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1 Introduction

We are interested in solving in parallel anisotropic diffusion problems of the form

L𝑢 := −div(𝐴∇𝑢) + 𝜂𝑢 = 𝑔 in Ω ⊂ R2, 𝑢 = 0 on 𝜕Ω, (1)

where 𝐴 is a symmetric positive definite matrix with𝑊1,∞ coefficients,

(𝑥, 𝑦) ∈ Ω ↦→ 𝐴(𝑥, 𝑦) =
(
𝐴𝑥𝑥 𝐴𝑥𝑦

𝐴𝑥𝑦 𝐴𝑦𝑦

)
,

and (𝑥, 𝑦) ∈ Ω ↦→ 𝜂(𝑥, 𝑦) ≥ 0 is in 𝐿∞ (Ω). Schwarz algorithms for such problems
are naturally formulated and studied at the continuous level. For a decomposition
of the domain Ω into possibly non-overlapping subdomains Ω 𝑗 , 𝑗 = 1, 2, . . . , 𝐽, the
parallel optimized Schwarz algorithm with Robin transmission conditions for the
anisotropic diffusion problem (1) computes for iteration index ℓ = 1, 2, . . .

L𝑢ℓ
𝑗
= 𝑔 in Ω 𝑗 ,

𝑢ℓ
𝑗
= 0 on 𝜕Ω 𝑗 ∩ 𝜕Ω,

𝐴∇𝑢ℓ
𝑗
· n 𝑗 + 𝑝𝑢ℓ

𝑗
= −𝐴∇𝑢ℓ−1

𝑖
· n𝑖 + 𝑝𝑢ℓ−1

𝑖
on Γ 𝑗𝑖 ,

(2)
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Fig. 1 Three typical discretizations for two subdomain decompositions: square-square (ss), triangle-
square (ts) and triangle-quadrangle (tq).

where n 𝑗 denotes the unit outer normal on the boundary of Ω 𝑗 , and Γ 𝑗𝑖 denotes the
portion of the interface whereΩ 𝑗 takes data fromΩ𝑖 . The efficiency of the algorithm
is known to depend on the choice of the parameter 𝑝, which is usually optimized
for a simple two subdomain decomposition, see [3] for the Laplace case. In [5],
we showed at the continuous level for a general constant diffusion matrix 𝐴 that
for Ω := (−𝑎, 𝑎) × (0, 𝑏) decomposed into two non-overlapping subdomains Ω1 :=
(−𝑎, 0) × (0, 𝑏) andΩ2 := (0, 𝑎) × (0, 𝑏) with the interface Γ12 = Γ21 := 𝜕Ω1∩𝜕Ω2,
the optimized parameters and associated convergence factors are of the form

𝑝∗ =
√︃
𝑓 (𝑘min) 𝑓 (𝑘max), 𝜌∗ =

√︁
𝑓 (𝑘max) −

√︁
𝑓 (𝑘min)√︁

𝑓 (𝑘max) +
√︁
𝑓 (𝑘min)

, (3)

where for a general constant diffusion matrix 𝐴

𝑓 (𝑘) := 𝑓 (𝑟 (𝑘)) with 𝑟 (𝑘) := 1
𝐴𝑥𝑥

√︄
𝜂𝐴𝑥𝑥 +

(
𝜋𝑘

𝑏

)2
det 𝐴, (4)

with the function 𝑓 defined for unbounded and bounded domains by

𝑓 (𝑟) :=
{
𝑓∞ (𝑟) := 𝐴𝑥𝑥𝑟 𝑎 = ∞,

𝑓𝑎 (𝑟) := 𝑓∞ (𝑟) coth(𝑎𝑟) 𝑎 < ∞.
(5)

For both cases, the smallest frequency is 𝑘min = 1 and the largest frequency can
be estimated by 𝑘max = 𝑏

ℎ𝑦
for cell centered (cc) discretization, and 𝑘max = 𝑏

ℎ𝑦
− 1

for vertex centered (vc) discretizations, which are almost the same for small mesh
size ℎ𝑦 in the 𝑦 direction, see below for more information.
We show for the three example meshes in Figure 1 the numerically computed

convergence factors �̌� in Table 1 when running the optimized Schwarz algorithm dis-
cretized by Discrete Duality Finite Volumes (DDFV, see [5] for the DDFV Schwarz
algorithm, and [7, 2, 1] for DDFV discretizations in general) for the Laplace problem,
𝐴(𝑥, 𝑦) = 𝐼, and four anisotropic diffusion matrices, and characteristic mesh size
ℎ𝑥 = ℎ𝑦 =: ℎ = 1

16 , i.e themeshes in Figure 1 twice refined.We used the theoretically
optimized value 𝑝∗ = 𝑝∗∞,cvc from (3) with 𝑘max = 𝑏

ℎ𝑦
− 1 corresponding to the vc

scheme (index cvc for continuous vertex centered), see the comment at the end of
section 3, and then also determined the numerically best working parameter 𝑝∗ and
associated convergence factor �̌�∗, which we computed (throughout the paper) per-
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Table 1 Numerically measured convergence factors �̌� of the optimized Schwarz algorithm for the
three example meshes square-square (ss), triangle-square (ts) and triangle-quadrangle (tq) for the
Laplace problem and four anisotropic diffusion problems with the theoretical parameter 𝑝∗

∞,cvc and
the numerically best working one �̌�∗.

Problem ss ts tq ss ts tq
𝐴𝑥𝑥 𝐴𝑦𝑦 𝑝∗

∞,cvc �̌� �̌� �̌� �̌�∗ �̌�∗ �̌�∗ �̌�∗ �̌�∗ �̌�∗

1 1 12.87 0.592 0.592 0.593 11.89 0.567 10.87 0.566 11.63 0.559
16 1 51.50 0.452 0.521 0.602 49.84 0.439 46.29 0.475 44.79 0.556
16 1

16 16.01 0.351 0.343 0.586 23.50 0.174 19.88 0.254 11.07 0.487
1 16 50.35 0.821 0.744 0.687 75.14 0.732 57.22 0.712 57.61 0.647
1
16 16 12.59 0.949 0.919 0.891 26.84 0.884 22.46 0.841 21.52 0.842

forming each time 100 iterations and using the last 40 to fit the linear convergence,
to avoid initial fluctuations due to starting with a random initial guess.
We see from this experiment that for the Laplace problem the theoretically de-

termined best parameter at the continuous level 𝑝∗∞,cvc performs very well on all
meshes, and is close to the numerically best working one 𝑝∗, with �̌� ≈ �̌�∗. For
anisotropic diffusion however this is not the case: the performance now depends
on the mesh structure, and the numerically optimized parameter 𝑝∗ can be rather
different from the theoretical parameter 𝑝∗∞,cvc. It is this difference we want to better
understand, in particular for DDFV discretizations, which are highly accurate for
anisotropic diffusion.
To start with our investigation, we plot in Figure 2 an example subdomain solution

on the right subdomainΩ2 with interface value equal to 1 and vanishing source term
for the Laplace case and two anisotropic diffusion cases. We see that the anisotropy
deforms the solution quite a bit, and for 𝐴𝑥𝑥 large, the subdomain clearly sees the
boundary conditions at the outer boundary 𝜕Ω (Figure 2 middle), whereas for 𝐴𝑦𝑦

large a boundary layer is forming close to the interface Γ21 (Figure 2 right). This
indicates that both the subdomain size, as well as the discretization, i.e. the mesh
size, should influence the behavior of the optimized Schwarz method for anisotropic
diffusion, and thus the best value of the parameter 𝑝.

Fig. 2 Solutions for 𝐴𝑥𝑥 = 1, 𝐴𝑦𝑦 = 1 (left), for 𝐴𝑥𝑥 = 16, 𝐴𝑦𝑦 = 1 (middle) for 𝐴𝑥𝑥 = 1,
𝐴𝑦𝑦 = 16 (right), on an isotropic mesh.
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2 Optimized parameters at the discrete level

For rectangular meshes and for a diagonal anisotropy (𝐴𝑥𝑦 = 0), it is easy to
see (see e.g. [4]) that the DDFV scheme leads to two decoupled classical finite
difference schemes, a cell centered (cc) scheme with unknowns at the cell centers,
and a vertex centered (vc) schemewith unknowns at the vertices. In [4], we performed
the optimization analysis in the same rectangular domain configuration as above, for
a discretization associated to the step sizes ℎ𝑥 and ℎ𝑦 for both the cc and vc schemes
for unbounded (𝑎 = ∞) and bounded (𝑎 < ∞) domains. The optimized parameters
and associated convergence factors are again of form (3), with

𝑓 (𝑘) := 𝑓 (𝜈(𝑘)), 𝜈(𝑘) := − ln(𝜆(𝑘)), 𝜆(𝑘) := 1 + 𝜇 (𝑘)
2 −

√︃
𝜇(𝑘) + 𝜇 (𝑘)2

4 ,

𝜇(𝑘) := ℎ2𝑥
𝐴𝑥𝑥

(
4 𝐴𝑦𝑦

ℎ2𝑦
sin2

(
𝑘 𝜋ℎ𝑦

2𝑏

)
+ 𝜂

)
,

(6)

and the function 𝑓 is defined for the cc and vc schemes on unbounded and bounded
domains by

𝑓 (𝜈) :=


𝑓∞,cc (𝜈) := 2 𝐴𝑥𝑥

ℎ𝑥
tanh

(
𝜈
2
)
, 𝑎 = ∞,

𝑓𝑎,cc (𝜈) := 𝑓∞,𝑐𝑐 (𝜈)coth
(
𝑎𝜈
ℎ𝑥

)
, 𝑎 < ∞,

𝑓∞,vc (𝜈) := 𝐴𝑥𝑥

ℎ𝑥
sinh (𝜈) , 𝑎 = ∞,

𝑓𝑎,vc (𝜈) = 𝑓∞,𝑣𝑐 (𝜈)coth
(
𝑎𝜈
ℎ𝑥

)
, 𝑎 < ∞.

(7)

Again the smallest frequency 𝑘min = 1, and the maximum frequencies can be esti-
mated by 𝑘max = 𝑏

ℎ𝑦
for the cc scheme and 𝑘max = 𝑏

ℎ𝑦
− 1 for the vc scheme.

3 Asymptotic analysis

In order to understand the difference in the performance of the optimized Schwarz
method in the anisotropic case, we now present a new asymptotic analysis of the
optimized parameters and associated convergence factors. We look at the asymptotic
behavior as ℎ𝑥 and ℎ𝑦 tend to zero, their ratio being constant.
We start with the asymptotic analysis of the optimization results (4)–(5) at the

continuous level. When inserting the smallest frequency 𝑘 = 𝑘min into (4)–(5), we
get in the unbounded domain case

𝑓∞ (𝑘min) =
√︂
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴,

and in the bounded domain case
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𝑓𝑎 (𝑘min) =
√︂
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴 coth

(
𝑎

𝐴𝑥𝑥

√︂
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴

)
.

At the largest frequency 𝑘 = 𝑘max, we obtain the same asymptotics, namely

𝑓∞ (𝑘max) = 𝑓𝑎 (𝑘max) =
𝜋
√
det 𝐴
ℎ𝑦

+ O(1). (8)

Now when ℎ𝑦 tends to zero, we see from (4) that 𝑎𝑟 (𝑘max) tends to infinity, and
therefore coth(𝑎𝑟 (𝑘max)) = 1 + 𝑜(ℎ𝑦). We thus obtain for the unbounded domain
case 𝑎 = ∞ for the optimized parameter and associated convergence factor

𝑝∗∞ ∼
(
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴

) 1
4 (

𝜋
√
det 𝐴

) 1
2
ℎ
− 12
𝑦 ,

𝜌∗∞ ∼ 1 − 2
(
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴

) 1
4 (

𝜋
√
det 𝐴

)− 12
ℎ
1
2
𝑦 ,

where 𝑓 (ℎ𝑦) ∼ 𝑔(ℎ𝑦) means limℎ𝑦→0
𝑓 (ℎ𝑦 )
𝑔 (ℎ𝑦 ) = 1, and when 𝑎 < ∞, we get

𝑝∗𝑎 ∼
(
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴

) 1
4 (
𝜋
√
det 𝐴

) 1
2

(
coth

(
𝑎

𝐴𝑥𝑥

√︂
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴

)) 1
2

ℎ
− 12
𝑦 ,

𝜌∗𝑎 ∼ 1−2
(
𝜂𝐴𝑥𝑥+

( 𝜋
𝑏

)2
det 𝐴

)1
4(
𝜋
√
det 𝐴

)− 12(coth (
𝑎

𝐴𝑥𝑥

√︂
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
det 𝐴

)) 1
2

ℎ
1
2
𝑦 .

We see that the asymptotic behavior in the mesh size is the same, but the constants
differ between the bounded and unbounded domain case, clearly indicating that the
continuous analysis on the bounded domain can take into account the anisotropy
observed in Figure 2.
We next perform an asymptotic analysis of the optimization results (6) and (7)

at the discrete level. For a diagonal diffusion matrix 𝐴, at the minimum frequency,
𝑘 = 𝑘min, we obtain from (6)

𝜇(𝑘min) =
ℎ2𝑥
𝐴𝑥𝑥

(
4
𝐴𝑦𝑦

ℎ2𝑦
sin2

(
𝜋ℎ𝑦

2𝑏

)
+ 𝜂

)
=

ℎ2𝑥

𝐴2𝑥𝑥

(
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
𝐴𝑥𝑥𝐴𝑦𝑦 + O(ℎ2𝑦)

)
.

Hence 𝜇(𝑘min) → 0 when the mesh is refined, and because 𝜆(𝑘min) ∼ 1−
√︁
𝜇(𝑘min)

and 𝑓 (𝑘min) ∼ 𝐴𝑥𝑥

ℎ𝑥

√︁
𝜇(𝑘min), we obtain

𝑓∞,cc (𝑘min) ∼ 𝑓∞,vc (𝑘min) ∼
√︂
𝜂𝐴𝑥𝑥 +

( 𝜋
𝑏

)2
𝐴𝑥𝑥𝐴𝑦𝑦 . (9)

At the highest frequency, 𝑘 = 𝑘max, we obtain for the cc scheme
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𝜇cc (𝑘max) =
ℎ2𝑥
𝐴𝑥𝑥

(
4
𝐴𝑦𝑦

ℎ2𝑦
sin2

( 𝜋
2

)
+ 𝜂

)
=

ℎ2𝑥

𝐴2𝑥𝑥

(
𝜂𝐴𝑥𝑥 + 4

𝐴𝑥𝑥𝐴𝑦𝑦

ℎ2𝑦

)
∼ 4𝛽,

where 𝛽 := 𝐴𝑦𝑦

ℎ2𝑦

ℎ2𝑥
𝐴𝑥𝑥
, and similarly for the vc scheme,

𝜇vc (𝑘max) =
ℎ2𝑥
𝐴𝑥𝑥

(
4
𝐴𝑦𝑦

ℎ2𝑦
sin2

( 𝜋
2
(1 − ℎ𝑦)

)
+ 𝜂

)
=

ℎ2𝑥

𝐴2𝑥𝑥

(
4
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ2𝑦
+ O(1)

)
∼ 4𝛽.

Note that the case of a Laplacian with an isotropic square mesh corresponds to the

parameter value 𝛽 = 1. By hyperbolic trigonometric calculus, and 𝐴𝑥𝑥

ℎ𝑥
=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦

√
𝛽
,

we obtain the alternative formula 𝑓∞,cc (𝜈(𝑘)) = 2 𝐴𝑥𝑥

ℎ𝑥

1−𝜆(𝑘)
1+𝜆(𝑘) , which yields

𝑓∞,cc (𝑘max) = 2 𝐴𝑥𝑥

ℎ𝑥

−𝛽+
√

𝛽+𝛽2

1+𝛽−
√

𝛽+𝛽2
=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦

√
𝛽
2 −𝛽+

√
𝛽+𝛽2

1+𝛽−
√

𝛽+𝛽2

=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦

√
𝛽
2
√

𝛽+𝛽2
1+𝛽 :=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦
𝜓cc (𝛽),

with 𝜓cc (𝛽) = 2√
1+𝛽
. Similarly, since 𝑓∞,vc (𝜈(𝑘)) =

𝐴𝑥𝑥

ℎ𝑥

1−𝜆(𝑘)2
2𝜆(𝑘) by hyperbolic

trigonometric calculus, we obtain

𝑓∞,vc (𝑘max) = 𝐴𝑥𝑥

ℎ𝑥

2
(
−𝛽+

√
𝛽+𝛽2

) (
1+𝛽−

√
𝛽+𝛽2

)
1+2𝛽−2

√
𝛽+𝛽2

=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦

√
𝛽
2
(
−𝛽 +

√︁
𝛽 + 𝛽2

) (
1 + 𝛽 −

√︁
𝛽 + 𝛽2

) (
1 + 2𝛽 + 2

√︁
𝛽 + 𝛽2

)
=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦

√
𝛽
2
√︁
𝛽 + 𝛽2 :=

√
𝐴𝑥𝑥𝐴𝑦𝑦

ℎ𝑦
𝜓vc (𝛽),

with 𝜓vc (𝛽) = 2
√︁
1 + 𝛽. Note that in the special case 𝛽 = 1, we get 𝜓cc (𝛽) =

√
2 and

𝜓vc (𝛽) = 2
√
2, a factor 2 difference. For the unbounded domain case, 𝑎 = ∞, we

then obtain for the optimized parameters and associated convergence factors of the
cc and vc schemes

𝑝∗∞,cc ∼ 𝜓cc (𝛽)
1
2
√︁
𝐴𝑥𝑥𝐴𝑦𝑦

(
𝜂

𝐴𝑦𝑦

+
( 𝜋
𝑏

)2) 14
ℎ
− 12
𝑦 ,

𝑝∗∞,vc ∼ 𝜓vc (𝛽)
1
2
√︁
𝐴𝑥𝑥𝐴𝑦𝑦

(
𝜂

𝐴𝑦𝑦

+
( 𝜋
𝑏

)2) 14
ℎ
− 12
𝑦 ,

𝜌∗∞,cc ∼ 1 − 2𝜓cc (𝛽)−
1
2

(
𝜂

𝐴𝑦𝑦

+
( 𝜋
𝑏

)2) 14
ℎ
1
2
𝑦 ,

𝜌∗∞,vc ∼ 1 − 2𝜓vc (𝛽)−
1
2

(
𝜂

𝐴𝑦𝑦

+
( 𝜋
𝑏

)2) 14
ℎ
1
2
𝑦 .
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In the bounded domain case, 𝑎 < ∞, we see that coth
(
𝑎𝜈 (𝑘max)

ℎ𝑥

)
∼ 1 and when

𝜇(𝑘min) → 0, we have 𝜈(𝑘min) ∼ −
√︁
𝜇(𝑘min), which implies

𝑎𝜈 (𝑘min)
ℎ𝑥

∼ 𝑎√
𝐴𝑥𝑥

√︃
𝜂 +

(
𝜋
𝑏

)2
𝐴𝑦𝑦 ⇒ coth

(
𝑎𝜈 (𝑘min)

ℎ𝑥

)
∼ coth

(
𝑎√
𝐴𝑥𝑥

√︃
𝜂 +

(
𝜋
𝑏

)2
𝐴𝑦𝑦

)
.

(10)
We therefore get for the optimized parameters and associated convergence factors
for the cc and vc schemes in the bounded domain case

𝑝∗a,cc ∼ 𝜓cc (𝛽)
1
2
√︁
𝐴𝑥𝑥𝐴𝑦𝑦

(
𝜂

𝐴𝑦𝑦
+

(
𝜋
𝑏

)2) 14 coth (
𝑎√
𝐴𝑥𝑥

√︃
𝜂 +

(
𝜋
𝑏

)2
𝐴𝑦𝑦

) 1
2

ℎ
− 12
𝑦 ,

𝑝∗a,vc ∼ 𝜓vc (𝛽)
1
2
√︁
𝐴𝑥𝑥𝐴𝑦𝑦

(
𝜂

𝐴𝑦𝑦
+

(
𝜋
𝑏

)2) 14 coth (
𝑎√
𝐴𝑥𝑥

√︃
𝜂 +

(
𝜋
𝑏

)2
𝐴𝑦𝑦

) 1
2

ℎ
− 12
𝑦 ,

𝜌∗a,cc ∼ 1 − 2𝜓cc (𝛽)−
1
2

(
𝜂

𝐴𝑦𝑦
+

(
𝜋
𝑏

)2) 14 coth (
𝑎√
𝐴𝑥𝑥

√︃
𝜂 +

(
𝜋
𝑏

)2
𝐴𝑦𝑦

) 1
2

ℎ
1
2
𝑦 ,

𝜌∗a,vc ∼ 1 − 2𝜓vc (𝛽)−
1
2

(
𝜂

𝐴𝑦𝑦
+

(
𝜋
𝑏

)2) 14 coth (
𝑎√
𝐴𝑥𝑥

√︃
𝜂 +

(
𝜋
𝑏

)2
𝐴𝑦𝑦

) 1
2

ℎ
1
2
𝑦 .

These formulas take both the domain size and the mesh resolution into account, also
when the mesh is not chosen appropriately for the anisotropy under consideration.
If one can not use separate parameters for the cc and vc components in a DDFV

implementation, it was shown in [4] that the optimized choice for one parameter is
of the form

𝑝∗a,ddfv =
√︁
𝑓a,cc (𝜈(𝑘min)) 𝑓a,vc (𝜈(𝑘max)),

and since asymptotically we have 𝑓a,cc (𝜈(𝑘min)) ∼ 𝑓a,vc (𝜈(𝑘min)) from (9) and (10),
one should use the optimized parameter 𝑝∗a,vc ∼ 𝑝∗a,ddfv in that case.
The continuous and discrete asymptotic results lead to the following general

theorem.

Theorem 1 (Optimized Robin parameter for diagonal anisotropic diffusion)
The optimized Schwarz method (2) for the anisotropic diffusion problem (1)

with diagonal diffusion matrix 𝐴 and a subdomain decomposition of the rectangle
Ω = (−𝑎, 𝑎) × (0, 𝑏) into two non-overlapping subdomains Ω1 := (−𝑎, 0) × (0, 𝑏)
and Ω2 := (0, 𝑎) × (0, 𝑏) has for small mesh size ℎ𝑦 the asymptotically optimized
parameter and associated convergence factor

𝑝∗ ∼ 𝜓
1
2
√︁
𝐴𝑥𝑥𝐴𝑦𝑦

(
𝜂

𝐴𝑦𝑦
+

(
𝜋
𝑏

)2) 14
𝑐
1
2 ℎ

− 12
𝑦 , (11)

𝜌∗ ∼ 1 − 2𝜓− 12
(

𝜂

𝐴𝑦𝑦
+

(
𝜋
𝑏

)2) 14
𝑐
1
2 ℎ

1
2
𝑦 , (12)

where in the unbounded domain case, 𝑎 = ∞, we have 𝑐 = 1, whereas in the bounded
domain case, 𝑎 < ∞, we have
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Fig. 3 Graph of the functions 𝜓cc (𝛽) and 𝜓vc (𝛽) for the discrete analysis, compared to 𝜓 (𝛽) = 𝜋

(dotted) from the continuous analysis for small and large 𝛽 range.

𝑐 := 𝑐(𝑎, 𝑏, 𝐴𝑥𝑥 , 𝐴𝑦𝑦 , 𝜂) = coth
(

𝑎
√
𝐴𝑥𝑥

√︂
𝜂 +

( 𝜋
𝑏

)2
𝐴𝑦𝑦

)
. (13)

Furthermore, in the continuous case 𝜓 = 𝜋, and in the discrete case we have

𝜓 := 𝜓cc (𝛽) =
2√︁
1 + 𝛽

or 𝜓 = 𝜓vc (𝛽) := 2
√︁
1 + 𝛽 (14)

for the cell centered or vertex centered discretizations, with

𝛽 :=
𝐴𝑦𝑦

ℎ2𝑦

ℎ2𝑥
𝐴𝑥𝑥

. (15)

Plotting the 𝜓(𝛽) functions in Figure 3, we see that if 𝛽 = 1 then the continuous
and discrete analyses give about the same optimized parameter 𝑝∗ and associated
convergence factor, especially for the vc scheme. Since 𝛽 =

𝐴𝑦𝑦

ℎ2𝑦

ℎ2𝑥
𝐴𝑥𝑥
, this can be

achieved by having equal mesh sizes ℎ𝑥 = ℎ𝑦 and isotropic diffusion 𝐴𝑥𝑥 = 𝐴𝑦𝑦 ,
or by adapting the mesh sizes to the anisotropy, ℎ2𝑦 =

𝐴𝑥𝑥

𝐴𝑦𝑦
ℎ2𝑥 . Such an adaptation is

also recommended for accuracy, since a Taylor expansion gives

𝐴𝑥𝑥
𝑢 (𝑥+ℎ𝑥 ,𝑦)−2𝑢 (𝑥,𝑦)−𝑢 (𝑥−ℎ𝑥 ,𝑦)

ℎ2𝑥
+ 𝐴𝑦𝑦

𝑢 (𝑥,𝑦+ℎ𝑦 )−2𝑢 (𝑥,𝑦)−𝑢 (𝑥,𝑦−ℎ𝑦 )
ℎ2𝑦

= (𝐴𝑥𝑥𝜕𝑥𝑥 + 𝐴𝑦𝑦𝜕𝑦𝑦)𝑢(𝑥, 𝑦) + 1
12 (𝐴𝑥𝑥ℎ

2
𝑥𝜕
4
𝑥 + 𝐴𝑦𝑦ℎ

2
𝑦𝜕
4
𝑦)𝑢(𝑥, 𝑦) + . . . ,

(16)

and from the separation of variables solution 𝑢(𝑥, 𝑦) = 𝑒
− 𝑘𝜋

𝑏

√︃
𝐴𝑦𝑦

𝐴𝑥𝑥
𝑥 sin( 𝑘 𝜋

𝑏
𝑦) we see

that the fourth derivative in 𝑥 scales like 𝐴2𝑦𝑦
𝐴2𝑥𝑥
, while the fourth derivative in 𝑦 does

not scale in these entries, and hence to balance the error term, we should choose
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𝐴𝑥𝑥ℎ
2
𝑥

𝐴2𝑦𝑦

𝐴2𝑥𝑥
≈ 𝐴𝑦𝑦ℎ

2
𝑦 =⇒ ℎ2𝑥

𝐴𝑥𝑥

𝐴𝑦𝑦

ℎ2𝑦
= 𝛽 ≈ 1. (17)

Hence for 𝛽 ≈ 1, we can use the continuous analysis results and expect good perfor-
mance, also in highly anisotropic cases, provided the mesh is adapted accordingly.
If 𝛽 is very different from one, we should use the parameters from the discrete
analysis to get good performance. We also see from Figure 3 (right) that for large 𝛽
the optimized parameters for the cc and vc schemes are becoming more and more
different, and (12) together with (14) indicates that the cc scheme is converging
much faster than the vc scheme in these not well resolved mesh situations. In the
DDFV case with general meshes, where both cc and vc discretizations are involved,
the importance will then lie on a good optimization of the vc parameter, the cc
parameter playing only a secondary role in these not well resolved cases.
Next, we see from Theorem 1 that if 𝑐 ≈ 1, then we can use the unbounded

domain analysis, since the only term depending on the domain bound 𝑎 on the left
and right is 𝑐. Now 𝑐 ≈ 1 if the argument of the coth is large, i.e. either the domains
and thus 𝑎

𝑏
is large, or 𝜂 is large, or 𝐴𝑦𝑦

𝐴𝑥𝑥
is large, which is illustrated in Figure 1 on

the right, where we see that the outer boundary on the right does not play a major
role any more1. If none of these hold, then the bounded domain analysis needs to be
used to obtain good performance.
Finally, from 𝜌∗ in Theorem 1, we see the algorithm will converge very fast with

the well chosen 𝑝∗, provided 𝐴𝑦𝑦 is small or 𝜂 large, or 𝜓(𝛽) is small. Having 𝜓(𝛽)
small is however not advisable, because the discretization accuracy is only good for
𝛽 ≈ 1, see (17).

4 Numerical experiments

We can now explain the discrepancies we observed in Table 1 as soon as we solve
anisotropic diffusion problems. There are two reasons: the first one is that when using
the optimized parameter 𝑝∗∞ from the continuous, unbounded domain analysis, the
fact that the subdomains are actually bounded in a concrete computation becomes
important as soon as the diffusion in the orthogonal direction to the interface is
large, and the cross diffusion tangential to the interface is small. This is visible also
in Figure 1 showing a corresponding solution in the middle, where we can clearly
see that the boundary on the right makes the solution decay linearly in the direction
orthogonal to the interface, in stark contrast to the Laplace case on the left in Figure 1,
where the decay is exponential. The second reason for discrepancies is the uniform
discretization, which can not resolve well the boundary layers close to the top and
bottom boundaries in Figure 1 (middle), and close to the interface in Figure 1 (right)
which also influence the convergence of the Schwarz method.

1 For example, in the case 𝐴𝑥𝑥 = 1 and 𝐴𝑦𝑦 = 16, the difference is of order 10−11.
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Table 2 Results corresponding to Table 1 but now using the theoretical parameter 𝑝∗
a,cvc from the

bounded domain analysis.

Problem ss ts tq ss ts tq
𝐴𝑥𝑥 𝐴𝑦𝑦 𝑝∗

a,cvc �̌� �̌� �̌� �̌�∗ �̌�∗ �̌�∗ �̌�∗ �̌�∗ �̌�∗

1 1 12.48 0.582 0.581 0.583 11.89 0.567 10.87 0.566 11.63 0.559
16 1 60.59 0.514 0.578 0.651 49.84 0.439 46.29 0.475 44.79 0.556
16 1

16 28.04 0.258 0.436 0.741 23.50 0.174 19.88 0.254 11.07 0.487
1 16 48.75 0.826 0.751 0.695 75.14 0.732 57.22 0.712 57.61 0.647
1
16 16 12.19 0.950 0.921 0.894 26.84 0.884 22.46 0.841 21.52 0.842

Table 3 Results corresponding to Table 2 but now using the discrete theoretical parameters 𝑝∗
a,cc

and 𝑝∗
a,vc, and the numerically best working ones �̌�∗

cc and �̌�∗
vc.

Problem ss ts tq ss ts tq
𝐴𝑥𝑥 𝐴𝑦𝑦 𝑝∗

a,cc 𝑝∗
a,vc �̌� �̌� �̌� �̌�∗

cc �̌�∗
vc �̌�∗ �̌�∗

cc �̌�∗
vc �̌�∗ �̌�∗

cc �̌�∗
vc �̌�∗

1 1 8.62 12.22 0.573 0.572 0.574 8.62 11.93 0.566 7.73 11.38 0.533 10.49 10.49 0.527
16 1 49.16 50.56 0.444 0.509 0.592 49.59 49.87 0.439 45.87 45.89 0.468 39.61 40.13 0.514
16 1

16 23.48 23.48 0.174 0.347 0.698 23.50 23.44 0.173 19.75 20.24 0.242 11.42 11.65 0.466
1 16 19.07 84.09 0.723 0.728 0.733 20.01 80.71 0.714 44.46 66.21 0.653 13.78 58.50 0.621
1
16 16 1.84 54.59 0.806 0.834 0.861 1.13 51.09 0.796 1.90 36.72 0.756 0.69 30.80 0.733

As a first remedy, we use the optimized parameter 𝑝∗𝑎 from the continuous,
bounded domain analysis to take into account the boundedness of the domains.
From Table 2 we see that this already improves the performance of the method
when the diffusion is large in the orthogonal direction to the interface and small
tangentially. However for the other cases using the bounded domain analysis is not
sufficient due to the bad mesh resolution in the anisotropic case.
We therefore now use the discrete optimized formulas 𝑝∗a,vc and 𝑝∗a,cc in our DDFV

Schwarz code, which are perfectly adapted to the anisotropy of the problem we are
solving on bounded subdomains, and truly optimize both the vc and cc scheme
component convergence also for the not well chosen mesh resolution. We show the
corresponding results in Table 3. We see that now our parameters predicted by the
discrete analysis for the cc and vc schemes give performance close to the truly best
possible ones for rectangular meshes, and still workwell on general meshes for which
our analysis is not valid any more. Furthermore, the performance still follows our
asymptotic analysis, as the plots of the convergence factors under mesh refinement
in Figure 4 indicate.
We finally show numerical results using an anisotropic mesh which gives better

approximate discrete solutions, see the truncation error analysis in (16). We show
the corresponding results for such meshes in Table 4, and in Figure 5. We see that the
continuous analysis gives now very good predictions for the optimized parameters
for the vc scheme, while for the cc scheme their value is still a bit overestimated.
This does however not influence the performance very much.
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Fig. 4 Asymptotic dependence of 1 − �̌� on the mesh size for isotropic meshes and the anisotropic
diffusion problems in Table 3, with ℎ = ℎ𝑦 = ℎ𝑥 . From top left to bottom right: (𝐴𝑥𝑥 , 𝐴𝑦𝑦) =

(16, 1) , (16, 116 ) , (1, 16) , (
1
16 , 16) .

5 Conclusions

Using asymptotic analysis, we explained rigorously numerical observations on the
performance of DDFV optimized Schwarz methods applied to anisotropic diffusion.
We showed that for strong anisotropic diffusion solved on uniform, non-adapted
meshes, one needs optimized parameters from a more subtle discrete analysis, con-
tinuous optimization does not suffice. When using suitably adapted, anisotropic
meshes such that the discrete solution is a good approximation of the continuous
one, optimized parameters from a continuous analysis perform however well. We
also showed numerically that this remains true if one uses meshes for which a de-
tailed asymptotic analysis as ours on Cartesian meshes can not be performed. For
extensions of the DDFV Schwarz algorithm to Navier-Stokes problems, see [6].

Table 4 Results obtained using the discrete optimized parameters for adapted anisotropic meshes.

Problem ss aniso
𝐴𝑥𝑥 𝐴𝑦𝑦 𝑝∗

a,ccc 𝑝∗
a,cvc �̌�c 𝑝∗

a,cc 𝑝∗
a,vc �̌� �̌�∗

cc �̌�∗
vc �̌�∗

16 1 125.13 124.15 0.730 83.94 118.73 0.718 82.30 111.96 0.705
16 1

16 115.32 115.09 0.749 77.37 109.43 0.737 77.37 102.45 0.724
1 16 50.35 48.75 0.601 33.67 47.67 0.581 33.37 46.43 0.573
1
16 16 12.59 12.19 0.601 8.42 11.92 0.580 8.42 11.63 0.574
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Fig. 5 Asymptotic dependence of 1 − �̌� on the mesh size for anisotropic meshes and the
anisotropic diffusion problems in Table 4. From top left to bottom right: (𝐴𝑥𝑥 , 𝐴𝑦𝑦) =

(16, 1) , (16, 116 ) , (1, 16) , (
1
16 , 16) .
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