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1 Model problem and motivation

In this work, we consider a two-dimensional slow-fast Ornstein-Uhlenbeck (OU)
stochastic differential equation (SDE) [9], modelling the coupled evolution of
a slowly evolving variable 𝑥 ∈ R and a variable 𝑦 ∈ R that quickly reaches its
equilibrium distribution:[

𝑑𝑥

𝑑𝑦

]
=

[
𝛼 𝛽

𝛾/𝜖 𝜁/𝜖

] [
𝑥

𝑦

]
𝑑𝑡 + 𝜎

[
1 0
0 1/

√
𝜖

]
𝑑𝑊. (1)

where 𝑑𝑊 ∈ R2 is a two-dimensional Brownian motion and 𝜖 ∈ R is a (small) time
scale separation parameter 𝜖 � 1. The initial condition has a distribution with mean[
𝑚𝑥,0 𝑚𝑦,0

]
and covariance matrix

[
Σ𝑥,0 Σ𝑥𝑦,0
Σ𝑥𝑦,0 Σ𝑦,0

]
, and time 𝑡 ∈ [0, 𝑇].

Model problem (1) mimics the general situation where 𝑥 is a low-dimensional
quantity of interest whose evolution is influenced by a quickly evolving, high-
dimensional variable 𝑦, all described by SDEs. The joint probability density of 𝑥
and 𝑦 obeys a Fokker-Planck equation (see, e.g. [3]). Instead of directly solving
this partial differential equation using classical deterministic techniques, which suf-
fer from the curse of dimensionality, the corresponding SDE can be solved using
a Monte Carlo method. In this paper, our aim is to obtain insight in the conver-
gence of a parallel-in-time (PinT) method applied to the low-dimensional linear
OU model problem (1). In our method, the fine propagator of the SDE is based on
a high-dimensional slow-fast microscopic model; the coarse propagator is based on
a model-reduced version of the latter, that captures the low-dimensional, effective
dynamics at the slow time scales. This problem allows for an analytic treatment, if
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the quantities of interest are the mean and the (co)variance of 𝑥 and 𝑦. We expect
that this convergence analysis can be useful as a stepping stone for analysing PinT
methods for higher-dimensional (nonlinear) SDEs.

1.1 Derivation of a reduced model

The averaging technique from [7, chapter 10, see, e.g., Remark 10.2] allows to define
the reduced dynamics variable 𝑋 , that approximates the slow variable 𝑥 in (1). This
technique exploits time-scale separation in order to integrate out the fast variable
with respect to 𝜌∞ (𝑦 |𝑥), the invariant distribution of the fast variable 𝑦 conditioned
on a fixed slow variable 𝑥.
The reduced model reads as follows (ΛΣ and ΣΣ are defined implicitly):

𝑑𝑋 = 𝐴(𝑋)𝑑𝑡 + 𝑆(𝑋)𝑑𝑊 (2)
with

𝐴(𝑋) =
∫
Y
𝑎(𝑋, 𝑦)𝜌∞ (𝑦 |𝑋)𝑑𝑦 = ΛΣ𝑋 B

(
𝛼 − 𝛽𝛾

𝜁

)
𝑋

𝑆(𝑋)𝑆(𝑋)𝑇 =

∫
Y
𝑠(𝑋, 𝑦)𝑠(𝑋, 𝑦)𝑇 𝜌∞ (𝑦 |𝑋)𝑑𝑦 = ΣΣ B 𝜎,

where Y denotes the domain of 𝑦. It can be shown that for the OU system (1), the
conditional distribution 𝜌∞ (𝑦 |𝑥) = N

(
𝛾𝑥

𝜁
, 𝜎

2

2𝜁

)
(see [7, Example 6.19]).

The reduced model (2), while it is only an approximation to the slow dynamics,
offers two computational advantages w.r.t. the full, scale-separated system (1): (i) it
contains fewer degrees of freedom, and (ii) it is less stiff with a computational cost
that is independent of 𝜖 . As 𝜖 approaches zero, the multiscale model (1) gets more
stiff, while the (cheaper) reduced model becomes a more accurate approximation.

1.2 Moment system for the Ornstein-Uhlenbeck process

The evolution of mean and variance of a linear SDE can be described exactly using
the moment models from [1]. Thus, for the linear Ornstein-Uhlenbeck SDE model
problem, we can use these linear ODEs instead of using a Monte Carlo simulation.

Moments for reduced model. The evolution of the mean of 𝑋 in (2) is given by

𝑑𝑚𝑋

𝑑𝑡
=

(
𝛼 − 𝛽𝛾

𝜁

)
𝑚𝑋 . (3)

The evolution of the variance of the reduced system is given by the ODE

𝑑Σ𝑋

𝑑𝑡
= ΛΣΣ𝑋 + Σ2Σ = 2

(
𝛼 − 𝛽𝛾

𝜁

)
Σ𝑋 + 𝜎2. (4)
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Moments for multiscale model. The evolution of the mean of the multiscale
SDE (1) is described by the following linear ODE:

𝑑

𝑑𝑡

[
𝑚𝑥

𝑚𝑦

]
=

[
𝛼 𝛽

𝛾/𝜖 𝜁/𝜖

] [
𝑚𝑥

𝑚𝑦

]
. (5)

The evolution of the covariance of (1) is given by the linear ODE ¤Σ = 𝐵ΣΣ + 𝑏Σ:

𝑑

𝑑𝑡


Σ𝑥

Σ𝑥𝑦

Σ𝑦

 =

2𝛼 2𝛽 0
𝛾/𝜖 𝛼 + 𝜁/𝜖 𝛽

0 2𝛾/𝜖 2𝜁/𝜖



Σ𝑥

Σ𝑥𝑦

Σ𝑦

 +

𝜎2

0
𝜎2/𝜖

 (6)

where we define Σ𝑞 =
[
Σ𝑥𝑦 Σ𝑦

]𝑇 , and where the blocks of 𝐵Σ are named as

𝐵Σ =

[
2𝛼 𝑝𝑇

Σ

𝑞Σ/𝜖 −𝐴Σ/𝜖

]
, where 𝐴Σ = −

[
𝛼 + 𝜁/𝜖 𝛽

2𝛾/𝜖 2𝜁/𝜖

]
. To ensure stability of the

fast dynamics, we assume that the parameters in (1) are chosen such that the real part
of the eigenvalues of the matrix 𝐴Σ are all positive 𝜇Σ,𝑖 ≥ 𝜇− > 0. This condition is
satisfied for instance for any 𝛼, 𝛽 ∈ R if 𝜁 and 𝛾 are sufficiently small.

2 The Micro-Macro Parareal algorithm

The Micro-Macro Parareal (mM-Parareal) for scale-separated ODEs [5] and for
SDEs [4], is a generalisation of the Parareal algorithm [6]. It combines two levels
of description: (i) the micro variable 𝑢, with corresponding fine propagator F , and
(ii) the macro variable 𝜌, which is lower-dimensional, with coarse propagator C.
These levels are related through coupling operators: the restriction operator R ex-
tracts macro information from a micro state, the lifting operator L produces a micro
state that is consistent with a given macro state, and finally the matching operatorM
produces a micro state that is consistent with a given macro state, based on prior
information of the micro state. Examples of these operators are given in the sequel.
The mM-Parareal algorithm iterate at iteration 𝑘 and time step 𝑛 is given next. For
𝑘 = 0 (initialization), we have

𝜌0𝑛+1 = C(𝜌0𝑛) 𝑢0𝑛+1 = L(𝜌0𝑛+1), (7)

and for 𝑘 ≥ 1,
𝜌𝑘+1𝑛+1 = C(𝜌𝑘+1𝑛 ) + R(F (𝑢𝑘𝑛)) − C(𝜌𝑘𝑛)
𝑢𝑘+1𝑛+1 = M(𝜌𝑘+1𝑛+1 , F (𝑢𝑘𝑛)).

(8)

If the coupling operators are chosen such thatM(R𝑢, 𝑢) = 𝑢, then at each iteration it
holds that 𝜌𝑘𝑛 = R𝑢𝑘𝑛. Classical Parareal [6] corresponds to the caseR = L = M = I.

Convergence of Micro-Macro Parareal for linear scale-separated ODEs.
In [5], the convergence of mM-Parareal for a linear scale-separated ODE is studied.
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We briefly review the main ingredients of the theory, because we will use them
further on to study the convergence for our model problem (1).
The test system in [5], modelling the coupled evolution of a slow variable 𝑟 ∈ R

and a fast variable 𝑣 ∈ R𝑝 , 𝑝 ≥ 1, has the following structure:[
¤𝑟
¤𝑣

]
=

[
𝑎 𝑝𝑇

𝑞/𝜖 −𝐴/𝜖

] [
𝑟

𝑣

]
(9)

where 𝐴 ∈ p × p has positive eigenvalues: the fast component 𝑣 is dissipative. The
model for the approximate slow variable 𝑈, and the parameter Λ, are defined as
follows:

¤𝑈 = Λ𝑈 =

(
𝑎 + 𝑝𝑇 𝐴−1𝑞

)
𝑈, (10)

with 𝑈 (0) = 𝑈0 = 𝑟0. In [5, equations (2.8), (2.13) and (2.14)] the following
properties of the multiscale system (9) and its reduced model (10) are proven (the
subscript ·0 denotes the initial condition):

sup
𝑡 ∈[0,𝑇 ]

|𝑟 (𝑡) −𝑈0 exp(Λ𝑡) | ≤ 𝐶𝜖 ( |𝑟0 | + ‖𝑣0 − 𝐴−1𝑞𝑟0‖), (11)

sup
𝑡 ∈[0,𝑇 ]

|𝑟 (𝑡) | ≤ 𝐶 ( |𝑟0 | + 𝜖 ‖𝑣0‖), (12)

sup
𝑡 ∈[𝑡BL ,𝑇 ]

‖𝑣(𝑡)‖ ≤ 𝐶 ( |𝑟0 | + 𝜖 ‖𝑣0‖), (13)

where the constant 𝐶 only depends only on 𝐴, 𝑝, 𝑞, 𝑎 and 𝑇 (see (9)).
Using the properties (11)–(13), in [5], the convergence of mM-Parareal for the lin-

ear test problem (9) with coarse model (10) is analysed, using the restriction operator
R(

[
𝑟, 𝑣

]𝑇 ) = 𝑟 (with R⊥ (
[
𝑟, 𝑣

]𝑇 ) = 𝑣), the lifting operator L(𝑈) =
[
𝑈, 𝐴−1𝑞𝑈

]𝑇
and the matching operator M(𝑈, 𝑢) =

[
𝑈, R⊥𝑢

]𝑇 . We now present two minor
extensions to existing Micro-Macro Parareal convergence lemmas for later use.

Lemma 1 (Convergence of mM-Parareal for nonhomogenous linear ODEs) The
mM-Parareal solution of the system ¤𝑢 = 𝐴𝑢 + 𝑏 equals the mM-Parareal solution of
the system ¤𝑣 = 𝐴𝑣, with 𝑣 = 𝑢 = 𝐴−1𝑏, if 𝑣(0) is chosen 𝑣(0) = 𝑢(0) − 𝐴−1𝑏, with 𝐴
and 𝑏 constant. Assume that the (numerical) fine propagator satisfies the following
property when it is applied on a linear system: F (𝑢) = (𝐼 + 𝐴F)𝑢 + 𝐵F with 𝐵F = 0
for the homogeneous system. (This assumption is not restrictive, e.g., it is satisfied by
any Runge Kutta method.) Futher assume thatM(𝜌, 𝑢)−M(𝜎, 𝑣) = M(𝜌−𝜎, 𝑢−𝑣)
and that the coarse propagator is linear. Then, the mM-Parareal iterates satisfy

𝑢𝑘𝑛 = 𝑣𝑘𝑛 + 𝐴−1𝐵 (14)

The proof of Lemma 1 can be constructed by induction on 𝑛.
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Lemma 2 (Convergence of mM-Parareal without lifting in the zeroth iteration
for linear scale-separated ODEs)

Using trivial lifting, that is L(𝑋) =
[
𝑋, 𝑣0

]
, and using mM-Parareal, defined

in (7)–(8), with the specific choice of operators (9)–(10), let 𝐸 𝑘
Σ𝑋 ,𝑛

= 𝑢𝑘𝑛 − R𝑢𝑛 be
the macro error and 𝑒𝑘𝑛 = 𝑢𝑘𝑛 − 𝑢𝑛 be the micro error. Then, there exists 𝜖0 ∈ (0, 1),
that only depends on 𝛼, 𝑝, 𝑞, 𝐴 and 𝑇 , such that, for all 𝜖 < 𝜖0 and all Δ𝑡 > 𝑡𝐵𝐿

𝜖 ,
there exists a constant 𝐶𝑘 , independent of 𝜖 , such that for all 𝑘 ≥ 0:

sup
0≤𝑛≤𝑁

|𝐸 𝑘
𝑛 | ≤ 𝐶𝑘𝜖

1+b(𝑘+1)/2c , (15)

sup
0≤𝑛≤𝑁

‖𝑒𝑘𝑛 ‖ ≤ 𝐶𝑘𝜖
d(𝑘+1)/2e . (16)

The proof of Lemma 2 closely follows [5, proof of Theorem 13].

3 Convergence of Micro-Macro Parareal for model problem:
theoretical analysis

The model problem is the multiscale Ornstein-Uhlenbeck process (1). We de-
fine the micro variable, describing the first two moments of its solution as
𝑢𝑘𝑛 =

[
𝑚𝑥 𝑚𝑦 Σ𝑥 Σ𝑥𝑦 Σ𝑦

]
. The macro variable is defined as 𝜌𝑘𝑛 =

[
𝑚𝑥 Σ𝑥

]
.

For the fine propagator F , we use the SDE (1), which we model via its mo-
ment models (5) and (6). The coarse propagator C simulates the reduced sys-
tem (2), or equivalently the scalar ODEs (6) and (4). The restriction opera-
tor is defined as R

( [
𝑚𝑥 𝑚𝑦 Σ𝑥 Σ𝑦 Σ𝑥𝑦

] )
=

[
𝑚𝑥 Σ𝑥

]
, the lifting operator as:

L
( [
𝑀𝑋 𝑆𝑋

]𝑇 )
=

[
𝑀𝑋 𝑚𝑦,0 𝑆𝑋 Σ𝑦,0 Σ𝑥𝑦,0

]𝑇
, and the matching operator as

M
( [
𝑀𝑋 𝑆𝑋

]𝑇
,
[
𝑚𝑥 𝑚𝑞 Σ𝑥 Σ𝑦 Σ𝑥𝑦

]𝑇 )
=
[
𝑀𝑋 𝑚𝑦 𝑆𝑋 Σ𝑦 Σ𝑥𝑦

]𝑇
. The lifting op-

erator thus initializes the moments of the fast variable to its initial value.
Convergence of first moment. The moment equations (5) and (3), describing

the evolution of the first moment obey the structure of the multiscale system (9), and
therefore we can, after using Lemma 1, apply Lemma 2.

Converence of covariance. The evolution of the multiscale covariance (6) does
not satisfy the same property as the model in equation (9) because (i) the subma-
trix 𝐴Σ contains the parameter 𝜖 , and (ii) the reduced model is not defined using (10).
Nextwewill prove that, although themodels (6) and (9) are different, they both satisfy
some key theoretical properties that were used in [5].

Lemma 3 (An equivalent of (11) for model (6) instead of model (9)) For system (6)
and its reduced model (4), it holds true that

sup
𝑡 ∈[0,𝑇 ]

|Σ𝑥 (𝑡) − Σ𝑥,0 exp(ΛΣ𝑡) | ≤ 𝐶𝜖 ( |Σ𝑥,0 | + ‖Σ𝑦,0 − 𝐴−1
Σ 𝑞ΣΣ𝑥,0‖). (17)
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Proof From (11), (6) and (19), we have

sup
𝑡 ∈[0,𝑇 ]

|Σ𝑥 (𝑡) − Σ𝑥,0 exp(𝜆Σ𝑡) | ≤ 𝐶𝜖 ( |Σ𝑥,0 | + ‖Σ𝑧,0‖). (18)

If we define
𝜆Σ = 2𝛼 + 𝑝𝑇Σ 𝐴−1

Σ 𝑞Σ, (19)

we can interpret the averaged model (4) as a limit of the reduced model (10)

for the system (6): ΛΣ = lim
𝜖→0

𝜆Σ = 2𝛼 − 2 𝛽𝛾
𝜁
. Now we define ΔΛΣ = ΛΣ − 𝜆Σ

(see (4) and (19)) and we observe that ΔΛΣ = O(𝜖). It then holds that exp (ΛΣ𝑡) =
exp ((𝜆Σ + ΔΛΣ)𝑡) = exp (𝜆Σ𝑡) [1 + O(𝜖)]. From the triangle inequality and the
inequality (11) we have that

sup
𝑡 ∈[0,𝑇 ]

|Σ𝑥 (𝑡) − Σ𝑥,0 exp(ΛΣ𝑡) | ≤ sup
𝑡 ∈[0,𝑇 ]

|Σ𝑥 (𝑡) − Σ𝑥,0 exp(𝜆Σ𝑡) (1 + O(𝜖)) |

≤ 𝐶𝜖 ( |Σ𝑥,0 | + ‖Σ𝑧,0‖) + |Σ𝑥,0 | |O(𝜖) |
≤ 𝐾𝜖 ( |Σ𝑥,0 | + ‖Σ𝑧,0‖),

(20)

where 𝐾 > 𝐶. This proves equation (17). �

Lemma 4 (An equivalent of (12) and (13) for model (6) instead of model (9))
Assuming that that the eigenvalues 𝜇Σ,𝑖 of the matrix 𝐴Σ (see (6)) are all positive,
the properties in equation (12) and (13) hold true for the system (6):

sup
𝑡 ∈[0,𝑇 ]

|Σ𝑥 (𝑡) | ≤ 𝐶 ( |Σ𝑥,0 | + 𝜖 ‖Σ𝑞,0‖),

sup
𝑡 ∈[𝑡BL ,𝑇 ]

‖Σ𝑞 (𝑡)‖ ≤ 𝐶 ( |Σ𝑥,0 | + 𝜖 ‖Σ𝑞,0‖).
(21)

Proof The proof is similar to [5, Proof of Corollary 3]. In [5], the assumption that
the eigenvalues of 𝐴Σ are all positive is important. The structure of 𝜆Σ (or ΛΣ) does
not further influence the proof. �

The preceding lemmas allow us to formulate our main result.
Lemma 5 (Convergence of mM-Parareal for evolution of covariance) Consider
mM-Parareal, defined in (7)–(8), with fine and coarse propagators the full system (6)
and the reduced system (4), respectively. Let 𝐸 𝑘

Σ𝑋 ,𝑛
= 𝜌𝑘𝑛 − R𝑢𝑛 be the macro error

and 𝑒𝑘𝑛 = 𝑢𝑘𝑛 − 𝑢𝑛 be the micro error. Then there exists 𝜖0 ∈ (0, 1), that only depends
on 𝛼, 𝑝Σ, 𝑞Σ, 𝐴Σ and 𝑇 , such that, for all 𝜖 < 𝜖0 and all Δ𝑡 > 𝑡𝐵𝐿

𝜖 , there exists
a constant 𝐶𝑘 , independent of 𝜖 , such that for all 𝑘 ≥ 0:

sup
0≤𝑛≤𝑁

|𝐸 𝑘
𝑛 | ≤ 𝐶𝑘𝜖

1+b(𝑘+1)/2c (22)

sup
0≤𝑛≤𝑁

‖𝑒𝑘𝑛 ‖ ≤ 𝐶𝑘𝜖
d(𝑘+1)/2e (23)

Proof Using Lemmas 1, 2, 3, and 4 the proof follows from [5, Proof of Theorem 2].�
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4 Numerical experiments

The test parameters for the numerical experiments are chosen to be:[
𝛼 𝛽

𝛾/𝜖 𝜁/𝜖

]
=

[
−1. −1.
0.1/𝜖 −1./𝜖

]
, 𝜎 = 0.5 (24)

The time interval is chosen as [0, 10], the number of time intervals 𝑁 = 10, and
the initial value

[
𝑚𝑥,0 𝑚𝑞,0 Σ𝑥,0 Σ𝑞,0 Σ𝑥𝑞,0

]𝑇
=

[
100 100 100 0 0

]𝑇 . In the ex-
periments, which are shown in Figure 1, it is seen that the micro and macro errors
in the mean follow the behaviour given by Lemma 2; those in the variance follow
the behaviour as given by Lemma 5. Observe that mM-Parareal converges faster for
computationally more expensive models (with small 𝜖).

Fig. 1 Error as function of time-scale separation parameter 𝜖 . We used ∞-norm over time (only
considering coarse discretisation points) and the 2-norm for the micro error. Top left: macro error
on mean, Top right: micro error on mean, Bottom left: macro error on variance, Bottom right;
micro error on variance. We used a numerical solver to discretise the moment equations (3)–(6)
with a very stringent tolerance, so that the effect of numerical discretisation errors can be neglected.
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5 Discussion and conclusion

Summary.We presented a convergence analysis of the Micro-Macro Parareal al-
gorithm on scale-separated Ornstein-Uhlenbeck SDEs. We analysed its convergence
behaviour w.r.t. the time scale separation parameter 𝜖 , using moment models. The
convergence of the first moment is closely related to the analysis in [5]. For the
covariance we presented some extensions to this theory.

Limitations. While the analysis using moment models quantifies the error on
the mean and variance of the SDE solution, we cannot say anything about other
quantities of interest, such as higher moments of the SDE solutions.
Also, by using the moment model (an ODE that we solved using very stringent

tolerances), we exclusively looked at the model error, neglecting the discretisation
errors and statistical errors (in e.g. Monte Carlo simulations) that arise in the dis-
cretisation of an SDE.

Open questions. It remains to be studied how the analysis generalises to higher
dimensions, for instance when the slow variable is multi-dimensional. Also, an
extension of the convergence analysis could cover nonlinear SDEs, or linear SDEs
for which there is a coupling between mean and variance in the moment model
ODEs. Another open problem is an analysis of convergence of the method w.r.t. the
iteration number, in contrast to convergence w.r.t. the parameter 𝜖 . This would be
more useful in practice.

Software. The code that is used for the numerical experiments, is available1. We
used the Julia language [2] and the DifferentialEquations.jl package [8].
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