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1 Introduction

Discrete Fracture Networks (DFNs) are complex three-dimensional structures char-
acterized by the intersections of planar polygonal fractures, and are used to model
flows in fractured media. Despite being suitable for Domain Decomposition (DD)
techniques, there are relatively fewworks on the application of DDmethods to DFNs,
see, e.g., [1, 7] and references therein.
In this manuscript, we present a theoretical study of Optimized Schwarz Methods

(OSMs) applied to DFNs. Interestingly, we prove that the OSMs can be weakly scal-
able (that is, they converge to a given tolerance in a number of iterations independent
of the number of fractures) under suitable assumptions on the domain decomposi-
tion. This contribution fits in the renewed interest on the weak scalability of DD
methods after the works [2, 4, 3], which showed weak scalability of DD methods for
specific geometric configurations, even without coarse spaces.
Despite simplifying assumptions which may be violated in practice, our analysis

provides heuristics tominimize the computational efforts in realistic settings. Finally,
we emphasize that the methodology proposed can be straightforwardly generalized
to study other classical DD methods applied to DFNs (see, e.g., [3]).

2 Scalability analysis for one-dimensional DFNs

We start considering a simplified DFN made of one-dimensional fractures 𝐹𝑖 , 𝑖 =
1, . . . , 𝑁 arranged in a staircase fashion depicted in Fig 1. The DFN is Ω := ∪𝑁

𝑖=1𝐹𝑖 .
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The boundary of the fractures is denotedwith 𝜕𝐹𝑖 and it holds 𝜕Ω = ∪𝑁
𝑖=1𝜕𝐹𝑖 . Further,

𝜕Ω can be decomposed into a Dirichlet boundary Γ𝐷 and a Neumann boundary Γ𝑁 ,
so that 𝜕Ω = Γ𝐷 ∪ Γ𝑁 . The intersections between fractures are called traces and
are denoted by 𝑆𝑚, 𝑚 = 1, . . . , 𝑁 − 1 =: 𝑀 . We assume that both the vertical and
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Fig. 1 Geometry of the simplified DFN and of its one-dimensional fractures.

horizontal fractures have two traces located at 𝜏 = 𝛾1 and 𝜏 = 𝛾2 with 𝛾1 < 𝛾2,
(𝜏 being the local coordinate), except the first and last fracture. The mathematical
DFN model consists in the coupled system of partial differential equations for the
hydraulic heads 𝑢 𝑗 ,

−𝜈 𝑗𝜕𝜏 𝑗 𝜏 𝑗
𝑢 𝑗 = 𝑓 in 𝐹𝑗 , B 𝑗 (𝑢) = 0 on 𝜕𝐹𝑗 , 𝑗 = 1, . . . , 𝑁, (1)

𝑢 |𝐹𝑖
= 𝑢 |𝐹𝑖+1 on 𝑆𝑖 , 𝑖 = 1, . . . , 𝑀, (2)[ [

𝜕𝑢𝑖

𝜕𝜏𝑖

] ]
+

[ [
𝜕𝑢𝑖+1
𝜕𝜏𝑖+1

] ]
= 0 on 𝑆𝑖 , 𝑖 = 1, . . . , 𝑀, (3)

where B 𝑗 represent boundary conditions (b.c.) (specified later), 𝜈 𝑗 is the local
diffusion coefficient, and [[𝑣]] is the jump of 𝑣 across the intersection of fractures.
The local solutions 𝑢 𝑗 are coupled through (2)–(3) which enforce continuity of the
hydraulic heads, and balance between the jumps of the co-normal derivatives across
the traces.
System (1)–(3) is clearly prone to a DD approach. We consider a nonoverlap-

ping DD in which each subdomain corresponds to a single fracture, and the opti-
mized Schwarz method (OSM) that, starting from an initial guess 𝑢0

𝑗
computes for

𝑛 = 1, 2, . . . until convergence

−𝜈 𝑗𝜕𝜏 𝑗 𝜏 𝑗
𝑢𝑛𝑗 = 𝑓 𝑗 in 𝐹𝑗 , B 𝑗 (𝑢𝑛𝑗 ) = 0 on 𝜕𝐹𝑖 ,[ [

𝜕𝑢𝑛
𝑗

𝜕𝜏𝑗

] ]
+ 𝑠+𝑗−1𝑢

𝑛
𝑗 = −

[ [
𝜕𝑢𝑛−1

𝑗−1

𝜕𝜏𝑗−1

] ]
+ 𝑠+𝑗−1𝑢

𝑛−1
𝑗−1 on 𝑆 𝑗−1, (4)[ [

𝜕𝑢𝑛
𝑗

𝜕𝜏𝑗

] ]
+ 𝑠−𝑗 𝑢

𝑛
𝑗 = −

[ [
𝜕𝑢𝑛−1

𝑗+1

𝜕𝜏𝑗+1

] ]
+ 𝑠−𝑗 𝑢

𝑛−1
𝑗+1 on 𝑆 𝑗 .

for 𝑗 = 2, . . . , 𝑁 − 1, while for 𝑗 = 1, 𝑁 ,
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− 𝜈1𝜕𝜏1𝜏1𝑢
𝑛
1 = 𝑓1 in 𝐹1, B1 (𝑢𝑛1 ) = 0, −𝜈𝑁 𝜕𝜏𝑁 𝜏𝑁 𝑢

𝑛
𝑁 = 𝑓𝑁 in 𝐹𝑁 , B𝑁 (𝑢𝑛𝑁 ) = 0,[ [

𝜕𝑢𝑛1
𝜕𝜏1

] ]
+ 𝑠−1 𝑢

𝑛
1 = −

[ [
𝜕𝑢𝑛−12
𝜕𝜏2

] ]
+ 𝑠−1 𝑢

𝑛−1
2 on 𝑆1, (5)[ [

𝜕𝑢𝑛
𝑁

𝜕𝜏𝑁

] ]
+ 𝑠+𝑁−1𝑢

𝑛
𝑁 = −

[ [
𝜕𝑢𝑛−1

𝑁−1
𝜕𝜏𝑁−1

] ]
+ 𝑠+𝑁−1𝑢

𝑛−1
𝑁−1 on 𝑆𝑁−1.

The functions 𝑓 𝑗 are the restrictions of the force term on the fracture 𝐹𝑗 and 𝑠+,−𝑗
,

𝑗 = 1, . . . , 𝑀 are positive parameters.
To carry out the scalability analysis, we assume for the sake of simplicity that

𝑠
+,−
𝑗

= 𝑝 ∈ R+ and 𝜈 𝑗 = 1 for all 𝑗 . We study later how to optimize the choice
for 𝑠+,−

𝑗
. We first discuss the case in which every B 𝑗 represents a Dirichlet boundary

condition, and thenwe treat the case inwhichNeumann b.c. are imposed everywhere,
except at the left boundary of 𝐹1 (source fracture) and at the right boundary of 𝐹𝑁 .
More general configurations can be included straightforwardly in our analysis.
Due to the linearity of the problem,we define the errors 𝑒𝑛

𝑗
:= 𝑢−𝑢𝑛

𝑗
and study their

convergence to zero. The errors 𝑒 𝑗 satisfy an error system obtained setting 𝑓 𝑗 = 0
in (4)–(5). Inside each fracture, 𝑒 𝑗 is harmonic and has the analytical expression

𝑒𝑛1 =
𝑒𝑛1𝜏1

𝛾2
𝜒[0,𝛾2 ] +

𝑒𝑛1 (𝐿 − 𝜏1)
𝐿 − 𝛾2

𝜒[𝛾2 ,𝐿 ] , (6)

𝑒𝑛𝑗 =
𝑒
1,𝑛
𝑗

𝜏𝑗

𝛾1
𝜒[0,𝛾1 ] +

𝑒
1,𝑛
𝑗

(𝛾2 − 𝜏𝑗 ) + 𝑒
2,𝑛
𝑗

(𝜏𝑗 − 𝛾1)
𝛾2 − 𝛾1

𝜒[𝛾1 ,𝛾2 ] +
𝑒
2,𝑛
𝑗

(𝐿 − 𝜏𝑗 )
𝐿 − 𝛾2

𝜒[𝛾2 ,𝐿 ] ,

𝑒𝑛𝑁 =
𝑒𝑛
𝑁
𝜏𝑁

𝛾1
𝜒[0,𝛾1 ] +

𝑒𝑛
𝑁
(𝐿 − 𝜏𝑁 )
𝐿 − 𝛾1

𝜒[𝛾1 ,𝐿 ] ,

𝑗 = 2, . . . , 𝑁 . Unknown coefficients are collected into e𝑛 := (𝑒𝑛1 , 𝑒
1,𝑛
2 , 𝑒

2,𝑛
2 , . . . , 𝑒𝑛

𝑁
)>

∈ R�̃� , �̃� := 2(𝑁 −2) +2, and represent the values of the error functions at the traces,
while 𝜒[𝑎,𝑏] are characteristic functionswhich satisfy 𝜒(𝜏) = 1 if 𝜏 ∈ [𝑎, 𝑏] and zero
otherwise. Inserting these expressions into the transmission conditions (2)-(3), we
aim to express 𝑒𝑖,𝑛

𝑗
in terms of the coefficients of the errors in fractures 𝑗 −1 and 𝑗 +1

at iteration 𝑛−1. A direct calculation, which we omit due to space limitation (see [8]
for more details) leads to the recurrence relation e𝑛 = 𝑇𝐷

𝑁
e𝑛−1 = 𝑀−1

𝑁
𝑁𝑁 e𝑛−1, where

𝑀𝑁 , 𝑁𝑁 ∈ R𝑁 ,𝑁 have the block structure

𝑀𝑁 :=

©«

𝐹1
𝐹2

𝐹2
. . .

𝐹2
𝐹4

ª®®®®®®®®¬
, 𝑁𝑁 :=

©«

𝑎𝑏

𝑑2
𝑎 𝑏

𝑏 𝑐

. . .
. . .

𝑏 𝑐

. . .
. . . 𝑎 𝑏

𝑑1
𝑏 𝑐

ª®®®®®®®®®®®®®®®¬

(7)
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with blocks

𝐹1 := 𝑝 + 𝐿

𝛾2 (𝐿 − 𝛾2)
, 𝐹2 :=

(
𝑝 + 𝛾2

𝛾1 (𝛾2−𝛾1 ) − 1
𝛾2−𝛾1

− 1
𝛾2−𝛾1 𝑝 + 𝐿−𝛾1

(𝐿−𝛾2 ) (𝛾2−𝛾1 )

)
, 𝐹4 := 𝑝 + 𝐿

𝛾1 (𝐿 − 𝛾1)
,

𝑎 := 𝑝 − 𝛾2
𝛾1 (𝛾2 − 𝛾1)

, 𝑏 :=
1

𝛾2 − 𝛾1
, 𝑐 := 𝑝 − 𝐿 − 𝛾1

(𝐿 − 𝛾2) (𝛾2 − 𝛾1)
, 𝑑 𝑗 := 𝑝 − 𝐿

𝛾 𝑗 (𝐿 − 𝛾 𝑗 )
.

The next theorem shows that the spectral radius of 𝑇𝐷
𝑁
is bounded strictly below 1

for every 𝑁 if the Dirichlet b.c. are imposed on each fracture. Thus, the number
of iterations to reach a given tolerance is independent of 𝑁 , and OSM is weakly
scalable.

Theorem 1 Let 𝛾1 + 𝛾2 = 𝐿 and 𝑠
+,−
𝑗

= 𝑝, ∀ 𝑗 . Then, OSM is weakly scalable
for the solution of problem (1) with Dirichlet b.c. on each 𝐹𝑖 , in the sense that
𝜌(𝑇𝐷

𝑁
) ≤ 𝐶 < 1, independently of 𝑁 for every 𝑝 > 0.

Proof Notice that 𝜌(𝑇𝐷
𝑁
) = 𝜌(𝑀−1

𝑁
𝑁𝑁 ) = 𝜌(𝑁𝑁𝑀−1

𝑁
) ≤ ‖𝑁𝑁𝑀−1

𝑁
‖∞. Direct

calculations show that

‖𝑁𝑁𝑀−1
𝑁 ‖∞=max

{���� 𝑝𝛾2 (𝐿 − 𝛾2) − 𝐿

𝑝𝛾2 (𝐿 − 𝛾2) + 𝐿

���� ,2𝑝(𝐿 − 𝛾2)2 +
��𝐿 + (𝐿 − 2𝛾2) (𝐿 − 𝛾2)2𝑝2

��
(𝑝(𝐿 − 𝛾2) + 1) (𝑝(𝐿 − 𝛾2) (2𝛾2 − 𝐿) + 𝐿)

}
.

The first term is clearly less than 1 for every 𝑝 > 0. For the second term, we
distinguish two cases: if 𝐿 + (𝐿 − 2𝛾2) (𝐿 − 𝛾2)2𝑝2 < 0, then it simplifies to���−1+(𝐿−𝛾2) 𝑝1+(𝐿−𝛾2) 𝑝

��� which strictly less than 1. Similarly, if 𝐿 + (𝐿 − 2𝛾2) (𝐿 − 𝛾2)2𝑝2 ≥ 0,

then 2𝑝 (𝐿−𝛾2)
2+|𝐿+(𝐿−2𝛾2) (𝐿−𝛾2)2 𝑝2 |

(𝑝 (𝐿−𝛾2)+1) (𝑝 (𝐿−𝛾2) (2𝛾2−𝐿)+𝐿) =

��� 𝑝 (𝐿−𝛾2) (2𝛾2−𝐿)−𝐿𝑝 (𝐿−𝛾2) (2 𝛾2−𝐿)+𝐿

��� < 1 being 2𝛾2 > 𝐿. Thus,
∃𝐶 < 1 independent on 𝑁 such that ‖𝑁𝑁𝑀−1

𝑁
‖∞ < 𝐶 for every 𝑝 > 0. �

The hypothesis 𝛾1 + 𝛾2 = 𝐿 is used to simplify the otherwise cumbersome calcula-
tions, but it has not been observed in numerical experiments.
We emphasize that OSMs are not scalable for one-dimensional chains of fixed

size-subdomains [3]. In our setting, the scalability is due to the geometrical config-
uration typical for DFNs, which permits to impose Dirichlet b.c. on each fracture,
being the transmission conditions imposed in the interior. Thus, we observe error
contraction before information is propagated through the iterations across the sub-
domains (see [3, Section 3]). With a similar argument, we expect OSM not to be
scalable if Neumann b.c. are applied on each fracture, as the errors in the middle
fractures would require about 𝑁/2 to start contracting. To verify this, we can perform
the same analysis by replacing (6) with appropriate subdomains solutions. We then
obtain the recurrence relation e𝑛 = 𝑇𝑁

𝑁
e𝑛−1 = 𝑀−1

𝑁
𝑁𝑁 e𝑛−1, where 𝑀𝑁 𝑁𝑁 have the

same structure of (7), but with blocks

𝐹1:=𝑝+
1
𝛾2

, 𝐹4:=𝑝+
1

𝐿−𝛾1
, 𝐹2:=

(
𝑝+ 1

𝛾2−𝛾1 − 1
𝛾2−𝛾1

− 1
𝛾2−𝛾1 𝑝+ 1

𝛾2−𝛾1

)
,

�̃�:=𝑝− 1
𝛾2−𝛾1

, �̃�:=
1

𝛾2−𝛾1
, �̃�:=�̃�, 𝑑 𝑗 :=𝑝−

1
(𝐿−𝛾 𝑗 )

.
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Fig. 2 Left and center panel: spectral radii of 𝑇 𝐷
𝑁
and 𝑇 𝑁

𝑁
as the number of fractures increases.

Right panel: spectral radius of 𝑇 𝐷
𝑁
as 𝑝 varies. Parameters: 𝐿 = 1, 𝛾1 = 0.2, 𝛾2 = 0.6, 𝜈 = 1.

The first two panels of Fig. 2 show the dependence of the spectral radii of𝑇𝐷
𝑁
and𝑇𝑁

𝑁

as 𝑁 increases. While 𝜌(𝑇𝐷
𝑁
) remains bounded below one, 𝜌(𝑇𝑁

𝑁
) tends rapidly to

one as 𝑁 grows, thus OSMs are not weakly scalable if the Neumann b.c. are used.
We remark that in applications it is quite common to impose homogeneous Neu-

mann b.c. in internal fractures because at the tip of the fracture the flow exchange
with the surrounding matrix is negligible. In such cases, the analysis suggests two
possible heuristics to improve the convergence of DD solvers. The first one is to stress
the importance of an efficient partition of the fractures into subdomains (each sub-
domain generally contains more than one fracture). Such partition should minimize
the maximum, over floating subdomains, of the distance of each subdomain from
the Dirichlet boundary Γ𝑑 (see [8] for numerical experiments). Recall that a subdo-
main Ω 𝑗 is called “floating subdomain” if 𝜕Ω 𝑗 ∩ Γ𝐷 = ∅. The second heuristic is
to replace the Neumann b.c. with Robin ones (which would also model the realistic
case of a flux across 𝜕𝐹𝑗 ). Ref [5] suggest that Robin b.c. would permit to recover
scalability of OSMs for DFN as in the Dirichlet case.
Notice that the rate of convergence of OSMs, which may be independent of 𝑁 (see

discussion above), still depends on the transmission conditions, hence it is important
to have good estimates of the parameters 𝑠+,−

𝑗
. To estimate them, we consider two

fractures 𝐹1 and 𝐹2, which are coupled across a single trace. The general solutions
are given by

𝑒𝑛1 =
𝑒𝑛1𝜏1

𝛾2
𝜒[0,𝛾2 ] +

𝑒𝑛1 (𝐿 − 𝜏1)
𝐿 − 𝛾2

𝜒[𝛾2 ,𝐿 ] , 𝑒𝑛2 =
𝑒𝑛2𝜏1

𝛾1
𝜒[0,𝛾1 ] +

𝑒𝑛2 (𝐿 − 𝜏1)
𝐿 − 𝛾1

𝜒[𝛾1 ,𝐿 ] ,

where the unknowns are two coefficients 𝑒𝑛1 and 𝑒
𝑛
2 . Inserting these solutions in the

transmission conditions we obtain the scalar recurrence relation for 𝑗 = 1, 2,

𝑒𝑛𝑗 = 𝜌1𝐷 (𝑠−1 , 𝑠
+
1 , 𝜈1, 𝜈2)𝑒

𝑛−2
𝑗 , 𝜌1𝐷 (𝑠−1 , 𝑠

+
1 , 𝜈1, 𝜈2) =

(
𝜈2𝐿

𝛾1 (𝐿−𝛾1) − 𝑠−1

) (
𝜈1𝐿

𝛾2 (𝐿−𝛾2) − 𝑠+1

)(
𝜈1𝐿

𝛾2 (𝐿−𝛾2) + 𝑠−1

) (
𝜈2𝐿

𝛾1 (𝐿−𝛾1) + 𝑠+1

) .
If we chose 𝑠−1 = 𝑠

−,opt
1 := 𝜈2𝐿

𝛾1 (𝐿−𝛾1) and 𝑠+1 = 𝑠
+,opt
1 := 𝜈1𝐿

𝛾2 (𝐿−𝛾2) , we would have
𝜌(𝑠−1 , 𝑠

+
1 , 𝜈1, 𝜈2) = 0, that is, OSM is nilpotent. The right panel of Fig. 2 verifies that

two fracture analysis provides very good estimates for the optimal Robin parameters
in the many-fractures case.
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3 Scalability analysis for two-dimensional DFNs

In this section we consider two dimensional extension of Fig. 2. Each fracture 𝐹𝑗

is a two dimensional polygon, see Fig. 3, and the traces, denoted by 𝑆 𝑗 , are straight
segments crossing the whole fracture. On each fracture, the local reference system
has coordinates {𝜏1, 𝜏2}. Due to the geometrical configuration, the error can be

𝜈 𝑗
𝜕𝑢 𝑗

𝜕𝜏2
= 0

𝜈 𝑗
𝜕𝑢 𝑗

𝜕𝜏2
= 0

B 𝑗 (𝑢 𝑗 ) = 0 B 𝑗 (𝑢 𝑗 ) = 0𝑆 𝑗−1
𝛾1 𝛾2

𝑆 𝑗

𝜏1

𝜏2

𝜈 𝑗
𝜕𝑢 𝑗

𝜕𝜏2
= 0𝜈 𝑗

𝜕𝑢 𝑗

𝜕𝜏2
= 0

B 𝑗 (𝑢 𝑗 ) = 0

B 𝑗 (𝑢 𝑗 ) = 0

𝑆 𝑗−1

𝑆 𝑗

𝛾1

𝛾2 𝜏2

𝜏1

Fig. 3 Geometry of a two dimensional fracture.

expanded in Fourier series in each fracture, i.e. 𝑒 𝑗 =
∑∞

𝑘=0 𝑒 𝑗 (𝜏1, 𝑘) cos( 𝑘 𝜋𝐿 𝜏2). The
Fourier coefficients 𝑒 𝑗 (𝜏1, 𝑘) are obtained imposing the b.c. and the transmission
conditions. The long expressions are omitted due to space limitation (see for complete
expressions [8]). We only report the expressions for the first subdomain

𝑒𝑛1 (𝜏1, 𝑘) = 𝑒𝑛1 (𝑘)
sinh( 𝑘 𝜋

𝐿
𝜏1)

sinh( 𝑘 𝜋
𝐿
𝛾2)

𝜒[0,𝛾2 ] + 𝑒𝑛1 (𝑘)
sinh( 𝑘 𝜋

𝐿
(𝐿 − 𝜏1))

sinh( 𝑘 𝜋
𝐿
(𝐿 − 𝛾2))

𝜒[𝛾2 ,𝐿 ] , 𝑘 > 0,

𝑒𝑛1 (𝜏1, 0) =
𝑒𝑛1 (0)𝜏1

𝛾2
𝜒[0,𝛾2 ] +

𝑒𝑛1 (0) (𝐿 − 𝜏1)
𝐿 − 𝛾2

𝜒[𝛾2 ,𝐿 ] , 𝑘 = 0.

The unknowns 𝑒𝑖,𝑛
𝑗
(𝑘) are the values attained by the 𝑘-th mode of the Fourier ex-

pansions at each trace. In numerical computations, 𝑘 ∈ [𝑘min, 𝑘max] for the Dirichlet
b.c., while 𝑘 ∈ [0, 𝑘max] for the Neumann b.c., 𝑘max = 𝜋

ℎ
being the maximum fre-

quency supported by the numerical grid and 𝑘min = 𝜋
𝐿
. Similarly to the 1D case, one

can obtain recurrence relations which link the Fourier coefficients of one fracture at
iteration 𝑛 as functions of the Fourier coefficients of the neighbouring fractures at
iteration 𝑛 − 1. In particular for 𝑘 = 0, e𝑛0 :=

(
𝑒𝑛1 (0), 𝑒

1,𝑛
2 (0), 𝑒2,𝑛2 (0), . . . , 𝑒𝑛

𝑁
(0)

)>
satisfies e𝑛0 = 𝑇𝐷

𝑁
e𝑛−10 , where 𝑇

𝐷
𝑁
is the matrix of the 1D system with the Dirichlet

b.c.. For 𝑘 > 0, we obtain instead e𝑛
𝑘
= 𝑇2𝐷

𝑁
(𝑘)e𝑛−1

𝑘
, where 𝑇2𝐷

𝑁
= 𝑀−1

2𝐷𝑁2𝐷 has the
same block structure of the 1D case but with blocks defined as

𝐹2 :=

(
𝑝+coth( 𝑘 𝜋

𝐿
𝛾1)+coth( 𝑘 𝜋𝐿 (𝛾2−𝛾1)) − 1

coth( 𝑘𝜋
𝐿

(𝛾2−𝛾1 ))
− 1
sinh( 𝑘𝜋

𝐿
(𝛾2−𝛾1 ))

𝑝+coth( 𝑘 𝜋
𝐿
(𝐿−𝛾2))+coth( 𝑘 𝜋𝐿 (𝛾2−𝛾1))

)
,
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𝐹1 := 𝑝 + coth( 𝑘 𝜋
𝐿
𝛾2) + coth( 𝑘 𝜋𝐿 (𝐿 − 𝛾2)) and 𝐹4 := 𝑝 + coth( 𝑘 𝜋

𝐿
(𝐿 − 𝛾1)) +

coth( 𝑘 𝜋
𝐿
(𝛾1)). On the other hand, the coefficients of 𝑁2𝐷 are

𝑎 := 𝑝 − coth
(
𝑘𝜋

𝐿
𝛾1

)
− coth

(
𝑘𝜋

𝐿
(𝛾2 − 𝛾1)

)
, 𝑏 :=

1
sinh( 𝑘 𝜋

𝐿
(𝛾2 − 𝛾1))

,

𝑐 := 𝑝 − coth
(
𝑘𝜋

𝐿
(𝐿 − 𝛾2)

)
− coth

(
𝑘𝜋

𝐿
(𝛾2 − 𝛾1)

)
,

𝑑 𝑗 := 𝑝 − coth
(
𝑘𝜋

𝐿
(𝐿 − 𝛾 𝑗 )

)
− coth

(
𝑘𝜋

𝐿
𝛾 𝑗

)
.

Fig 4 shows numerically that OSM is scalable also for a 2D DFN with the Dirich-
let b.c. Observing that the frequency 𝑘 = 0 behaves according to the 1D analysis,
we expect OSM with the Neumann b.c. on each fracture except on the first and last
ones not to be weakly scalable. Repeating the calculations one finds an iteration
matrix 𝑇2𝐷

𝑁
and Fig. 4 confirms this conclusion.
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Fig. 4 Left and center panel: spectral radii ofmax𝑘∈[𝑘min ,𝑘max ] 𝑇 2𝐷𝑁
(𝑘) andmax𝑘∈[0,𝑘max ] 𝑇 2𝐷𝑁

(𝑘)
as 𝑁 grows. Parameters: 𝐿 = 1, 𝛾1 = 0.2, 𝛾2 = 0.6 and 𝑝 = 20. Right panel:
max𝑘∈[𝑘min ,𝑘max ] 𝑇 2𝐷𝑁

(𝑘) as 𝑝 varies.

We now derive the optimized parameters by analyzing the coupling of two frac-
tures. Inserting the Fourier expansions into the transmission conditions and defining

𝑓 𝑗 (𝑘):=
𝜈3− 𝑗 𝑘𝜋

𝐿

(
coth

(
𝑘𝜋

𝐿
𝛾 𝑗

)
+coth

(
𝑘𝜋

𝐿
(𝐿−𝛾 𝑗 )

))
, 𝑗=1,2,

we obtain 𝑒𝑛
𝑗
(𝑘) = 𝜌(𝑘, 𝑠−1 , 𝑠

+
1 )𝑒

𝑛−2
𝑗

(𝑘), for 𝑘 > 0, 𝑗 = 1, 2, where 𝜌(𝑘, 𝑠−1 , 𝑠
+
1 ) :=

𝑓1 (𝑘)−𝑠−1
𝑓2 (𝑘)+𝑠−1

𝑓2 (𝑘)−𝑠+1
𝑓1 (𝑘)+𝑠+1

. On the other hand, for the constant mode 𝑘 = 0 we recover the
1D result: 𝑒𝑛

𝑗
(0) = 𝜌1𝐷 (𝑠−1 , 𝑠

+
1 )𝑒

𝑛−2
𝑗

(0). To derive optimized parameters, we set
𝑠−1 = 𝑓1 (𝑝), 𝑠+1 = 𝑓2 (𝑝) for some 𝑝 ∈ R+, and we study

min
𝑝∈R+

max
{
𝜌1𝐷 (𝑝), max

𝑘∈[ 𝜋
𝐿
,𝑘max ]

𝜌(𝑘, 𝑝)
}
. (8)

Despite 𝜌(𝑘, 𝑝) is not defined at 𝑘 = 0 since coth(·) has a singularity, we observe
that lim𝑘→0 𝜌(𝑘, 𝑝) = 𝜌1𝐷 (𝑝). Thus, we introduce the function �̃�(𝑘, 𝑝) = 𝜌(𝑘, 𝑝)
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for 𝑘 > 0 and �̃�(0, 𝑝) = 𝜌1𝐷 (𝑝), and further simplify the min-max problem to

min
𝑝∈R+

max
𝑘∈[0,𝑘max ]

�̃�(𝑘, 𝑝). (9)

The next theorem can be proved using the same steps of [6, Theorem 2.3]. Fig. 4
confirms that effectiveness of the analysis even in the many-fractures case.

Theorem 2 The solution of the min-max problem (9) is given by the unique 𝑝★ which
satisfies �̃�(0, 𝑝★) = �̃�(𝑘max, 𝑝★).

Future works will focus on testing the results of the analysis presented on more
realistic DFN configurations.
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