged by electrical disturbances. These components imply
faster dynamics, for power system safety simulations, which cannot be handled by
traditional Transient Simulations (TS) with dynamic phasors. Nevertheless, for large
power grids, it can be expected that the need of high level details requiring Electro-
Magnetic Transient (EMT) modeling will be localized close to disturbances, as other
parts of the network still use TS modeling. This paper deals with a proof of concept
to develop heterogeneous Schwarz domain decomposition with different modeling
(EMT-TS) between the sub-domains. Hybrid (Jacobi type) EMT-TS co-simulation
has to face several locks [4]: EMT and TS do not use the same time step size,
the transmission of values is also a problem as the solutions do not have the same
representation and are subject to some information loss. Our approach don’t use
waveform relaxation [5], and the domain partitioning is not based on cutting the
transmission lines [2, 6, 7] as we want to be able to define an overlap between the
two representations. On the contrary, we want to use the traditional Schwarz DDM
but also where the transmission conditions can lead to divergent DDM. The pure
linear convergence/divergence of the linearized problems is then used to accelerate
the convergence to the solution by the Aitken’s technique. In Section 2, we describe
the EMT and TS modeling and perform homogeneous Schwarz DDM accelerated
by the Aitken’s acceleration of the convergence technique. Section 3 gives behavior
results obtained for each modeling. Section 4 describes the heterogeneous EMT-TS
DDM and gives first results obtained before concluding in section 5

1 University of Lyon, UMR5208 U.Lyon1-CNRS, Institut Camille Jordan,
e-mail: damien.tromeur-dervout@univ-lyon1.fr
2 Supergrid-Institute, 14 rue Cyprien, 69200 Villeurbanne.
e-mail: helena.shourick,laurent.chedot@supergrid-institute.com
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2 EMT and TS modeling

Simulation of power grid consists in solving a system of differential algebraic equa-
tions (DAE)where the unknowns are currents and voltages. This system is built using
the Modified Augmented Nodal Analysis [8] where each component of the grid con-
tributes through relations between currents and voltages and the Kirshoff’s laws give
the algebraical constraints. Let 𝑥 (respectively 𝑦) be the differential (respectively
algebraical) unknowns. For the EMT modeling, we have to solve the DAE:

𝐹 (𝑡, 𝑥(𝑡), ¤𝑥(𝑡), 𝑦(𝑡)) = 0, with Initial Conditions. (1)

The linearized BDF time discretization of (1) (Backward Euler here) leads to
solve the linear system (2) to integrate the state space representation of the DAE
from time step 𝑡𝑛 to time step 𝑡𝑛+1 (operator I represents the difference between two
potentials or the identity for intensity variables, 𝐺 represents the voltage/intensity
sources) :

(
I − Δ𝑡𝐴 𝐵
𝐶 𝐷

)
︸           ︷︷           ︸

H𝚫t

(
𝑥𝑛+1

𝑦𝑛+1

)
=

(
I 0
0 0

) (
𝑥𝑛

𝑦𝑛

)
+ 𝐺𝑛+1. (2)

For TS modeling the variables are assumed to oscillate with a specific angular
frequency 𝜔0 =

2𝜋
𝑇
(where 𝑇 is the period) and its selected harmonics taken from a

subset 𝐼 = {. . . ,−1, 0, 1, . . .} :

𝑧(𝑡) =
∑︁
𝑘∈𝐼

𝑧𝑘 (𝑡)𝑒𝑖𝑘𝜔0𝑡 , 𝑧 = {𝑥, 𝑦} . (3)

Introducing (3) into (1) leads after simplification (i.e orthogonality of the functions
𝑒𝑖𝑘𝜔0𝑡 with respect to the dot product [ 𝑓 , 𝑔] = 1

𝑇

∫ 𝑡+𝑇
𝑡

𝑓 (𝑧)𝑔(𝑧)𝑑𝑧) to another DAE
system that takes into account the differential property of the dynamic phasor . The
resulting DAE system has smoother dynamics. The number of TS variables is then
multiplied by the number of harmonics chosen, and the number of equations must
be multiplied accordingly.

For example, on the right is the
structure of the matrix 𝐻𝑇𝑆 by
choosing two harmonics 𝑘 = 𝑎 and
𝑘 = 𝑐 and by solving the imaginary
and real part separately and with S
the matrix taking into account the
differential property of the dynamic
phasor modeling.

H𝑇𝑆 =

©«

HΔ𝑇 −𝑎 𝜔0 S
𝑎 𝜔0 S HΔ𝑇

0

0 HΔ𝑇 −𝑐 𝜔0 S
𝑐 𝜔0 S HΔ𝑇

ª®®®®®®®¬
.



Aitken-Schwarz Heterogeneous Domain Decomposition for EMT-TS Simulation 711

Let 𝑥𝑛+1𝑇 (respectively 𝑥𝑛+1𝐸 ) be the algebraic and differential unknowns of TS
(respectively EMT) modeling associated to the linear system 𝐻𝑇𝑆𝑥𝑛+1𝑇 = 𝑏𝑛𝑇 (respec-
tively 𝐻𝐸𝑥𝑛+1𝐸 = 𝑏𝑛𝐸).

3 EMT and TS Schwarz homogeneous DDM

We consider a linear RLC circuit of Figure 1 to develop the proof of concept of the
the Schwarz DDM on TS and EMT models.
By adapting the notations of [1], we consider a non-singular matrix 𝐻 ∈ R𝑛×𝑛

having a non-zero pattern and the associated directed graph 𝐺 = (𝑊, 𝐹), where
the set of vertices Ω = {1, , 𝑛} represents the 𝑛 unknowns and the set of edges
𝐹 =

{(𝑖, 𝑗) |𝑎𝑖, 𝑗 ≠ 0
}
represents the pairs of vertices that are coupled by a non-zero

element in 𝐻. Next, we assume that a graph partitioning was applied and resulted in
𝑁 non-overlapping subsets Ω0

𝑖 whose union is Ω. Let Ω
𝑝
𝑖 be the 𝑝-overlap partition

of Ω, obtained by including all the vertices immediately neighboring the vertices of
Ω𝑝−1
𝑖 . Let 𝑅𝑝𝑖 ∈ R𝑛𝑖×𝑛 be the operator which restricts 𝑥 ∈ R𝑛 to the components
of 𝑥 belonging to Ω𝑝

𝑖 . Let �̃�
0
𝑖 ∈ R𝑛×𝑛 be the operator which restricts 𝑥 ∈ R𝑛 to

the components of 𝑥 belonging to Ω0
𝑖 and 0 otherwise. Let Ω𝑝

𝑖,𝑒 = Ω𝑝+1
𝑖 \Ω𝑝

𝑖 and
𝑅𝑝𝑖,𝑒 ∈ R𝑛𝑖,𝑒×𝑛 the restriction operator which restricts 𝑥 ∈ R𝑛 to the components of
𝑥 belonging to𝑊 𝑝

𝑖,𝑒. By defining 𝐻𝑖 = 𝑅
𝑝
𝑖 𝐻𝑅

𝑝
𝑖
𝑇 , 𝐹𝑖 = 𝑅𝑝𝑖 𝐻 (𝑅𝑝𝑖,𝑒)𝑇 , 𝑥𝑖 = 𝑅𝑝𝑖 𝑥 and

b𝑖 = 𝑅𝑝𝑖 𝑏, 𝑥𝑖,𝑒 = 𝑅
𝑝
𝑖,𝑒𝑥, then the Restrictive Additive Schwarz (RAS) iteration 𝑘 + 1

to solve 𝐻𝑥∞ = 𝑏 ∈ R𝑛 is written locally for the Ω𝑝
𝑖 partition :

𝑥𝑘+1𝑖 = 𝐻−1
𝑖 (𝑏𝑖 − 𝐹𝑖𝑥𝑘𝑖,𝑒). (4)

The previous paragraph presents the general way of proceeding and among other
things to set up the overlap. However, in this work we have chosen another overlap
for optimization reasons, because of the small size of our circuit.

The small linear system associated with the RLC circuit is partitioned into two
subdomains using graph partitioning without overlap (Figure 2 top) and with an
overlap of 1 (Figure 2 bottom). Each subdomain needs two values from the other to
solve its equations.
The RAS applied to each time step has a pure linear convergence i.e. the error

operator 𝑃 does not depend on the RAS iteration.

𝑥𝑚+1, 𝑝+1 − 𝑥𝑚+1,∞ = 𝑃(𝑥𝑚+1, 𝑝 − 𝑥𝑚+1,∞). (19)

Thus, if it does not stagnate, it can be accelerated with the Aitken’s acceleration of
the convergence, using (19), to obtain the true solution regardless of its convergence
or divergence [3] :

𝑥𝑚+1,∞ = (𝐼𝑑 − 𝑃)−1 (𝑥𝑚+1,1 − 𝑃𝑥𝑚+1,0). (20)
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Ω

2 3 4 5

7 6
1

𝐶1

𝐶2

𝑅1

𝑅2

E cos 𝜔𝑡 = 𝛽

𝐿1

𝐿2

𝑣1 = 0, (5)
𝑣2 − 𝑣1 − 𝐸 − 𝑍𝑠𝑖12 = 0, (6)

𝑣3 − 𝑣2 − 𝐿1
𝑑𝑖23
𝑑𝑡

= 0, (7)

𝑣4 − 𝑣3 − 𝑅1𝑖34 = 0, (8)

𝐶1 ( 𝑑𝑣5
𝑑𝑡
− 𝑑𝑣4
𝑑𝑡
) − 𝑖45 = 0, (9)

𝑣6 − 𝑣5 − 𝑅2𝑖56 = 0, (10)

𝑣7 − 𝑣6 − 𝐿2
𝑑𝑖67
𝑑𝑡

= 0, (11)

𝐶2 ( 𝑑𝑣1
𝑑𝑡
− 𝑑𝑣7
𝑑𝑡
) − 𝑖71 = 0, (12)

𝑖12 − 𝑖23 = 0, (13)
𝑖23 − 𝑖34 = 0, (14)
𝑖34 − 𝑖45 = 0, (15)
𝑖45 − 𝑖56 = 0, (16)
𝑖56 − 𝑖67 = 0, (17)
𝑖67 − 𝑖71 = 0. (18)

Fig. 1: Linear RLC circuit and its associated EMT modeling DAE system with
𝑥 = {𝑣1, 𝑖23, 𝑣4, 𝑣5, 𝑖67, 𝑣7 } and 𝑦 = {𝑣2, 𝑖12, 𝑣3, 𝑖34, 𝑖45, 𝑖56, 𝑣6, 𝑖71 }. 𝐿1 = 𝐿2 = 0.7,
𝐶1 = 𝐶2 = 1.10−6, 𝑅1 = 𝑅2 = 77, 𝑍𝑠 = 1.10−6, 𝜔 = 2𝜋 50, 𝐸 = 5.

Ω = Ω1 ∪Ω2 Ω2Ω1
2 3 4 5

7 6
1

𝐶1

𝐶2

𝑅1

𝑅2

E cos 𝜔𝑡 = 𝛽

𝐿1

𝐿2

i34, v3

i67, v6

Ω = Ω1 ∪Ω2Ω1 Ω2
2 3 4 5

7 6
1

𝐶1

𝐶2

𝑅1

𝑅2

E cos 𝜔𝑡 = 𝛽

𝐿1

𝐿2

i12, v2

i56, v6

Fig. 2:Graph partitioning of theRLCcircuit in two subdomains and the associatedmatrix partioning
without overlap (top) and with overlap of 1 (bottom).

For this small problem it can be directly computedworking on thematrix partitioning.

𝑃 = −[(�̃�1)𝑡 𝐴−1
1 𝐸1,𝑒𝑅1,𝑒 + (�̃�2)𝑡 𝐴−1

2 𝐸2,𝑒𝑅2,𝑒] . (21)

Table 1 gives the larger eigenvalue in modulus for the 𝑃 RAS (Restricted Ad-
ditive Schwarz) error operator for the EMT modeling and for the 𝑃 RAS error
operator for the TS modeling harmonics 𝑘 = 0, 1 applied to the RLC circuit. In
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𝜆(𝑃) without
overlap

with
overlap Schwarz time

step
EMT ± 6.0638i ± 6.0638i RAS 2.10−4

TS k=1 ±0.3667 ± 6.0635i ±0.3667 ± 6.0635i RAS 2.10−4

TS k=0 ±6.0638i ±6.0638i RAS 2.10−4

TS k=1 ± 0.2114 ±1.1548i ± 0.2114 ±1.1548i RAS 2.10−3

TS k=0 ±1.1946i ±1.1946i RAS 2.10−3

Table 1: Larger eigenvalue for 𝑃 error operator for RAS and EMT modeling (Δ𝑡 = 2.10−4), and
for RAS and TS 𝑘 = 0, 1 (Δ𝑇 = 2.10−4, Δ𝑇 = 2.10−3) modeling.

both cases EMT and TS modeling the eigenvalue modulus is greater than one, so
the method diverges. We can observe that the overlap does not impact the diver-
gence of the method. The time step increasing from Δ𝑇 = 2.10−4 to Δ𝑇 = 2.10−3

has a beneficial effect on the TS-TS DDM divergence. Nevertheless, the diver-
gence is purely linear and the Aitken’s acceleration (20) can be performed after
the first iteration if 𝑃 is known (here by Eq(20)). If 𝑃 is unknown, the pure lin-
ear convergence property also hold for the solution iterated at the global artifi-
cial interface Γ =

{
𝑦 ∈ R𝑛Γ |𝑦 = (𝑥𝑇1,𝑒, 𝑥𝑇2,𝑒)𝑇

}
. Let 𝑅Γ be the restriction operator

from R𝑛 to Γ, 𝑦𝑚+1, 𝑝 = 𝑅Γ𝑥
𝑚+1, 𝑝 be the RAS iterated solution restricted to Γ

and 𝑒𝑝+1 = 𝑦𝑚+1, 𝑝+1 − 𝑦𝑚+1, 𝑝 be the error between two consecutive iterations.
Then, from 𝑒𝑝+1 = 𝑃Γ𝑒

𝑝 , one can build 𝑃Γ = [𝑒𝑛Γ+1, . . . , 𝑒2] [𝑒𝑛Γ , . . . , 𝑒1]−1 with
𝑛Γ + 1 RAS iterations and the true solution at interface 𝑦𝑚+1,∞ is obtained with
𝑦𝑚+1,∞ = (𝐼𝑑 − 𝑃Γ)−1 (𝑦𝑚+1,𝑛Γ+1 − 𝑃Γ𝑦

𝑚+1,𝑛Γ ). Then one local solve gives 𝑥𝑚+1,∞.
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Fig. 3: Homogeneous DDM results comparison with DAE monodomain: (Left) RAS for EMT
modeling with Δ𝑡𝐸 = 1.10−4 and (right) RAS for TS modeling with Δ𝑡𝑇 = 2.10−3.
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4 Heterogeneous DDM EMT-TS

Our goal is to simulate, using heterogeneous RAS DDM, the electrical network with
one part with a TS modeling which can use large time steps Δ𝑇 and the other part
with the EMTmodeling which requires smaller time steps Δ𝑡 as the high oscillations
remain.
These two representations TS and EMT of the solution imply having some op-

erators 𝐸𝑇𝑆𝑒𝑚𝑡 (respectively 𝐸𝑒𝑚𝑡𝑇𝑆 ) to transfer the solution from the subdomain EMT
(respectively TS) to the other TS (respectively EMT). The 𝐸𝑒𝑚𝑡𝑇𝑆 operator needs
to compute the fundamental harmonic and other harmonics chosen of the solution
from the history of the EMT solution. The history time length is one period. This
is performed by the FFT of the solution over the time period and keeping the mode
corresponding to the chosen harmonics.
The 𝐸𝑇𝑆𝑒𝑚𝑡 operator is more simple as it consists in recombining the TS modes of

the solution with the appropriate Fourier basis modes.
Let us consider a linear electrical network with the TS modeling. The time

discretisation of the DAE to integrate from 𝑇𝑁 to 𝑇𝑁+1, assuming that Δ𝑇 = 𝑚Δ𝑡
can be witten as:(
I − Δ𝑇𝐴𝑇𝑆 𝐵𝑇𝑆

𝐶𝑇𝑆 𝐷𝑇𝑆

)
︸                   ︷︷                   ︸

𝐻𝑇𝑆

(
𝑥𝑁+1𝑇𝑆
𝑦𝑁+1𝑇𝑆

)
︸   ︷︷   ︸
𝑤𝑁+1
𝑇𝑆

=

(
I 0
0 0

)
︸︷︷︸
Θ𝑇𝑆

(
𝑥𝑁𝑇𝑆
𝑦𝑁𝑇𝑆

)
+

(
𝐸𝐴𝑇𝑆 𝐸

𝐵
𝑇𝑆

𝐸𝐶𝑇𝑆 𝐸
𝐷
𝑇𝑆

)
︸         ︷︷         ︸

𝐸𝑒𝑚𝑡
𝑇𝑆

(
𝑥𝑚𝑒𝑚𝑡
𝑦𝑚𝑒𝑚𝑡

)
+ 𝐺𝑁+1𝑇𝑆 .

Similarly one time step for the EMT side to integrate from 𝑡𝑛 to 𝑡𝑛+1 can be witten
as:(
I − Δ𝑡𝐴𝑒𝑚𝑡 𝐵𝑒𝑚𝑡
𝐶𝑒𝑚𝑡 𝐷𝑒𝑚𝑡

)
︸                    ︷︷                    ︸

𝐻𝑒𝑚𝑡

(
𝑥𝑛+1𝑒𝑚𝑡

𝑦𝑛+1𝑒𝑚𝑡

)
︸  ︷︷  ︸
𝑤𝑛+1

=

(
I 0
0 0

)
︸︷︷︸
Θ𝑒𝑚𝑡

(
𝑥𝑛𝑒𝑚𝑡
𝑦𝑛𝑒𝑚𝑡

)
+

(
𝐸𝐴𝑒𝑚𝑡 𝐸

𝐵
𝑒𝑚𝑡

𝐸𝐶𝑒𝑚𝑡 𝐸
𝐷
𝑒𝑚𝑡

)
︸           ︷︷           ︸

𝐸𝑇𝑆𝑒𝑚𝑡

(
𝑥𝑁+1𝑇𝑆 (𝑡𝑛+1)
𝑦𝑁+1𝑇𝑆 (𝑡𝑛+1)

)
︸           ︷︷           ︸
𝑊𝑁+1 (𝑡𝑛+1)

+𝐺𝑛+1𝑒𝑚𝑡 .

The 𝑚 time steps can be gathered in one larger system considering 𝑡𝑛 = 𝑇𝑁 :

©
«

𝐼
−Θ𝑒𝑚𝑡 𝐻𝑒𝑚𝑡

. . .
. . .

−Θ𝑒𝑚𝑡 𝐻𝑒𝑚𝑡
−Θ𝑒𝑚𝑡 𝐻𝑒𝑚𝑡

ª®®®®®®¬︸                                           ︷︷                                           ︸
H𝑒𝑚𝑡

©«

𝑤𝑛𝑒𝑚𝑡
𝑤𝑛+1𝑒𝑚𝑡
...

𝑤𝑛+𝑚−1
𝑒𝑚𝑡

𝑤𝑛+𝑚𝑒𝑚𝑡

ª®®®®®®¬︸      ︷︷      ︸
W𝑒𝑚𝑡

=
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Fig. 4: Heterogeneous EMT (Δ𝑡 = 2.10−4)-TS(Δ𝑇 = 2.10−2) DDM results comparison with DAE
monodomain (Left) and RAS convergence error for each subdomain at 𝑡 = 0.02 and its Aitken’s
acceleration with 𝑃Γ computed numerically from 9 iterates ( 𝑛Γ = 8) (right).

©«

𝐼
𝐸𝑇𝑆𝑒𝑚𝑡

. . .

𝐸𝑇𝑆𝑒𝑚𝑡
𝐸𝑇𝑆𝑒𝑚𝑡

ª®®®®®®¬︸                           ︷︷                           ︸
E𝑇𝑆𝑒𝑚𝑡

©«

(𝑥𝑛, 𝑦𝑛)𝑡
𝑊𝑁+1 (𝑡𝑛+1)

...
𝑊𝑁+1 (𝑡𝑛+𝑚−1)
𝑊𝑁+1 (𝑡𝑛+𝑚)

ª®®®®®®¬︸                ︷︷                ︸
W𝑁+1
𝑇𝑆

+
©«

0
𝐺𝑛+1𝑒𝑚𝑡
...

𝐺𝑛+𝑚−1
𝑒𝑚𝑡

𝐺𝑛+𝑚𝑒𝑚𝑡

ª®®®®®®¬︸       ︷︷       ︸
G𝑁+1𝑒𝑚𝑡

. (22)

This system needs the values that the TS solution connected to the EMT part has
taken on the small time steps. The two domains are connected via the connected
or flowing variables. Since these variables should be the solution at time 𝑇𝑁+1, we
need the Schwarz iterative algorithm to obtain the exact values. We then iterate the
iteration 𝑝 + 1 by taking the connected values, at the iteration 𝑝, from the other
subdomain. We can use the multiplicative form or the additive form as follows:{

𝐻𝑇𝑆 𝑤
𝑁+1,p+1
𝑇𝑆 = Θ𝑇𝑆 𝑤𝑁𝑇𝑆 + 𝐸𝑒𝑚𝑡𝑇𝑆 𝑤

𝑚,p
𝑒𝑚𝑡 + 𝐺𝑁+1𝑇𝑆 ,

H𝑒𝑚𝑡W
𝑁+1,p+1
𝑒𝑚𝑡 = E𝑇𝑆𝑒𝑚𝑡W

𝑁+1,p
𝑇𝑆 + G𝑁+1𝑒𝑚𝑡 .

(23)

Figure 4 (left) shows the solutions 𝑣4 EMT and 𝑖71 TS of heterogeneous DDM
EMT (Δ𝑡 = 2.10−4) -TS (Δ𝑇 = 2.10−2) with comparison with the DAE solution on
monodomain. We proceed to a jump in amplitude at 𝑡 = 0.04 for the voltage source.
Figure 4 (right) gives the 𝑙𝑜𝑔10 of the error between two consecutive RAS iterates
at 𝑡 = 0.02. It shows a linear convergence behavior and can therefore be accelerated
by the Aitken’s accelerating of the convergence technique after 9 iterates needed to
numerically construct the error operator 𝑃Γ.
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5 Conclusion

A Schwarz heterogeneous DDM was used to co-simulate an RLC electrical circuit
where a part of the domain is modeled with EMT modeling and the other part with
TS modeling. We showed the convergence/divergence property of the homogeneous
DDM EMT-EMT and TS-TS and of the heterogeneous DDM TS-EMT, with or
without overlap and we use the pure linear divergence/convergence of the method to
accelerate it toward the true solutionwith theAitken’s acceleration of the convergence
technique. The domain partitioning is only based on connectivity considerations
since we want, in the long term, for the electrical network, to take advantage of
the two TS and EMT representations on the overlap in order to identify the loss of
information between the two models. We would like then to use this knowledge to
work on other transmission conditions than Dirichlet to conserve some invariants
such as electrical power.
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Parareal Schwarz Waveform Relaxation Method
for the Time-Periodic Parabolic Problem

Bo Song, Yao-Lin Jiang, and Kang-Li Xu

1 Introduction and Model Problem

Time-periodic problems appear typically in special physical situations, for example
in eddy current simulations [1], or when periodic forcing is used, like for periodically
forced reactors, see [14, 15]. The numerical simulation of time-periodic problems is
a special area of research, since the time periodicity modifies the problem structure
and solution methods significantly. When the scale of the problems increases, it is
desirable to use parallel methods to solve such problems.
For the time-dependent problems, Schwarz waveform relaxation algorithms are

parallel algorithms based on a spatial domain decomposition [10]. More recently,
time-parallel methods were also considered to increase the parallelism in time [5],
i.e., the parareal method proposed by Lions, Maday, and Turinici in the context
of virtual control to solve evolution problems in parallel; see [12]. Two parareal
algorithms for time-periodic problems was proposed in [9]: one with a periodic
coarse problem (PP-PC), and one with a non-periodic coarse problem (PP-IC).
Further, based on these two algorithms, new applications and parallel methods for
time-periodic problems were also considered; see [2, 11].
In [13], it was the first time that the combination of Schwarz waveform relaxation

and parareal. Further, in [7], a new parallel algorithm named Parareal Schwarz wave-
form relaxation algorithm (PSWR), where there is no order between the Schwarz
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waveform relaxation algorithm and the parareal algorithm was introduced, and a su-
perlinear convergence estimate of such algorithm has been provided in [8]. Recently,
a new space-time algorithm which uses the optimized Schwarz waveform relaxation
algorithm as the inner iteration of the parareal algorithm was also provided[4].
In this work, we consider a new PSWR algorithm for the following time-periodic

parabolic problem

𝜕𝑢

𝜕𝑡
= L𝑢 + 𝑓 in Ω × (0, 𝑇),

𝑢(𝑥, 0) = 𝑢(𝑥, 𝑇) in Ω,
𝑢 = 𝑔 on 𝜕Ω × (0, 𝑇),

(1)

where L is the Laplace operator, 𝑓 (𝑥, 0) = 𝑓 (𝑥, 𝑇), 𝑔(𝑥, 0) = 𝑔(𝑥, 𝑇), and Ω ⊂ R𝑑 ,
𝑑 = 1, 2, 3.

2 PSWR for Time-Periodic Parabolic Problem

We first introduce a parareal algorithm for time-periodic problems [7]. We decom-
pose the time interval [0, 𝑇] into 𝑁 subintervals [𝑇𝑛, 𝑇𝑛+1], 𝑛 = 0, 1, . . . , 𝑁 − 1,
with 0 = 𝑇0 < 𝑇1 < . . . < 𝑇𝑁−1 < 𝑇𝑁 = 𝑇 . We define so called coarse propagator
𝐺 (𝑇𝑛+1, 𝑇𝑛,𝑈𝑛, 𝑓 , 𝑔) which provides a rough approximation in time of the solution
𝑢𝑛 (𝑥, 𝑇𝑛+1) of (2)
𝑑𝑢𝑛
𝑑𝑡

= L𝑢𝑛+ 𝑓 in Ω × (𝑇𝑛, 𝑇𝑛+1), 𝑢𝑛 (𝑥, 𝑇𝑛) = 𝑈𝑛 (𝑥) in Ω, 𝑢𝑛 = 𝑔 on 𝜕Ω × (𝑇𝑛, 𝑇𝑛+1).
(2)

with a given initial condition 𝑢𝑛 (𝑥, 𝑇𝑛) = 𝑈𝑛 (𝑥), right hand side source term 𝑓 and
boundary conditions 𝑔. And we also define a fine propagator 𝐹 (𝑇𝑛+1, 𝑇𝑛,𝑈𝑛, 𝑓 , 𝑔),
which gives a more accurate approximation in time of the same solution of (2).
Then startingwith an initial guess𝑈0

𝑛 at the coarse time points𝑇0, 𝑇1, 𝑇2, . . . , 𝑇𝑁−1,
e.g., solving the model problem on the coarse time points, the periodic parareal
algorithm with initial-value coarse problem (PP-IC) for the time-periodic problem
(1) performs for 𝑘 = 0, 1, 2, . . . the correction iteration

𝑈𝑘+10 = 𝑈𝑘𝑁 ,

𝑈𝑘+1𝑛+1 = 𝐹 (𝑇𝑛+1, 𝑇𝑛,𝑈𝑘𝑛 , 𝑓 , 𝑔) + 𝐺 (𝑇𝑛+1, 𝑇𝑛,𝑈𝑘+1𝑛 , 𝑓 , 𝑔) − 𝐺 (𝑇𝑛+1, 𝑇𝑛,𝑈𝑘𝑛 , 𝑓 , 𝑔),
𝑛 = 0, 1, . . . , 𝑁 − 1.

(3)
Furthermore, we introduce the Schwarz waveform relaxation algorithm for the

model problem (1) is based on a spatial decomposition only, in the most general
case into overlapping subdomains Ω = ∪𝐼𝑖=1Ω𝑖 . The Schwarz waveform relaxation
algorithm solves iteratively for 𝑘 = 0, 1, 2, . . . the space-time subdomain problems
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𝜕𝑢𝑘+1𝑖

𝜕𝑡
= L𝑢𝑘+1𝑖 + 𝑓 in Ω𝑖 × (0, 𝑇),

𝑢𝑘+1𝑖 (𝑥, 0) = 𝑢0 in Ω𝑖 ,
B𝑖𝑢𝑘+1𝑖 = B𝑖 �̄�𝑘 on 𝜕Ω𝑖 × (0, 𝑇).

Here �̄�𝑘 denotes a composed approximate solution from the previous subdomain
solutions 𝑢𝑘𝑖 using for example a partition of unity, and an initial guess �̄�

0 is needed
to start the iteration. The operators B𝑖 are transmission operators: in the case of the
identity, it will be Dirichlet transmission condition and we have the classical Schwarz
waveform relaxation algorithm; for Robin or higher order transmission conditions,
we obtain an optimized Schwarz waveform relaxation algorithm, if the parameters in
the transmission conditions are chosen to optimize the convergence of the algorithm.
Finally, according to the reference [8], which designed the PSWR algorithm for

the parabolic problems, we construct here PSWR for the time-periodic parabolic
problem (1). We decompose the spatial domain Ω into 𝐼 overlapping subdomains
Ω = ∪𝐼𝑖=1Ω𝑖 , and the time interval (0, 𝑇) is divided into𝑁 time subintervals (𝑇𝑛, 𝑇𝑛+1)
with 0 = 𝑇0 < 𝑇1 < · · · < 𝑇𝑁 = 𝑇 . Therefore we can get a sequence of space-time
subdomains Ω𝑖,𝑛 = Ω𝑖 × (𝑇𝑛, 𝑇𝑛+1), 𝑖 = 1, 2, . . . , 𝐼, 𝑛 = 0, . . . , 𝑁 − 1.
Like in the parareal algorithm, we introduce a fine subdomain solver

𝐹𝑖,𝑛 (𝑈𝑘𝑖,𝑛,B𝑖 �̄�𝑘𝑛) and a coarse subdomain solver 𝐺𝑖,𝑛 (𝑈𝑘𝑖,𝑛,B𝑖 �̄�𝑘𝑛), where we do not
explicitly state the dependence of these solvers on the time interval and the right hand
side 𝑓 and original Dirichlet boundary condition 𝑔 to not increase the complexity
of the notation further. There is also a further important notational difference with
parareal: here the fine solver 𝐹 returns the entire solution in space-time, not just at
the final time, since this solution is also needed in the transmission conditions of the
algorithm. Then for any initial guess of the initial values𝑈0

𝑖,𝑛 and the interface values
B𝑖 �̄�0

𝑛, a new PSWR algorithm (named PSWR-IC) for the time-periodic parabolic
problem (1) computes for iteration index 𝑘 = 0, 1, 2, . . . and all spatial and time
indices 𝑖 = 1, 2, . . . , 𝐼, 𝑛 = 0, 1, . . . , 𝑁 − 1, Step I. Use the more accurate evolution
operator to calculate

𝑢𝑘+1𝑖,𝑛 = 𝐹𝑖,𝑛 (𝑈𝑘𝑖,𝑛,B𝑖 �̄�𝑘𝑛);
Step II. Update new initial conditions using a parareal step both in space and time

for 𝑛 = 0, 1, . . . , 𝑁 − 1

𝑈𝑘+1𝑖,𝑛+1 = 𝑢𝑘+1𝑖,𝑛 (·, 𝑇𝑛+1) + 𝐺𝑖,𝑛 (𝑈𝑘+1𝑖,𝑛 ,B𝑖 �̄�𝑘+1𝑛 ) − 𝐺𝑖,𝑛 (𝑈𝑘𝑖,𝑛,B𝑖 �̄�𝑘𝑛),

Step III. Update initial conditions at 𝑡 = 0:𝑈𝑘+1𝑖,0 = 𝑈𝑘𝑖,𝑁 .
Here �̄�𝑘𝑛 is a composed approximate solution from the subdomain solutions 𝑢𝑘𝑖,𝑛

using for example a partition of unity, e.g., �̄�𝑘𝑛 = 𝑢𝑘𝑖,𝑛 inΩ𝑖,𝑛 ∪𝐼𝑗=1, 𝑗≠𝑖 \(Ω𝑖,𝑛 ∩Ω 𝑗 ,𝑛),
and �̄�𝑘𝑛 is the average value of 𝑢𝑘𝑖,𝑛 and 𝑢

𝑘
𝑗,𝑛 in the overlapΩ𝑖,𝑛∩Ω 𝑗 ,𝑛, 𝑗 = 1, 2, . . . , 𝐼

and 𝑗 ≠ 𝑖. And an initial guess �̄�0
𝑛 and 𝑈0

𝑖,𝑛 is needed to start the iteration (the latter
can for example be computed by a time-periodic problem on the coarse using the
coarse propagator once the former is chosen). Note that the first step in the proposed
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PSWR-IC algorithm, which is the expensive step involving the fine propagator 𝐹𝑖,𝑛,
can be performed in parallel over all space-time subdomains Ω𝑖,𝑛, since both the
initial and boundary data are available from the previous iteration. The cheap second
step in the proposed PSWR-IC algorithm involving only the coarse propagator𝐺𝑖,𝑛 to
compute a new initial condition for most space-time subdomains on𝑇1, 𝑇2, . . . , 𝑇𝑁−1,
is still in parallel in space, but now sequential in time, like in the parareal algorithm.
In step III, we use the idea of the PP-IC algorithm in [7] to update the initial condition
at 𝑡 = 0, which is a relaxation of 𝑈𝑘+1𝑖,0 = 𝑈𝑘+1𝑖,𝑁 , avoiding solving a coupled system
on the time coarse points 𝑇𝑖 .
We have the following convergence result for the PSWR-IC algorithm as follows.

Remark 1 If the fine propagator 𝐹 is the exact solver, and the coarse propagator 𝐺 is
Backward Euler, then PSWR-IC with Dirichlet transmission conditions and overlap
𝐿 in two subdomain case for the 1-dimensional heat equation converges linearly on
bounded time intervals (0, 𝑇). The proof is technical [16], for an illustration see
Section 3.

3 Numerical Experiments

To investigate numerically how the convergence of the PSWR-IC algorithm for
time-periodic problems depends on the various parameters in the space-time decom-
position, we use the following time-periodic 1-dimensional model problem

𝜕𝑢(𝑥, 𝑡)
𝜕𝑡

=
𝜕2𝑢(𝑥, 𝑡)
𝜕𝑥2 + 𝑓 (𝑥, 𝑡) (𝑥, 𝑡) ∈ Ω × (0, 1),

𝑢(𝑥, 𝑡) = 0 (𝑥, 𝑡) ∈ 𝜕Ω × (0, 1),
𝑢(𝑥, 0) = 𝑢(𝑥, 𝑇) 𝑥 ∈ Ω,

(4)

where the domain Ω = (0, 3), and the exact solution of the model problem is
𝑢 = 𝑥(𝑥 − 3) sin(2𝜋𝑡). The model problem (4) is discretized by a second-order
centered finite difference scheme with mesh size ℎ = 3/128 in space and by the
Backward Euler method with Δ𝑡 = 1/100 in time. The time interval is divided
into 𝑁 time subintervals, while the domain Ω is decomposed into 𝐼 equal spatial
subdomains with overlap 𝐿. We define the relative error of the infinity norm of
the errors along the interface and initial time in the space-time subdomains as the
iterative error of our new algorithm.
We decompose the domainΩ into 2 spatial subdomains with overlap 𝐿 = 2ℎ. The

total time interval length is 𝑇 = 1. We show in Figure 1 on the left the convergence
of the PSWR-IC algorithm when the number of time subintervals equals 1 (classical
Schwarz waveform relaxation for time-periodic problems), 2, 4, 10, and 20. This
shows that the convergence of the PSWR-IC algorithm does indeed not depend on
the number of time subintervals, which is the same as the PSWR algorithm for the
initial value problem. Here we also observe that the PSWR-IC algorithm converges
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Fig. 1: Dependence of the PSWR-IC algorithm for the time-periodic problem (4) on the number of
time subintervals.
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Fig. 2: Dependence of the PSWR-IC algorithm for the time-periodic problem (4) on the overlap
(left), and on the number of spatial subdomains (right).

linearly, which is contrast to that of the PSWR algorithm for the initial value problem
with the superlinear convergence.
We next study the dependence on the overlap. We use 𝐿 = 2ℎ, 4ℎ, 8ℎ and

16ℎ, and divide the time interval (0, 𝑇) with 𝑇 = 1 into 10 time subintervals, still
using the same two subdomain decomposition of Ω as before. We see on the left in
Figure 2 that increasing the overlap substantially improves the convergence speed
of the algorithm. This increases however also the cost of the method, since bigger
subdomain problems need to be solved.
We then investigate numerically if a similar convergence result we derived for two

subdomains also holds for the case of many subdomains. We decompose the domain
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Fig. 3: Independence of the PSWR-IC algorithm on the number of time subintervals for four spatial
subdomains (left), and eight spatial subdomains (right).

Ω into 2, 4, and 8 spatial subdomains, keeping again the overlap 𝐿 = 2ℎ. For each
case, we divide the time interval (0, 𝑇) with 𝑇 = 1 into 10 time subintervals. We
see in Figure 2 on the right that using more spatial subdomains makes the algorithm
converge more slowly, like the PSWR algorithm for the initial value problem.
We further investigate whether the convergence of the algorithm still does not

depend on the number of time subintervals for the case of many subdomains. We
see in Figure 3 that the convergence behavior for four spatial subdomains (left), and
eight spatial subdomains (right) is the same as the convergence behavior for two
spatial subdomains.
Finally, we compare the convergence behavior of the PSWR-IC algorithm for

the time-periodic problem (4) with Dirichlet and optimized transmission conditions.
Using optimized transmission conditions leads to much faster, so called optimized
Schwarz waveform relaxation methods, see for example [6, 3]. We divide the time
interval (0, 𝑇) with𝑇 = 1 into 10 time subintervals, and the domainΩ is decomposed
into 2, 4 and 8 spatial subdomains. We use first order transmission conditions and
choose for the parameters 𝑝 = 1, 𝑞 = 1.75 (for the terminology, see [3]), which
is the same as optimized Schwarz waveform relaxation and optimized PSWR for
initial value problem. In Figure 4, we show the corresponding convergence curves
show that using optimized transmission conditions of these parameters even could
not converge. Then we chose numerically optimized parameters 𝑝 = 10.5, 𝑞 = 0,
which leads to substantially better performance of the PSWR-IC algorithm, even
better than very generous overlap, and this at no additional cost. We also investigate
the dependence on the number of time subintervals (on the right in Figure 5), where
we choose the problem configuration as in the case of the Dirichlet transmission
conditions in Figure 1. We observe that convergence is much faster with optimized
transmission conditions (less than 10 iterations instead of over 100), and convergence
is still linear, indicating that there is a different convergence mechanism dominating
now, due to the optimized transmission conditions.
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Fig. 4:Comparison of the PSWR-IC algorithmwithDirichlet and optimized transmission conditions
for two spatial subdomains (left) and and four spatial subdomains (right).
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Fig. 5: Left: comparison of the PSWR-IC algorithm with Dirichlet and optimized transmission
conditions for eight spatial subdomains. Right: dependence of the PSWR-IC algorithm on the
number of time subintervals with optimized transmission conditions.

4 Conclusions

We designed a new parareal PSWR algorithm for time-periodic problems, i.e., the
PSWR-IC algorithm.This algorithm is based on a domain decomposition of the entire
space-time domain into smaller space-time subdomains, i.e., the decomposition is
both in space and in time. The new algorithm iterates on these space-time subdomains
using twodifferent updatingmechanisms: the Schwarzwaveform relaxation approach
for boundary condition updates, and the parareal mechanism for initial condition
updates. All space-time subdomains are solved in parallel, both in space and in time.
For the time-periodic problem, in particular, we use the periodic parareal algorithm
with initial-value coarse problem to update initial condition at 𝑡 = 0. The numerical
results illustrate that the PSWR-IC algorithm converges linearly on bounded time
intervals when using Dirichlet transmission conditions in space which is contrast
to PSWR for initial value problem with the superlinear convergence, and optimized
transmission conditions improve the convergence behavior significantly.
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Acceleration of the Convergence of the
Asynchronous RAS Method

D. Tromeur-Dervout1

1 Introduction

Nowadays high performance computers have several thousand cores and more and
more complex hierarchical communication networks. For these architectures, the
use of a global reduction operation such as the dot product involved in the GMRES
acceleration can be a bottleneck for the performance. In this context domain decom-
position’s solvers with local communications are becoming particularly interesting.
Nevertheless, the probability of temporarily failures/unavailabilty of a set of proces-
sors/clusters is non-zero, which leads to the need for fault tolerant algorithms such
as asynchronous Schwarz type’s methods. With the asynchronism the transmission
conditions (TC) at artificial interfaces generated by the domain decomposition may
not have been updated for some subdomains and for some iterations. The message
passing interfaceMPI-3 standard provides one-sided communication protocol where
a process can directly write on the local memory of an another process without syn-
chronizing. This can also occur in the OpenMP implementation. For asynchronous
methods, it is very difficult to know if the update has been performed and most
papers fail to give the level of asynchronism in their implementation results.
From the numerical point of view, this asynchronism affects the linear operator of

the interface problem. In this context Aitken’s acceleration of the convergence should
not be applicable as it is based on the pure linear convergence of the DDM [6] [10]
[11], i.e. there exists a linear operator 𝑃 independent of the iteration that connects
the error at the artificial interfaces of two consecutives iterations. This paper focuses
on Aitken’s acceleration of the convergence of the asynchronous Restricted Additive
Schwarz (RAS) iterations. We develop a mathematical model of the Asynchronous
RAS allowing us to set the percentage of the number of randomly chosen local
artificial interfaces where transmission conditions are not updated. Then we show
how this ratio deteriorates the convergence of the Asynchronous RAS and how some

1 University of Lyon, UMR5208 U.Lyon1-CNRS, Institut Camille Jordan,
e-mail: Damien.tromeur-dervout@univ-lyon1.fr
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regularization techniques on the traces of the iterative solutions at artificial interfaces
allow us to accelerate the convergence to the true solution.
The plan of the paper is the following. Section 2 gives the notation and the

principles of the Aitken-Schwarz method using some low-rank approximation of the
interface error operator. Section 3 presents the modeling of the asynchronous RAS
on a 2D Poisson problem allowing us to define the level of asynchronism. Section 4
present the results of the accelerationwith respect to the level of asynchronismand the
enhancement of this acceleration with regularisation techniques before concluding
in section 5.

2 Aitken-Schwarz method principles

By adapting the notations of [3], we consider a non-singular matrix 𝐴 ∈ R𝑛×𝑛 having
a non-zero pattern and the associated graph 𝐺 = (𝑊, 𝐹), where the set of vertices
𝑊 = {1, . . . , 𝑛} represents the 𝑛 unknowns and the edge set 𝐹 =

{(𝑖, 𝑗) |𝑎𝑖, 𝑗 ≠ 0
}

represents the pairs of vertices that are coupled by a nonzero element in 𝐴. Then we
assume that a graph partitioning has been applied and has resulted in 𝑁 nonoverlap-
ping subsets𝑊0

𝑖 whose union is𝑊 . Let𝑊
𝑝
𝑖 be the 𝑝-overlap partition of𝑊 , obtained

by including all the immediate neighboring vertices of the vertices from𝑊 𝑝−1
𝑖 . Let

be𝑊 𝑝
𝑖,𝑒 = 𝑊

𝑝+1
𝑖 \𝑊 𝑝

𝑖 . Then let 𝑅
𝑝
𝑖 ∈ R𝑛𝑖×𝑛 ( 𝑅𝑝𝑖,𝑒 ∈ R𝑛𝑖,𝑒×𝑛 and �̃�0

𝑖 ∈ R𝑛𝑖×𝑛 respec-
tively ) be the operator that restricts 𝑥 ∈ R𝑛 to the components of 𝑥 belonging to𝑊 𝑝

𝑖
(𝑊 𝑝

𝑖,𝑒 and 𝑊
0
𝑖 respectively, and the operator �̃�

0
𝑖 ∈ R𝑛𝑖×𝑛 puts 0 to those unknowns

belonging to𝑊 𝑝
𝑖 \𝑊0

𝑖 ). We define the operators 𝐴𝑖 = 𝑅
𝑝
𝑖 𝐴𝑅

𝑝𝑇
𝑖 and 𝐸𝑖 = 𝑅𝑝𝑖 𝐴𝑅

𝑝𝑇
𝑖,𝑒 ,

the vectors 𝑥𝑖 = 𝑅𝑝𝑖 𝑥, 𝑏𝑖 = 𝑅𝑝𝑖 𝑏, and 𝑥𝑖,𝑒 = 𝑅𝑝𝑖,𝑒𝑥, then the RAS iteration 𝑘 + 1
writes locally for the partition𝑊 𝑝

𝑖 :

𝑥𝑘+1𝑖 = 𝐴−1
𝑖 (𝑏𝑖 − 𝐸𝑖𝑥𝑘𝑖,𝑒). (1)

By defining 𝑀−1
𝑅𝐴𝑆

𝑑𝑒 𝑓
=

∑𝑁−1
𝑖=0 �̃�0𝑇

𝑖 𝐴−1
𝑖 𝑅

𝑝
𝑖 and adding the contribution of each parti-

tion𝑊 𝑝
𝑖 , RAS can be viewed as a Richardson’s process:

𝑁−1∑︁
𝑖=0

�̃�0𝑇
𝑖 𝑅𝑝𝑖 𝑥

𝑘+1 =
𝑁−1∑︁
𝑖=0

�̃�0𝑇
𝑖 𝐴−1

𝑖 𝑅
𝑝
𝑖 𝑏 −

𝑁−1∑︁
𝑖=0

�̃�0𝑇
𝑖 𝐴−1

𝑖 𝑅
𝑝
𝑖 𝐴𝑅

𝑝𝑇
𝑖,𝑒 𝑥

𝑘 , (2)

𝑥𝑘+1 = 𝑀−1
𝑅𝐴𝑆𝑏 − 𝑀−1

𝑅𝐴𝑆𝐴𝑥
𝑘 + 𝑥𝑘 = 𝑥𝑘 + 𝑀−1

𝑅𝐴𝑆 (𝑏 − 𝐴𝑥𝑘). (3)

The Richardson’s process (3) is deduced from (2) (see [5, Theorem 3.7]) with using
the property 𝑅𝑝𝑖 𝐴 = 𝑅𝑝𝑖 𝐴(𝑅𝑝𝑇𝑖 𝑅𝑝𝑖 + 𝑅𝑝𝑇𝑖,𝑒 𝑅𝑝𝑖,𝑒). It can be reduced to a problem with
the unknowns on the interface (see [12, eq. (2.12) and (2.13)]).
The restriction of (3) to the interface Γ =

{
𝑊 𝑝

0,𝑒, . . . ,𝑊
𝑝
𝑁−1,𝑒

}
of size

𝑛Γ =
∑𝑁−1
𝑖=0 𝑛𝑖,𝑒, by defining 𝑅Γ = (𝑅𝑝0,𝑒, . . . , 𝑅

𝑝
𝑁−1,𝑒)𝑇 ∈ R𝑛Γ×𝑛 and by using the
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property 𝑅𝑝𝑇𝑖,𝑒 𝑅
𝑝
𝑖,𝑒𝑅

𝑇
Γ𝑅Γ = 𝑅𝑝𝑇𝑖,𝑒 𝑅

𝑝
𝑖,𝑒, writes:

𝑅Γ𝑥
𝑘+1︸  ︷︷  ︸

𝑦𝑘+1

= 𝑅Γ

(
𝐼 − 𝑀−1

𝑅𝐴𝑆𝐴
)
𝑅𝑇Γ︸                     ︷︷                     ︸

𝑃

𝑅Γ𝑥
𝑘︸︷︷︸

𝑦𝑘

+ 𝑅Γ𝑀
−1
𝑅𝐴𝑆𝑏︸      ︷︷      ︸
𝑐

.
(4)

The pure linear convergence of the RAS at the interface given by : 𝑦𝑘 − 𝑦∞ =
𝑃(𝑦𝑘−1−𝑦∞) (the error operator 𝑃 does not depend of the iteration 𝑘) allows to apply
the Aitken’s acceleration of the convergence technique to obtain the true solution
𝑦∞ on the interface Γ: 𝑦∞ = (𝐼 − 𝑃)−1 (𝑦𝑘 − 𝑃𝑦𝑘−1), and thus after another local
resolving, the true solution 𝑥∞. Let us note that we can accelerate the convergence
to the solution for a convergent or a divergent iterative method. The only need is
that 1 is not one of the eigen values of 𝑃. Considering 𝑒𝑘 = 𝑦𝑘 − 𝑦𝑘−1, 𝑘 = 1, . . .,
the operator 𝑃 ∈ R𝑛Γ×𝑛Γ can be computed algebraically after 𝑛Γ + 1 iterations as
𝑃 = [𝑒𝑛Γ+1, . . . , 𝑒2] [𝑒𝑛Γ , . . . , 𝑒1]−1. Nevertheless, for 2D or 3D problems, the value
𝑛Γ may be too large to have an efficient method. So a low-rank approximation of
𝑃 is computed using the iterated interface solutions and the Aitken’s acceleration
is performed on the low-rank space of dimension 𝑛𝛾 ≪ 𝑛Γ. As we search the
converged interface solution 𝑦∞, we build from the singular value decomposition
[9] of the matrix 𝑌 = [𝑦0, . . . 𝑦𝑞] = 𝑈Σ𝑉𝑇 a low-rank space with selecting the 𝑛𝛾
singular vectors associated to the most significant singular values.

10 D. Tromeur-Dervout

If the Schwarz DDM converges then the asynchronous Schwarz does the same [?,
Theorem 5 with assumption 2], under the additional hyppothesis that the TC have
been generated before their use, no subdomain stop updating its components and no
subdomain have a TC that is never updated.
We consider the 2D Poisson problem:



−( 𝜕

2

𝜕𝑧21
+ 𝜕2

𝜕𝑧22
) 𝑥(𝑧1, 𝑧2) = 𝑏(𝑧1, 𝑧2), (𝑧1, 𝑧2) ∈]0, 1[×]0, 1[,

with homogeneous Dirichlet B.C.
(5)

We discretize (??) with second order centered finite differences on a regular Cartesian
mesh of 𝑛𝑔𝑧1 × 𝑛𝑔𝑧2 = 𝑛 points.
Given a non-prime number 𝑁 ∈ N, we split the domain [0, 1]2 in 𝑁 = 𝑁𝑧1 × 𝑁𝑧2

overlapping partitions𝑊 𝑝
𝑖 . For the sake of simplicity, we consider that each partition

𝑊 𝑝
𝑖 has 𝑛𝑖 = 𝑛

𝑙
𝑧1 × 𝑛𝑙𝑧2 points of discretizing and we define 𝑛

𝑔
𝑧1 and 𝑛

𝑔
𝑧2 accordingly.

Due to the Cartesian mesh discretizing, the set 𝑊 𝑝
𝑖,𝑒, for each 𝑖, can be split in a

maximum of four parts corresponding to the four local artificial interfaces generated
by the partitioning. Two:𝑊𝑂,𝑝

𝑖,𝑒 and𝑊
𝐸,𝑝
𝑖,𝑒 (respectively𝑊

𝑆,𝑝
𝑖,𝑒 and𝑊

𝑁,𝑝
𝑖,𝑒 ) are in the

𝑧1 (respectively 𝑧2) direction.
The asynchronous RAS algorithm does not wait that the updates of the transmis-

sion conditions (TC) (the term 𝐸𝑖𝑥𝑘 in (??)) are done before starting the next iteration.
Consequently, the TC of one partition could have not been totally or partially up-
dated. As there is not control on the restraining of the communication network, it is
difficult to evaluate the number of update of the local TC that are missing.
In order to modelize the asynchronous RAS, we propose a model where each

of the four TC of each subdomains are totally update or not, following a random
draw of four numbers (𝑙𝑂𝑖 , 𝑙𝑊𝑖 , 𝑙𝑆𝑖 , 𝑙𝑁𝑖 ) per 𝑊 𝑝

𝑖 . Only if the draw associated to a
local TC is greater than a fixed limit 𝑙 then this local TC is updated. The value 𝑙
gives the percentage of missing TC updates. The synchronous RAS algorithm is
obtained setting 𝑙 = 0 and we note 𝑙-RAS the asynchronous RAS with a 𝑙 level
of asynchronism. The 𝑙-RAS iterates until 𝑅Γ𝑥

𝑘 does not evolve anymore. Figure

Algorithm 1 Approximated Aitken’s acceleration
Require: 𝑥0 an arbitrary initial condition , 𝜖 > 0 a given tolerance, 𝑦0 = 𝑅Γ𝑥

0,
1: repeat
2: for 𝑘 = 1 . . . 𝑞 do
3: 𝑥𝑘 = 𝑥𝑘−1 +𝑀−1𝑅𝐴𝑆

(
𝑏 − 𝐴𝑥𝑘−1) , 𝑦𝑘 = 𝑅Γ𝑥

𝑘 // RAS iteration
4: end for
5: Compute SVD of [𝑦0, 𝑦1, . . . , 𝑦𝑞 ] =𝑈Σ𝑉′,

keep the 𝑛𝛾 singular vectors𝑈1:𝑛𝛾 such that 𝜎𝑛𝛾+1 < 𝜖
6: Compute [ �̂�𝑞−𝑛𝛾−2, . . . , �̂�𝑞 ] =𝑈𝑇1:𝑛𝛾 [𝑦𝑞−𝑛𝛾−2, . . . , 𝑦𝑞 ], and �̂�𝑘 = �̂�𝑘 − �̂�𝑘−1
7: Compute 𝑃 = [�̂�𝑞−𝑛𝛾 . . . , �̂�𝑞 ] [�̂�𝑞−𝑛𝛾−1, . . . , �̂�𝑞−1 ]−1
8: 𝑦0 ←𝑈1:𝑛𝛾

(
𝐼 − 𝑃

)−1 (
�̂�𝑞 − 𝑃�̂�𝑞−1

)
9: until convergence

This low-rank approximation of the acceleration has been very efficient to solve
3DDarcy flowwith highly heterogeneous and randomly generated permeability field
[1]. Step 7 of the algorithm may be subject to bad conditioning and matrix inversion
can be replaced by pseudo inverse. Other techniques developed in [1] avoid the
matrix inversion. For 1D partitioning (i.e ∀𝑖 = {0, . . . 𝑁 − 1},𝑊 𝑝

𝑖,𝑒 ∩𝑊0
𝑗 = ∅,∀ 𝑗 ≠

{𝑖 − 1, 𝑖 + 1}), we can use the sparsity of 𝑃 to define a Sparse-Aitken acceleration,
numerically more efficient by using local SVD for each subdomain [2].
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3 Modeling the Asynchronous RAS

If the Schwarz DDM converges then the asynchronous Schwarz does the same [8,
Theorem 5 with assumption 2], under the additional hyppothesis that the TC have
been generated before their use, no subdomain stop updating its components and no
subdomain have a TC that is never updated.
We consider the 2D Poisson problem:



−( 𝜕

2

𝜕𝑧2
1
+ 𝜕2

𝜕𝑧2
2
) 𝑥(𝑧1, 𝑧2) = 𝑏(𝑧1, 𝑧2), (𝑧1, 𝑧2) ∈]0, 1[×]0, 1[,

with homogeneous Dirichlet B.C.
(5)

We discretize (5) with second order centered finite differences on a regular Cartesian
mesh of 𝑛𝑔𝑧1 × 𝑛𝑔𝑧2 = 𝑛 points.
Given a non-prime number 𝑁 ∈ N, we split the domain [0, 1]2 in 𝑁 = 𝑁𝑧1 × 𝑁𝑧2

overlapping partitions𝑊 𝑝
𝑖 . For the sake of simplicity, we consider that each partition

𝑊 𝑝
𝑖 has 𝑛𝑖 = 𝑛

𝑙
𝑧1 × 𝑛𝑙𝑧2 points of discretizing and we define 𝑛

𝑔
𝑧1 and 𝑛

𝑔
𝑧2 accordingly.

Due to the Cartesian mesh discretizing, the set 𝑊 𝑝
𝑖,𝑒, for each 𝑖, can be split in a

maximum of four parts corresponding to the four local artificial interfaces generated
by the partitioning. Two:𝑊𝑂,𝑝

𝑖,𝑒 and𝑊
𝐸,𝑝
𝑖,𝑒 (respectively𝑊

𝑆,𝑝
𝑖,𝑒 and𝑊

𝑁,𝑝
𝑖,𝑒 ) are in the

𝑧1 (respectively 𝑧2) direction.
The asynchronous RAS algorithm does not wait that the updates of the transmis-

sion conditions (TC) (the term 𝐸𝑖𝑥𝑘 in (1)) are done before starting the next iteration.
Consequently, the TC of one partition could have not been totally or partially up-
dated. As there is not control on the restraining of the communication network, it is
difficult to evaluate the number of update of the local TC that are missing.
In order to modelize the asynchronous RAS, we propose a model where each

of the four TC of each subdomains are totally update or not, following a random
draw of four numbers (𝑙𝑂𝑖 , 𝑙𝑊𝑖 , 𝑙𝑆𝑖 , 𝑙𝑁𝑖 ) per 𝑊 𝑝

𝑖 . Only if the draw associated to a
local TC is greater than a fixed limit 𝑙 then this local TC is updated. The value 𝑙
gives the percentage of missing TC updates. The synchronous RAS algorithm is
obtained setting 𝑙 = 0 and we note 𝑙-RAS the asynchronous RAS with a 𝑙 level
of asynchronism. The 𝑙-RAS iterates until 𝑅Γ𝑥

𝑘 does not evolve anymore. Figure
1 (left) shows that the level of asynchronism deteriorates the convergence of the
RAS. The error between two consecutive iterations oscillates quite strongly with 𝑙.
These oscillations are smoother for the error with the true solution. Table 1 shows
the log10 of the error with the true solution of the asynchronous 𝑙-RAS for 240
iterations and the associated Aitken’s acceleration of the convergence. The results
for 𝑙-RAS, with respect to the asynchronism level 𝑙, have an increasing variance but
the min,max and mean values of the error are close. The Aitken’s acceleration of the
convergence, using the set of 240 𝑙-RAS iterations, still accelerates even at a high
level 𝑙 of asynchronism, even though the acceleration deteriorates with increasing 𝑙.
Those results have a more stable variance and the mean value is closer to the max
value than to the min value. We limited 𝑛𝛾 to be 40 for 𝑙 ≠ 0 and to be 20 for 𝑙 = 0
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Fig. 1: 𝑙-RAS convergencewith respect to the level of asynchronism 𝑙: for two consecutive iterations
(continuous line) and (left) with the true solution (+) , (right) two consecutive iterations after
Césaro’s summation (+). (𝑛𝑙𝑧1 = 𝑛𝑙𝑧2 = 10, 𝑁𝑧1 = 𝑁𝑧2 = 5, 𝑛𝛾 = 40)

due to the strong decreasing of the firsts singular values. Let us notice for this test
case 𝑛Γ = 544 and the low-rank space is of size 𝑛𝛾 = 40.

Aitken 𝑙-RAS 𝑙-RAS Update failures
𝑙 min max mean 𝜎 min max mean 𝜎 min max mean 𝜎
0.0% -11.12 -11.12 -11.12 2e-14 -2.543 -2.543 -2.543 3e-15 0 0 0 0
0.5% -3.666 -5.839 -4.969 4.0e-1 -2.527 -2.556 -2.533 4.8e-3 99 145 120.7 9.9
1.0% -2.814 -5.440 -4.751 4.7e-1 -2.513 -2.544 -2.524 7.1e-3 202 277 239.48 15.6
5.0% -2.521 -5.023 -4.284 4.2e-1 -2.415 -2.479 -2.443 1.4e-2 1121 1286 1197.3 34.3
10.% -1.729 -4.707 -3.956 5.3e-1 -2.303 -2.406 -2.347 2.1e-2 2267 2502 2397.9 43.6
30.% -1.037 -4.005 -3.280 4.6e-1 -1.868 -2.089 -1.974 4.7e-2 7044 7349 7203.3 66.5
50.% 0.548 -3.613 -2.643 6.1e-1 -1.472 -1.961 -1.678 9.3e-2 11860 12199 12013 66.1

Table 1: Statistics (min,max,mean and variance 𝜎), based on 100 runs, of 𝑙𝑜𝑔10( | |𝑥240 − 𝑥∞ | |∞)
, with respect to 𝑙, for the asynchronous 𝑙-RAS and its Aitken’s acceleration of the convergence
(with the same data). (𝑛𝑙𝑧1 = 𝑛𝑙𝑧2 = 10, 𝑁𝑧1 = 𝑁𝑧2 = 5, 𝑛𝛾 = 40)

4 Regularization of the Aitken acceleration of the convergence of
the Asynchronous RAS

At first glance, previous results on Aitken’s acceleration of the convergence of the
𝑙-RAS are surprising as the pure linear convergence of the RAS is destroyed with
the asynchronism, i.e. the error operator depends of the iteration: 𝑦𝑘+1 − 𝑦𝑘 =
𝑃𝑘 (𝑦𝑘 − 𝑦𝑘−1). The explanation comes from the low-rank space built with the SVD.
Let 𝑌𝑙 = [𝑦0

𝑙 , . . . , 𝑦
𝑞
𝑙 ] be the matrix of the iterated 𝑙-RAS interface solutions. As the

asynchronous 𝑙-RAS converges, we can write𝑌𝑙 = 𝑌0 +𝐸𝑙 where 𝐸𝑙 is a perturbation
matrix with smaller and smaller entries with respect to the iterations. Then using the
Fan inequality [4, Theorem 2, p.764] of the SVD of a perturbation matrix, we have:
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Aitken Césaro 𝑙-RAS Upper Aitken 𝑙-RAS 𝑙-RAS
𝑙 min max 𝜎 mean bound mean mean
0.0% -12.42 -12.42 8.e-15 -12.42 -12.27 -11.111 -2.543
0.5% -4.059 -6.968 4.5e-1 -6.284 -6.120 -4.969 -2.533
1.0% -4.667 -6.856 3.9e-1 -6.096 -5.902 -4.751 -2.524
5.0% -4.184 -6.383 4.9e-1 -5.546 -5.434 -4.284 -2.443
10.% -3.844 -6.047 4.5e-1 -5.294 -5.106 -3.956 -2.347
30.% -3.457 -5.261 3.9e-1 -4.500 -4.431 -3.280 -1.974
50.% -2.505 -4.553 4.7e-1 -3.841 -3.794 -2.643 -1.678

Table 2: Statistics (min,max,mean and variance 𝜎) for 100 runs of 𝑙𝑜𝑔10 of the error with the true
solution of the Aitken acceleration of the convergence of 𝑙-RAS with Cesaro’s mean with respect
to the asynchronism level 𝑙. (𝑛𝑙𝑧1 = 𝑛𝑙𝑧2 = 10, 𝑁𝑥 = 𝑁𝑦 = 5, 𝑛𝛾 = 40, 𝑚 = 200)

𝜎𝑟+𝑠+1 (𝑌0 + 𝐸𝑙) ≤ 𝜎𝑟+1 (𝑌0) + 𝜎𝑠+1 (𝐸𝑙) with 𝑟, 𝑠 ≥ 0, 𝑟 + 𝑠 + 1 ≤ 𝑞 + 1.
Setting 𝑠 = 0, we have |𝜎𝑟+1 (𝑌0 + 𝐸𝑙) − 𝜎𝑟+1 (𝑌0) | ≤ 𝜎1 (𝐸𝑙) = | |𝐸𝑙 | |2,∀𝑟 ≤ 𝑞. By
using the Schmidt’s Theorem [7, Theorem 2.5.3] on the SVD approximation, we can
write:

min
𝑋,𝑟𝑎𝑛𝑘𝑋=𝑘

( | |𝑌𝑙 − 𝑋 | |2) = 𝜎𝑘+1 (𝑌𝑙) = min
𝑋,𝑟𝑎𝑛𝑘𝑋=𝑘

( | |𝑌𝑙 − 𝑌0 + 𝑌0 − 𝑋 | |2
≤ ||𝑌𝑙 − 𝑌0 | |2 + min

𝑋,𝑟𝑎𝑛𝑘𝑋=𝑘
| |𝑌0 − 𝑋 | |2

≤ 𝜎1 (𝐸𝑙) + 𝜎𝑘+1 (𝑌0) (6)

This result implies that:

• the low-rank space 𝑈𝑙 built from 𝑌𝑙 is an approximation of 𝑈0 with a small
perturbation | |𝐸𝑙 | |2 = 𝜎1 (𝐸𝑙).

• As lim𝑘→∞ 𝑦𝑘𝑙 → 𝑦∞, the perturbation matrix 𝐸𝑙 has its columns with a decreas-
ing 2-norm. Thus, a better acceleration is obtained with considering the last 𝑞
iterations to build𝑈𝑙 .

This last result suggests an improvement of the Aitken’s acceleration of the con-
vergence with the Césaro’s mean of the iterated interface solutions. We transform
the sequence (𝑦𝑙) in an another sequence ( �̃�𝑙) defined as �̃�𝑖𝑙 =

1
𝑚

∑𝑚−1
𝑗=0 𝑦

𝑖+ 𝑗
𝑙 . The

summation still preserves the pure linear convergence of the synchronous 0%-RAS:
�̃�𝑘+10 − 𝑦∞ = 𝑃( �̃�𝑘0 − 𝑦∞) and will smooth the perturbation 𝐸𝑙 . Figure 1 (right) shows
the log10 of the error with the true solution of the iterated interface solution with
the Césaro’s mean with 𝑚 = 200. This last allows to smooth the error oscillations
on the convergence of 𝑙-RAS. The difference between two consecutive iterations of
the sequence ( �̃�𝑙) has a smaller amplitude than for the original sequence (𝑦𝑙). This
leads to have a low-rank space 𝑈𝑙 built from this ( �̃�𝑙) more representative of the
space where the true solution lives.
Table 2 gives the statistics for 100 runs of the Aitken’s acceleration of the conver-

gence for the 𝑙-RAS using the Césaro’s mean with respect to 𝑙. The acceleration of
the convergence is enhanced using ( �̃�𝑙) than (𝑦𝑙). The variance and the amplitude
between the min and the max values of the results are smaller. Even the 0%-RAS is
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better accelerated. Moreover, it shows a upper bound for the mean acceleration of
the 𝑙-RAS with the Césaro’s mean to be

1√
𝑚
the mean acceleration of the 𝑙-RAS.

Figure 2 gives the singular values (𝜎𝑖) of the SVD of 𝑌𝑙 obtained with 𝑙-RAS with

Fig. 2: Singular values of one sample of 250 𝑙-RAS iterations for 𝑙 =
{0%, 1%, 5%, 10%, 30%, 50%} (left) and for 𝑙 = {0%, 0.01%, 0.025%, 0.05%, 0.1%, 0.5%}
and 300 iterations with the number of transmission condition update failures in brackets (right).
(𝑁 𝑙𝑥 = 𝑁 𝑙𝑦 = 10, 𝑃𝑥 = 𝑃𝑦 = 5, 𝑝 = 40)

respect to the level 𝑙 of asynchronism. It shows that the fast decreasing of (𝜎𝑖) is
lost with the asynchronism. It still exhibits some decreasing of (𝜎𝑖) that allows the
Aitken’s acceleration of the convergence. The right figure shows that even with a
very small level 𝑙 of asynchronism, the decreasing of 𝜎𝑖 is deteriorated even with
few TC update failures (the total number of update for 300 0%-RAS iterations is
300 × (4 × 2 + 12 × 3 + 9 × 4) = 24000).

5 Conclusion

We have succeed to accelerate the asynchronous RAS with the Aitken’s acceleration
of the convergence technique based on the low-rank approximation of the error
operator with the SVD of the matrix of interface iterated solutions. The SVD allows
to smooth the asynchronous effect over the iterations. We proposed a modeling for
setting the level of asynchronism. It can be used to estimate the asynchronism in
real application. Knowing the observed convergence rate of the real application,
we can extrapolate the level of asynchronism of the implementation. The model
proposed here considers a uniform probability for TC update failure (the worst case)
but we also can consider that only certain parts of the domain decomposition may
be temporarily at fault. Finally, we proposed a regularisation technique based on the
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Césaro’s mean of the 𝑙-RAS iterated interface solutions that improves the Aitken’s
acceleration of the convergence even on the synchronous RAS.
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